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Abstract

Personalized large language models (LLMs) are designed to tailor responses to
individual user preferences. While Reinforcement Learning from Human Feedback
(RLHF) is a commonly used framework for aligning LLMs with human preferences,
vanilla RLHF assumes that all human preferences share the same distribution,
preventing fine-tuned LLMs from generating personalized content when user
preferences are diverse. In this work, we propose Personalized-RLHF (P-RLHF),
an efficient framework that utilizes a lightweight user model to capture individual
user preferences and jointly learns the user model and the personalized LLM
from human feedback. P-RLHF exhibits the following three characteristics: It (1)
enables an LLM to generate personalized content and scale efficiently with growing
number of users; (2) handles both explicit user preferences described as textual
input and implicit user preferences encoded in the feedback data; and (3) eliminates
the need for users to fully articulate their preferences, which are normally needed
for prompting LLMs to generate personalized content yet are often impractical to
obtain in real-world scenarios. Our empirical results show that personalized LLMs
trained using P-RLHF generate content more closely aligned with individual user
preferences, outperforming vanilla, non-personalized RLHF across different tasks.

1 Introduction

Personalization aims to tailor responses or recommendations to meet individual user preferences
based on user information (e.g. demographic or interests) or historical data [4]. It is crucial in
user-facing applications such as recommendation systems [14], chatbots [15], healthcare [9], and
education [16]. Large language models (LLMs) [3, 5, 6] have demonstrated exceptional capabilities
in a wide range of NLP tasks, leading to their use in various real-world applications. As a result,
personalizing LLMs to align with individual user preferences has become a key research topic [13].

Reinforcement Learning from Human Feedback (RLHF) is a widely adopted framework to align
pre-trained LLMs with human preferences [23], by fine-tuning LLMs using human feedback data
in the form of preference comparisons or rankings over multiple generations. However, standard
RLHF approaches implicitly assume that all human preferences come from the same distribution [23,
19, 17, 18], limiting the ability of LLMs fine-tuned under such assumption to generate personalized
responses when user preferences encoded in human feedback are diverse or conflicting [10]. Recent
endeavors in developing RLHF-based [22, 8] methods for personalizing LLM outputs often require
training separate reward models or LLMs for each preference dimension (such as completeness,
friendliness etc.), posing computational and storage challenges, particularly in settings with large
user bases that exhibit diverse and multifaceted preferences. Additionally, these methods rely on

⇤Equal contribution. Corresponding authors: xinyul2@andrew.cmu.edu, leqiliu@utexas.edu

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



predefined preference dimensions, limiting their flexibility, as it is often impractical to exhaustively
enumerate all user preference dimensions in real-world scenarios.

To build efficient and flexible personalized LLMs, we propose a general personalized RLHF (P-RLHF)
framework (as shown in Figure 1), which employs a lightweight user model to capture both explicit
preferences from user information and implicit preferences from feedback data. This enables a more
comprehensive understanding of user preferences by combining explicit preferences with implicit
preferences which can be flexibly inferred from the feedback data, especially when it is difficult to
fully describe user preferences using pre-defined dimensions or text. To instantiate our framework,
we discuss the design of the user model under different assumptions on user preferences (Section 2.2).
P-RLHF learns the user model and the LLM jointly through new learning objectives we develop for
performing personalized Direct Preference Optimization [18] (P-DPO, section 2.3). By incorporating
a user model, P-RLHF eliminates the need for training separate reward models or LLMs, enabling
efficient and scalable personalization. On a synthetic generation task and a real-world conversation
task with 1, 500 users using public preference datasets, we demonstrate that P-DPO effectively aligns
LLMs with individual user preferences and scales efficiently with large user bases (Section 3).
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Figure 1: Our Personalized RLHF framework. For training, the user information ui (in this example
i = 1, 2, 3) and the preference data are collected from each user. The user model maps the user
information into user embeddings (user-specific embeddings ei and the generic embedding e0 that
captures the common preferences shared across users), which are learned jointly with the LLM.
During generation, for seen users, the LLM tailors the responses to their individual preferences based
on the learned user embeddings (ei), while for new, unseen users, responses are generated using the
generic embedding (e0).

2 Learning from Personalized Human Feedback

2.1 P-RLHF General Framework

We define a personalized human feedback (or preference) dataset as Dp = {(xi, yi,1, yi,2, ui)}ni=1,
consisting of n samples where ui 2 U is the information of the user who provides the preferences, xi

is the prompt, yi,1 and yi,2 are two generated texts such that yi,1 is preferred over yi,2 (denoted as
yi,1 � yi,2) by the user . We consider cases where ui = (ut

i, u
p
i ) is the user information: ut

i is their
(optional) textual information, e.g., demographic data or user preference descriptions, and up

i is the
unique user identifier (e.g., an assigned annotator or user id). For new, unknown user, their identifier
is set to up

i = up
0 and their user textual information ut

i is optional.

A personalized LLM ⇡p takes in a prompt x and the user information u 2 U and customizes its text
generation based on user u’s personal preference (explicitly specified in ut

i or implicitly encoded in
their feedback data), i.e., y ⇠ ⇡p(·|x, u). When there is no textual information, i.e., ut = (), and the
user index is unknown, i.e., up = up

0, the LLM ⇡p generates a non-personalized response.

Under our general Personalized-RLHF (P-RLHF) framework, when building personalized LLMs, we
start with a base LLM, often times, ⇡SFT, and specify a learnable User Model fP that extracts a user
embedding (tensor) eu from the user information u = (ut, up), i.e., for all u 2 U , a user embedding
is given by eu = fP(u). Thus, the personalized LLM ⇡P consists of the user model fP and a base
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LLM. Below we provide some examples of user models and present the new objectives (e.g., P-DPO)
for learning the user model and the personalized LLM.

2.2 P-RLHF User Models

To ensure a comprehensive understanding of user preferences, P-RLHF captures both the explicit
preferences described in the textual information ut and the implicit preferences encoded in the
feedback data, and then combine them for personalized content generation. The user model fP is thus
designed to include two components: an explicit user model fex

P and an implicit user model f im
P .
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Figure 2: How implicit and explicit user
embeddings are obtained and combined
with text embedding. Dashed boxes in-
dicate optional components. When the
user identifier up is missing, the implicit
user embedding will be the generic im-
plicit user embedding; when user textual
information ut is missing, the explicit
user embedding will be empty.

The explicit user model fex
P takes in textual information

ut and outputs the explicit user embedding eex for user
u. Leveraging the LLM’s natural language understanding
capability, we directly use the text input embeddings for
ut provided by the LLM as the explicit user embedding.
This approach flexibly handles the scenario where user
textual information ut is empty.

The implicit user model f im
P captures the additional user

preferences that are not articulated in ut but are latent in
the feedback data. To facilitate a more efficient learning of
these implicit preferences, we structure f im

P to encode spe-
cific preference assumptions regarding how different users’
preferences are related to each other. f im

P directly maps a
unique user identifier up to its embedding eim 2 RTu⇥d,
where Tu is the user token length, a factor that controls
the expressivity of implicit user embeddings, and d is the
text input embedding dimensionality of the base LLM. For
simplicity, we consider such identifiers as indices: For
known users, up

i 2 {1, . . . ,m}, where m represents the
total number of users. For a new, unknown user (encoun-
tered during inference time), we assign them index up

0 = 0. Below we provide some examples on the
implicit user model f im

P .
Example 1 (Individualized Preference). The implicit user model outputs f im

P (0) = eim
0 for (unknown)

users indexed by 0. For all i 2 [m], the user model outputs f im
P (i) = eim

i = eim
0 + oi where oi is a

user-specific offset tensor.
This user model assumes that a user with index i has their individualized preference offset oi while
maintaining a component eim

0 shared across users, which can be understood as the commonality across
user preferences, e.g. factuality and safety of the responses.
Example 2 (Cluster-based Preference). For all i 2 I , the user model outputs f im

P (i) = eim
i = V · wi

where V is an embedding table including K cluster centers, with K being the number of clusters,
and wi 2 RK is a weight vector for each user.
The clustering-based implicit user model assumes that user embeddings (and hence preferences)
span a common set of vectors given by V ; each user embedding is a weighted combination of these
vectors. From an efficiency standpoint, the cluster-based preference model can also be viewed as a
low-rank approximation: we approximate the full user preference matrix V ind 2 (m+ 1)⇥ Tu ⇥ d
by W clusterV where V 2 RK⇥Tu⇥d is the matrix for the cluster centers and W cluster 2 (m+ 1)⇥K
is an embedding table where its i-th row is wi.

Finally, the user model fP(u) = concat(f im
P (up), f ex

P (ut)) passes the concatenated implicit and
explicit user embeddings to the LLM for personalized response generation, as shown in Figure 2.
Note that for an unknown user without any textual information, i.e., ut = () and up = up

0 = 0, the
LLM generates a non-personalized response utilizing only the generic implicit user embedding eim

0
which encodes the common preference shared by all seen users, similar as in vanilla RLHF.

2.3 P-RLHF Learning Objective: Personalized DPO

Given the learnable user model fP, we have a user embedding eu = concat(eim
i , eex

u ) for each user
u 2 U . We integrate it into the personalized LLM through soft prompting [12]. In this case, eu is
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prepended to the input (text not positional) embedding given by the base LLM. We use the following
learning objective in Personalized-DPO (P-DPO) to train the personalized LLM:

min
⇡P

�E(x,y1,y2,ut,up)⇠DP


↵ log �

✓
� log

⇡P(y1|x, ut, up)
⇡SFT(y1|x)

� � log
⇡P(y2|x, ut, up)

⇡SFT(y2|x)

◆

+ (1� ↵) log �

✓
� log

⇡P(y1|x, ut, up
0)

⇡SFT(y1|x)
� � log

⇡P(y2|x, ut, up
0)

⇡SFT(y2|x)

◆�
,

where � > 0 controls the deviance of ⇡P from the policy ⇡SFT. The loss can be viewed as a
combination of a user-identifier-specific loss term that relies on user identifier up and a user-identifier-
agnostic loss term that depends on up

0. The user-identifier-agnostic loss uses the same preference data
as the user-identifier-specific one but with all user indices set to 0. The hyper-parameter ↵ 2 [0, 1] is
used to balance between the two loss components.

3 Experiments

We evaluate the effectiveness of P-DPO in building personalized LLMs on two open-ended text
generation tasks: (1) a fully controlled synthetic setting (Section 3.1); and (2) a real-world setting with
a large set of users from diverse demographic backgrounds and with varying preferences (Section 3.2).

3.1 Generation with Conflicting Preferences

Controlled synthetic setup. We use the TL;DR dataset where each comparison includes a Reddit
post x, two summaries y1 and y2, and the id of the worker who annotated it [19]. To investigate
the effectiveness of P-DPO, we designed a fully controlled setting with two simulated preferences:
70% of the workers were randomly sampled and assigned a preference for longer responses, while
the remaining 30% were set to prefer shorter ones. This created a majority group favoring longer
responses, with conflicting preferences between the majority and minority groups. To ensure ef-
fective learning of user preferences with sufficient data, we include the top 10 workers with the
highest annotation counts (denoted by ids from 1 to 10), After the simulation, workers 4, 5, 6 prefer
shorter responses (minority), and the remaining 7 workers prefer longer responses (majority). We
experimented with user models that encode individualized preference assumption (Example 1), with
↵ = 0.5 and Tu = 10. We use the fine-tuned GPT-J 6B model [21] as the SFT model.

Figure 3: Response lengths (mean and
standard error) that P-DPO model gen-
erated for workers 1 to 10, compared
to SFT(S), vanilla DPO (V) and P-
DPO with generic user embedding (G).
P-DPO only generated zero-length re-
sponses for minority workers 4, 5, 6.

Expected behavior of the optimal personalized LLM.
Under our simulated setting, there are two types of ideal
behavior of the personalized LLM:

E1 Following equations (1) and (2) in [18], the
ground-truth reward for minority users follows the
Bradley-Terry model [2]: P(yshort � ylong|x, u) =
1 = �(r(x, yshort, u) � r(x, ylong, u)), implying that
r(x, yshort, u) � r(x, ylong, u) = +1. Consequently,
the shortest possible responses (i.e., of length 0) yield
the highest reward, and the optimal behavior of the per-
sonalized LLM for minority users should be to output
zero-length responses.

E2 When generating responses for unseen users, without
additional textual user information, the personalized
LLM should ideally behave similarly to LLMs fine-
tuned with vanilla DPO, the non-personalized model.

By simulating user preferences using an objective measure
like response length, we can analytically derive these expected behavior of the optimal personalized
LLM and rigorously evaluate P-DPO by assessing whether the learned LLM aligns with this behavior.

Observed behavior of the LLM learned from P-DPO. The response lengths (in word count)
generated by the personalized LLM fine-tuned with P-DPO for each worker, based on 50 randomly
sampled prompts from the evaluation set, are shown in Figure 3. The results clearly show that the
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personalized LLM generated significantly longer responses for the majority workers, while only
generating the end-of-text token (i.e., responses of length 0) for the minority workers, exhibiting
the expected optimal behavior (E1). Additionally, response lengths generated by P-DPO models
for new users using generic implicit user embeddings (orange bar) are similar to those from vanilla
DPO (blue bar). Under the preference uniformity assumption, vanilla DPO aligns with the majority
preference (longer responses) when faced with conflicting preferences, leading to longer responses
than SFT (purple bar). P-DPO with implicit generic user embeddings performs similarly to vanilla
DPO in this case, exhibiting ideal behavior (E2). Notably, even without explicit user information, the
personalized LLM successfully inferred implicit length preferences from feedback data.

3.2 Personalization on Real-World Preference Dataset with Large User Base

Setup: Large-scale, real-world preference data with complex user profiles and dialogue topics.
PRISM [11] dataset aims at capturing the diversity and reliability of human preferences during
interactions with LLMs. It features 1,500 participants from 75 countries with their sociodemo-
graphics and stated preferences, as well as 8,011 carefully labeled conversations with participants’
contextual preferences and fine-grained feedback. The scale and diversity of this dataset make it a
particularly challenging task for developing personalized LLMs and a strong test bed for evaluating
the effectiveness of personalization methods. We use Llama3-8B-Instruct [1] as the SFT model and
experimented with P-DPO methods with individualized preference and cluster-based preference with
K = 10 and 100. All the methods are trained with user textual information.

We compare models learned from P-DPO with two strong baselines (1) model fine-tuned with
vanilla DPO, and (2) the chosen responses which are diverse, high-quality generations produced by
powerful LLMs and regarded as the preferred outputs under human judgments. Given the user stated
preferences and sociodemographics, vanilla DPO can directly leverage this information to attune its
generations. However, P-DPO has the potential to outperform vanilla DPO by inferring additional
implicit user preferences from the feedback data, which is particularly crucial given the challenge for
users to fully articulate all their preferences under the complexity of the dialogue topics.

Observed performance of the LLM learned from P-DPO. We use the pairwise win-rate annotated
by GPT-4o to evaluate the model performance. From the win-rates presented in Table 1, we find
that (1) All P-DPO models outperform the vanilla DPO model, achieving above 60% win-rates
(50% win-rates indicates on-par performance). These results show that our P-DPO methods indeed
captured additional, implicit preferences not fully described in the textual information. (2) All P-DPO
models outperform the chosen responses. Vanilla DPO achieves below 50% win-rates against chosen
responses, indicating that relying solely on explicit preferences described in user textual information
is insufficient. In contrast, P-DPO, which captures both implicit and explicit user preferences,
outperforms the chosen responses. (3) P-DPO with cluster-based user model performs best on
PRISM. In large user bases, cluster-based user models offer an efficient low rank approximation
of user preferences that scales well with the number of users (as discussed in Example 2) and is
especially effective when there is shared preferences across users.

Table 1: The win-rates (%) of our P-DPO methods against vanilla DPO and chosen reponses,
evaluated on 76 samples from 10 seen users and 10 unseen users. We consider “tie” as “both sides
win.” Per-sample win-rates are aggregated across all individual samples, while per-user win-rates are
computed by first determining the dominantly winning model for each user (based on which model’s
responses win the most times for that user), and then aggregating the results across all users.

vanilla DPO individualized
P-DPO

cluster-based
P-DPO K = 10

cluster-based
P-DPO K = 100

per-sample
win-rate

vs. vanilla DPO \ 64.47 61.84 65.79
vs. chosen response 42.11 60.52 61.84 60.52

per-user
win-rate

vs. vanilla DPO \ 60.00 60.00 65.00
vs. chosen response 25.00 55.00 70.00 60.00

Conclusions. To build personalized LLMs, we propose P-RLHF—a personalized RLHF framework
for handling personalized human feedback. Our framework jointly learns a lightweight user model and
a personalized LLM, allowing the model to leverage explicit preferences from textual user information
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when such information is available and to infer implicit preferences directly from feedback data, and
scales efficiently with growing number of users.
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A Generation with Conflicting Preferences Experiment Details

A.1 Reddit TL;DR summarization dataset

In TL;DR2 dataset, each comparison includes a Reddit post x, two summaries y1 and y2, the id
of the worker who provided the annotation, and how y1 and y2 are sampled, e.g., from prior SFT
or PPO checkpoints. As we do not have access to the SFT model used by [19], we initialize the
personalized LM in P-DPO using an open-source, GPT-6B based SFT3. To ensure that the summaries
are close to the distribution of this SFT, we only include the comparisons where both y1 and y2
are noted as sampled from the SFT models in the dataset, and exclude comparisons which contain
summaries sampled from other policies such as different PPO checkpoints. In Section 3.1, we used
the comparisons annotated by the the top 10 workers for preference simulation and P-DPO training.

A.2 P-DPO Experiment Details

All the LLMs in P-DPO experiments are initialized to the open-source, GPT-6B based SFT. For
the TL;DR dataset, all models, including the vanilla DPO and all P-DPO models, are trained with
� = 0.5, batch size 32, learning rate 5e� 5 with a cosine learning schedule and 150 warm up steps
for 2 epochs. We utilized LoRA [7] for training, with LoRA ↵ = 16, LoRA r = 8 and LoRA
dropout 0.05. All models are trained with a PyTorch based, personalized DPO Trainer we develop by
extending the DPO Trainer in the TRL library [20]. All of our experiments are run using 80G A100s
or H100s.

B Personalization on Real-World Preference Dataset with Large Use Base

B.1 Experiment details on PRISM dataset

PRISM is a multi-turn conversation dataset with abundant annotations. Each conversation involves
one user and several LLMs randomly selected from a pool (including strong models like GPT-4).
The LLMs are prompted by the same system string from the user. In each turn, LLMs give their
responses. The user first rate each of them and then select the best one to continue. We processed the
conversations by treating each single turn as a comparison, consisting of (1) the prompt x, which
includes conversation history and user utterance, (2) the user textual information ut, which includes
the sociodemographic data and user-stated preferences, and (3) the chosen response y1 and the
rejected response y2 in this turn.

We carefully splitted the dataset to stay close to the real-world situation. First, to test our model’s
generalization ability to unseen users, the users are separated into seen and unseen ones. Dialogues
from unseen users only appear in the test split. Second, dialogues from seen users are also splitted
into train and test splits, resulting in the final sample ratio of train/test split 6431 : 3982.

On PRISM, we limit the maximum text length to 800 tokens, which is about the length of two turns
in the conversation. All models, including the vanilla DPO and all P-DPO models, are trained with
� = 0.1, batch size 32, learning rate 5e� 5 with a cosine learning schedule and 150 warm up steps
for 2 epochs. We utilized LoRA [7] for training, with LoRA ↵ = 32, LoRA r = 8 and LoRA dropout
0.1. All models are trained with a PyTorch based, personalized DPO Trainer we develop by extending
the DPO Trainer in the TRL library [20]. For the win-rate evaluation, we leveraged the evaluation
code in the github repository of [8]. All of our experiments are run using 80G A100s or H100s.

B.2 Evaluation details on PRISM dataset

We use the pairwise win-rate annotated by GPT-4o to evaluate the model performance. During
evaluation, the role-play prompt of GPT-4o is tailored for each sample. It contains (1) user information:
the user’s sociodemographics, self-description, written system-string, and top three stated aspects
of preference; (2) feedback and contextual information: the user’s feedback after the conversation
where current sample is drawn from, and the user’s annotations for other turns. An example role-play
prompt is provided as below.

2https://huggingface.co/datasets/openai/summarize_from_feedback
3https://huggingface.co/CarperAI/openai_summarize_tldr_sft
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Table 2: An example role-play prompt for win-rate evaluation by GPT-4o.

User-wise information

The user has the following demographic information:
- self description: I believe in responsability which is a main value.
- age: 25-34 years old
- gender: Female
- education: University Bachelors Degree
- employment: Student
- marital: Never been married
- english proficiency: Fluent

The user provided the following reasoning on why they choose the chosen responses for the
annotations below:
- Their expectation for the assistant: I would not like for it to just answers me thing like "I don�t
know, You can find online".
- Their feedback on the chosen response: It gave very complete answers to what i asked
- Top three aspects of their preferences: values, diversity, personalisation

Conversation-wise information

Example 1
Instruction 1: which is the most violent country in history?
Output (a) for example 1: I do not have definitive data to state which specific country has been
the most violent throughout all of history.
Output (b) for example 1: Making such a sweeping determination would require carefully
analyzing the full context of violence and conflict across different eras in many civilizations
over centuries or millennia.
Result for example 1: Output (b)

Example 2
Instruction 2: what happened to the Romanov family?
Output (a) for example 2: The Romanov family were the imperial dynasty that ruled Russia for
over 300 years until the Russian Revolution in 1917...
Output (b) for example 2: The Romanov family were the imperial dynasty that ruled Russia
for over 300 years until the Russian Revolution in 1917. After the revolution, Tsar Nicholas II
abdicated and he and his entire family were eventually executed by Bolshevik revolutionaries in
July 1918 in an effort to fully eliminate the monarchy in Russia. Their bodies were disposed of
in secret and their graves were undiscovered for decades. It was a tragic and brutal end for the
royal Romanovs.
Result for example 2: Output (b)

Annotation requirement

Now write your thought and choose the preferred output for final example. Write the preferred
output (either "Output (a)", "TIE", or Output(b)") after the phrase "Result for final example:".
Think before you speak.

B.3 PRISM Generation Examples

From the generation example in Table 3, we observe that the vanilla DPO model acknowledges
user preferences (“Here are some suggestions based on your preferences”) and generates an overall
friendly response, indicating that it has captured the explicit user preference for friendliness from the
textual user information. However, on the topic of “alcohol drinking" which is not “work or school
related", the response gradually sidetracks to other topics. In contrast, the original chosen response
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focuses on alcohol drinking but adopts a preachy tone rather than being friendly or comforting. Only
the P-DPO model responds like a good listener, maintaining a friendly tone throughout.

Table 3: Generation examples from our best-performing P-DPO model
with cluster-based user preferences, the vanilla DPO model, and the cho-
sen response in dataset. It is clear that the generation from the personalized
LLM fine-tuned by P-DPO best meets the user’s expectation.

User utterance

Drinking alcohol is not a sin.

User’s expectation

The Al language model should behave like a human being since it interacts with human beings.
The Al must be informative and accurate in all times if it is being asked work or school related
things. It should be reliable at all times. It should be friendly whenever someone needs a friend
to talk to. It should also be a good listener if someone wants to offload their problems and wants
someone to talk to.

P-DPO response

You’re expressing your personal opinion on the topic of drinking alcohol. It’s interesting to
note that societal views on this subject can vary greatly depending on cultural background,
upbringing, and individual values. Would you like to discuss any specific aspects or perspectives
related to drinking alcohol? Or perhaps share why you hold this view?

vanilla DPO response

You don’t have strong feelings against drinking alcohol. You might enjoy it or see no issue
with it. Is there anything else you’d like to discuss? Here are some suggestions based on your
preferences: 1. **Creative Writing**: We could engage in creative writing activities where
we take turns adding to a story, poem, or dialogue. 2. Conversational Games: We can play
games like ""Would you rather..."", ""Two Truths and a Lie"", or ""Hangman"" which promote
fluency in conversation while being fun. 3. If you’re interested in learning more about topics
related to personal growth and development, we could explore subjects such as goal setting, time
management, or productivity techniques. Please let me know if any of these options appeal to
you.

chosen response in the dataset

But it’s important to drink responsibly. Excessive consumption can lead to health problems,
accidents, and social issues. Always prioritize your well-being and make wise choices when
consuming alcohol. Cheers to moderation!
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