
Under review as submission to TMLR

Gradient Descent Temporal Difference-difference Learning

Anonymous authors
Paper under double-blind review

Abstract

Though widely useful in reinforcement learning, “semi-gradient" methods—including TD(λ)
and Q-learning—do not converge as robustly as gradient-based methods. Even in the case of
linear function approximation, convergence cannot be guaranteed for these methods when
they are used with off-policy training, in which an agent uses a behavior policy that differs
from the target policy in order to gain experience for learning. To address this, alternative
algorithms that are provably convergent in such cases have been introduced, the most well
known being gradient descent temporal difference (GTD) learning. This algorithm and
others like it, however, tend to converge much more slowly than conventional temporal
difference learning. In this paper we propose gradient descent temporal difference-difference
(Gradient-DD) learning in order to improve GTD2, a GTD algorithm (Sutton et al., 2009b),
by introducing second-order differences in successive parameter updates. We investigate this
algorithm in the framework of linear value function approximation, theoretically proving
its convergence by applying the theory of stochastic approximation. Studying the model
empirically on the random walk task, the Boyan-chain task, and the Baird’s off-policy
counterexample, we find substantial improvement over GTD2 and, in several cases, better
performance even than conventional TD learning.

1 Introduction

Many of the recent practical successes of reinforcement learning have been achieved using “semi-gradient"
methods—including TD(λ) and Q-learning—in which bootstrapping is used to quickly estimate a value
function. However, because they introduce bias by learning a bootstrapped estimate of the target rather than
the target itself, semi-gradient methods do not converge as robustly as gradient-based methods (Sutton &
Barto, 2018). Even in the relatively simple case of linear function approximation, convergence cannot be
guaranteed for these methods when they are used with off-policy training (Baird, 1995), in which an agent
uses a behavior policy that differs from the target policy in order to gain experience for learning.

To address this shortcoming and to ground value prediction in the framework of stochastic gradient descent, the
gradient-based temporal difference algorithms GTD and GTD2 were introduced (Sutton et al., 2009a;b). These
algorithms are compatible with both linear function approximation and off-policy training, ensuring stability
with computational complexity scaling linearly with the size of the function approximator. Despite this
theoretical assurance, empirical evidence suggests that their convergence is notably slower than conventional
temporal difference (TD) learning, limiting their practical utility (Ghiassian et al., 2020; White & White,
2016). Building on this work, extensions to the GTD family of algorithms (see (Ghiassian et al., 2018) for
a review) have allowed for incorporating eligibility traces (Maei & Sutton, 2010; Geist & Scherrer, 2014),
non-linear function approximation such as with a neural network (Maei, 2011), and reformulation of the
optimization as a saddle point problem (Liu et al., 2015; Du et al., 2017). However, due to their slow
convergence, none of these stable off-policy methods are commonly used in practice.

In this work, we introduce a new gradient descent algorithm for temporal difference learning with linear
value function approximation. This algorithm, which we call gradient descent temporal difference-difference
(Gradient-DD) learning, is an acceleration technique that employs second-order differences in successive
parameter updates. The basic idea of Gradient-DD is to modify the error objective function by additionally
considering the prediction error obtained in the last time step, then to derive a gradient-descent algorithm

1

Under review as submission to TMLR

based on this modified objective function. In addition to exploiting the Bellman equation to get the solution,
this modified error objective function avoids drastic changes in the value function estimate by encouraging
local search around the current estimate. Algorithmically, the Gradient-DD approach only adds an additional
term to the update rule of the GTD2 method, and the extra computational cost is negligible. We prove
its convergence by applying the theory of stochastic approximation. This result is supported by numerical
experiments, which also show that Gradient-DD obtains better convergence in many cases than conventional
TD learning.

1.1 Related Work

In related approaches to ours, some previous studies have attempted to improve Gradient-TD algorithms
by adding regularization terms to the objective function. These approaches have used l1 regularization on
weights to learn sparse representations of value functions Liu et al. (2012), or l2 regularization on weights
Ghiassian et al. (2020). Our work is different from these approaches in two ways. First, whereas these
previous studies investigated a variant of TD learning with gradient corrections, we take the GTD2 algorithm
as our starting point. Second, unlike these previous approaches, our approach modifies the error objective
function by using a distance constraint rather than a penalty on weights. The distance constraint works by
restricting the search to some region around the evaluation obtained in the most recent time step. With
this modification, our method provides a learning rule that contains second-order differences in successive
parameter updates.

Our approach is similar to trust region policy optimization (Schulman et al., 2015) or relative entropy policy
search (Peters et al., 2010), which penalize large changes being learned in policy learning. In these methods,
constrained optimization is used to update the policy by considering the constraint on some measure between
the new policy and the old policy. Here, however, our aim is to find the optimal value function, and the
regularization term uses the previous value function estimate to avoid drastic changes in the updating process.

Our approach bears similarity to the natural gradient approach widely used in reinforcement learning (Amari,
1998; Bhatnagar et al., 2009; Degris et al., 2012; Dabney & Thomas, 2014; Thomas et al., 2016), which uses
the metric tensor to correct for the local geometry of the parameter space, and also features a constrained
optimization form. However, Gradient-DD is distinct from the natural gradient. The essential difference
is that, unlike the natural gradient, Gradient-DD is a trust region method, which defines the trust region
according to the difference between the current value and the value obtained from the previous step. From
the computational cost viewpoint, unlike natural TD (Dabney & Thomas, 2014), which needs to update an
estimate of the metric tensor, the computational cost of Gradient-DD is essentially the same as that of GTD2.

2 Gradient descent method for temporal difference learning

2.1 Problem definition and background

In this section, we formalize the problem of learning the value function for a given policy under the Markov
decision process (MDP) framework. In this framework, the agent interacts with the environment over a
sequence of discrete time steps, t = 1, 2, At each time step the agent observes a state st ∈ S and selects
an action at ∈ A. In response, the environment emits a reward rt ∈ R and transitions the agent to its next
state st+1 ∈ S. The state and action sets are finite. State transitions are stochastic and dependent on the
immediately preceding state and action. Rewards are stochastic and dependent on the preceding state and
action, as well as on the next state. The process generating the agent’s actions is termed the behavior policy.
In off-policy learning, this behavior policy is in general different from the target policy π : S → A. The
objective is to learn an approximation to the state-value function under the target policy in a particular
environment:

V (s) = Eπ
[∑∞

t=1
γt−1rt|s1 = s

]
, (1)

where γ ∈ [0, 1) is the discount rate.

In problems for which the state space is large, it is practical to approximate the value function. In this paper
we consider linear function approximation, where states are mapped to feature vectors with fewer components

2

Under review as submission to TMLR

than the number of states. Specifically, for each state s ∈ S there is a corresponding feature vector x(s) ∈ Rp,
with p ≤ |S|, such that the approximate value function is given by

Vw(s) := w>x(s). (2)

The goal is then to learn the parameters w such that Vw(s) ≈ V (s).

2.2 Gradient temporal difference learning

A major breakthrough for the study of the convergence properties of MDP systems came with the introduction
of the GTD and GTD2 learning algorithms (Sutton et al., 2009a;b). We begin by briefly recapitulating the
GTD algorithms, which we will then extend in the following sections. To begin, we introduce the Bellman
operator B such that the true value function V ∈ R|S| satisfies the Bellman equation:

V = R + γPV =: BV,

where R is the reward vector with components E(rn|sn = s), and P is a matrix of the state transition
probabilities under the target policy. In temporal difference methods, an appropriate objective function
should minimize the difference between the approximate value function and the solution to the Bellman
equation.

Having defined the Bellman operator, we next introduce the projection operator Π, which takes any value
function V and projects it to the nearest value function within the space of approximate value functions of
the form Eqn. (2). Letting X be the matrix whose rows are x(s), the approximate value function can be
expressed as Vw = Xw. The projection operator is then given by

Π = X(X>DX)−1X>D,

where the matrix D is diagonal, with each diagonal element ds corresponding to the probability of visiting
state s under the behavior policy. We consider a general setting as in Sutton et al. (2009b;a), where the first
state of each transition is chosen i.i.d. according to an arbitrary distribution that may be unrelated to P.
This setting defines a probability over independent triples of state, next state, and reward random variables,
denoted (sn, sn+1, rn), with associated feature-vector random variables xn = xsn and xn+1 = xsn+1 .

The natural measure of how closely the approximation Vw satisfies the Bellman equation is the mean-squared
Bellman error:

MSBE(w) = ‖Vw −BVw‖2D, (3)

where the norm is weighted by D, such that ‖V‖2D = V>DV. However, because the Bellman operator
follows the underlying state dynamics of the Markov chain, irrespective of the structure of the linear function
approximator, BVw will typically not be representable as Vw for any w. An alternative objective function,
therefore, is the mean squared projected Bellman error (MSPBE), which is defined by Sutton et al. (2009b) as

J(w) = ‖Vw −ΠBVw‖2D. (4)

Following Sutton et al. (2009b), our objective is to minimize this error measure. As usual in stochastic
gradient descent, the weights at each time step are then updated by ∆w = −α∇J(w), where α > 0, and

−1
2∇J(wn) = −E[(γxn+1 − xn)x>n][E(xnx>n)]−1E(δnxn). (5)

We have also introduced the temporal difference error δn = rn + (γxn+1 − xn)>wn. Let ηn denote the
estimate of [E(xnx>n)]−1E(δnxn) at the time step n. Because the factors in Eqn. (5) can be directly sampled,
the resulting updates in each step are

δn =rn + (γxn+1 − xn)>wn

ηn+1 =ηn + βn(δn − x>n ηn)xn
wn+1 =wn − αn(γxn+1 − xn)(x>n ηn). (6)

3

Under review as submission to TMLR

These updates define the GTD2 learning algorithm, which we will build upon in the following section.

While the algorithm described above would be appropriate for on-policy learning, we are interested in the
case of off-policy learning, in which actions are selected based on a behavior policy different from the target
policy. If value estimation consists of the estimation of the expected returns, this off-policy setting involves
estimating an expectation conditioned on one distribution with samples collected under another. GTD2 can
be extended to make off-policy updates by using importance sampling ratios ρn = π(an|sn)/b(an|sn) ≥ 0
where an denotes the action taken at state sn. The resulting modifications to the equations for updating ηn
and wn are as follows:

ηn+1 =ηn + βn(ρnδn − x>n ηn)xn
wn+1 =wn − αnρn(γxn+1 − xn)(x>n ηn). (7)

3 Gradient descent temporal difference-difference learning

In this section we modify the objective function by additionally considering the difference between Vw and
Vwn−1 , which denotes the value function estimate at step n − 1 of the optimization. We propose a new
objective JGDD(w|wn−1), where the notation “w|wn−1" in the parentheses means that the objective is defined
given Vwn−1 of the previous time step n− 1. Specifically, we modify Eqn. (4) as follows:

JGDD(w|wn−1) = J(w) + κ‖Vw −Vwn−1‖2D, (8)

where κ ≥ 0 is a parameter of the regularization, and we assume that κ is constant. We show in Section A.1
of the appendix that minimizing Eqn. (8) is equivalent to the following optimization

arg min
w

J(w) s.t. ‖Vw −Vwn−1‖2D ≤ µ (9)

where µ > 0 is a parameter which becomes large when κ is small, so that the MSPBE objective is recovered
as µ→∞, equivalent to κ→ 0 in Eqn. (8).

Figure 1: Schematic diagram of Gradient-DD learn-
ing with w ∈ R2. Rather than updating w directly
along the gradient of the MSPBE (black arrow), the
update rule selects the direction starting from wn (red
star) that minimizes the MSPBE while satisfying the
constraint ‖Vw −Vwn−1‖2D ≤ µ (shaded ellipse).

Rather than simply minimizing the optimal prediction from the projected Bellman equation, the agent makes
use of the most recent update to look for the solution, choosing a w that minimizes the MSPBE while
following the constraint that the estimated value function should not change too greatly, as illustrated in
Fig. 1. In effect, the regularization term encourages searching around the estimate at previous time step,
especially when the state space is large.

Eqn. (9) shows that the regularized objective is a trust region approach, which seeks a direction that attains
the best improvement possible subject to the distance constraint. The trust region is defined by the value

4

Under review as submission to TMLR

distance rather than the weight distance, meaning that Gradient-DD also makes use of the natural gradient
of the objective around wn−1 rather than around wn (see Section A.2 of the appendix for details). In this
sense, our approach can be explained as a trust region method that makes use of natural gradient information
to prevent the estimated value function from changing too drastically.

For comparison with related approaches using natural gradients, in Fig. 9 of the appendix we compare the
empirical performance of our algorithm with natural GTD2 and natural TDC Dabney & Thomas (2014) using
the random walk task introduced below in Section 5. In addition, we compared our approach of regularizing
the objective using the difference in successive value estimates (κ‖Vwn

−Vwn−1‖2D) vs. using the difference
in successive parameters (κ‖wn −wn−1‖2). We found that, unlike Gradient-DD, the latter approach does
not yield an improvement compared to GTD2 (Fig. 11 of the appendix).

With these considerations in mind, the negative gradient of JGDD(w|wn−1) is

− 1
2∇JGDD(wn|wn−1)

=− E[(γxn+1 − xn)x>n][E(xnx>n)]−1E(δnxn)− κE[(x>nwn − x>nwn−1)xn]. (10)

Because the terms in Eqn. (10) can be directly sampled, the stochastic gradient descent updates are given by

δn =rn + (γxn+1 − xn)>wn

ηn+1 =ηn + αn(δn − x>n ηn)xn
wn+1 =wn − καn(x>nwn − x>nwn−1)xn − αn(γxn+1 − xn)(x>n ηn). (11)

Similar to the case of GTD2 for off-policy learning in (7), the modifications to the equations for updating ηn
and wn for off-policy learning with Gradient-DD are as follows:

ηn+1 =ηn + αn(ρnδn − x>n ηn)xn
wn+1 =wn − καnρn(x>nwn − x>nwn−1)xn − αnρn(γxn+1 − xn)(x>n ηn). (12)

These update equations define the Gradient-DD method, in which the GTD2 update equations (6) are
generalized by including a second-order update term in the third update equation, where this term originates
from the squared bias term in the objective (8). Since Gradient-DD is not sensitive to the step size of
updating η (see Fig. 8 in the appendix), the updates of Gradient-DD only have a single shared step size αn
rather than two step sizes αn, βn as GTD2 and TDC used. It is worth noting that the computational cost of
our algorithm is essentially the same as that of GTD2. In the following sections, we shall analytically and
numerically investigate the convergence and performance of Gradient-DD learning.

4 Convergence Analysis

In this section we establish that the asymptotic convergence guarantees of the original GTD methods also

apply to the Gradient-DD algorithm. Denote Gn =
[

−xnx>n −xn(xn − γxn+1)>
(xn − γxn+1)x>n 0

]
, and Hn =[

0 0
0 xnx>n

]
. We rewrite the update rules in Eqn. (11) as a single iteration in a combined parameter

vector with 2n components, ρn = (η>n ,w>n)>, and a new reward-related vector with 2n components,
gn+1 = (rnx>n ,0>)>, as follows:

ρn+1 =ρn − καnHn(ρn − ρn−1) + αn(Gnρn + gn+1), (13)

Theorem 1. Consider the update rules (13) with step-size sequences αn. Let the TD fixed point be w∗, such
that Vw∗ = ΠBVw∗ . Suppose that (A0) αn ∈ (0, 1),

∑∞
n=1 αn = ∞,

∑∞
n=1 α

2
n < ∞, (A1) (xn, rn,xn+1)

is an i.i.d. sequence with uniformly bounded second moments, (A2) E[(xn − γxn+1)x>n] and E(xnx>n) are
non-singular, (A3) supn ‖ρn+1 − ρn‖ is bounded in probability, (A4) κ is a constant such that 0 ≤ κ <∞.
Then as n→∞, wn → w∗ with probability 1.

5

Under review as submission to TMLR

Proof sketch. Due to the second-order difference term in Eqn. (13), the analysis framework in (Borkar &
Meyn, 2000) does not directly apply to the Gradient-DD algorithm when (A0) holdes, i.e., step size is tapered.
Likewise, the two-timescale convergence analysis (Bhatnagar et al., 2009) is also not directly applicable.
Defining un+1 = ρn+1 − ρn, we rewrite the iterative process in Eqn. (13) into two parallel processes which
are given by

ρn+1 = ρn − καnHnun + αn(Gnρn + gn+1), (14)
un+1 = −καnHnun + αn(Gnρn + gn+1). (15)

We analyze the parallel processes Eqns. (14) & Eqn. (15) instead of directly analyzing Eqn. (13). Our
proofs have three steps. First we show supn ‖ρn‖ is bounded by applying the stability of the stochastic
approximation (Borkar & Meyn, 2000) into the recursion Eqn. (14). Second, based on this result, we shall
show that un goes to 0 in probability by analyzing the recursion Eqn. (15). At last, along with the result
that un goes to 0 in probability, by applying the convergence of the stochastic approximation (Borkar &
Meyn, 2000) into the recursion Eqn. (14), we show that ρn goes to the TD fixed point which is given by the
solution of Gρ + g = 0. The details are provided in Section A.3 of the Appendix.

Theorem 1 shows that Gradient-DD maintains convergence as GTD2 under some mild conditions. The
assumptions (A0), (A1), and (A2) are standard conditions in the convergence analysis of Gradient TD
learning algorithms (Sutton et al., 2009a;b; Maei, 2011). The assumption (A3) is weak since it means only
that the incremental update in each step is bounded in probability. The assumption (A4) requires that κ is a
constant, meaning κ = O(1). Given this assumption, the contribution of the term κHnun is controlled by αn
as n→∞.

5 Empirical Study

In this section, we assess the practical utility of the Gradient-DD method in numerical experiments. To validate
performance of Gradient-DD learning, we compare Gradient-DD learning with GTD2 learning, TDC learning
(TD with gradient correction (Sutton et al., 2009b)), TDRC learning (TDC with regularized correction
(Ghiassian et al., 2020)) and TD learning in both tabular representation and linear representation. We
conducted three tasks: a simple random walk task, the Boyan-chain task, and Baird’s off-policy counterexample.
In each task, we evaluate the performance of a learning algorithm by empirical root mean-squared (RMS)
error:

√∑
s∈S ds(Vwn

(s)− V (s))2. The reason we choose the empirical RMS error rather than root projected
mean-squared error or other measures as Ghiassian et al. (2018; 2020) used is because it is a direct measure
of concern in practical performance.

5.1 Random walk task

As a first test of Gradient-DD learning, we conducted a simple random walk task (Sutton & Barto, 2018).
The random walk task has a linear arrangement of m states plus an absorbing terminal state at each end.
Thus there are m+ 2 sequential states, S0, S1, · · · , Sm, Sm+1, where m = 10, 20, or 40. Every walk begins in
the center state. At each step, the walk moves to a neighboring state, either to the right or to the left with
equal probability. If either edge state (S0 or Sm+1) is entered, the walk terminates. A walk’s outcome is
defined to be r = 0 at S0 and r = 1 at Sm+1. Our aim is to learn the value of each state V (s), where the
true values are (0, 1/(m+ 1), · · · ,m/(m+ 1), 1). In all cases the approximate value function is initialized to
the intermediate value V0(s) = 0.5. We consider tabular representation of the value function, as it eliminates
the impact of value function approximation. We consider that the learning rate αn is tapered according to
the schedule αn = α(103 + 1)/(103 + n). We tune α ∈ {10−12/4, 10−11/4, · · · , 10−1/4, 1}, where larger values
were not used since the algorithms tend to diverge when α is large (Fig. 2). We obtain similar results in
the case where step sizes are constant (Fig. 6 of the appendix). For GTD2 and TDC, we set βn = ζαn
with ζ ∈ {1/45, 1/44, 1/43, 1/42, 1/4, 1, 4, 42, 43}. For Gradient-DD, we set κ = 1. We also investigate the
sensitivity to κ in Fig. 7 of the appendix, where we show that κ = 1 is a good choice in the empirical studies.

To compare algorithms, we begin by plotting the empirical RMS error as a function of step size α. To assess
convergence performance, we first plot the final empirical RMS error, averaged over the final 100 episodes, as

6

Under review as submission to TMLR

a function of step size α in the upper panel of Fig. 2. We also plot the average empirical RMS error of all
episodes as a function of α and report these results in the upper panel of Fig. 5 of the Appendix. Note that
20,000 episodes are used. From these figures, we can make several observations. (1) Gradient-DD clearly
performs better than GTD2. This advantage is consistent in various settings, and gets bigger as the state
space becomes large. (3) Gradient-DD performs similarly to TDRC and conventional TD learning, with
a similar dependence on α, although Gradient-DD exhibits greater sensitivity to the value of α in the log
domain than these other algorithms. In addition, Gradient-DD clearly outperforms TDC when p = 20, 40 for
the range of ζ that we tested. However, the better comparison is to TD learning since TDC approaches to
conventional TD learning when ζ goes to 0, and TDC appears to offer no advantage over TD learning in this
task. In summary, Gradient-DD exhibits clear advantages over the GTD2 algorithm, and its performance is
also as good as that of TDRC and conventional TD learning.

0.001 0.010 0.100 1.000

0.
0

0.
2

0.
4

0.
6

α

E
m

pi
ric

al
 R

M
S

 e
rr

or TD
TDC
TDRC
GTD2
GDD

0.001 0.010 0.100 1.000

0.
0

0.
2

0.
4

0.
6

α

E
m

pi
ric

al
 R

M
S

 e
rr

or

0.001 0.010 0.100 1.000

0.
0

0.
2

0.
4

0.
6

α

E
m

pi
ric

al
 R

M
S

 e
rr

or

0 5000 15000

0.
00

0.
15

0.
30

episode

E
m

pi
ric

al
 R

M
S

 e
rr

or TD
TDC
TDRC
GTD2
GDD

0 5000 15000

0.
0

0.
2

0.
4

episode

E
m

pi
ric

al
 R

M
S

 e
rr

or

0 5000 15000

0.
0

0.
2

0.
4

episode

E
m

pi
ric

al
 R

M
S

 e
rr

or

Figure 2: The random walk task with tabular representation and tapering step size αn = α(103 + 1)/(103 +n).
Upper: Mean error from the final 100 episodes for different values of α. Lower: Performance over all episodes,
where α is tuned to minimize the mean error from the final 100 episodes. In each row, state space size 10
(left), 20 (middle), or 40 (right). The curves are averaged over 50 runs, with error bars denoting the standard
error of the mean, though most are vanishingly small.

Next we look closely at the performance during training in the lower panel of Fig. 2. For each method,
we tuned α ∈ {10−12/4, · · · , 10−1/4, 1} by minimizing the final empirical RMS error, averaged over the last
100 episodes. We also compare the performance when α is tuned by minimizing the average error of all
episodes (lower panel of Fig. 5 of the appendix). From these results, we draw several observations. (1) For all
conditions tested, Gradient-DD converges much more rapidly than GTD2. The advantage of Gradient-DD
grows as the state space increases in size. (2) When evaluating performance based on final episodes and
tuning α accordingly (Fig. 2), Gradient-DD exhibits an evidently faster convergence rate than TDRC and
conventional TD learning, while demonstrating similar performance in terms of final empirical RMS error.
When α is tuned based on the average error of all episodes (Fig. 5), Gradient-DD achieves a slightly smaller
error than TDRC and conventional TD learning, even its convergence rate is slighter faster, when the state

7

Under review as submission to TMLR

space size takes 20 and 40. (3) Gradient-DD has consistent and good performance under both the constant
step size setting (Fig. 6) and under the tapered step size setting. In summary, the Gradient-DD learning
curves in this task show improvements over other gradient-based methods and performance that matches
conventional TD learning.

Like TDRC, the updates of Gradient-DD only have a single shared step size αn, i.e., βn = αn, rather than
two independent step sizes αn and βn as in the GTD2 and TDC algorithms. A possible concern is that the
performance gains in our second-order algorithm could just as easily be obtained with existing methods by
adopting this two-timescale approach, where the value function weights are updated with a smaller step
size than the second set of weights. Hence, in addition to investigating the effects of the learning rate, size
of the state space, and magnitude of the regularization parameter, we also investigate the effect of using
distinct values for the two learning rates, αn and βn, although we set βn = ζαn with ζ = 1. To do this,
we set βn = ζαn for Gradient-DD, with ζ ∈ {1/64, 1/16, 1/4, 1, 4}, and report the results in Fig. 8 of the
appendix. The results show that comparably good performance of Gradient-DD is obtained under these
various ζ, providing evidence that the second-order difference term in our approach provides an improvement
beyond what can be obtained with previous gradient-based methods using the two time scale approach.

5.2 Boyan-chain task

We next investigate Gradient-DD learning on the Boyan-chain problem, which is a standard task for testing
linear value-function approximation (Boyan, 2002). In this task we allow for 4p− 3 states, each of which is
represented by a p-dimensional feature vector, with p = 20, 50, or 100. The p-dimensional representation for
every fourth state from the start is [1, 0, · · · , 0] for state s1, [0, 1, 0, · · · , 0] for s5, · · · , and [0, 0, · · · , 0, 1] for
the terminal state s4p−3. The representations for the remaining states are obtained by linearly interpolating
between these. The optimal coefficients of the feature vector are (−4(p− 1),−4(p− 2), · · · , 0)/5. In each
state, except for the last one before the end, there are two possible actions: move forward one step or move
forward two steps, where each action occurs with probability 0.5. Both actions lead to reward -0.3. The
last state before the end just has one action of moving forward to the terminal with reward -0.2. We tune
α ∈ {10−2, 10−1.5, 10−1, 10−3/4, 10−1/2, 10−1/4, 10−1/8, 1, 101/8, 101/4} for each method by minimizing the
average error of the final 100 episodes. All algorithms, with the exception of TD, tend to diverge frequently
when α ≥ 101/2. TD also experiences frequent divergence when α ≥ 103/4. Thus, we set the maximum value
of α as 101/4. The step size is tapered according to the schedule αn = α(2 × 103 + 1)/(2 × 103 + n). For
GTD2 and TDC, we set βn = ζαn with ζ ∈ {1/64, 1/16, 1/4, 1, 4}. In this task, we set γ = 1. As in the
random-walk task, we set κ = 1.

We report the performance as a function of α and the performance over episodes in Fig. 3, where we tune α
by the performance based on the average error of the last 100 episodes. We also compare the performance
based on the average error of all episodes during training and report the results in Fig. 10 of the appendix.
These figures lead to conclusions similar to those already drawn in the random walk task. (1) Gradient-DD
has much faster convergence than GTD2 and TDC, and generally converges to better values. (However,
similar to the random walk task, we note that TDC appears to perform worse than TD learning in this task
for nonzero values of ζ, so comparison to TD learning is more informative than comparison to TDC.) (2)
Gradient-DD is competitive with TDRC and conventional TD learning despite being somewhat slower at the
beginning episodes when α is tuned based on the average error of all episodes. (3) The improvement over
GTD2 or TDC grows as the state space becomes larger.

5.3 Baird’s off-policy counterexample

We also verify the performance of Gradient-DD on Baird’s off-policy counterexample (Baird, 1995; Sutton &
Barto, 2018), illustrated schematically in Fig. 4, for which TD learning famously diverges. We show results
from Baird’s counterexample with N = 7, 20 states. The reward is always zero, and the agent learns a linear
value approximation with N + 1 weights w1, · · · , wN+1: the estimated value of the j-th state is 2wj + wN+1
for j ≤ N − 1 and that of the N -th state is wN + 2wN+1. In the task, the importance sampling ratio for
the dashed action is (N − 1)/N , while the ratio for the solid action is N . Thus, comparing different state
sizes illustrates the impact of importance sampling ratios in these algorithms. The initial weight values are

8

Under review as submission to TMLR

0.01 0.05 0.20 1.00

0
2

4
6

8

α

E
m

pi
ric

al
 R

M
S

 e
rr

or TD
TDC
TDRC
GTD2
GDD

0.01 0.05 0.20 1.00

0
5

10
15

20

α
E

m
pi

ric
al

 R
M

S
 e

rr
or

0.01 0.05 0.20 1.00

0
10

20
30

40

α

E
m

pi
ric

al
 R

M
S

 e
rr

or

0 5000 15000

0.
0

0.
5

1.
0

1.
5

2.
0

episode

E
m

pi
ric

al
 R

M
S

 e
rr

or TD
TDC
TDRC
GTD2
GDD

0 5000 15000

0
2

4
6

8
10

episode

E
m

pi
ric

al
 R

M
S

 e
rr

or

0 5000 15000

0
10

20
30

40

episode

E
m

pi
ric

al
 R

M
S

 e
rr

or
Figure 3: The Boyan Chain task with linear approximation and tapering step size αn = α(2× 103 + 1)/(2×
103 + n). Upper: Performance as a function of α; Lower: performance over episodes. In each row, the feature
size is 20 (left), 50 (middle), or 100 (right). The curves are averaged over 50 runs, with error bars denoting
the standard error of the mean, though most are vanishingly small across runs.

(1, · · · , 1, 10, 1)>. Constant α is used in this task and is tuned in the region {10−16/4, 10−15/4, · · · , 10−1/4, 1}.
We set γ = 0.99. For TDC and GTD2, thus we tune ζ ∈ {4−2, 4−1, 1, 42, 43}. Meanwhile we tune α for TDC
in a wider region {10−24/4, 10−23/4, · · · , 10−1/4, 1}. For Gradient-DD, we tune κ ∈ {4−1, 1, 4}. We tune α
separately for each algorithm by minimizing the average error from the final 100 episodes.

Fig. 4 demonstrates that Gradient-DD works better on this counterexample than GTD2, TDC, and TDRC. It
is worthwhile to observe that when the state size is 20, TDRC become unstable, meaning serious unbalance of
importance sampling ratios may cause TDRC unstable. We also note that, because the linear approximation
leaves a residual error in the value estimation due to the projection error, the RMS errors of GTD2, TDC,
and TDRC in this task do not go to zero. In contrast to other algorithms, the errors from our Gradient-DD
converge to zero.

6 Conclusion and discussion

In this work, we have proposed Gradient-DD learning, a new gradient descent-based TD learning algorithm.
The algorithm is based on a modification of the projected Bellman error objective function for value function
approximation by introducing a second-order difference term. The algorithm significantly improves upon
existing methods for gradient-based TD learning, obtaining better convergence performance than conventional
linear TD learning.

Since GTD learning was originally proposed, the Gradient-TD family of algorithms has been extended to
incorporate eligibility traces and learning optimal policies (Maei & Sutton, 2010; Geist & Scherrer, 2014), as
well as for application to neural networks (Maei, 2011). Additionally, many variants of the vanilla Gradient-TD

9

Under review as submission to TMLR

(a) Illustration of the extended Baird’s off-
policy counterexample. The “solid" action
usually goes to the N -th state, and the
“dashed" action usually goes to one of the
other N − 1 states, each with equal probabil-
ity.

1e−06 1e−04 1e−02

0
1

2
3

4
5

α

E
m

pi
ric

al
 R

M
S

 e
rr

or TDC
TDRC
GTD2
GDD

1e−06 1e−04 1e−02

0
1

2
3

4

α

E
m

pi
ric

al
 R

M
S

 e
rr

or

0 4000 8000

0
1

2
3

4
5

episode

E
m

pi
ric

al
 R

M
S

 e
rr

or TDC
TDRC
GTD2
GDD

0 4000 8000

0
1

2
3

4
5

episode

E
m

pi
ric

al
 R

M
S

 e
rr

or

(b) The performance of various algorithms.

Figure 4: Baird’s off-policy counterexample. Upper in (b): Performance as a function of α; Lower in (b):
performance over episodes. From left to right in (b): 7-state and 20-state.

methods have been proposed, including HTD (Hackman, 2012) and Proximal Gradient-TD (Liu et al., 2016).
Because Gradient-DD just modifies the objective error of GTD2 by considering an additional squared-bias
term, it may be extended and combined with these other methods, potentially broadening its utility for more
complicated tasks.

One potential limitation of our method is that it introduces an additional hyperparameter relative to similar
gradient-based algorithms, which increases the computational requirements for hyperparameter optimization.
This is somewhat mitigated by our finding that the algorithm’s performance is not particularly sensitive to
values of κ, and that κ ∼ 1 was found to be a good choice for the range of environments that we considered.
The second limitation lies in the absence of a convergence rate analysis demonstrating superior performance
compared to GTD2 in empirical studies, in addition to addressing convergence in this paper. While analyzing
asymptotic convergence rates, similar to the approach in Devraj et al. (2019), could be a viable way to assess
the proposed Gradient-DD algorithm, such analysis extends beyond the scope of this paper and is deferred
to future work. Another potential limitation is that we have focused on value function prediction in the
two simple cases of tabular representations and linear approximation. An especially interesting direction for
future study will be the application of Gradient-DD learning to tasks requiring more-complex representations,
including neural network implementations. Such approaches are especially useful in cases where state spaces
are large, and indeed we have found in our results that Gradient-DD seems to confer the greatest advantage
over other methods in such cases. Intuitively, we expect that this is because the difference between the
optimal update direction and that chosen by gradient descent becomes greater in higher-dimensional spaces
(cf. Fig. 1). This performance benefit in large state spaces suggests that Gradient-DD may be of practical
use for these more challenging cases.

References

S. Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251–276, 1998.

10

Under review as submission to TMLR

L. C. Baird. Residual algorithms: Reinforcement learning with function approximation. In Proceedings of the
12 th International Conference on Machine Learning, pp. 30–37, 1995.

S. Bhatnagar, R.S. Sutton, M. Ghavamzadeh, and M. Lee. Natural actor-critic algorithm. Automatic, 73:
2471–2482, 2009.

V.S. Borkar and S.P. Meyn. The ODE method for convergence of stochastic approximation and reinforcement
learning. SIAM Journal on Control and Optimization, 38(2):447–469, 2000.

Justin A. Boyan. Technical update: least-squares temporal difference learning. Machine Learning, 49:233–246,
2002.

W. Dabney and P. Thomas. Natural temporal difference learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2014.

T. Degris, P.M. Pilarski, and R.S. Sutton. Model-free reinforcement learning with continuous action in
practice. In Proceedings of the 2012 American Control Conference, 2012.

A.M. Devraj, A. Bušić, and S. Meyn. On matrix momentum stochastic approximation and applications to
q-learning. In 57th Annual Allerton Conference on Communication, Control, and Computing, 2019.

S. S. Du, J. Chen, L. Li, L. Xiao, and D. Zhou. Stochastic variance reduction methods for policy evaluation.
In Proceedings of the 34 th International Conference on Machine Learning, 2017.

M. Geist and B. Scherrer. Off-policy learning with eligibility traces: A survey. Journal of Machine Learning
Research, 15:289–333, 2014.

S. Ghiassian, A. Patterson, M. White, R.S. Sutton, and A. White. Online off-policy prediction.
arXiv:1811.02597, 2018.

S. Ghiassian, A. Patterson, S. Garg, D. Gupta, A. White, and M. White. Gradient temporal-difference
learning with regularized corrections. In International Conference on Machine Learning, 2020.

L. Hackman. Faster gradient-TD algorithms. Master’s thesis, University of Alberta, Edmonton, 2012.

B. Liu, S. Mahadevan, and J. Liu. Regularized off-policy TD-learning. In Advances in Neural Information
Processing Systems, 2012.

B. Liu, J. Liu, M. Ghavamzadeh, S. Mahadevan, and M. Petrik. Finite-sample analysis of proximal gradient
TD algorithms. In Proceedings of the 31st International Conference on Uncertainty in Artificial Intelligence,
pp. 504–513, 2015.

B. Liu, J. Liu, M. Ghavamzadeh, S. Mahadevan, and M. Petrik. Proximal gradient temporal difference
learning algorithms. In The 25th International Conference on Artificial Intelligence (IJCAI-16),, 2016.

H.R. Maei. Gradient temporal-difference learning algorithms. PhD thesis, University of Alberta, Edmonton,
2011.

H.R. Maei and R.S. Sutton. GQ(λ): A general gradient algorithm for temporal-difference prediction learning
with eligibility traces. In Proceedings of the 3rd Conference on Artificial General Intelligence, pp. 91–96,
2010.

J. Peters, K. Mülling, and Y. Altün. Relative entropy policy search. In AAAI Conference on Artificial
Intelligence, 2010.

John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust region policy
optimization. In Proceedings of the 32nd International Conference on Machine Learning, 2015.

R. S. Sutton, Cs. Szepesvári, and H. R. Maei. A convergent O(n) algorithm for off-policy temporal difference
learning with linear function approximation. In Advances in Neural Information Processing Systems 21,
2009a.

11

Under review as submission to TMLR

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press, second
edition edition, 2018.

R.S. Sutton, H.R. Maei, D. Precup, S. Bhatnagar, D. Silver, Cs. Szepesvári, and E. Wiewiora. Fast gradient-
descent methods for temporal-difference learning with linear function approximation. In Proceedings of the
26th International Conference on Machine Learning, 2009b.

P. Thomas. GeNGA: A generalization of natural gradient ascent with positive and negative convergence
results. In Proceedings of the 31st International Conference on Machine Learning, 2014.

P. Thomas, B.C. Silva, C. Dann, and E. Brunskill. Energetic natural gradient descent. In Proceedings of the
33th International Conference on Machine Learning, 2016.

A. White and M. White. Investigating practical linear temporal difference learning. In International
Conference on Autonomous Agents and Multi-Agent Systems, 2016.

12

Under review as submission to TMLR

A Appendix

A.1 On the equivalence of Eqns. (8) & (9)

The Karush-Kuhn-Tucker conditions of Eqn. (9) are the following system of equations
d
dwJ(w) + κ d

dw (‖Vw −Vwn−1‖2D − µ) = 0;
κ(‖Vw −Vwn−1‖2D − µ) = 0;
‖Vw −Vwn−1‖2D ≤ µ;
κ ≥ 0.

These equations are equivalent to
d
dwJ(w) + κ d

dw‖Vw −Vwn−1‖2D = 0 and κ > 0,
if ‖Vw −Vwn−1‖2D = µ;

d
dwJ(w) = 0 and κ = 0, if ‖Vw −Vwn−1‖2D < µ.

Thus, for any µ > 0, there exists a κ ≥ 0 such that d
dwJ(w) + µ d

dw‖Vw −Vwn−1‖2D = 0.

A.2 The relation to natural gradients

In this section, we shall show that Gradient-DD is related to, but distinct from, the natural gradient. We
thank a reviewer for pointing out the connection between Gradient-DD and the natural gradient.

Following Amari (1998) or Thomas (2014), the natural gradient of J(w) is the direction obtained by solving
the following optimization:

lim
ε→0

arg min
∆

J(w + ε∆) s.t. ε2∆>X>DX∆ ≤ µ. (A.1)

We can note that this corresponds to the ordinary gradient in the case where the metric tensor X>DX is
proportional to the identity matrix.

Now we rewrite Eqn. (9) as

‖Vw −Vwn−1‖2D = (w−wn−1)>X>DX(w−wn−1).

Denote ε∆ = w−wn−1, where ε is the radius of the circle of w around wn−1 and ∆ is a unit vector. Thus,
we have

‖Vw −Vwn−1‖2D = ε2∆>X>DX∆.

For the MSPBE objective, we have

J(w) = J(wn−1 + w−wn−1) = J(wn−1 + ε∆).

Minimizing Eqn. (9) is equivalent to the following optimization

arg min
∆

J(wn−1 + ε∆) s.t. ε2∆>X>DX∆ ≤ µ. (A.2)

In the limit as ε→ 0, the above optimization is equivalent to

arg min
∆

∆>∇J(wn−1) s.t. ε2∆>X>DX∆ ≤ µ.

Thus, given the metric tensor G = X>DX, −G−1∇J(wn−1) is the direction of steepest descent, i.e. the
natural gradient, of J(wn−1). The natural gradient of J(w), on the other hand, is the direction of steepest
descent at w, rather than at wn−1.

Therefore, our Gradient-DD approach makes use of the natural gradient of the objective around wn−1 rather
than around wn in Eqn. (A.1). This explains the distinction of the updates of our Gradient-DD approach
from the updates of directly applying the natural gradient of the objective w.

13

Under review as submission to TMLR

A.3 Proof of Theorem 1

We introduce an ODE result on stochastic approximation in the following lemma, then show the convergence
of our Gradient-DD approach in Theorem 1 by applying this result.
Lemma 1. (Theorems 2.1 & 2.2 of (Borkar & Meyn, 2000)) Consider the stochastic approximation algorithm
described by the d-dimensional recursion

yn+1 = yn + an[f(yn) + Mn+1].

Suppose the following conditions hold: (c1) The sequence {αn} satisfies 0 < αn < 1,
∑n
n=1 αn = ∞,∑n

n=1 α
2
n <∞. (c2) The function f is Lipschitz, and there exists a function f∞ such that limr→∞ fr(y) =

f∞(y), where the scaled function fr : Rd → Rd is given by fr(y) = f(ry)/r. (c3) The sequence {Mn,Fn}, with
Fn = σ(yi,Mi, i ≤ n), is a martingale difference sequence. (c4) For some c0 <∞ and any initial condition
y0, E(‖Mn+1‖2|Fn) ≤ c0(1 + ‖yn‖2). (c5) The ODE ẏ = f∞(y) has the origin as a globally asymptotically
stable equilibrium. (c6) The ODE ẏ(t) = f(y(t)) has a unique globally asymptotically stable equilibrium y∗.
Then (1) under the assumptions (c1-c5), supn yn <∞ in probability. (2) under the assumptions (c1-c6), as
n→∞, yn converges to y∗ with probability 1 .

Now we investigate the stochastic gradient descent updates in Eqn. (13), which is recalled as follows:

ρn+1 = ρn − καnHn(ρn − ρn−1) + αn(Gnρn + gn+1). (A.3)

The iterative process in Eqn. (A.3) can be rewritten as

(ρn+1 − ρn) = −καnHn(ρn − ρn−1) + αn(Gnρn + gn+1). (A.4)

Defining
un+1 = ρn+1 − ρn.

Eqn. (A.4) becomes

un+1 = −καnHnun + αn(Gnρn + gn+1).

Thus, the iterative process in Eqn. (A.3) is rewritten as two parallel processes that are given by

ρn+1 = ρn − καnHnun + αn(Gnρn + gn+1), (A.5)
un+1 = −καnHnun + αn(Gnρn + gn+1). (A.6)

Our proofs have three steps. First we shall show supn ‖ρn‖ is bounded by applying the ordinary differential
equation approach of the stochastic approximation (the 1st result of Lemma 1) into the recursion Eqn. (A.5).
Second, based on this result, we shall show that un goes to 0 in probability by analyzing the recursion
Eqn. (A.6). At last, along with the result that un goes to 0 in probability, by applying the 2nd result of
Lemma 1 into the recursion Eqn. (A.5), we show that ρn goes to the TD fixed point, which is given by the
solution of Gρ + g = 0.

First, we shall show supn ‖ρn‖ is bounded. Eqn. (A.5) is rewritten as

ρn+1 = ρn + αn(f(ρn) + Mn+1), (A.7)

where f(ρn) = (Gρn + g) − κHun and Mn+1 = ((Gn −G)ρn + gn+1 − g) − κ(Hn −H)un. Let Fn =
σ(u0,ρ0,M0,u1,ρ1,M1, · · · ,un,ρn,Mn) be σ-fields generated by the quantities ui,ρi,Mi, i ≤ n.

Now we verify the conditions (c1-c5) of Lemma 1. Condition (c1) is satisfied under the assumption of the
step sizes. Clearly, f(u) is Lipschitz and f∞(ρ) = Gρ, meaning Condition (c2) is satisfied. Condition (c3) is
satisfied by noting that (Mn,Fn) is a martingale difference sequence, i.e., E(Mn+1|Fn) = 0.

We next investigate E(‖Mn+1‖2|Fn). From the triangle inequality, we have that

‖Mn+1‖2 ≤ 2‖(Gn −G)‖2‖ρn‖2 + 2‖κ(Hn −H)‖2‖un‖2. (A.8)

14

Under review as submission to TMLR

From Assumption A3 in Theorem 1 that ‖un‖ is bounded and the Assumption A1 that (xn, rn,xn+1) is an
i.i.d. sequence with uniformly bounded second moments, there exists some constant c0 such that

‖Gn −G‖2 ≤ c0/2, and ‖κ(Hn −H)‖2‖un‖2 ≤ c0/2.

Thus, Condition (c4) is satisfied.

Note that G is defined in (Maei, 2011). From (Sutton et al., 2009a) and (Maei, 2011), the eigenvalues of
the matrix G are strictly negative under the Assumption A2. Therefore, Condition (c5) is satisfied. Thus,
applying the 1st part of Lemma 1 shows that supn ‖ρn‖ is bounded in probability.

Second, we investigate the recursion Eqn. (A.6). Let yn+1 = (Gnρn + gn+1). Then

un+1 = αn[−κHnun + yn+1]
= αnyn+1 + αnαn−1(−κHn)yn + αnαn−1αn−2(−κHn)(−κHn−1)yn−1

+ · · ·+ αn

n−1∏
k=0

αk(−κHk+1)y1 +
n∏
k=0

αk(−κHk)u0. (A.9)

Note that ‖Hn‖ ≤ 1/κ due to ‖xn‖ ≤ 1/κ and that there exists a constant c such that ‖ρn‖ ≤ c due to the
above result that supn ‖ρn‖ < ∞ in probability. Without loss of generality, we assume that ‖xn‖ ≤ 1/κ.
Eqn. (A.9) implies that

‖un+1‖ ≤ c

(
αn + αnαn−1 + αnαn−1αn−2 + · · ·+

n∏
k=0

αk

)
+

n∏
k=0

αk‖u0‖. (A.10)

Under Assumption A0, αn → 0 as n→ 0. Based on this, Lemma 2 (given in the following section) tells us
that αn + αnαn−1 + αnαn−1αn−2 + · · ·+

∏n
k=0 αk → 0 as n→ 0. Thus, Eqn. (A.10) implies that un → 0 in

probability.

Finally, for applying the 2nd part of Lemma 1, we just need to verify Condition (c6). Because un goes to 0
with probability 1, Eqn. (A.7) tells us that the associated ODE corresponds to

Gρ + g = 0.

Thus, Condition (c6) is satisfied. The theorem is proved.

A.4 A Lemma

Lemma 2. Denote εn = αn + αnαn−1 + · · ·+ αnαn−1 · · ·α0. If αn → 0 as n→∞, then εn → 0 as n→∞.

Proof. Because αn → 0 as n→∞, there exists α ∈ (0, 1) and some integer N such that αn ≤ α < 1 when
n ≥ N . Define a sequence εn such that

εn = 1 + αεn−1 for n ≥ N + 1;
εN = εN .

Obviously,
εn ≤ εn,∀n ≥ N. (A.11)

Now we investigate the sequence εn.

εn = 1 + αεn−1 = 1 + α(1 + αεn−2) = · · · = 1 + α+ · · ·+ αn−N−1 + αn−NεN

≤
∑∞

k=0
αk + αn−NεN = 1/(1− α) + αn−NεN .

Thus, we have that
sup
n≥N

εn <∞. (A.12)

15

Under review as submission to TMLR

From Eqns. (A.11) & (A.12), we have
sup
n≥0

εn <∞. (A.13)

From the definition of εn, we have that εn = αn + αnεn−1. It follows that

αn = εn
1 + εn−1

≥ εn
1 + supk≥0 εk

.

From the assumption αn → 0 as n→∞ and Eqn. (A.13), we have εn → 0 as n→∞.

A.5 Additional empirical results

0.001 0.010 0.100 1.000

0.
0

0.
2

0.
4

0.
6

α

E
m

pi
ric

al
 R

M
S

 e
rr

or TD
TDC
TDRC
GTD2
GDD

0.001 0.010 0.100 1.000

0.
0

0.
2

0.
4

0.
6

α

E
m

pi
ric

al
 R

M
S

 e
rr

or

0.001 0.010 0.100 1.000

0.
0

0.
2

0.
4

0.
6

α

E
m

pi
ric

al
 R

M
S

 e
rr

or

0 5000 15000

0.
00

0.
15

0.
30

episode

E
m

pi
ric

al
 R

M
S

 e
rr

or TD
TDC
TDRC
GTD2
GDD

0 5000 15000

0.
0

0.
2

0.
4

episode

E
m

pi
ric

al
 R

M
S

 e
rr

or

0 5000 15000

0.
0

0.
2

0.
4

episode

E
m

pi
ric

al
 R

M
S

 e
rr

or

Figure 5: The random walk task with tabular representation. The setting is similar to Fig. 2, but the
performance is evaluated by the average error of all episodes, and α is tuned by minimizing the average error
of all episodes. Upper: Performance as a function of α; Lower: performance over episodes. From left to right:
state space size 10 (left), 20 (middle), or 40 (right).

16

Under review as submission to TMLR

0.001 0.010 0.100 1.000

0.
0

0.
2

0.
4

0.
6

α

E
m

pi
ric

al
 R

M
S

 e
rr

or TD
TDC
TDRC
GTD2
GDD

0 5000 15000

0.
0

0.
2

0.
4

episode

E
m

pi
ric

al
 R

M
S

 e
rr

or

Figure 6: The random walk task with the tabular representation. The setting is similar to Fig. 2, but constant
step size is used. The state size is 20. The curves are averaged over 50 runs, with error bars denoting the
standard error of the mean, though most are vanishingly small.

0.5 1.0 2.0

0.
00

0
0.

00
4

0.
00

8

κ

E
m

pi
ric

al
 R

M
S

 e
rr

or

GTD2
GDD

0.5 1.0 2.0

0.
00

0.
04

0.
08

κ

E
m

pi
ric

al
 R

M
S

 e
rr

or

0.5 1.0 2.0

0.
0

0.
1

0.
2

0.
3

0.
4

κ

E
m

pi
ric

al
 R

M
S

 e
rr

or

Figure 7: Performance of Gradient-DD in the random walk task in the tabular representation with κ ∈
{0.25, 0.5, 1, 2, 4}. From left to right: state space size 10 (left), 20 (middle), or 40 (right). In each figure, α is
tuned for each algorithm by minimizing the average error of the last 100 episodes. Results are averaged over
50 runs, with error bars denoting standard error of the mean.

0.02 0.10 0.50 2.00

0.
00

0
0.

00
4

0.
00

8
0.

01
2

ζ

E
m

pi
ric

al
 R

M
S

 e
rr

or

GTD2
GDD

0.02 0.10 0.50 2.00

0.
00

0.
05

0.
10

0.
15

0.
20

ζ

E
m

pi
ric

al
 R

M
S

 e
rr

or

0.02 0.10 0.50 2.00

0.
0

0.
1

0.
2

0.
3

0.
4

ζ

E
m

pi
ric

al
 R

M
S

 e
rr

or

Figure 8: The random walk task in the tabular representation. Performance for various βn = ζαn, with
ζ ∈ {4−3, 4−2, 4−1, 1, 4}. From left to right in each row: the size of the state space is m = 10, m = 20, and
m = 40. In each case α is tuned by minimizing the average error of the last 100 episodes according to the
their performance of corresponding algorithms. Results are averaged over 50 runs, with error bars denoting
standard error of the mean.

17

Under review as submission to TMLR

0.02 0.10 0.50 2.00
0.

00
0.

05
0.

10
0.

15
0.

20
ζ

E
m

pi
ric

al
 R

M
S

 e
rr

or

TDC
GTD2
GDD
NTDC
NGTD

Figure 9: Performance of natural TDC and natural GTD2 in the random walk task with the tabular
representation and m = 20. Performance for various βn = ζαn, with ζ ∈ {4−3, 4−2, 4−1, 1, 4}. In each case
α is tuned by minimizing the average error of the last 100 episodes according to the their performance of
corresponding algorithms. “NGTD" and “NTDC" denote the natural gradient-based algorithm of GTD2 and
TDC, respectively. Results are averaged over 50 runs, with error bars denoting standard error of the mean.

0.01 0.05 0.20 1.00

0
2

4
6

8

α

E
m

pi
ric

al
 R

M
S

 e
rr

or TD
TDC
TDRC
GTD2
GDD

0.01 0.05 0.20 1.00

0
5

10
15

20

α

E
m

pi
ric

al
 R

M
S

 e
rr

or

0.01 0.05 0.20 1.00

0
10

20
30

40

α

E
m

pi
ric

al
 R

M
S

 e
rr

or

0 5000 15000

0.
0

0.
5

1.
0

1.
5

2.
0

episode

E
m

pi
ric

al
 R

M
S

 e
rr

or TD
TDC
TDRC
GTD2
GDD

0 5000 15000

0
2

4
6

8
10

episode

E
m

pi
ric

al
 R

M
S

 e
rr

or

0 5000 15000

0
10

20
30

40

episode

E
m

pi
ric

al
 R

M
S

 e
rr

or

Figure 10: The Boyan Chain task with linear approximation. The setting is similar to Fig. 3, but we evaluate
the performance the average error of all episodes, and α is tuned by minimizing the average error of all
episodes. Upper: Performance as a function of α; Lower: performance over episodes.

18

Under review as submission to TMLR

1e−08 1e−04 1e+00

0
5

10
15

20

α

E
m

pi
ric

al
 R

M
S

 e
rr

or

GTD2
GDD
0.05
0.2
0.5
2

Figure 11: Results from the Boyan-chain task with a feature size of 50 when regularizing the objective in
the parameter space, unlike Gradient-DD, which regularizes in the space of the value function. The various
shades of gray represent different values of the regularization parameter κ in this regularization scheme.

19

	Introduction
	Related Work

	Gradient descent method for temporal difference learning
	Problem definition and background
	Gradient temporal difference learning

	Gradient descent temporal difference-difference learning
	Convergence Analysis
	Empirical Study
	Random walk task
	Boyan-chain task
	Baird's off-policy counterexample

	Conclusion and discussion
	Appendix
	On the equivalence of Eqns. (8) & (9)
	The relation to natural gradients
	Proof of Theorem 1
	A Lemma
	Additional empirical results

