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ABSTRACT

In cross-domain few-shot classification (CFC), mainstream studies aim to fast
train a new module to select or transform features (a.k.a., the high-level semantic
features) for previously unseen domains with a few labeled training data available
on top of a powerful pre-trained model. These studies usually assume that high-
level semantic features are shared across these domains, and just simple feature
selection or transformations are enough to adapt features to those unseen domains.
However, in this paper, we find that the simply transformed features are too gen-
eral to fully cover the key content features regarding each class. Thus, we propose
invariant-content feature reconstruction (IFR) to train a simple module that si-
multaneously consider high-level and fine-grained invariant-content features for
the previously unseen domains. Specifically, the fine-grained invariant-content
features are considered as a set of informative and discriminative features learned
from a few labeled training data of tasks sampled from unseen domains, and are
extracted by retrieving features that are invariant to style modifications from a set
of content-preserving augmented data in pixel level with an attention module. Ex-
tensive experiments on the Meta-Dataset benchmark show that IFR achieves good
generalization performance on unseen domains, which demonstrates the effective-
ness of the fusion of the high-level features and the fine-grained invariant-content
features. Specifically, IFR improves the average accuracy on unseen domains by
1.6% and 6.5% respectively under two different CFC experimental settings.

1 INTRODUCTION

Deep learning has revealed strong ability to deal with various learning tasks (e.g. the classification
task) since convolutional neural network (CNN) (LeCun et al., 1989) was proposed. Although great
progress has been achieved, there still exist two problems that hinder the wide application of deep
learning techniques. Firstly, a model that is able to perform well on test data requires to be trained
on a large amount of labeled training data which are often expensive to obtain and sometimes un-
available. Moreover, directly applying a pre-trained model to data sampled from an unseen domain
usually fails to achieve satisfactory generalization performance because of the distribution discrep-
ancies between the source and target domains (Chi et al., 2021; Kuzborskij & Orabona, 2013).

A feasible learning paradigm for solving the aforementioned problems is cross-domain few-shot
classification (CFC) which learns to perform classification on tasks sampled from unseen domains
with only a few labeled training samples available. Due to the scarce data and distribution gaps,
mainstream works (Dvornik et al., 2020; Liu et al., 2021a; Li et al., 2021) propose to train a sim-
ple module, such as a linear head, on top of a single or multiple pre-trained feature extractors to
transform or select features for target domains. These studies implicitly assume that there exist com-
mon high-level semantic representations that are shared across datasets (Dvornik et al., 2020; Liu
et al., 2021a). To be specific, a pre-trained model is able to recognize and extract previously ob-
served high-level semantic features from data sampled from unseen domains. For example, a model
that is pre-trained on ImageNet (Russakovsky et al., 2015) is expected to perform well on VGG
Flower (Nilsback & Zisserman, 2008) and CU Birds (Wah et al., 2011), since high-level semantic
patterns of flowers and birds have been observed in ImageNet dataset during the pre-training phase.

However, we find that simply transformed features which mainstream studies merely focus on are
too general to fully cover the key content features of the target class. Take URL (Li et al., 2021) as an
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example, as shown in Fig. 1, the features learned with URL (Li et al., 2021), a representative state-
of-the-art method in cross-domain few-shot classification that trains a simple linear transformation
head to map the universal representations extracted from a pre-trained multi-domain backbone to the
task-specific space, fails to capture the comprehensive and representative semantic features for the
target classes. Such phenomenon motivates us to think which kind of features ought to be learned
from labeled data for cross-domain few-shot classification tasks sampled from unseen domains.

Image URL IFR

Figure 1: Visualizations of original im-
ages and corresponding features learned
respectively with URL and our proposed
IFR methods. Compared with URL, IFR
tends to capture more comprehensive and
representative semantic features.

In this paper, we take two aspects into consideration. On
the one side, the learned features should be informative
enough to contain comprehensive semantic information
of the target class. On the other hand, the learned fea-
tures are expected to be discriminative. In other words,
the learned features should be representative for the tar-
get class and robust to trivial information changes. An
intuitive illustration of the aforementioned expected fea-
tures is shown in Fig. 1. We can recognize the guitar in
Fig. 1 as a combination of nuts, tuning pegs and frets
even if the trivial style information (e.g. the color) of
the image changes. In this example, the idea of consid-
ering the guitar as a combination of nut, pegs and frets
provides a set of informative features of guitar in the
image. Besides, the unchanged features like tuning pegs
represent the discriminative information that are robust
to trivial information (e.g., style information) changes.

In practice, we formulate the aforementioned desir-
able features as a kind of fine-grained invariant-content
features, and further propose an effective approach called invariant-content feature reconstruc-
tion (IFR) to consider both high-level representations and fine-grained invariant-content features
simultaneously. An inspiration of IFR is that pixels, which contain invariant-content information in
an original image, ought to be highly similar to their corresponding parts in the content-preserving
augmented counterpart. To be specific, we adopt content-preserving augmentation techniques, such
as cropping, flipping, color jittering and grayscaling, to mimic the case that the style information of
an image is modified. Then, the similarity between the original image and its augmented counterpart
is measured in pixel level to determine the invariant-content features. Finally, the invariant-content
features are reconstructed by retrieving feature pixels from the augmented data according to the
similarity matrix obtained above. The complete pipeline of IFR method is illustrated in Fig. 2

The performance of our IFR approach has been extensively evaluated on Meta-Dataset (Triantafillou
et al., 2020). The experimental results manifest that IFR can achieve good generalization perfor-
mance on previously unseen domains, which demonstrates the effectiveness of the fusion of high-
level representations and fine-grained invariant-content features. To be concrete, IFR improves the
average accuracy on unseen domains by 1.6% and 6.5% respectively under two different settings.

2 RELATED WORK

Cross-Domain Few-Shot Classification. Cross-domain few-shot classification aims to learn to
perform classification on previously unseen data and domains with only few labeled training data
available. Existing works usually pose such problem in a learning-to-learn (Schmidhuber, 1987;
Bengio et al., 1990; Thrun & Pratt, 2012) paradigm, which is also know as meta-learning Finn et al.
(2017); Snell et al. (2017). Generally, current cross-domain few-shot classification approaches can
be mainly divided into two different branches. The first one is training a pipeline from scratch (Tri-
antafillou et al., 2020; Baik et al., 2020; Requeima et al., 2019; Bateni et al., 2020).

Different from aforementioned methods, other works tend to leverage the powerful pre-trained back-
bone. SUR Dvornik et al. (2020) proposes to learn a coefficient vector to linearly combine the rep-
resentations extracted from several independent pre-trained domain-specific backbones. URT Liu
et al. (2021a) proposes a multi-head Universal Representation Transformer Vaswani et al. (2017)
layer to select feature maps. Due to the several forward passes of all backbones, computational cost
of SUR and URT during inference time is quite expensive. Thus, URL Li et al. (2021) proposes to
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Figure 2: Illustration of IFR pipeline. The IFR method considers both high-level representations
and fine-grained invariant-content features simultaneously with a meticulously designed module.
IFR first extracts the fine-grained invariant-content features with a single attention head (consists of
a query headAθq , a key headAθk and a value headAθv ) by retrieving content features that are invari-
ant to style modifications (simulated by content-preserving data augmentations), then the high-level
representations and invariant-content features are fused and transformed by a linear transformation
hθ for further classification. For comparison, the illustration of URL pipeline is provided in Fig. 7.

distill a single powerful backbone from the domain-specific backbones and simply train a classifier
on top of the frozen pre-trained backbone with few labeled samples of the new task during inference.

Feature Reconstruction. Feature reconstruction is widely applied in many previous works Baker &
Matthews (2004); Cao et al. (2014); Sun et al. (2015), and recently attracts attention from few-shot
classification for learning specific representations. DeepEMD Zhang et al. (2020) decomposes an
image into a set of semantic representations and reconstructs the target image from the perspective
of solving an optimal transport problem. FRN Wertheimer et al. (2021) formulates the linear recon-
struction of query features as an ridge regression problem with a closed-form solution. CrossAtten-
tion Hou et al. (2019) and CrossTransformer Doersch et al. (2020) project the query features into
the space of support data and makes predictions by measuring the distances of class-conditioned
projections and targets. For more detailed introduction about related works, please see Appendix A.

3 INVARIANT-CONTENT FEATURE RECONSTRUCTION

In this section, we first briefly review the problem setup for cross-domain few-shot classification
and then introduce the core idea of reconstructing invariant-content features in details. Finally, we
describe our IFR pipeline which takes both high-level and fine-grained invariant-content features
into consideration simultaneously when performing cross-domain few-shot classification.

3.1 PROBLEM SETUP FOR CFC

Let S = {Si}|S|
i=1 denote the meta-dataset that contains several subdatasets. Each subdataset owns

3 disjoint sets: Si = {Dtr
Si
,Dval

Si
,Dtest

Si
}. We denote the subdatasets in which the training sets are

accessible to training as Sseen while the remaining as Sunseen, i.e., S = Sseen ∪ Sunseen, Sseen ∩
Sunseen = ∅. Thus, the training set Dtr, validation set Dval and test set Dtest under cross-domain
few-shot classification setting can be formulated as:

Dtr = Dtr
S1
∪ Dtr

S2
∪ ... ∪ Dtr

S|Sseen|
,

Dval = Dval
S1
∪ Dval

S2
∪ ... ∪ Dval

S|Sseen|
,

Dtest = S\(Dtr ∪ Dval).
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Figure 3: Illustration of Invariant-content Feature Reconstruction. (a) Similarity Measure-
ment. Given embeddings of queries (original images) and keys (augmented images) Q,K ∈
Rw×h×d, a similarity matrix Msim ∈ Rwh×wh is generated for the similarities among samples.
Since we assume that content features (green) are invariant to style (blue and yellow) modifications
(e.g. colors etc.), larger scores will be obtained from the comparison between two context feature
pixels. (b) Feature Reconstruction. The content feature reconstruction is equivalent to linearly re-
combining the pixel vectors with corresponding similarity scores (weights). Pixel vectors assigned
with large similarity scores are highlighted while those with small similarity scores are weakened.

For each learning episode in meta-training, meta-validation and meta-test phase, a task T =
{DT ,QT } is sampled from corresponding dataset (Dtr orDval orDtest) , whereDT = {Xs, Y s} =
{(xs

i , y
s
i )}

|DT |
i=1 denotes support data pairs which are training data pairs of the task and QT =

{Xq, Y q} = {(xq
j , y

q
j )}

|QT |
j=1 denotes query data pairs which are test data and labels of the task.

3.2 INVARIANT-CONTENT FEATURE RECONSTRUCTION

To begin with, we would like to first introduce two assumptions proposed in ReLIC (Mitrovic et al.,
2020): (i) the two fundamental elements of an image are content and style, (ii) content and style
are independent, i.e. style changes are content-preserving. According to these assumptions, content
features that depict the discriminative information of an image are invariant to style modifications.

Motivated by the fact that representations learned by existing CFC approach are too general to fully
cover the key content of the target class (see Fig. 1) and inspired by the aforementioned assump-
tions, we propose to leverage the invariant-content features in a fine-grained way to learn a set
of informative features that are discriminative and robust to style information changes to perform
cross-domain few-shot classification tasks. Such fine-grained invariant-content features mainly in-
clude two desirable merits. First of all, they are fine-grained and thus contain comprehensive and
informative semantic information of the target class. Besides, they represent the most fundamen-
tal and discriminative features of the target class and are robust to trivial style information (e.g.,
the color of the image) changes. The inspiration behind invariant-content feature reconstruction is
that the pixels that contain invariant-content features in original images should highly resemble the
corresponding parts of their augmented counterparts since content features do not vary with style
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changes. In order to mimic the case that style information is modified while the content information
is preserved, we follow ReLIC and adopt cropping, flipping, color jittering and grayscaling as the
content-preserving augmentation techniques and randomly apply them to a set of support data.

Generally, the reconstruction of invariant-content features mainly include two steps: locating the
positions of invariant content features and retrieving these features. In this work, we adopt a simple
attention head (Vaswani et al., 2017) to perform invariant-content feature reconstruction (see Fig. 3).
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Figure 4: Illustration for effect of mul-
tiplication in feature reconstruction.
Large weights help highlight the cor-
responding vectors while small weights
weaken the corresponding vectors.

Specifically, we first locate the positions of invariant-
content features by measuring the similarities between
original and augmented image representations in pixel
level. As illustrated in Fig. 3(a), given a set of queries
embedding and keys embeddings, Q ∈ Rw×h×d (trans-
formed from original images) and K ∈ Rw×h×d (trans-
formed from augmented images), a similarity matrix
Msim ∈ Rwh×wh is measured to describe the similarity
between arbitrary two pixels respectively from queries
and keys embedding. As the aforementioned assump-
tions, content features are invulnerable to the changes of
style. Thus, two pixels that depict the same content in-
formation ought to be highly similar to each other and
the similarity score will be relatively larger than those
depict trivial style information. Thus, the positions of
pixels that depict the same invariant-content features in augmented representations are determined
for each pixel of original representations. Then, with the similarity matrix, the invariant-content
features are reconstructed by retrieving pixels with corresponding similarity scores (as shown in
Fig. 3(b)). The reconstruction process is equivalent to a recombination of pixel vectors where the
invariant-content features assigned with larger similarity scores are highlighted (as shown in Fig. 4).

3.3 IFR PIPELINE

In this section, we describe the complete learning pipeline of our proposed invariant-content feature
reconstruction method in details. A brief illustration of IFR pipeline is available in Fig. 2.

Augmented Data Generation. At the beginning of each episode, a batch of augmented data is
generated with the original support data by randomly imposing a series of content-preserving data
augmentations. To be specific, given a randomly sampled task T = {DT ,QT }, where DT =

{Xs, Y s} = {(xs
i , y

s
i )}

|DT |
i=1 and QT = {Xq, Y q} = {(xq

j , y
q
j )}

|QT |
j=1 , we can correspondingly

obtain an augmented task T aug = {DT ,Daug
T ,QT }, where Daug

T = {Xa, Y a} = {(xa
u, y

a
u)}

b|DT |
u=1

and b is an integer number, by randomly applying content-preserving data augmentations to Xs. In
particular, for each data point in original support data, b augmented samples can be generated.

Invariant-content Feature Reconstruction. Given an aforementioned augmented task T aug =
{DT ,Daug

T ,QT }. Let fϕ∗(x) ∈ Rc×h×w,x ∈ T aug denote the output of the pre-trained backbone,
where c is the number of channel, h and w are the height and width of the output. We use Aθq , Aθk
and Aθv to respectively denote the queries, keys and values heads of a single attention head. The
subscript θ means the parameters of the head. Each head is a mapping: Aθ : Rc×h×w 7→ Rc×h×w.

Firstly, queries embedding Q ∈ R|DT |×c×h×w, keys embedding K ∈ Rb|DT |×c×h×w and values
embedding V ∈ Rb|DT |×c×h×w are obtained by applying the pre-trained backbone and the corre-
sponding linear transformation: Aθ ◦ fϕ∗(·). In our IFR, we treat both original support and query
data as queries while the augmented support data as keys and values. For simplicity, we then flatten
queries as Q̄ ∈ R|DT |hw×c, keys as K̄ ∈ Rb|DT |hw×c and values V̄ ∈ Rb|DT |hw×c respectively.

Then, for each queries data point q ∈ Q̄, q ∈ Rhw×c, we follow Fig. 3 to measure the similarities
across pixels and reconstruct the invariant-content features:

x̂ = Msim · V̄ = softmax

(
q · K̄⊤
√
c

)
· V̄ , (1)

where x̂ denotes the reconstructed representations of the original image embedding fϕ∗(x), Msim

denotes the similarity matrix of queries and keys, and softmax(·) denotes the softmax function.
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Adaptation Strategy. In this work, the proposed IFR module is trained in the same way as previous
pre-trained-based cross-domain few-shot classification methods (Snell et al., 2017; Liu et al., 2021a;
Li et al., 2021). Specifically, we first fuse the fine-grained reconstructed support data representations
X̂s with the original high-level representations fϕ∗(Xs) and perform a linear transformation on the
fused representations:

Zs = hθ

(
fϕ∗(Xs) + α · X̂s

)
, (2)

where Zs is the transformed fused features, and α is a scale coefficient of reconstructed fine-grained
invariant-content representations. Then, the prototype ci for class i can be reformualted as:

ci =
1

|Ci|
∑
zs∈Ci

zs, Ci = {zs
j |ysj = i}, (3)

where zs
j ∈ Zs, ysj is the label of zs

j and i ∈ {1, 2, ..., Nc}. Then, the likelihood of zs belonging to
class t is formulated as:

p(ŷ = t|zs) =
ecos(z

s,ct)∑Nc

l=1 e
cos(zs,cl)

. (4)

Since IFR aims at learning a set of optimal parameters to maximize the likehood of samples belong-
ing to their own classes, the objective loss of IFR is formulated as:

min
{θq,θk,θv,θ}

− 1

|Zs|

|Zs|∑
j=1

log
(
p(ŷ = ysj |zs

j)
)
. (5)

During meta-test phase, query data are treated as queries and reconstructed with Eq. (1). Then, the
predictions are made with Eq. (5) following Eq. (4). (See Algorithm 1 for brief summary of IFR.)

3.4 ANALYSIS

In URL (Li et al., 2021), a simple linear transformation head is trained on top of a frozen pre-trained
backbone. The merit of the linear transformation lies in that the linear transformation function space
is of less complexity and thus robust, especially when the data in each few-shot classification task is
scarce and the number of model parameters is small. However, the less-complex function space also
limits the ability of model to represent complex functions. For example, when few-shot classification
tasks are diverse, the less-complex function space might not be enough to complete all the tasks.

In contrast, due to its complicated compositions of several computational operators, the attention
transformation function is of more complexity and, in turn, is able to represent more functions
compared with the linear transformation function. Since the goal of IFR is to retrieve invariant-
content features by measuring the similarities between arbitrary two pixels in original data and their
augmented counterparts, we select the attention for feature reconstruction. However, such a complex
transformation also raises a concern: whether the distance between two original samples that share
similar content features becomes extremely large (e.g., infinity) after applying attention. To analyze
this concern, we first introduce a strict definition of attention transformation (Bahdanau et al., 2014).

Definition 1 (Attention (Bahdanau et al., 2014)) Let K = (k1, ..., kN ) ⊂ Rdk be a collection of
keys, V = (v1, ..., vN ) ⊂ Rdv a collection of corresponding values, and q ∈ Rdq a query. Also, let
a : Rdq × Rdk → R be a similarity function. Then attention is the mapping:

Attention(q,K, V ) :=

N∑
i=1

softmatcha(q,K)i · vi,

where softmatcha(q,K) is a probability distribution over the elements of K defined as:

softmatcha(q,K)i :=
exp(a(q, ki))∑N
j=1 exp(a(q, kj))

.

Based on the above definition, recent work (Vuckovic et al., 2021) shows that the attention transfor-
mation function is Lipschitz continuous under mild assumptions.
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Table 1: Results on Meta-Dataset (Trained on all datasets). Mean accuracy and 95% confidence
are reported in the following table.

Datasets Proto-MAML CNAPS SimpleCNAPS SUR URT FLUTE Tri-M 2LM URL IFR(Ours)

ImageNet 46.5± 1.1 50.8±1.1 58.4 ±1.1 56.2 ± 1.0 56.8 ± 1.1 58.6 ± 1.1 51.8±1.1 58.0±3.6 57.2 ± 1.1 56.9 ± 1.1
Omniglot 82.7± 1.0 91.7±0.5 91.6 ± 0.6 94.1 ± 0.4 94.2 ± 0.4 92.0 ± 0.5 93.2±0.5 95.3±1.0 94.3 ± 0.4 94.6 ± 0.4
Aircraft 75.2± 0.8 83.7±0.6 82.0 ± 0.7 85.5 ± 0.5 85.8 ± 0.5 82.8 ± 0.5 87.2±0.5 88.2±0.5 88.1± 0.5 88.1 ± 0.5
Birds 69.9± 1.0 73.6±0.9 74.8 ± 0.9 71.0 ± 1.0 76.2 ± 0.8 75.3 ± 0.8 79.2±0.8 81.8±0.6 80.2± 0.8 80.1 ± 0.8
Textures 68.2± 1.0 59.5±0.7 68.8 ± 0.9 71.0 ± 0.8 71.6 ± 0.7 71.2 ± 0.8 68.8±0.8 76.3±2.4 76.3 ± 0.7 76.5 ±0.7
Quick Draw 66.8± 0.9 74.7±0.8 76.5 ±0.8 81.8 ± 0.6 82.4 ± 0.6 77.3 ± 0.7 79.5±0.7 78.3±0.7 82.1 ± 0.6 82.4 ± 0.6
Fungi 42.0±1.2 50.2±1.1 46.6 ± 1.0 64.3 ± 0.9 64.0 ± 1.0 48.5 ± 1.1 58.1±1.1 69.6±1.5 68.0 ± 1.0 66.9 ± 1.0
VGG Flower 88.7± 0.7 88.9±0.5 90.5 ± 0.5 82.9 ± 0.8 87.9 ± 0.6 90.5 ± 0.6 91.6±0.6 90.3±0.8 91.9 ± 0.5 92.7 ± 0.5

Traffic Sign 52.4 ± 1.1 56.5 ±1.1 57.2 ± 1.0 51.0 ± 1.1 48.2 ± 1.1 63.0 ± 1.1 58.4±1.1 63.6±1.5 63.1 ± 1.1 66.8 ± 1.1
MSCOCO 41.7 ± 1.1 39.4 ±1.0 48.9 ± 1.1 52.0 ± 1.1 51.5 ± 1.1 52.8 ± 1.0 50.0±1.0 57.0±1.1 54.2 ± 1.0 55.9 ±1.0
MNIST - - 94.6 ± 0.4 94.3 ± 0.4 90.6 ± 0.5 96.2 ± 0.5 95.6±0.5 94.7±0.5 94.6 ± 0.4 95.2 ±0.4
CIFAR-10 - - 74.9 ± 0.7 66.5 ± 0.9 67.0 ± 0.8 75.4 ± 0.7 78.6±0.7 71.5±0.9 71.5 ± 0.8 72.6 ±0.8
CIFAR-100 - - 61.3 ± 1.1 56.9 ± 1.1 57.3 ± 1.0 62.0 ± 1.0 67.1±1.0 60.0±1.1 63.0 ± 1.0 64.0 ±1.0

Average Seen 67.5 71.6 73.7 75.9 77.4 74.5 76.2 79.7 79.8 79.8
Average Unseen - - 67.4 64.1 62.9 69.9 69.9 69.4 69.3 70.9
Average All - - 71.2 71.3 71.8 72.7 73.8 75.7 75.7 76.4

Average Rank - - 6.4 6.8 6.0 4.7 4.6 3.1 3.2 2.4
1 Results of URL are the average of 5 random seeds. The reproduction results are consistent with the results reported on their website.
2 The results of our method are the average of ten random reproduction experiments.

Theorem 2 (Vuckovic et al. (2021)) Let K = {k1, ..., kN} ⊂ Rd and V = {v1, ..., vN} ⊂ Rd and
Attention(·,K, V ) be the attention introduced in definition 1. Given the same mild assumptions
in Theorem 14 (Vuckovic et al., 2021), then the mapping q 7→ Attention(q,K, V ) is Lipschitz
continuous:

∥Attention(q1,K, V )−Attention(q2,K, V )∥2 ≤ L∥q1 − q2∥2,
where L is a uniform constant.

Theorem 2 shows that the distance between the features of two samples obtained from the attention
module is upper bounded by the distance between the two samples with a uniform Lipschitz con-
stant. Thus, given a well-pre-trained backbone, if the features obtained by the backbone are close,
then, after the attention transformation, these features will still be close to each other, rather than
that they are extremely far away. Based on this continuous property of the attention transformation
function, we can reliably leverage IFR to find good representations for each few-shot classification
task, although IFR is more complex than the linear transformation head used in URL.

4 EXPERIMENTS

In this section, we conduct extensive experiments to validate the performance of our IFR method.
We first evaluate IFR on vary-way vary-shot tasks as proposed in the mainstream benchmark Meta-
Dataset (Triantafillou et al., 2020) under two different experimental settings. Then, we perform a
series of analysis and ablation studies to further explore the properties of components in IFR.

Implementation Details. Following previous works (Triantafillou et al., 2020; Dvornik et al.,
2020; Liu et al., 2021a; Li et al., 2021), we use choose ResNet-18 (He et al., 2016) as the backbone
and evaluate our method on Meta-Dataset (Triantafillou et al., 2020) (see Appendix C for details).
For convenience and fairness, we directly use the ResNet-18 (He et al., 2016) backbones provided
in URL repository1. Same as Li et al. (2021), we train a task-specific IFR module for each task
sampled from unseen data and domains on top of the frozen pre-trained backbone. An IFR module
is composed of a single attention head which includes three linear layers, and a linear transformation
block which consists of a BN layer, an average pooling layer and a linear layer. At the beginning
of each adaptation step, we re-initialize all linear layers in the IFR module with the identity matrix
as done in URL (Li et al., 2021) for a better start to optimize the parameters by taking advantages
of the learned features. Besides, the weights and biases of BN layer are re-initialized with 0 and
1 respectively. For query, key and value layers, a scale 1e − 4 is multiplied to their weights. The
optimizer used in our method is Adadelta (Zeiler, 2012). For more details, please refer to D.

1https://github.com/VICO-UoE/URL
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Table 2: Results on Meta-Dataset (Trained on ImageNet only) Mean accuracy and 95% confi-
dence are reported in the table.

Datasets Finetune ProtoNets ProtoNets (large) BOHB fo-Proto-MAML ALFA+fo-Proto-MAML FLUTE URL IFR(Ours)

ImageNet 45.8±1.1 50.5±1.1 53.7±1.1 51.9±1.1 49.5±1.1 52.8±1.1 46.9±1.1 55.8±1.0 56.6±1.1

Omniglot 60.9±1.6 60.0±1.4 68.5±1.3 67.6±1.2 63.4±1.3 61.9±1.5 61.6±1.4 67.4±1.4 72.2±1.2
Aircraft 68.7±1.3 53.1±1.0 58.0±1.0 54.1±0.9 56.0±1.0 63.4±1.1 48.5±1.0 49.5±0.9 62.1±1.0
Birds 57.3±1.3 68.8±1.0 74.1±0.9 70.7±0.9 68.7±1.0 69.8±1.1 47.9±1.0 71.2±0.9 73.0±0.9
Textures 69.0±0.9 66.6±0.8 68.8±0.8 68.3±0.8 66.5±0.8 70.8±0.9 63.8±0.8 73.0±0.6 75.8±0.7
Quick Draw 42.6±1.2 49.0±1.1 53.3±1.0 50.3±1.0 51.5±1.0 59.2±1.2 57.5±1.0 53.9±1.0 61.6±1.0
Fungi 38.2±1.0 39.7±1.1 40.7±1.2 41.4±1.1 40.0±1.1 41.5±1.2 31.8±1.0 41.6±1.0 46.5±1.1
VGG Flower 85.5±0.7 85.3±0.8 87.0±0.7 87.3±0.6 87.2±0.7 86.0±0.8 80.1±0.9 87.0±0.6 88.7±0.6
Traffic Sign 66.8±1.3 47.1±1.1 58.1±1.1 51.8±1.0 48.8±1.1 60.8±1.3 46.5±1.1 47.4±1.1 64.6±1.1
MSCOCO 34.9±1.0 41.0±1.1 41.7±1.1 48.0±1.0 43.7±1.1 48.1±1.1 41.4±1.0 53.5±1.0 55.5±1.0
MNIST - - - - - - 80.8±0.8 78.1±0.7 89.1±0.7
CIFAR-10 - - - - - - 65.4±0.8 67.3±0.8 72.2±0.8
CIFAR-100 - - - - - - 52.7±1.1 56.6±0.9 63.5±1.0

Average Seen 45.8 50.5 53.7 51.9 49.5 52.8 46.9 55.8 56.6
Average Unseen - - - - - - 56.5 62.2 68.7
Average All - - - - - - 55.8 61.7 67.1

Average Rank 6.1 7.3 3.8 4.3 5.8 3.9 8.4 3.8 1.4
1 The results of our method are the average of ten random reproduction experiments.
2 The ranks only consider the first 10 datasets.
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Figure 5: Comparisons of evaluation results of IFR and URL with other domain-specific back-
bones. We additionally evaluate IFR on other single domain-specific backbones and compare the
test accuracies with URL. The results show that IFR consistently outperforms.

4.1 RESULTS ON META-DATASET

We evaluate our invariant-feature reconstruction method under two experimental settings: ‘Training
on all datasets’ and ‘Training on ImageNet only’ Triantafillou et al. (2020). ‘Training on all datasets’
requires the pre-trained backbone to be exposed to several subdatasets during training phase while
‘Training on ImageNet only’ only requires the backbone to be pre-trained on ImageNet dataset (see
Appendix C for more details). We compare our method with the several existing state-of-the-art
methods, such as Proto-MAML (Triantafillou et al., 2020), ProtoNets (large) (Doersch et al., 2020),
fo-Proto-MAML(FP-MAML) (Triantafillou et al., 2020), CNAPS (Requeima et al., 2019), SimpleC-
NAPS (Bateni et al., 2020), BOHB (Saikia et al., 2020), Tri-M (Liu et al., 2021b), SUR (Dvornik
et al., 2020), URT (Liu et al., 2021a), ALFA+fo-Proto-MAML(ALFA+FP-MAML) (Baik et al.,
2020), FLUTE (Triantafillou et al., 2021), 2LM (Qin et al., 2023), and URL (Li et al., 2021).

Training on All Datasets. The experimental results under ‘Train on all datasets’ are reported in
Table 1. Among all methods, IFR achieves the best performance in average and ranks 2.4. The
average performance of our proposed IFR is comparable with URL Li et al. (2021) on seen datasets
while better than all other methods on unseen datasets. Compared with URL, which performs better
than other methods except ours in average, IFR obtains better results on Omniglot (+0.2%), Textures
(+0.2%), QuickDraw (+0.3%), VGG Flower (+0.8%), Traffic Sign (+3.7%), MSCOCO (+1.7%),
MNIST (+0.6%), CIFAR-10 (+1.1%) and CIFAR-100 (+1.0%). The results show that our method
can achieve better generalization performance on unseen domains, which is more challenging than
seen domains. Besides, we also notice that IFR outperforms recent work, 2LM (Qin et al., 2023),
on 7 out of 13 datasets, and achieves better average performance on both seen and unseen domains.

Training on ImageNet Only. As we can observe from Table 2, IFR outperforms on 10 out of 13
datasets and ranks 1.4 in average. Compared with the second best approach among all state-of-
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Figure 6: (a). Average performance on all datasets with different numbers of batch of the augmented
data; (b). Comparison of scale coefficient ranging from 1e − 2 to 1e − 5; (c). Ablation study on
augmentation techniques (ImageNet).

the-art methods, IFR performs better on ImageNet (+0.8%), Omniglot (+4.8%), Textures (+2.8%),
QuickDraw (+2.4%), Fungi (+4.9%), VGG Flower (+1.5%), MSCOCO (+2.0%), MNIST (+8.3%),
CIFAR-10 (+4.7%) and CIFAR-100 (+6.9%). Moreover, similar to the results under ‘Train on All
Datasets’ settings, IFR consistently significantly outperforms URL on unseen domains.

Further, we also evaluate IFR with other single domain-specific backbones on Meta-Dataset. We
reported part of the experimental results in Fig. 5. Complete results are available in Fig. 8 and
Table 12. Fig. 5 depicts the differences between accuracies of IFR and URL. As shown in the figure,
IFR consistently achieves much better generalization performance than URL on unseen domains.

4.2 FURTHER ANALYSES

Number of Augmented Data.An intuition of IFR is that more augmented data help extract better
invariant-content features due to the abundant semantic features. However, the results in Fig. 6(a)
show the opposite. The average total performance does not change obviously. However, according
to the numerical results in Table 3, it is easy to observe that different datasets react differently to
different numbers of augmented data. For example, Traffic Sign prefers more augmented data while
MSCOCO, DTD prefer less. Moreover, datasets, such as Omniglot, MNIST and CIFAR, are not
sensitive to the number of augmented data. From our perspective, a reasonable conjecture for such
phenomenon is that a batch of augmented data has contain enough semantic features for simple
datasets like MNIST while complex datasets such as MSCOCO require more semantic features.

Scale Coefficient. We further explore the effect of scale coefficient. As manifested in Fig. 6(b),
IFR reaches its best performance (averaged accuracy on all datasets) when the scale coefficient
α = 1e− 4. Generally, our IFR method is robust to α within the interval [1e− 5, 1e− 2].

Ablation Study for Augmentations. We further conduct a series of ablation studies to explore the
roles that the four augmentations play in the performance of all datasets (see Table 8). Generally,
different augmentations have different effect on different datasets. Take ImageNet (Fig. 6(c)) as an
example, ImageNet prefers color jittering to cropping, flipping and grayscaling. We conjecture the
reason is that images in ImageNet contains too many objects and color jittering can help capture
the key features while cropping may cut some important parts of the objects. Although removing
some augmentations contributes to achieving better performance on a single dataset, better average
performance on seen, unseen and all domains are achieved when applying all the four augmentations.

5 CONCLUSION

In this paper, we propose an effective invariant-content feature reconstruction method to consider
both high-level and fine-grained invariant-content features simultaneously when performing cross-
domain few-shot classification. We reconstruct the invariant-content features via retrieving content
features, which contain informative and discriminative features of the images and are invariant to
style modifications, from a set of augmented support data derived from original images. Our pro-
posed IFR method aims at training a simple IFR module which is able to capture the invariant-
content features and combine them with the high-level semantic features for cross-domain few-shot
classification tasks. Extensive experiments on Meta-dataset benchmark, along with hyper-parameter
analyses and ablation studies demonstrate that IFR can achieve good generalization performance on
unseen domains and capture more comprehensive and representative features for target classes.
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Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. NeurIPS, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In CVPR, 2020.

10



Under review as a conference paper at ICLR 2024

Ruibing Hou, Hong Chang, Bingpeng Ma, Shiguang Shan, and Xilin Chen. Cross attention network
for few-shot classification. NeurIPS, 2019.

Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Christian Igel. Detection
of traffic signs in real-world images: The german traffic sign detection benchmark. In IJCNN,
2013.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML, 2015.

Jonas Jongejan, Rowley Henry, Kawashima Takashi, Jongmin Kim, and Fox-Gieg Nick. The quick,
draw! a.i. experiment. 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Ilja Kuzborskij and Francesco Orabona. Stability and hypothesis transfer learning. In ICML, 2013.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hub-
bard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural Computation, 1(4):541–551, 1989.
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A DETAILED RELATED WORK

Representations of Meta-Learning: Many works have paid their efforts to few-shot classification
problem by posing it in a learning-to-learn Schmidhuber (1987); Bengio et al. (1990); Thrun & Pratt
(2012) paradigm, which is also known as meta-learning (Vinyals et al., 2016; Ravi & Larochelle,
2017; Finn et al., 2017; Snell et al., 2017). Among the existing methods, MAML (Finn et al., 2017)
and Prototypical Networks (Snell et al., 2017) are the most widely applied learning frameworks.
Prototypical Networks learns a powerful encoder that outputs a centroid for each class by averaging
the features of support data so that the distances between query data of each class and the corre-
sponding centroids is small. Different from Prototypical Nets, MAML learns a set of parameters
which is treated as model initialization in each task episode from training tasks via solving a bi-level
optimization problem so that it can be fast adapted to unseen tasks during inference phase. In order
to improve the efficiency and the generalization performance, many variants of MAML emerge in
recent works (Nichol et al., 2018; Lee et al., 2019; Bertinetto et al., 2019; Rusu et al., 2019; Tian
et al., 2020a). Further, in order to figure out the essence of how MAML generalize to unseen tasks,
Raghu et al. (2020) conducts a series of analyses on the representations learned with MAML and
reveals that the impressive power of MAML derives from feature reuse instead of fast adaptation.
Such conclusion inspires another type of few-shot classification approach. Different from those end-
to-end few-shot learning methods that learn a model from scratch, the pre-trained few-shot learning
pipelines propose to leverage the powerful pre-trained backbone, such as ResNet (He et al., 2016),
to extract better representations and then fine-tune a classifier on top of the backbone during evalua-
tion phase, such as Baseline++ (Chen et al., 2019; Tian et al., 2020b). Besides, Meta-Baseline (Chen
et al., 2021) also proposes to fine-tune the entire model with a nearest-centroid similarity. Compared
with the end-to-end approaches, the pre-trained pipelines are more flexible to fine-tune and usually
achieve better generalization performance during inference phase since the frozen pre-trained em-
bedding encoder can extract high-quality features and the classifier owns less parameters.

𝒉!
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𝑓"∗

frozen 
backbone
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feature transformation 
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Figure 7: The learning pipeline of URL.

Cross-Domain Few-Shot Classification: Cross-
domain few-shot classification is a challenging vari-
ant of typical few-shot classification task that aims
to perform classification on unseen data with ex-
posed to few labeled training samples. Differ-
ent from typical few-shot classification task in
which the data are sampled from the same distri-
bution, cross-domain few-shot classification aims
to achieve good generalization performance not
only on the observed domains but also on unseen
domains. Similar to meta-learning, cross-domain
few-shot classification also contains ‘training from
scratch’ and ‘pre-training’ pipelines. From the an-
gle of training from scratch, due to the advantages
of Prototypical Nets (Snell et al., 2017) and MAML (Finn et al., 2017), Proto-MAML (Triantafillou
et al., 2020) combines the two meta-learning paradigms by treating the prototypes learned from the
embedding network as the parameters of a linear classifier and training the pipeline in the way of
MAML. ALFA+fo-Proto-MAML (Baik et al., 2020) takes a further step to improve fo-Proto-MAML
by adaptively generating the hyper-parameters (e.g. learning rate and weight decay coefficient) with
a small meta-network. CNAPS (Requeima et al., 2019) introduces FiLM (Perez et al., 2018) module
to adapt the parameters of embedding network and classifier to the new tasks. Similar work also
includes (Tseng et al., 2020). Further, Simple CNAPS (Bateni et al., 2020) is proposed to replace
the parametric classifier with a class-covariance-based distance metric. In contrast, from the per-
spective of ‘pre-training’ pipeline, SUR (Dvornik et al., 2020) proposes to learn a coefficient vector
to linearly combine the representations of several independent backbones that learned on specific
datasets. Similarly, URT (Liu et al., 2021a) proposes a multi-head Universal Representation Trans-
former (Vaswani et al., 2017) layer to select features. Besides, FLUTE (Triantafillou et al., 2021)
proposes to learn the convolutional layers as a universal template for all datasets while training BN
layers specifically for each dataset. During test phase, a set of coefficient is outputted by a ‘Blender
Network’ to linearly combine the pre-trained BN layers for prediction. Due to the several forward
passes of all backbones, computational cost of SUR and URT during inference time is quite expen-
sive. Thus, URL (Li et al., 2021) (see Fig. 7)proposes to distill a single powerful backbone from
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the domain-specific backbones and simply train a classifier on top of the frozen backbone with few
training samples of the new task during inference phase. As a variant of URL, TSA (Li et al., 2022)
proposes to add a residual module to each 3 × 3 convolutional layer to learn better representations.

Our goal in this work resemble (Xu et al., 2020; Wang & Deng, 2021) which try to drop the unimpor-
tant style information like colors and preserve the robust and invariant features with good discrim-
ination ability. However, compared with these methods, our proposed IFR is much simpler since
we can complete the invariant-feature location and reconstruction with only a single attention head
instead of performing a series of operations.

Feature Reconstruction: Feature reconstruction is widely applied in many previous works (Baker
& Matthews, 2004; Cao et al., 2014; Sun et al., 2015), and recently attracts attention from few-shot
classification tasks for learning specific representations. DeepEMD (Zhang et al., 2020) decom-
poses an image into a set of semantic representations and reconstructs the target image from the
perspective of solving an optimal transport problem. FRN (Wertheimer et al., 2021) formulates the
linear reconstruction of query features as an ridge regression problem with a closed-form solution.
CrossAttention (Hou et al., 2019) projects the query features into the space of support data and
makes predictions by measuring the distances of class-conditioned projections and targets. Sim-
ilarly, CrossTransformer (Doersch et al., 2020) applies a Transformer based network to assemble
query-aligned class prototypes for query data predictions.

B DETAILS OF PRE-TRAINING PIPELINE IN CFC

Pre-training pipeline has attracted increasing attention from few-shot classification because of its
impressive ability in extracting representations (Tian et al., 2020b; Dhillon et al., 2020). The pre-
training pipeline firstly pre-trains a single embedding backbone with sufficient labeled samples.
Then, during test phase, the backbone is frozen and a specific classifier is trained with limited support
data pairs of a new task on top of the backbone to predict the labels of query data.

Model Pre-training. The goal of model pre-training is to obtain a powerful embedding encoder
for feature extraction. In this paper, we follow URL (Li et al., 2021) to use a multi-domain model
distilled from several domain-specific models as our backbone. The distillation process can be
simply formulated as:

min
ϕ,ψi

|Sseen|∑
i=1

1

|Dtr
i |

∑
x,y∈Dtr

i

(
ℓ(gψi

◦ fϕ(x), y) + λR(ϕ, ψi)
)
,

where Dtr
i is the training set of the i-th sub-dataset, ℓ(·) is the cross-entropy loss function, fϕ is the

backbone parameterized with ϕ, gψi
is the classifier for domain i and parameterized with ψi. R is

the regularization loss and λ is the coefficient of the regularization loss. In URL (Li et al., 2021),
the regularization loss is composed of two losses that aim to minimize the distance between the pre-
dictions and maximize the similarity of features between the distilled model and the corresponding
domain-specific model.

Classifier learning. Since there exists gaps among domains, it is difficult for a pre-trained model
to extract features that can generalize to previously unseen domains. An efficient solution for this
problem is learning a linear transformation to project features learned from the pre-trained backbone
into the task-specific space (Li et al., 2021).

We denote the transformation module as hθ which is parameterized with θ. Given a support set
DT new = {(xs

j , y
s
j)}

|DT new |
j=1 of a new task, following Mensink et al. (2013); Snell et al. (2017) and

Dvornik et al. (2020), the centroid of each class is calculated firstly by averaging the corresponding
support features extracted from the pre-trained backbone fϕ∗ and transformation module hθ:

ci =
1

|Ci|
∑
xs∈Ci

hθ ◦ fϕ∗(xs),

Ci ={xs
j |ysj = i}, i = 1, 2, ..., Nc,

(6)

where ϕ∗ denotes the optimal backbone parameters, Nc is the number of classes in given support set
DT new . Then, the label of each given support data point xs ∈ DT new is estimated via measuring the
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distances between the data point and centroids:

p(ŷ = t|xs) =
ecos(hθ◦fϕ∗ (xs),ct)∑Nc

l=1 e
cos(hθ◦fϕ∗ (xs),cl)

, (7)

where ŷ denotes the prediction and cos(·, ·) denotes the cosine similarity function. By solving the
empirical risk minimization problem on the given support set DT new :

min
θ

1

|DT new |
∑

xs
j ,y

s
j∈DT new

log
(
p(ŷ = ysj |xs

j)
)
, (8)

the optimal parameters θ∗ are obtained. Then, the likelihood of query data can be estimate with θ∗
by performing 7.

C DATASET

Meta-Dataset (Triantafillou et al., 2020) is proposed as a few-shot classification benchmark
originally with only 10 datasets: ILSVRC 2012 (a.k.a ImageNet) (Russakovsky et al., 2015),
Omniglot (Lake et al., 2015), FGVC-Aircraft (a.k.a Aircraft) (Maji et al., 2013), CUB-200-
2011 (a.k.a CU Birds) (Wah et al., 2011), Describable Textures (a.k.a DTD) (Cimpoi et al.,
2014), QuickDraw (Jongejan et al., 2016), FGVCx Fungi (a.k.a Fungi) (Schroeder & Cui, 2018),
VGG Flower (Nilsback & Zisserman, 2008), Traffic Sign (Houben et al., 2013), MSCOCO (Lin
et al., 2014). Later, MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky et al., 2009) and CIFAR-
100 (Krizhevsky et al., 2009) are included.

According to Triantafillou et al. (2020), there are two kinds of experimental settings: ‘Training on
all datasets’ and ‘Training on ImageNet only’. The difference of the two settings is how many
datasets are accessible to the model during meta-training phase. In ‘Training on all datasets’ setting,
the training sets of the first 8 datasets(ImageNet, Omniglot, Aircraft, CU Birds, DTD, QuickDraw,
Fungi and VGG Flower) are treated as training set where the training tasks are sampled. In ‘Training
on ImageNet only’ setting, only the training set of ILSVRC 2012 is accessible to the model. During
meta-test phase, the model is evaluated on 600 tasks each randomly sampled from the test sets
of accessible datasets and the remaining datasets(Traffic Sign, MSCOCO, MNIST, CIFAR-10 and
CIFAR-100). The tasks in both meta-training and meta-test phases are sampled with varying number
of ways and shots as proposed in Triantafillou et al. (2020).

D MORE IMPLEMENTATION DETAILS

D.1 TRAINING BACKBONES

In this paper, we follow URL (Li et al., 2021), which transforms the universal representations ex-
tracted from a frozen pre-trained backbone to the tasks-specific space for classification, to train a
specific IFR module on top of the pre-trained backbone for each single task. The domain-specific
backbones are trained in typical supervised learning paradigm on specific dataset respectively while
the multi-domain backbone is distilled from 8 domain-specific backbones.

For both learning processes of domain-specific backbones and the multi-domain backbone, the mod-
els take a batch of data and labels for training as done in typical supervised learning while are
evaluated for validation performance on few-shot classification tasks sampled from corresponding
validation sets. Follow the protocal in Triantafillou et al. (2020), the training episodes have 50%
probability coming from ImageNet dataset during the distillation of the multi-domain backbone.

For more concrete details about hyper-parameters, please refer to Li et al. (2021).

D.2 TRAINING IFR MODULE

The Invariant-content Feature Reconstruction (IFR) module proposed in this paper is a shallow neu-
ral network in order to simultaneously consider both high-level and fine-grained invariant-content
features. The IFR module is composed of a single attention head and a linear transformation head.
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Algorithm 1 Invariant-content Feature Reconstruction Algorithm
Input: pre-trained backbone fϕ∗ , number of inner iterations n, learning rate η, query head param-
etersAθq , key head parametersAθk , value head parametersAθv , linear transformation parameters
hθ. Let Θ = {θq, θk, θv, θ}.
Output: the optimal parameters of query head θ∗q, key head θ∗k, value head θ∗v and linear transfor-
mation head θ∗.
# Augmented task generation
Sample a new task T = {{Xs, Y s}, {Xq, Y q}};
Generate the augmented support data {Xa, Y a};
# Training on support data
for i = 1 to n do

Compute queries, keys and values:
Q = Aθq ◦ fϕ∗(Xs), K = Aθk ◦ fϕ∗(Xaug), V = Aθv ◦ fϕ∗(Xaug);

Flatten Q,K,V to Q̄, K̄, V̄ ;
# Invariant-content feature reconstruction
Reconstruct invariant-content features X̂s:

X̂s = softmax( Q̄·K̄⊤
√
c

) · V̄ ;
# Feature Fusion
Combine the high-level and invariant-content features:

Zs = hθ(fϕ∗(Xs) + α · X̂s);
Update parameters:

Θ← Θ− η∇ΘEzs∼Zs log(p(ŷ = ys|zs))
end for

The attention head, which aims to capture the fine-grained invariant-content features, includes three
linear layers which are respectively queries head, keys head and values head. In our IFR pipeline,
the queries head takes the representations of original images, including both support and query data,
as input while the keys and values heads take the representations of the augmented data as input.

Inspired by the idea that pixels, which contains invariant content information, in original images
ought to highly resemble the corresponding parts in the augmented data, we approximately extract
the invariant-content features via retrieving content features that are invariant to style modifications
from the augmented data by measuring the similarities of features in pixel level. To this end, in
IFR, we simulate the style modifications with content-preserving data augmentations. By treating
original support and query data as queries and the augmented support data as keys and values, we can
firstly explore the invariant-content features via measuring the similarities among pixels, and then
retrieving the features via combining the features with similarity weights. Since content features are
invariant to style modifications, the similarity of two content feature pixel will be relatively larger.

The other part in IFR module is a linear transformation head which is composed of a batch nor-
malization layer, an average pooling layer and a linear layer. After the invariant-content features
are reconstructed, we further combine them with the high-level semantic features extracted from the
frozen pre-trained backbone following Eq. (2) and map the feature fusion to the task-specific space.

In our method, the IFR module is treated as a task-specific transformation in each task adaptation
episode. Thus, at the beginning of each episode, the IFR module is re-initialized with a specific way.
To be specific, all linear layers of the IFR module are re-initialized with the identity matrices. In
particular, a scale 10−4 is multiplied to the weights of linear layers of the attention head. Besides,
the weights and biases of Batch Normalization layer are re-initialized with zeros and ones.

The adaptation for each task is realized by iteratively performing stochastic gradient descent on the
loss with respect to fused support representations and labels. Each adaptation episode consists of
50 iteration steps. The optimizer used in our experiments is Adadelta (Zeiler, 2012). We set the
learning rate to 1.0 for “Traffic Sign” and “MNIST” datasets while 0.1 for the remaining datasets.

We evaluate our method on 600 randomly sampled tasks for each candidate dataset, and report the
average accuracy and the 95% confidence score as the results in all experiments. To manifest the
stability of our method and avoid extremely good or bad results, we run all experiments in this paper
10 times with different random seeds. The detailed algorithm is reported in Algoritim 1.
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D.3 DATA AUGMENTATION

Data augmentation plays an important role in our proposed IFR method. We use data augmenta-
tions to simulate content-preserving style modifications and further explore the invariant-content
features that are insensitive to style changes. The assumptions behind this derive from con-
trastive learning (Chen et al., 2020; He et al., 2020; Grill et al., 2020; Mitrovic et al., 2020).
In the context of contrastive learning, it is assumed that images are generated by two essen-
tial elements, i.e. content and style, and the fundamental content information is independent of
style information like background and colors (Mitrovic et al., 2020). Inspired by these assump-
tions, we expect that fine-grained invariant-content features can be captured by retrieving con-
tent features that are robust to style changes from a set of augmented data. Concretely, in this
paper, we select RandomSizedCrop, RandomGrayscale, RandomHorizontalFlip and
RandomColorJitter as content-preserving data augmentations.

RandomSizedCrop. Randomsizedcrop augmentation crops a portion of an image along the height
and width of the image and then resizes the image to a given size. In our experimental settings, we
set the portion interval as [0.75, 1.0] and the size as (84, 84) which means 0 ∼ 25% of the area of a
given image will be cropped and the preserved image will then be reized to 84× 84.

RandomGrayscale. Randomgrayscale augmentation randomly convert an image to grayscale with
a given probability. In our experimental settings, we set the probability to 20%.

RandomHorizontalFlip. Randomhorizontalflip randomly flips an image along the horizontal di-
rection with a probability. In our experimental settings, we set the probability to 50%.

RandomColorJitter. Randomcolorjitter augmentation randomly modifies the brightness, contrast,
saturation and hue of an image with specific given probabilities. We set the scales of the modifi-
cations to 5% for all aspects and the probability of conducting this augmentation to 30%. Thus,
if a decision is made to change the style of an image, the brightness, contrast and saturation will
be modified with a factor that is chosen uniformly from [max(0, 0.95), 1.05] while the hue will be
modified with a factor that is uniformly chosen from [−0.05, 0.05].

E DETAILED EXPERIMENTAL RESULTS.

E.1 COMPLETE RESULTS OF TRAINING ON ALL DATASETS

We respectively report our results and learning curves under ‘Train on all datasets’ settings in Table 1
and Fig. 11. We compare our method with the existing state-of-the-art methods, such as Proto-
MAML (Triantafillou et al., 2020), CNAPS (Requeima et al., 2019), SimpleCNAPS (Bateni et al.,
2020), SUR (Dvornik et al., 2020), URT (Liu et al., 2021a), FLUTE (Triantafillou et al., 2021), Tri-
M (Liu et al., 2021b), 2LM (Qin et al., 2023) and URL (Li et al., 2021). Among all methods, IFR
achieves the best performance in average and ranks 2.4. The average performance of our method
is comparably with URL (Li et al., 2021) on seen datasets while better than all other methods on
unseen datasets.

Compared with URL, which performs better than other methods except ours in average, IFR obtains
better results on Omniglot (+0.2%), Textures (+0.2%), QuickDraw (+0.3%), VGG Flower (+0.8%),
Traffic Sign (+3.7%), MSCOCO (+1.7%), MNIST (+0.6%), CIFAR-10 (+1.1%) and CIFAR-100
(+1.0%). The results show that our method can achieve better generalization performance on unseen
domains, which is more challenging than seen domains. Since there exists discrepancies among
the distributions of datasets, the backbone can only recognize and extract semantic information
that shared across seen and unseen domains while fail to explore the representative features. IFR
addresses this problem by additionally extracting the specific invariant-content features from original
data and their augmented counterpart. Besides, we also notice that IFR outperforms recent work,
2LM (Qin et al., 2023), on 7 out of 13 datasets, and achieves better average performance on both
seen and unseen domains.

Although IFR achieves good performance, we still observe that the performance of IFR drops on
ImageNet (-0.3%) and Fungi (-1.1%) datasets compared with URL. Intuitively, it is expected that
the performance will increase with the powerful representations extracted by the attention module.
However, as shown in Fig. 11(a) and Fig. 11(g), the test accuracy curves of both ImageNet and
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(c) Aircraft
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(d) CU Birds
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Figure 8: Differences of test accuracies between IFR and URL on all datasets with different
domain-specific backbones. We evaluate our proposed IFR method on all domain-specifc back-
bones and report the differences of test accuracy between IFR and URL. As shown in figures, IFR
outperforms URL with obvious gaps consistently on almost all backbones.

Fungi decline obviously after several adaptation steps, which is the typical phenomenon of overfit-
ting. Such phenomenon also takes place slightly on MSCOCO dataset as shown in Fig. 11(j). For
ImageNet, as proposed by Li et al. (2021); Triantafillou et al. (2020), the training episodes have 50%
probability coming from ImageNet data source during pre-training phase. Thus, we conjecture that
the pre-trained backbone has already owned the ability of extracting good representations from the
ImageNet test data that share the same distribution with training data and the fused representations
that contains fine-grained invariant-content features exacerbate the bias of the representations. On
the other hand, compared with datasets like Aircraft in which the objects are evident, data samples
in MSCOCO are more complicated since there are several objects in a single image. For example,
the average number of objects is 7.7 for each image in MSCOCO. Thus, it is possible that IFR
incorrectly captures the wrong semantic features and misclassifies the data with high confidence.

E.2 TRAINING ON SINGLE BACKBONES

Following previous works (Triantafillou et al., 2020; Requeima et al., 2019; Bateni et al., 2020;
Dvornik et al., 2020; Liu et al., 2021a; Triantafillou et al., 2021; Li et al., 2021), we evaluate our
method under single domain few-shot classification settings respectively with 8 domain-specific
backbones . A most popular case is evaluating the proposed method by performing classification
on all datasets with ImageNet domain-specific backbone because ImageNet dataset includes huge
number of images that can partially cover the distributions of other datasets like CU Birds and VGG
Flower etc.. The results evaluated on the backbone pre-trained on ImageNet are reported in Table 2.
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Table 3: Results with different number of batches of augmented data. Mean accuracy, 95% confi-
dence interval are reported. All results are the average of ten random reproduction experiments.

Datasets num=1 num=2 num=3

ImageNet 56.9±1.1 57.1±1.1 56.9±1.1
Omniglot 94.6±0.4 94.5±0.4 94.5±0.4
Aircraft 88.1±0.5 87.9±0.5 88.1±0.5
Birds 80.1±0.8 79.9±0.8 80.2 ±0.8
Textures 76.5±0.7 76.4±0.7 76.2±0.7
QuickDraw 82.4±0.6 82.4±0.6 82.2±0.6
VGG Flower 92.7±0.5 92.5±0.5 92.7±0.5
Traffic Sign 66.8±1.1 66.9±1.1 67.2±1.1
MSCOCO 55.9±1.0 55.6±1.0 55.6± 1.0
MNIST 95.2±0.4 95.2±0.4 95.2±0.4
CIFAR-10 72.6±0.8 72.5±0.8 72.5±0.8
CIFAR-100 64.0±1.0 64.0±1.0 63.9±1.0

Average Seen 79.8 79.7 79.7
Average Unseen 70.9 70.8 70.9
Average All 76.4 76.3 76.3

The results of “training on ImageNet only” show that IFR outperforms on 10 out of 13 datasets and
ranks 1.4 in average. Compared with URL, our method consistently outperforms on all datasets
with large gaps. Moreover, we also evaluate our method on other domain-specific backbones. The
complete numerical results are available in Table 12. For convenience, we also provide a set of
figures to depict the generalization performance differences between IFR and URL in Fig. 8. As
revealed in figures, it is easy to find that IFR consistently facilitates to improve the generalization
performance on almost all cases with large gaps, which demonstrates that learning fine-grained
invariant-context features is necessary for new tasks that are sampled from unseen data and domains.
For backbones pre-trained on simple datasets, such as the backbone learned from Omniglot, the
improvements are significant, which indicate that the reconstructed invariant-content features play
an important role in achieving better generalization performance when the prior knowledge of a
backbone cannot cover the distributions of other domains.

1 2 3
Number of batch of augmented data

79.5

79.6

79.7

79.8

79.9

80.0

Ac
cu

ra
cy

 / 
%

(a) Average Seen

1 2 3
Number of batch of augmented data

70.5

70.6

70.7

70.8

70.9

71.0

Ac
cu

ra
cy

 / 
%

(b) Average Unseen

1 2 3
Number of batch of augmented data

76.0

76.1

76.2

76.3

76.4

76.5

Ac
cu

ra
cy

 / 
%

(c) Average All

Figure 9: Comparisons to the effect of different numbers of augmented data. (a). Average per-
formance of seen domains. (b). Average performance of unseen domains. (c). Average performance
of all domains. As shown in three figures above, the average generalization performance on seen
domains, unseen domains and all domains is not sensitive to the number of augmented data.

E.3 EFFECT OF THE NUMBER OF BATCH OF AUGMENTED DATA

A reasonable intuition of IFR is that more augmented data facilitate to extract better invariant-content
features and in turn achieve better generalization performance since more augmented data provide
a set of more comprehensive semantic features. In order to figure out the effect of the number of
augmented data on generalization performance, we evalute our proposed IFR method with different
numbers of augmented data in this section. Specifically, we perform our IFR method under ‘Train
on all datasets’ settings respectively with 1, 2 and 3 batches of augmented data.

20



Under review as a conference paper at ICLR 2024

Table 4: Comparisons to different scale coefficient. Mean accuracy, 95% confidence interval are
reported. All results are the average of ten random reproduction experiments.

Datasets α = 1e− 2 α = 1e− 3 α = 1e− 4 α = 1e− 5

ImageNet 56.6±1.1 56.9±1.1 56.9±1.1 57.2±1.1
Omniglot 94.7±0.4 94.5±0.4 94.6±0.4 94.6±0.4
Aircraft 88.2±0.5 88.0±0.5 88.1±0.5 88.3±0.5
Birds 80.3±0.8 80.0±0.7 80.1 ±0.8 80.1±0.8
Textures 76.3±0.7 76.4±0.7 76.5±0.7 76.4±0.7
QuickDraw 82.2±0.6 82.4±0.6 82.4±0.6 82.4±0.6
Fungi 66.8±1.0 66.6±1.2 66.9±1.0 66.8±1.0
VGG Flower 92.6±0.5 92.8±0.5 92.7±0.5 92.6±0.5

Traffic Sign 65.7±1.2 67.1±1.1 66.8±1.1 66.8±1.1
MSCOCO 55.8±1.0 55.6±1.0 55.9± 1.0 55.5±1.0
MNIST 95.0±0.5 95.1±0.4 95.2±0.4 95.2±0.4
CIFAR-10 72.5±0.8 72.7±0.8 72.6±0.8 72.6±0.8
CIFAR-100 63.6±1.0 63.9±1.0 64.0±1.0 63.7±1.0

Average Seen 79.7 79.7 79.8 79.8
Average Unseen 70.5 70.9 70.9 70.8
Average All 76.2 76.3 76.4 76.3

The experiment results are available in Fig. 9 and Table 3. It is easy to observe from Fig. 9 that
the average generalization performance does not change obviously with the changes of the number
of augmented data. However, according to the results reported in Table 3, different datasets react
differently to the number of batches of augmented data. In detail, with the number of augmented
data increasing, the performance on Traffic Sign slightly increases while the performance drops on
Textures, QuickDraw, Fungi and MSCOCO.

E.4 EFFECT OF SCALE COEFFICIENT

As proposed in Eq. (2), before applying the linear transformation, the invariant-content features are
combined with the high-level features extracted from the frozen pre-trained backbone with a scale
coefficient. A simple case is directly combine the invariant-content and high-level features where
the scale is 1.0. However, we find that the performance degrades significantly. Such phenomenon
shows that directly applying the invariant-content features does not help improve the generalization
performance and makes the learning process difficult. Thus, a key in IFR is finding a suitable scale
coefficient for the fusion of high-level and fine-grained invariant-content features. To this end, in
this section, we propose to explore the effect of scale coefficient on generalization performance.

Specifically, we perform our proposed IFR method under ‘Train on all datasets’ settings with differ-
ent scale coefficients ranging from 1e− 2 to 1e− 5 to explore the effect of the scale coefficient. We
report the experiment results in Fig. 6(b) and Table 4.

Fig. 6(b) plots the changes of the averaged test accuracy of all datasets with scale coefficient varying
from 1e− 2 to 1e− 5. As shown in Fig. 6(b), our proposed IFR method outperforms URL baseline
on all cases with an obvious gap. The averaged accuracy on all domains increases with the decrease
of the scale coefficient and achieves the best performance when α = 0.0001. When α becomes
smaller, such as α = 0.00001, the performance starts to drop. In detail, as shown in Table 4, different
domains prefer different scale coefficients. For example, ImageNet, which provides more training
episodes during pre-training phase, prefers smaller scale coefficient while CU Birds, which owns
evident objects and requires more fine-grained features, prefers the relatively larger scale coefficient.
With all aspects taken into consideration, we choose α = 1e− 4 in our experiments.

E.5 EFFECT OF INITIALIZATION

In our experimental settings, we follow Li et al. (2021) and re-initialize the linear layers of our
proposed IFR module with identity matrix at the beginning of each episode. There are two ad-
vantages in identity matrix initialization strategy. Firstly, the output of a linear layer that initial-
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Table 5: Comparisons to IFR with different initialization. Mean accuracy, 95% confidence interval
are reported. All results are the average of ten random reproduction experiments.

Datasets Identity Random(Xavier)

ImageNet 56.9±1.1 57.3±1.1
Omniglot 94.6±0.4 94.5±0.4
Aircraft 88.1±0.5 88.0±0.5
Birds 80.1±0.8 80.3±0.8
Textures 76.5±0.7 76.3±0.7
QuickDraw 82.4±0.6 82.3±0.6
Fungi 66.9±1.0 66.6±1.0
VGG Flower 92.7±0.5 92.6±0.5

Traffic Sign 66.8±1.1 66.5±1.1
MSCOCO 55.9±1.0 55.3±1.0
MNIST 95.2±0.4 95.2±0.4
CIFAR-10 72.6±0.8 72.2±0.8
CIFAR-100 64.0±1.0 63.9±1.0

Average Seen 79.8 79.7
Average Unseen 70.9 70.6
Average All 76.4 76.2

ized with identity matrix is the input itself. This helps make full use of the original represen-
tations extracted from the frozen pre-trained backbone. Moreover, initializing the parameters of
IFR module as an identity matrix facilitates to optimize the IFR module from a good start point.
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Figure 10: Comparisons of accuracies
after the first forward pass with differ-
ent initialization. The results show that
identity matrix initialization can make
full use of the original representations to
achieve better performance.

To further demonstrate the advantages of identity matrix
initialization strategy, we evaluate our method respec-
tively with Xavier Normal (Glorot & Bengio, 2010) and
identity matrix initialization strategies under ‘Train on all
datasets’ settings. The results are reported in Table 5.

According to results reported in the Table 5, we ob-
serve that identity matrix initialization strategy outper-
forms Xavier Normal slightly on most datasets. Specif-
ically, IFR initialized with identity matrix achieves im-
provements on Textures (+0.2%), Fungi (+0.3%), Traf-
fic Sign (+0.3%), MSCOCO (+0.6%) and CIFAR-10
(+0.4%). Compared with the results on seen domains,
identity initialization performs better on unseen domains,
which obtains 0.3% improvements in average.

To further demonstrate the advantage of applying iden-
tity matrix initialization strategy, we propose to compare
the averaged test accuracies of 600 randomly sampled
tasks after performing the first forward pass without any
gradient descent update conducted on the parameters. As
shown in Fig. 10, the differences of accuracies manifest that IFR achieves better performance when
directly using the original feature fusion for predictions, which is consistent with the aforementioned
assumption that applying identity matrix initialization strategy helps make full use of the original
representations learned from the pipeline and optimize model parameters from a good start.

E.6 ABLATION STUDY ON BATCH NORMALIZATION

In our proposed method, a Batch Normalization layer is included in the linear transformation block.
The main goal of the BN layer is to normalize the feature fusion that is obtained by combining
high-level and fine-grained invariant-content features. Another effect that the BN layer imposes to
the feature fusion is that the statistical information is collected and utilized for the predictions of
the labels of query data. Since it has been demonstrated in previous works (Ioffe & Szegedy, 2015;
Bronskill et al., 2020) that normalization techniques contribute to the stable training and conver-
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Table 6: Comparison to our method with/without BN. Mean accuracy, 95% confidence interval are
reported. All results are the average of ten random reproduction experiments.

Datasets URL IFR w/o BN IFR w BN

ImageNet 57.2±1.1 57.4±1.1 56.9±1.1
Omniglot 94.3±0.4 94.3±0.4 94.6±0.4
Aircraft 88.1±0.5 88.3±0.5 88.1±0.5
Birds 80.2±0.8 80.4±0.7 80.1 ±0.8
Textures 76.3±0.7 76.5±0.7 76.5±0.7
QuickDraw 82.1±0.6 82.3±0.6 82.4±0.6
Fungi 68.0±1.0 68.1±1.0 66.9±1.0

Traffic Sign 63.1±1.1 63.7±1.1 66.8±1.1
MSCOCO 54.2±1.0 55.2±1.0 55.9± 1.0
MNIST 94.6±0.4 94.6±0.5 95.2±0.4
CIFAR-10 71.5±0.8 72.0±0.8 72.5±0.8
CIFAR-100 63.0±1.0 62.5±1.0 64.0±1.0

Average Seen 79.8 79.9 79.8
Average Unseen 69.3 69.6 70.9
Average All 75.7 75.9 76.4

Table 7: Ablation study on feature fusion approaches. Mean accuracy, 95% confidence interval are
reported.

Datasets Sum Average Max IFR

ImageNet 52.6±1.2 52.6±1.2 54.4±1.1 56.9±1.1
Omniglot 94.4±0.4 94.3±0.4 94.1±0.4 94.6±0.4
Aircraft 87.0±0.5 87.0±0.5 87.7±0.5 88.1±0.5
Birds 76.5±0.8 77.0±0.8 79.1±0.8 80.1±0.8
Textures 74.4±0.7 74.4±0.7 76.2±0.7 76.5±0.7
QuickDraw 79.3±0.7 79.6±0.7 81.0±0.6 82.4±0.6
Fungi 58.6±1.1 58.3±1.2 64.0±1.1 66.9±1.0
VGG Flower 92.0±0.5 91.8±0.5 92.3±0.5 92.7±0.5

Traffic Sign 47.7±1.2 48.0±1.2 48.3±1.3 66.8±1.1
MSCOCO 48.4±1.0 48.8±1.1 48.1±1.0 55.9±1.0
MNIST 89.7±0.7 89.6±0.7 92.5±0.5 95.2±0.4
CIFAR-10 70.0±0.8 69.7±0.8 70.1±0.8 72.6±0.8
CIFAR-100 59.2±1.1 59.5±1.2 60.9±1.1 64.0±1.0

Average Seen 76.8 76.9 78.6 79.8
Average Unseen 63.0 63.1 64.0 70.9
Average All 71.5 71.6 73.0 76.4

gence which in turn help achieve better performance, we propose to explore the effect of the Batch
Normalization layer imposes on features in the context of IFR. To be specific, we respectively eval-
uate our IFR method with and without the Batch Normalization layer under ‘Train on all datasets’
settings. The results are reported in Table 6 with mean accuracy and 95% confidence interval.

As we can observe from the table, IFR without BN performs better on seen domains. Compared with
the case that IFR includes the BN, IFR without BN achieves 0.5%, 0.2%, 0.3% and 1.2% improve-
ments respectively on ImageNet, Aircraft, CU Birds and Fungi datasets. In contrast, IFR with BN
reveals its impressive power on unseen datasets. Compared with the case that IFR excludes the BN,
IFR with BN achieves 5.1%, 0.7%, 0.6%, 0.5% and 1.5% on unseen domains respectively. Although
IFR without BN fails to outperform IFR with BN, it still outperforms URL baseline with 0.6%, 1.0%
and 0.5% improvements respectively on Traffic Sign, MSCOCO and CIFAR-10 datasets. With all
results taken into consideration, we find that plugging a BN in the linear transformation block indeed
facilitates to improve the generalization performance, especially for unseen domains.
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E.7 ABLATION STUDY ON FEATURE FUSION APPROACHES

In our proposed IFR method, it is expected to take advantage of both invariant-content features and
original high-level semantic features to obtain a set of representations that are informative and dis-
criminative enough to achieve better generalization performance on Meta-Dataset. In this paper, the
way that we choose to leverage these two sets of representations is simply adding the reconstructed
fine-grained invariant-content features with a scale coefficient to the high-level original features.
The reason for such operation is that the reconstructed invariant-content features are too strong and
biased. If we directly add the reconstructed invariant-content features to the original features, over-
fitting will take place and the generalization performance will drop drastically.

Although the case we proposed in this paper has achieved good performance, we still want to conduct
an ablation study to figure out whether other simple feature fusion approaches can achieve the same
performance. Thus, in this section, we replace the feature fusion approach proposed in our method
with ‘Max’, ‘Sum’ and ‘Average’ approaches to further figure out the problem mentioned above.

As shown in Table 7, it is easy to observe that the performance of candidate feature fusion ap-
proaches significantly degrade on all datasets compared with IFR. Among all candidate feature
fusion approaches, we can observe that ‘Max’ fusion approach achieves the best results.

E.8 ABLATION STUDY ON AUGMENTATIONS

In our proposed IFR method, a set of augmentations, including cropping, flipping, grayscaling and
color jittering, is adopted as content-preserving augmentations in order to stimulate the case that
the style information of images are modified while the content are well preserved. In this section,
in order to have a comprehensive understanding of the effect of these augmentations, we perform
an ablation study on all augmentations adopted in our method to figure out what roles they play in
achieving good generalization performance. The results are reported in Table 8.

Generally, according to the results reported in Table 8, it is easy to observe that different datatsets
prefer different augmentations. Take ImageNet as an example, the performance increases when
cropping is removed and drop when color jitteing is removed. We conjecture the reason of such
phenomenon is that cropping may cut some information of the main semantic features in images
and in turn make it much more difficult to learn precise representations of target classes. Moreover,
since color jittering helps modify the color of images, it facilitates to make the model to learn the
robust and discriminative features by comparing the original images and their modified couterparts.

In addition, although we can observe that removing some augmentation techniques contributes to
improving the performance of IFR on some datasets, we still choose to adopt all of them in our
framework due to the better averaged performance on seen and unseen domains.

Further, in order to explore the effect of augmentations, we conduct an ablation study under ‘Train
on all datasets’ settings. We replace the augmented data, which are used as keys and values, in
our method with original data. The results are reported in Table 9. According to the table, IFR
with augmentations achieves relatively better results compared with that without augmentations.
Specifically, augmentations are important for datasets like ImageNet, Fungi, Traffic Sign, MSCOCO
and CIFAR100. We conjecture the reason for such phenomenon is that augmentations helps these
datasets which owns more objects and style information better capture the key representations.

E.9 ABLATION STUDY ON ATTENTION MODULE

In our proposed IFR method, a single attention head is adopted to perform feature reconstruction
in a fine-grained way by first measuring the similarities among representations between original
and augmented data to locate the invariant-content features, and then highlighting these invariant-
content features with large weights. In order to figure out the effect of the attention module in IFR,
we conduct an ablation study regarding the attention head in this section. To be specific, we remove
the attention module and directly combine the features of original and augmented data with simpler
ways, including ‘SUM’, ’AVG’ and ‘MAX’. The results are reported in Table 10.

According to the results reported in the table, on the one hand, we find that ‘AVG’ and ‘MAX’
achieve better generalization performance among all cases except our IFR with attention module.
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Table 8: Ablation study on augmentations. Mean accuracy, 95% confidence interval are reported.

Datasets w/o Crop w/o Colorjitter w/o Grayscale w/o Flip IFR

ImageNet 57.1±1.1 56.5±1.1 56.9±1.1 57.0±1.1 56.9±1.1
Omniglot 94.4±0.4 94.3±0.4 94.5±0.4 94.3±0.4 94.6±0.4
Aircraft 88.2±0.5 88.1±0.5 88.1±0.5 88.2±0.5 88.1±0.5
Birds 80.1±0.8 80.1±0.7 79.9±0.8 80.2±0.8 80.1±0.8
Textures 76.3±0.7 76.0±0.7 76.2±0.7 76.3±0.7 76.5±0.7
QuickDraw 82.2±0.6 82.3±0.6 82.6±0.6 82.4±0.6 82.4±0.6
Fungi 66.6±1.0 66.4±1.0 66.6±1.0 66.6±1.0 66.9±1.0
VGG Flower 92.4±0.5 92.6±0.5 92.8±0.5 92.6±0.5 92.7±0.5

Traffic Sign 66.9±1.1 66.7±1.1 66.6±1.1 66.5±1.1 66.8±1.1
MSCOCO 55.9±1.0 56.0±1.0 55.8±1.0 56.0±1.0 55.9±1.0
MNIST 95.2±0.4 95.1±0.5 95.0±0.4 95.0±0.4 95.2±0.4
CIFAR-10 72.6±0.8 72.8±0.8 72.6±0.8 72.3±0.8 72.6±0.8
CIFAR-100 63.7±1.0 63.7±1.0 64.0±1.0 64.1±1.0 64.0±1.0

Average Seen 79.7 79.5 79.7 79.7 79.8
Average Unseen 70.86 70.9 70.8 70.8 70.9
Average All 76.3 76.2 76.3 76.3 76.4

Table 9: Ablation study on all augmentations.

Datasets IFR w/o augs IFR

ImageNet 56.6±1.1 56.9±1.1
Omniglot 94.5±0.4 94.6±0.4
Aircraft 88.0±0.5 88.1±0.5
Birds 80.4±0.7 80.1±0.8
Textures 76.6±0.7 76.5±0.7
QuickDraw 82.2±0.6 82.4±0.6
Fungi 66.6±1.0 66.9±1.0
VGG Flower 92.6±0.5 92.7±0.5

Traffic Sign 66.5±1.1 66.8±1.1
MSCOCO 55.8±1.0 55.9±1.0
MNIST 95.3±0.4 95.2±0.4
CIFAR-10 72.7±0.8 72.6±0.8
CIFAR-100 63.7±1.0 64.0±1.0

Average Seen 79.7 79.8
Average Unseen 70.8 70.9
Average All 76.3 76.4

On the other hand, our IFR obtains the best results on all datasets, which shows that attention facili-
tates to capture better features. We conjecture that the reasons for such phenomenon mainly include
two aspects. Firstly, attention owns the ability of extracting much more fine-grained features. Thus,
the learned fine-grained invariant-content features are more informative and comprehensive than
those obtrained via ‘SUM’, ‘MAX’ or ‘AVG’. Moreover, when performing attention operation, the
similarities among representations of original and augmented data are measured. This step is equiv-
alent to evaluating the importance of features in pixel level and further helps highlight the most
important features, i.e. invariant-content features.

E.10 RUNNING TIME OF IFR

In this section, we conduct a further experiment to compare the running time between IFR and URL.
Specifically, we conduct this experiment on the same NVIDIA A100 GPU for fairness. As shown
in Table 11, we find that the time that IFR consumes is about 4.8 times in average than that of URL.
Since the calculation process of the attention head is conducted in pixel level, the process will be
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Table 10: Ablation study on attention module. Mean accuracy, 95% confidence interval are reported.

Datasets SUM AVG MAX IFR

ImageNet 48.3±1.1 56.1±1.1 55.8±1.1 56.9±1.1
Omniglot 91.5±0.6 94.2±0.5 94.3±0.4 94.6±0.4
Aircraft 80.3±0.8 87.8±0.5 87.7±0.5 88.1±0.5
Birds 68.3±0.9 79.3±0.8 79.6±0.8 80.1±0.8
Textures 62.4±0.9 76.1±0.7 75.7±0.7 76.5±0.7
QuickDraw 75.8±0.8 81.9±0.6 82.0±0.6 82.4±0.6
Fungi 52.8±1.1 66.3±1.1 66.3±1.0 66.9±1.0
VGG Flower 81.3±0.8 92.3±0.5 92.3±0.5 92.7±0.5

Traffic Sign 47.4±1.3 66.1±1.1 66.7±1.3 66.8±1.1
MSCOCO 47.3±1.0 54.6±1.0 55.2±1.0 55.9±1.0
MNIST 87.9±0.7 95.0±0.5 94.8±0.5 95.2±0.4
CIFAR-10 62.2±0.9 72.2±0.8 72.2±0.8 72.6±0.8
CIFAR-100 48.9±1.1 63.4±1.0 63.0±1.1 64.0±1.0

Table 11: Comparison of running time between IFR and URL.

Datasets URL (s/iter) IFR (s/iter)

ImageNet 0.47 2.60 (× 5.5)
Omniglot 0.50 1.95 (× 3.9)
Aircraft 0.36 2.25 (× 6.3)
Birds 0.54 2.06 (× 3.8)
Textures 0.29 1.74 (× 6.0)
QuickDraw 0.81 3.05 (× 3.8)
Fungi 0.81 2.51 (× 3.1)
VGG Flower 0.39 1.91 (× 4.9)

Traffic Sign 0.71 3.01 (× 4.2)
MSCOCO 0.71 3.11 (× 4.4)
MNIST 0.34 2.21 (× 6.5)
CIFAR-10 0.34 2.27 (× 6.7)
CIFAR-100 0.83 2.96 (× 3.6)

quite computationally expensive and time-consuming. Thus, it is reasonable that IFR spends much
more time than URL.

E.11 MORE VISUALIZATION RESULTS OF IFR

As aforementioned, IFR is able to consider both high-level and fine-grained invariant-content fea-
tures simultaneously when performing cross-domain few-shot classification tasks so that more com-
prehensive and discriminative features can be extracted. To show such ability of IFR, we provide
some representative visualization results in this section to compare the representations learned re-
spectively with URL and our proposed IFR. As revealed in Fig. 12, 13, 14, 15, 16, 17, we are able to
observe that IFR can learn more accurate and comprehensive representations compared with URL.
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Figure 11: Comparisons of test accuracy curves of IFR and URL on multi-domain backbone.

27



Under review as a conference paper at ICLR 2024

Ta
bl

e
12

:
N

um
er

ic
al

re
su

lts
of

U
R

L
an

d
IF

R
ev

al
ua

te
d

on
si

ng
le

do
m

ai
n-

sp
ec

ifi
c

ba
ck

bo
ne

s.
M

ea
n

ac
cu

ra
cy

,9
5%

co
nfi

de
nc

e
in

te
rv

al
ar

e
re

po
rt

ed
.

A
ll

re
su

lts
of

IF
R

ar
e

th
e

av
er

ag
e

of
te

n
ra

nd
om

re
pr

od
uc

tio
n

ex
pe

ri
m

en
ts

.

D
at

as
et

s
M

et
ho

d
IL

SV
R

C
20

12
O

m
ni

gl
ot

A
ir

cr
af

t
C

U
B

ir
ds

Te
xt

ur
es

Q
ui

ck
D

ra
w

Fu
ng

i
V

G
G

Fl
ow

er

Im
ag

eN
et

U
R

L
55

.8
±

1.
0

17
.1
±

0.
6

21
.7
±

0.
7

25
.4
±

0.
8

24
.2
±

0.
8

24
.1
±

0.
8

32
.9
±

0.
9

25
.0
±

0.
8

IF
R

56
.6
±

1.
1

21
.1
±

0.
8

22
.8
±

0.
8

25
.4
±

0.
8

26
.0
±

0.
8

26
.4
±

0.
9

34
.5
±

0.
9

26
.6
±

0.
9

O
m

ni
gl

ot
U

R
L

67
.4
±

1.
2

93
.2
±

0.
5

58
.2
±

1.
2

58
.7
±

1.
4

57
.3
±

1.
4

78
.4
±

1.
0

57
.6
±

1.
3

54
.6
±

1.
3

IF
R

72
.2
±

1.
2

94
.4
±

0.
4

62
.9
±

1.
3

67
.3
±

1.
2

63
.1
±

1.
3

79
.8
±

1.
0

66
.6
±

1.
2

62
.9
±

1.
4

A
ir

cr
af

t
U

R
L

49
.5
±

0.
9

16
.8
±

0.
5

85
.7
±

0.
5

31
.4
±

0.
8

26
.0
±

0.
7

23
.8
±

0.
6

31
.0
±

0.
7

24
.6
±

0.
6

IF
R

62
.1
±

1.
0

30
.4
±

0.
8

87
.9
±

0.
5

35
.7
±

0.
8

35
.2
±

0.
9

39
.1
±

0.
9

41
.7
±

0.
9

36
.4
±

0.
9

B
ir

ds
U

R
L

71
.2
±

0.
9

13
.0
±

0.
6

19
.9
±

0.
7

65
.0
±

0.
9

19
.6
±

0.
7

16
.7
±

0.
7

42
.8
±

1.
0

28
.9
±

0.
8

IF
R

73
.0
±

0.
9

17
.3
±

0.
7

19
.9
±

0.
7

69
.7
±

0.
9

23
.2
±

0.
8

19
.7
±

0.
7

49
.4
±

1.
1

34
.1
±

0.
9

Te
xt

ur
es

U
R

L
73

.0
±

0.
6

25
.0
±

0.
5

38
.6
±

0.
7

42
.2
±

0.
7

54
.9
±

0.
7

38
.6
±

0.
6

54
.1
±

0.
7

43
.2
±

0.
7

IF
R

75
.8
±

0.
7

39
.7
±

0.
7

45
.0
±

0.
8

50
.4
±

0.
8

59
.9
±

0.
8

47
.8
±

0.
8

62
.3
±

0.
8

53
.6
±

0.
8

Q
ui

ck
D

ra
w

U
R

L
53

.9
±

1.
0

51
.0
±

1.
0

38
.8
±

1.
0

38
.2
±

1.
0

36
.8
±

0.
9

82
.8
±

0.
6

37
.7
±

0.
9

39
.7
±

1.
0

IF
R

61
.6
±

1.
0

61
.2
±

1.
0

48
.6
±

1.
1

49
.5
±

1.
1

48
.3
±

1.
1

83
.0
±

0.
6

52
.7
±

1.
1

51
.0
±

1.
1

Fu
ng

i
U

R
L

41
.6
±

1.
0

9.
1±

0.
5

14
.9
±

0.
7

25
.5
±

0.
8

15
.6
±

0.
7

12
.5
±

0.
6

65
.8
±

0.
9

23
.3
±

0.
8

IF
R

46
.5
±

1.
1

13
.7
±

0.
7

14
.7
±

0.
7

25
.1
±

0.
9

16
.7
±

0.
8

15
.1
±

0.
7

69
.2
±

1.
0

27
.6
±

1.
0

V
G

G
Fl

ow
er

U
R

L
87

.0
±

0.
6

23
.8
±

0.
6

45
.5
±

0.
8

62
.9
±

0.
8

44
.4
±

0.
8

33
.4
±

0.
7

79
.6
±

0.
7

78
.3
±

0.
7

IF
R

88
.7
±

0.
6

35
.9
±

0.
8

53
.3
±

0.
9

67
.0
±

0.
9

49
.2
±

0.
9

44
.8
±

0.
9

85
.8
±

0.
7

83
.9
±

0.
6

Tr
af

fic
Si

gn
U

R
L

47
.4
±

1.
1

15
.1
±

0.
7

30
.8
±

0.
9

31
.0
±

0.
9

38
.8
±

1.
1

31
.1
±

0.
9

28
.0
±

0.
9

30
.4
±

0.
9

IF
R

64
.6
±

1.
1

32
.4
±

1.
0

46
.8
±

1.
1

48
.2
±

1.
1

56
.3
±

1.
2

42
.0
±

1.
1

48
.5
±

1.
2

50
.8
±

1.
1

M
SC

O
C

O
U

R
L

53
.5
±

1.
0

12
.9
±

0.
6

22
.5
±

0.
8

25
.1
±

0.
9

23
.7
±

0.
8

21
.3
±

0.
8

32
.5
±

1.
0

25
.7
±

0.
8

IF
R

55
.5
±

1.
0

18
.4
±

0.
8

23
.0
±

0.
9

25
.6
±

0.
9

26
.7
±

1.
0

24
.2
±

0.
9

33
.2
±

1.
0

28
.2
±

0.
9

M
N

IS
T

U
R

L
78

.1
±

0.
7

89
.8
±

0.
5

68
.0
±

0.
8

73
.0
±

0.
7

64
.5
±

0.
8

88
.2
±

0.
5

62
.2
±

0.
8

72
.1
±

0.
7

IF
R

89
.1
±

0.
7

96
.1
±

0.
4

84
.9
±

0.
8

89
.6
±

0.
6

88
.1
±

0.
8

92
.5
±

0.
5

86
.4
±

0.
7

87
.4
±

0.
8

C
IF

A
R

-1
0

U
R

L
67

.3
±

0.
8

28
.5
±

0.
6

41
.2
±

0.
7

41
.8
±

0.
8

36
.9
±

0.
7

40
.0
±

0.
7

38
.8
±

0.
7

41
.3
±

0.
8

IF
R

72
.2
±

0.
8

37
.3
±

0.
7

43
.0
±

0.
8

42
.4
±

0.
8

43
.9
±

0.
8

46
.1
±

0.
8

46
.1
±

0.
8

46
.0
±

0.
8

C
IF

A
R

-1
00

U
R

L
56

.6
±

0.
9

12
.3
±

0.
6

24
.3
±

0.
9

28
.8
±

0.
9

24
.2
±

0.
9

23
.4
±

0.
8

25
.2
±

0.
9

29
.1
±

1.
0

IF
R

63
.5
±

1.
0

22
.0
±

0.
9

27
.8
±

1.
0

31
.8
±

1.
0

31
.3
±

1.
0

31
.0
±

1.
0

35
.8
±

1.
1

35
.1
±

1.
1

28



Under review as a conference paper at ICLR 2024

Original Image URL IFR Original Image URL IFR

Original Image URL IFR Original Image URL IFR

Original Image URL IFR Original Image URL IFR

Original Image URL IFR Original Image URL IFR

Original Image URL IFR Original Image URL IFR

Figure 12: Comparions of features learned with URL and IFR on ImageNet.
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Figure 13: Comparions of features learned with URL and IFR on Textures.
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Figure 14: Comparions of features learned with URL and IFR on Quick Draw.
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Figure 15: Comparions of features learned with URL and IFR on Fungi.
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Figure 16: Comparions of features learned with URL and IFR on VGG Flowers.
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Figure 17: Comparions of features learned with URL and IFR on MSCOCO.
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