Under review as a conference paper at ICLR 2025

HEURAGENIX: A MULTI-AGENT LLM-BASED
PARADIGM FOR ADAPTIVE HEURISTIC EVOLUTION
AND SELECTION IN COMBINATORIAL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Combinatorial Optimization (CO) is a class of problems where the goal is to identify
an optimal solution from a finite set of feasible solutions under specific constraints.
Despite its ubiquity across industries, existing heuristic algorithms struggle with
limited adaptability, complex parameter tuning, and limited generalization to novel
problems. Recent approaches leveraging machine learning have made incremental
improvements but remain constrained by extensive data requirements and reliance
on historical problem-specific adjustments. Large Language Models (LLMs) offer a
new paradigm to overcome these limitations due to their ability to generalize across
domains, autonomously generate novel insights, and adapt dynamically to different
problem contexts. To harness these capabilities, we introduce HeurAgenix, a
novel multi-agent hyper-heuristic framework that leverages LLMs to generate,
evolve, evaluate, and select heuristics for solving CO problems. Our framework
comprises four key agents: heuristic generation, heuristic evolution, benchmark
evaluation, and heuristic selection. Each agent is designed to exploit specific
strengths of LLMs, such as their capacity for synthesizing knowledge from diverse
sources, autonomous decision-making, and adaptability to new problem instances.
Experiments on both classic and novel CO tasks show that HeurAgenix significantly
outperforms state-of-the-art approaches by enabling scalable, adaptable, and data-
efficient solutions to complex optimization challenges.

1 INTRODUCTION

Combinatorial Optimization (CO) problems are fundamental to many disciplines, ranging from
production scheduling and resource allocation to finance and energy management. These problems
require finding optimal solutions from a discrete set of possibilities while adhering to predefined
constraints. Traditional algorithms, particularly exact methods, are limited to small-scale problems
due to their computational complexity. In contrast, heuristic methods, although more scalable, often
face issues such as limited adaptability, difficult parameter tuning, and limited generalization across
problem domains. The manual effort required to fine-tune heuristics for each new problem instance
is a significant bottleneck (Peres & Castelli, 2021).

In recent years, hyper-heuristic approaches have attempted to bridge this gap by automating the
selection or generation of heuristics based on problem characteristics. These methods include adaptive
selection hyper-heuristics (Drake et al.l [2020), genetic programming-based heuristic generation
(Nguyen et al) |2011), and iterative local search techniques (Burke et al| |2010). While these
approaches enhance generalization, they still struggle with domain-specific sensitivity, requiring
extensive testing and adjustment. Karimi-Mamaghan et al.[(2022) and Mahendran et al.| (2020) have
incrementally enhanced these methods with machine learning-based improvements, but challenges
such as data dependency, overfitting, and scalability remain.

Large Language Models (LLMs) offer a transformative leap forward in solving these shortcomings.
Unlike traditional approaches that rely on domain-specific heuristics or rigid algorithms, LLMs
possess several unique capabilities that make them well-suited for CO problems:

Under review as a conference paper at ICLR 2025

* Generalization across domains: LLMs are pre-trained on diverse corpora, enabling them
to understand and apply knowledge across various problem types without the need for
extensive domain-specific fine-tuning.

* Autonomous knowledge synthesis: LLMs can generate novel heuristics by combining
internal knowledge with external references, allowing them to propose creative, previously
unexplored solutions.

* Adaptability to dynamic environments: LLMs can rapidly adapt to new problem instances
by generating solutions informed by the specific context of the problem, making them highly
versatile in handling evolving or unseen CO tasks.

* Efficient decision-making through abstraction: LLMs excel at abstract reasoning, allow-
ing them to decompose complex optimization problems and propose solutions that balance
immediate gains with future improvements.

These capabilities, when applied to CO, can significantly reduce the need for manual intervention,
extensive data requirements, and problem-specific tuning, providing a more scalable and robust
solution to complex optimization problems. Despite the potential of LLMs, existing applications of
LLMs in CO have several limitations. Previous studies such as FunSearch(Romera-Paredes et al.|
2024), EoH(Liu et al., 2024a)), and ReEvo(Ye et al., 2024)) have successfully leveraged LLMs for
heuristic generation and evolutionary search. However, these approaches still rely heavily on existing
approaches. Moreover, they often follow rigid, single-agent architectures where each heuristic
operates in isolation, limiting the system’s ability to adapt dynamically to new and complex problem
instances.

To address these limitations, we propose HeurAgenix, a multi-agent hyper-heuristic framework
that fully integrates LLMs across all stages of CO problem-solving. Unlike previous approaches,
HeurAgenix deploys a multi-agent system that leverages the specific strengths of LLMs for different
stages of heuristic management, as follows:

* Heuristic Generation Agent: This agent capitalizes on the LLMs’ ability to generate
heuristics from multiple sources, including internal knowledge, reference papers, and related
problem heuristics. By synthesizing diverse knowledge, the agent generates novel and
adaptive heuristics tailored to a wide variety of CO tasks.

* Heuristic Evolution Agent: Using LLMs’ capabilities for autonomous decision-making
and reflection, this agent evolves heuristics by comparing multiple solutions, identifying
bottlenecks, and iteratively refining the heuristics based on performance data without relying
on human domain knowledge.

* Benchmark Evaluation Agent: LLMs’ abstract reasoning allows this agent to develop
comprehensive feature extractors that characterize both the problem instance and the current
solution. This enables deeper insights into the problem, allowing for more informed decision-
making during the optimization process.

» Heuristic Selection Agent: LLMs’ capacity for dynamic decision-making enables this
agent to choose the most appropriate heuristic based on real-time evaluation of features.
This ensures robust performance across different problem instances and states, dynamically
adapting to changes as the problem evolves.

By leveraging the full suite of LLM capabilities, our multi-agent framework not only automates
heuristic design but also provides a highly adaptable, scalable solution to a wide range of CO problems.
Extensive experiments on classical problems such as the Traveling Salesman Problem (TSP) and
novel challenges like the Dynamic Production Order Scheduling Problem (DPOSP) demonstrate that
HeurAgenix significantly outperforms existing approaches in terms of adaptability, performance, and
scalability. We will make all the codes publicly available upon the publication of our paper.

2 RELATED WORK

Generative Hyper-Heuristics Generative hyper-heuristics are techniques that automatically gener-
ate new heuristics by amalgamating elementary operations or decision-making rules, such as genetic
programming, genetic algorithms, and particle swarm optimization (Hou et al., 2023} |Singh & Pillay,

Under review as a conference paper at ICLR 2025

2022). However, generative hyper-heuristics face challenges such as high computational load, pa-
rameter tuning complexity, and limited adaptability. To address these issues, contemporary research
has been concentrating on integrating of deep learning techniques, and the development of adaptive
heuristic generation strategies. These advancements aim to significantly enhance the adaptability,
efficiency, and overall performance of generative hyper-heuristics (Jia et al., 2019; Wu et al., |2021)).

Selection Hyper-Heuristics Selection hyper-heuristics optimize by selecting the most suitable
heuristic from a predefined set to adapt to the current problem scenario. These algorithms typically
employ rule-based selection, meta-heuristic selection, or learning-based selection methods, making
them well-suited for dynamic optimization problems and complex combinatorial scenarios (de Car+
valho et al., 2021} |[Drake et al.| 2020). However, selection hyper-heuristics face challenges such as
complex selection strategies, reliance on historical data, and limited generalization ability. Recent
advancements aim to improve robustness and adaptability by incorporating reinforcement learning
to enhance selection strategies, exploring online learning methods, and developing hybrid selection
techniques that effectively combine multiple strategies (de Santiago Junior et al., 2020; Sopov, 2016).

LLMs for Combinatorial Optimization LLMs have demonstrated significant potential in various
domains, including CO. Zhang et al.|(2024)) evaluated the performance of current LLMs on various
graph optimization problems. [Iklassov et al.|(2024) designed effective prompt strategies to address
CO issues. [Xiao et al.|(2023) introduced the Chain-of-Experts approach, leveraging multi-agent
cooperation to directly solve optimization problems.

More relevant to our work are studies leveraging LLMs to generate and evolve heuristic algorithms
for solving CO problems. Romera-Paredes et al.|(2024) introduced FunSearch, a novel approach that
utilizes LLMs to evolve heuristics for CO problems. EoH (Liu et al.| 2024a)) advances FunSearch
by introducing multi-directional evolution to increase the diversity of heuristic algorithms. ReEvo
(Ye et al) |2024) further refines this process by integrating LLM-driven reflection, enhancing the
efficiency of the evolution of heuristics. These works have significantly improved the effectiveness
of heuristics by leveraging the strengths of LLMs. However, these approaches still rely on expert
knowledge and manual design, and thus, they cannot directly yield end-to-end solutions, especially
when addressing novel problems.

As illustrated in Table[I] our HeurAgenix approach introduces key innovations to tackle these issues.
These include integrating multiple sources (LLMs’ internal knowledge, reference papers, and related
problems) for heuristic generation, employing a data-driven approach for heuristic evolution, and
using LLM-generated features for evaluation and heuristic selection to ensure robust performance
across diverse problems.

Table 1: Comparison of LLM-based CO paradigms on heuristic generation, evolution, evaluation and
selection.

Paradigm Heuristic generation Heuristic evolution Benchmark evaluation Heuristic selection
FunSearch Generation from LLM Single-direction evolution Manual design metrics Manual design strategies
EoH Generation from LLM Multiple-directions evolution ~ Manual design metrics Manual design strategies
ReEvo Generation from LLM Feedback-guided evolution =~ Manual design metrics Manual design strategies
HeurAgenix (Ours) Generation from multiple sources Data-driven evolution LLM-generated feature ~ Feature-based LLM selection

3 METHODOLOGY

As depicted in Figure[T} HeurAgenix operates through two main phases to solve CO problems. In
the heuristic generation phase, the heuristic generation agent generates heuristics from LLM’s
internal knowledge, reference papers, or related problems’ heuristics, while the heuristic evolution
agent evolves these heuristics using training data. During the problem solving phase, the benchmark
evaluation agent generates feature extractors for the problem instance and solution, and the heuristic
selection agent dynamically selects the appropriate heuristic based on these features.

3.1 HEURISTIC GENERATION PHASE

In this paper, the heuristic is represented as the function H : H(G, S, P) — S’, where G is the
instance data, .S is the current (partial) feasible solution, and P consists of all heuristic parameters.

Under review as a conference paper at ICLR 2025

: Heuristic
Multlplelsources Generation Heuristic Pool
Generate and validate
—> Heuristic Generation Agent
Train
data
Data-driven evolution Source heuristic
—> Heuristic Evolution Agent
Evolved heuristic
J
Y Feature extractor
Generate
—> Benchmark Evaluation Agent {g} PrOb!em
L O Solving
arge
Language
Instance Solution | 1™
Model
'— Heuristic Selection Agent +——— Instan;eailrseolutlon Undat
pdate
‘ Dynamic select until problem solved

Description of heuristics

Figure 1: The framework and agents of HeurAgenix.

The function H yields a new solution state S’ through a single-step operation such as addition,
deletion, replacement, exchange, or perturbation, ensuring the search process is controlled (Hillier &
Lieberman, [2015)).

3.1.1 HEURISTIC GENERATION AGENT

Due to a phenomenon known as hallucinations, directly using LLMs to generate heuristics for new
problems often leads to incorrect heuristics (Miindler et al., 2024). As illustrated in Figure E], to
reduce hallucinations, the heuristic generation agent learns from multiple sources and employs a
smoke test to ensure the correctness of the generated heuristics.

Smoke test
Generate from LLMs' Y Heuristic Generate code
Internal Knowledge > description l
Common v
reminders
Learn from Heuristic
Reference Papers H description Imol
Detailed _'MPlement Heuristic
- design function
New gomponen: ; 2 'Il'r?n:f;r ﬁgl’m Expected Actual output
problem omponey CEEHEL S output from heuristic
DEEaifpEse from LLM function
Try to .
match I matc -) ®
Component Heuristic I\ # T\ #
mapping description
t 1
Related Decompose Componer t If the results are consistent, we save heuristic;
Component 2 Source X L X
problem (it otherwise update the code or heuristic design

Figure 2: The heuristic generation process. The red text indicates interactions with the LLM.

Heuristics can be generated directly from LLM’s internal knowledge. A similar approach has
been adopted by Funsearch (Romera-Paredes et al.,[2024), EoH (Liu et al.,|2024a), and ReEvo (Ye
et al., 2024) to obtain initial heuristics. Besides, we can also learn heuristics from reference
papers. The LLM first reads the abstract to determine relevance, then selects interesting sections,
and finally decides whether to generate heuristics. Another approach is to transfer heuristics from
related problems, which is particularly useful for entirely new problems. The LLM decomposes the
new problem into components and matches these components with those of classic CO problems.

Under review as a conference paper at ICLR 2025

If a match is found, heuristics from the original problems can be transferred into new problem.
Appendix [A] provides examples of the three generation methods.

When implementing the code, we provide common reminders, including input/output data formats,
required libraries, annotations, and edge case considerations etc. to improve the quality of code. To
reduce common errors, we optionally conduct a smoke test, where the LLM predicts the heuristic’s
output based on the detailed design and we then run the generated heuristic function. If the results
are inconsistent or the code crashes, the error message is fed back to the LLM for adjustments until
correct. For example, in the TSP, if the LLM expects a heuristic to select node A next but the heuristic
either crashes or selects another node, the test fails and requires correction.

For novel problems without any reference, our approach supports to create basic algorithms like
random ones and evolve them using methods from Section The detailed workflow and prompts
for the heuristic generation agent are provided in Appendix |G.1]

3.1.2 HEURISTIC EVOLUTION AGENT

Relying solely on LLMs for heuristic evolution encounters inherent limitations due to constrained
exploration capabilities and a lack of intrinsic motivation for evolution. Therefore, we employ a
data-driven approach to enhance exploration capabilities in heuristic evolution.

Single-round Evolution We adopt a data-driven heuristic evolution approach. Initially, we run
heuristic on the training dataset to generate a baseline solution. Subsequently, we iteratively perturb
the original solution, seeking enhancements or discontinuing if no progress is evident. The LLM
then compares the two solutions and identifies bottlenecks that could affect the quality of the solution.
For each identified bottleneck, we reproduce the scenario leading up to it independently, the LLM
proposes a suggestion to navigate past the bottleneck, and we implement the recommendation to
verify the suggestion. Should the solution quality improve, the LLM summarizes the experience
from this instance and assimilates the effective recommendation. Ultimately, the LLM updates the
heuristic with the validated recommendations. Figure3)illustrates this evolutionary process using the
nearest neighbor heuristic as an exemplar within the TSP context. The comprehensive workflow and
prompts for the single evolutionary round are detailed in AppendixG.2]

Multi-round Evolution For further evolution, multi-round evolution is essential. Different data
may yield various heuristics; thus additional validation data is required to filter effective heuristics
for subsequent rounds. Both execution performance and execution time must be considered. Figure
displays the performance of multiple rounds of evolution for the nearest neighbor in the TSP.

3.2 PROBLEM SOLVING PHASE

As shown in Figure 5] before solving the problem, the benchmark evaluation agent provides feature
extractors, and the heuristic selection agent dynamically selects heuristics during the problem solving
process based on various instances and states.

3.2.1 BENCHMARK EVALUATION AGENT

Handling data directly can be challenging for LLMs, necessitating key feature extraction to reduce
data dimensionality for efficient processing (Achiam et al} 2023} Zawbaa et al.,[2018)). Surface-level
features often fail to capture problem complexity, requiring deeper features that describe both instance
data and current solutions (Guan et al.,|[2021; |Kim & Leel 2019). Therefore, we built the benchmark
evaluation agent to generate instance and solution feature extractors, providing detailed features for
heuristic selection, as shown in Figure E}

These feature extractors concentrate on distinct characteristics to discern between various instances,
effective representation to alleviate computational demands, characteristic attributes for distin-
guishing between solution phases, detailed insights to pinpoint specific traits, and comprehensive
evaluations to gauge the progress, quality, and scope of the solution. Table[5|in Appendix [E]details
the features generated by the agent for different CO problems. The detailed workflow and prompts
for the evaluation benchmark agent are provided in Appendix

Under review as a conference paper at ICLR 2025

Classic nearest neighbor heuristic

Run Heuristic that start from first node

Perturb solution until improved

Perturbation for Better Solution or abandoned

@ 00,00 (3) (100, 100)

@ (80, 80)

Training data

O

Original
solution
0->1->2->3->0 with cost 351.7

Decompose solutions and compare

(3)

®
54
Bottleneck1: Q

Visit node W
® ®
®

Identify Bottlenecks Bottleneck in origin solution

We reproduce the scenarios before

Reproduce Scenario each bottleneck independently.

Solution before bottleneck: @

@ ®
@

LLM proposes better suggestion in to

Propose Suggestion replace the bottleneck.

Propose to visit node 2 in step 0

@ ®

We replace the bottleneck with the
proposed suggestion to verify.

If performance improves, LLM
summarize experiences

Verify Suggestion

2->3->1->0->2 with cost 341.4

Summarize Experience Begin at the node with the minimum

average distance to all others

Update Heuristi
pdate Heuristic Updated nearest neighbor heuristic

Figure 3: Single-round evolution for the nearest neighbor heuristic in TSP. The red text indicates

Better
solution
2->3->1->0->2 with cost 341.4

Bottleneck2:
Visit node @ in step 2

O, ®
@)

©

Solution before bottleneck: 0->1
@
©

Propose to visit node 3 in step 2

)

0->1->3->2->0 with cost 341.4

l Find the node with minimal f(x) = d(l, x) + k * g(x), where

« d(l, x) is the distance from the last visited node | to node x

* g(x) is the min distance from x to all unvisited nodes

l « k is a parameter to balance the contributions of d(l, x) and g(x)

interactions with the LLM. Evolution Round 1 in Appendix@ indicates the evolved code.

27.5 4 —— prlooz
Centroid Start & —— pa561
Consider Future Impact —
25.0 4 a280
2 Search In
g\, Comparable Nodes
g 22.5+ Sub Central
g Start
Q Insert Position
a 20.0 Optimization
Q Endgame
2 Optimal Search
= 17.5
[7]
s
© 15.0 9
o
oY
o 12.5 A
10.0 A Frequent
Refinement
T T T T T T T
origin roundl round2 round3 round4 round5 round 6

Figure 4: Performance of multi-round evolution on the nearest neighbor heuristic for TSP on pr1002,
pcb561, a280 from TSPLIB. A smaller gap indicates better performance. The detailed evolved codes

can be found in Appendix B}

Under review as a conference paper at ICLR 2025

Instance data Current solution

_' Updating solution

Generate once Heuristic Pool D S
Benchmark before solving |nstance Soluti Record
C— [Soution O]

Evaluaton ——— > Feature Feature
Agent Extractor ‘

O
)\ Extractor I
Instance feature Solution feature Heuristics description Selection trajectory
| Heuristics
Parameters
1 Execution steps
;—» Heuristic Selection Agent

CoT of l l l l l l Continue
Heuris_tic Anhalyzetprlotzlem Evaluatte(tf;e — Cpnstruct’)or - Narrfw;jown - Ass:ss pt;tentlal - Néakg flnal Output
Selection characteristics current state improve? selection euristics ecision Solved solution

Figure 5: The problem solving process. The red text indicates interactions with the LLM. The Chain
of Thought (CoT) for heuristic selection is completed in one query.

3.2.2 HEURISTIC SELECTION AGENT

The performance of heuristics is significantly influenced by the diversity of instances, making it
crucial to dynamically select the most appropriate heuristic based on varying data characteristics
(Burke et al., [2006). Different stages of the problem solving process also require distinct heuristics
for effective optimization (Guan et al.l 2021)). Therefore, we dynamically select different heuristics
for various instances and stages of problem solving.

As shown in Figure[5] for each round of selection, the heuristic selection agent receives information
including instance features, solution features, descriptions of available heuristics, and selection
trajectory, then makes the decision of the heuristic, parameters, and execution steps. The decision-
making process is completed in one query with the following steps: analyze problem characteristics
based on instance features such as scale and distribution, evaluate the current state to determine the
progress and phase of the current solution using solution features, determine whether to construct
or improve the solution based on both instance and solution features, narrow down the selection
of suitable heuristics based on their descriptions, assess potential heuristics with the selection
trajectory, and then make final decision.

Appendix [F] summarizes common selection patterns observed in LLMs without human guidance. The
detailed workflow and prompts for the heuristic selection agent are provided in Appendix [G.4}

4 EXPERIMENTS

In this section, we conducted experiments on HeurAgenix using GPT-4 as the foundational LLM. We
assessed the complete workflow, including heuristic generation, evolution, benchmark evaluation, and
selection, for both classic CO problems (Section4.T) and new CO problems (Section #.2)), compared
our evolution approach with state-of-the-art methods (Section[d.3)) and combined our work with other
hyper-heuristics (Section[4.4). For the detailed setting for whole experiment and dataset, please refer

to Appendix

4.1 EXPERIMENTS ON CLASSIC PROBLEMS

We conducted experiments on five classic CO problems: the Traveling Salesman Problem (TSP),
Capacitated Vehicle Routing Problem (CVRP), Job Shop Scheduling Problem (JSSP), Maximum Cut
Problem (MaxCut), and Multidimensional Knapsack Problem (MKP). For problem details, refer to

Appendix

To validate performance, we use the average gap defined by average gap = % Sy

V; —

v X 100%,
where n is the number of test instances, v; is the heuristic value for the i-th test instance (e.g. tour

u
i

Under review as a conference paper at ICLR 2025

cost in TSP) and v} is the corresponding best known or upper bound. Variance is assessed using the
average standard error of the mean (SEM) as average_sem = % Dy f_m*’ where n is the number

of test instances, m; is the experiment times on the i-th test instance, and o; denotes the standard
error on the ¢-th test instance. A lower gap indicates better performance, and a lower sem suggests
less variance. These settings are used throughout the rest of the paper unless otherwise specified.

Heuristic Generation and Evolution Experiment We conducted experiments on five classic
problems to test the basic heuristics generated by the heuristic generation agent and the evolved
heuristics from the heuristic evolution agent. Each experiment contains seven instances from publicly
available academic datasets.

Figure [6] summarizes the experimental results, and the full experimental results and analyses are

TSP CVRP JSspP
25 24.4 50 50.0 366.9
21.0 . 4.6
20 : 40 300
Q
@ 326 2.2 328 236.6
3 15 1 30 27.2
o 200
g 104 104 95 10.0 20
¥
100
54 10
363 39.7 34.4
o 0 o I |
nearest farthest cheapest nearest farthest cheapest most work first come shortest
neighbor insertion insertion neighbor insertion insertion remaining first serve time first
MaxCut MKP
100 98.2 30 30.2
80 25
&
© 60 20 N
g B Basic heuristic
© 44.8 15 i
§ 40 13.0 Evolved heuristic
< 26.0 10
20 . 17.1 17.0 14.9 5 6.1 4.9
2.3
11
0 - 0 |
most balance highest greedy by greedy by greedy by
neighbors cut weight edge profit weight dense

Figure 6: Heuristic generation and evolution experiment results. For each problem, we evolved three
basic deterministic heuristics and compared their average gap.

provided in Table[6]in Appendix [E] The experiments demonstrate that our HeurAgenix can correctly
generate heuristic algorithms and effectively evolve them across different problems, even the basic
heuristic’s performance is poor, such as "first come first serve" in JSSP and "balance cut" in MaxCut.

Heuristic Selection Experiment We evaluated the heuristic selection agent using both basic and
evolved heuristic pools on the same test instances and employed random selection from corresponding
heuristic pools as our baseline.

Figure [7] summarizes the experimental results, and the full experimental results and analyses are
provided in Table[7]in Appendix [E] These results show that the heuristic selection agent yields better
performance with lower fluctuation than random selection. Additionally, selecting heuristics from the
evolved heuristics pool yields better performance compared to selecting from the basic heuristics pool.
Combining the results from Figure[6]and Figure[7] it is shown that the dynamic selection heuristic is
better than single heuristics, indicating that heuristic selection agent works well.

4.2 EXPERIMENTS ON A NEW PROBLEM

In this section, we introduce a novel, real-world, production-related, and complex CO problem: the
Dynamic Production Order Scheduling Problem (DPOSP) to validate the effectiveness of HeurAgenix
for new CO problems. DPOSP involves multiple production lines producing various products with

Under review as a conference paper at ICLR 2025

TSP CVRP JSspP MaxCut MKP
80 66.9+10.0 00 95.8+4.1 41.3£5.0 2.5 112209 5 12.1:238
401,65
a 60 80 2015406 00 8.6+0.5
o 60 7.5 5.1£2.0 6.6£2.3
%\ 40 5.4+2.1
5 40 { 324256 34.4x67 20 15.3£34 50 3.1+1.6
19.8+6.0
<2 T EE L 1 5
10
88410 co.1 1 20 139210 46507 25 11207
=02 = — e
0 0 0 0.0 0
GPT selection from basic heuristics GPT selection from evolved heuristics
Random selection from basic heuristics Random selection from evolved heuristics

Figure 7: Results of heuristic selection experiments. Each experiment was conducted multiple times
to reduce fluctuations, and the error bars (I-bars) represent the average sem.

transition times between products. Each order specifies the required product, quantity, and deadline,
and all orders share the same priority. The objective is to fulfill as many orders as possible before
their respective deadlines. For a detailed introduction, please refer to Appendix [C]

Addressing novel problems, LLMs frequently face challenges in devising suitable heuristic algorithms.
In DPOSP, even in the absence of order prioritization and production line capacity constraints within
DPOSP, GPT-4 may nonetheless generate non-executable heuristics influenced by these hallucinated
characteristics. To mitigate this, we adopt the heuristic transfer method mentioned in Section [3.1.1]to
generate heuristics. Through this method, we have demonstrated that GPT-4 is capable of adeptly map-
pingthe vehicle, node, demands, travel_time and service_time componentsin CVRP
to the analogous production_line, order, order_quantity, transition_time and
production_time in DPOSP. For detailed subsequent transferred code, we refer interested

readers to Appendix

The test data and results in Table [2] show HeurAgenix works well on transfer heuristics from related
problems, heuristic evolution, and heuristic selection for new CO problem.

Table 2: DPOSP experimental results. Heuristics marked with (*) are evolved versions. Solver results
represent upper bounds ("-" indicates incomplete within one hour). The lower bound is provided by a
random algorithm (not random heuristic selection). Higher fulfilled order numbers indicate better
performance. The best results are in bold, and the second-best results are underlined.

Data
production line num 5 5 5 10 10 20 20
product num 5 10 10 20 20 40 40
order num 10 50 100 100 200 500 2000
order deadline 12h [Oh, 24h] [Oh, 48h] [Oh, 24h] [Oh, 48h] [Oh, 120h] [Oh, 480h]
Fulfilled Order Num
shortest operation 8 40 76 43 138 344 1416
shortest operation(*) 10 40 82 46 144 378 1451
least order remaining 5 40 62 37 118 300 1130
least order remaining(*) 9 39 66 40 140 371 1386
greedy by order density 9 43 69 45 118 328 1388
greedy by order density(*) 10 44 82 51 130 392 1420
LLM selection (basic) 9.740.2 44.04+0.0 77.7+£24 46.5+03 134.842.2 358.0+1.2 1482.74+3.0
LLM selection (evolved) 10.0£0.0 44.740.2 82.2404 50.0+0.4 143.6+1.5 395.0+3.0 1492.8+1.3
random selection (basic) 8.8+0.4 38.4+13 662+1.3 41.8+403 120.4+0.8 3252+1.9 1198.0+£6.7
random selection (evolved) 9.6£04 42.3+09 72.3+1.2 472411 132.843.0 344.5+1.8 1398.7+3.4
random(lower bound) 7.8£0.5 31.3+0.7 31.3+1.0 31.74£22 717454 110.67£5.5 381.0+18.4
results from solver(upper bound) 10 46 85 52 152 - -

Under review as a conference paper at ICLR 2025

ReEvo's Data Larger Data
23.6 254 24 EoH's Data Larger Data
5.3 6.4
201 20 5 6
a 17.8
© 16.4 4 4.7
o 15 1 1.6 1,0 151 a 4 38
(] o 4
2 93
§ 10 9.9 101 10.4 g s
< 5 2 21 24 19
5+ 1]
0- 0. 0 01 01 0
W Classic nearest neighbor EoH(GPT-4) ReEvo(GPT-3.5 Turbo) mm Standard GLS GLS + Ours
ReEvo(GPT-4) Ours(GPT4) GLS + EoH GLS + EoH + Ours
Figure 8: Evolution comparison results. Figure 9: Combination results with GLS.

4.3 COMPARISON WITH OTHER EVOLUTION ALGORITHMS

We conduct a comparison of our heuristic evolution method against the approaches presented in EoH
and ReEvo 2024), using the nearest neighbor heuristic for TSP as a
common benchmark. To ensure a fair comparison, we reran all EoH and ReEvo on GPT-4. and result
of ReEvo (GPT-3.5 Turbo) is sourced from ReEvo’s paper.

The experiments were conducted on both the test instances used in ReEvo’s paper and another
selected instances with a larger number of nodes. Figure [8] summarizes the experimental results,
and the full experimental results and analyses are provided in Table [8]in Appendix [E] These results
indicate that our heuristic evolution method surpasses existing evolution algorithms based on LLMs.

4.4 COMBINATION WITH OTHER HYPER-HEURISTICS

We further explore the potential of HeurAgenix within hyper-heuristic frameworks. In this section,
we aim to enhance the performance of Guided Local Search (GLS) (Voudouris & Tsang},[1999) by
generating initial solutions using our evolved heuristic. We conducted four sets of experiments: (1)
GLS with the classic nearest neighbor heuristic (GLS), (2) GLS with our evolved nearest neighbor
heuristic (GLS + Ours), (3) GLS with the classic nearest neighbor heuristic and the updated distance
matrix from EoH (GLS + EoH), and (4) GLS with our evolved nearest neighbor heuristic and the
updated distance matrix from EoH (GLS + EoH + Ours).

The experiments were conducted on both the test instances used in EoH’s paper and another selected
instances with a larger number of nodes. Figure [J] summarizes the experimental results, and the full
experimental results and analyses are provided in Table[9]in Appendix [E] These results indicate that
HeurAgenix can significantly enhance the capabilities of GLS.

5 CONCLUSION AND FUTURE WORK

We propose a multi-agent LLM-based paradigm, HeurAgenix, that employs LLMs to generate, evolve,
evaluate, and select heuristic strategies for addressing CO problems. Our framework can effectively
generate diverse heuristics for both classic and novel CO problems, showcasing its remarkable
adaptability and flexibility. The data-driven evolution process enables the efficient evolution of
heuristics without the need for prior knowledge, while the dynamically heuristic selection ensures
robustness by continuously adapting to specific problem instance and the current state.

In the future, we will improve the efficiency of the generated code by enhancing the quality of heuristic
code through supervised fine-tuning of open-source LLMs (Poesia et al.,[2022)). Additionally, we will
enable LLMs to analyze larger instance data during the evolution phase by integrating data mining
technique (Fink et al., 2023} [Wan et al.| 2024). We aim to improve the rationality of heuristic selection
in the selection phase by exploring multiple LLM-enhanced machine learning algorithms, such as
LLM-enhanced decision trees 2023), LLM-enhanced unsupervised learning techniques
2024), and LLM-enhanced reinforcement learning approaches (Kwon et al.| 2023}
2024b).

10

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Iige Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Edmund Burke, Tim Curtois, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Sanja Petrovic,
José A Vazquez-Rodriguez, and Michel Gendreau. Iterated local search vs. hyper-heuristics:

Towards general-purpose search algorithms. In /EEE congress on evolutionary computation, pp.
1-8. IEEE, 2010.

Edmund K Burke, Sanja Petrovic, and Rong Qu. Case-based heuristic selection for timetabling
problems. Journal of Scheduling, 9:115-132, 2006.

Vinicius Renan de Carvalho, Ender Ozcan, and Jaime Simdo Sichman. Comparative analysis of
selection hyper-heuristics for real-world multi-objective optimization problems. Applied Sciences,
11(19):9153, 2021.

Valdivino Alexandre de Santiago Junior, Ender Ozcan, and Vinicius Renan de Carvalho. Hyper-
heuristics based on reinforcement learning, balanced heuristic selection and group decision accep-
tance. Applied Soft Computing, 97:106760, 2020.

Vladimir Deineko and Alexander Tiskin. Fast minimum-weight double-tree shortcutting for metric
tsp: is the best one good enough? Journal of Experimental Algorithmics (JEA), 14:4-6, 2010.

John H Drake, Ahmed Kheiri, Ender Ozcan, and Edmund K Burke. Recent advances in selection
hyper-heuristics. European Journal of Operational Research, 285(2):405-428, 2020.

Matthias A Fink, Arved Bischoff, Christoph A Fink, Martin Moll, Jonas Kroschke, Luca Dulz,
Claus Peter HeuBel, Hans-Ulrich Kauczor, and Tim F Weber. Potential of chatgpt and gpt-4 for
data mining of free-text ct reports on lung cancer. Radiology, 308(3):¢231362, 2023.

Boxin Guan, Yuhai Zhao, Ying Yin, and Yuan Li. A differential evolution based feature combination
selection algorithm for high-dimensional data. Information Sciences, 547:870-886, 2021.

Frederick S Hillier and Gerald J Lieberman. Introduction to operations research. McGraw-Hill,
2015.

Qingchun Hou, Jingwei Yang, Yigiang Su, Xiaoqing Wang, and Yuming Deng. Generalize learned
heuristics to solve large-scale vehicle routing problems in real-time. In The Eleventh International
Conference on Learning Representations (ICLR), 2023.

Z Iklassov, Y Du, F Akimov, et al. Self-guiding exploration for combinatorial problems. arXiv
preprint arXiv:2405.17950, 2024.

Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and Alex Aiken. Taso:
optimizing deep learning computation with automatic generation of graph substitutions. In
Proceedings of the 27th ACM Symposium on Operating Systems Principles, pp. 47-62, 2019.

Hae Sun Jung, Haein Lee, Young Seok Woo, Seo Yeon Baek, and Jang Hyun Kim. Expansive
data, extensive model: Investigating discussion topics around llm through unsupervised machine
learning in academic papers and news. Plos one, 19(5):e0304680, 2024.

Maryam Karimi-Mamaghan, Mehrdad Mohammadi, Patrick Meyer, Amir Mohammad Karimi-
Mamaghan, and El-Ghazali Talbi. Machine learning at the service of meta-heuristics for solving
combinatorial optimization problems: A state-of-the-art. European Journal of Operational Re-
search, 296(2):393-422, 2022.

Jin-Gyeom Kim and Bowon Lee. Appliance classification by power signal analysis based on multi-
feature combination multi-layer Istm. Energies, 12(14):2804, 2019.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models. arXiv preprint arXiv:2303.00001, 2023.

11

Under review as a conference paper at ICLR 2025

Binbin Li, Tianxin Meng, Xiaoming Shi, Jie Zhai, and Tong Ruan. Meddm: Llm-executable clinical
guidance tree for clinical decision-making. arXiv preprint arXiv:2312.02441, 2023.

F Liu, T Xialiang, M Yuan, et al. Evolution of heuristics: Towards efficient automatic algorithm
design using large language model. In Forty-first International Conference on Machine Learning,
2024a.

Zhihao Liu, Xianliang Yang, Zichuan Liu, Yifan Xia, Wei Jiang, Yuanyu Zhang, Lijuan Li, Guoliang
Fan, Lei Song, and Bian Jiang. Knowing what not to do: Leverage language model insights for
action space pruning in multi-agent reinforcement learning. arXiv preprint arXiv:2405.16854,
2024b.

Nivedhitha Mahendran, PM Durai Raj Vincent, Kathiravan Srinivasan, and Chuan-Yu Chang. Ma-
chine learning based computational gene selection models: a survey, performance evaluation, open
issues, and future research directions. Frontiers in genetics, 11:603808, 2020.

Niels Miindler, Jingxuan He, Slobodan Jenko, and Martin T. Vechev. Self-contradictory hallucinations
of large language models: Evaluation, detection and mitigation. In The Twelfth International
Conference on Learning Representations (ICLR), 2024.

Su Nguyen, Mengjie Zhang, and Mark Johnston. A genetic programming based hyper-heuristic
approach for combinatorial optimisation. In Proceedings of the 13th annual conference on Genetic
and evolutionary computation, pp. 1299-1306, 2011.

Fernando Peres and Mauro Castelli. Combinatorial optimization problems and metaheuristics:
Review, challenges, design, and development. Applied Sciences, 11(14):6449, 2021.

Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and
Sumit Gulwani. Synchromesh: Reliable code generation from pre-trained language models. arXiv
preprint arXiv:2201.11227, 2022.

B Romera-Paredes, M Barekatain, A Novikov, et al. Mathematical discoveries from program search
with large language models. Nature, 625(7995):468-475, 2024.

Emilio Singh and Nelishia Pillay. A study of ant-based pheromone spaces for generation constructive
hyper-heuristics. Swarm and Evolutionary Computation, 72:101095, 2022.

Evgenii Sopov. A selection hyper-heuristic with online learning for control of genetic algorithm
ensemble. International Journal of Hybrid Intelligent Systems, 13(2):125-135, 2016.

Christos Voudouris and Edward Tsang. Guided local search and its application to the traveling
salesman problem. European journal of operational research, 113(2):469—499, 1999.

Mengting Wan, Tara Safavi, Sujay Kumar Jauhar, Yujin Kim, Scott Counts, Jennifer Neville, Siddharth
Suri, Chirag Shah, Ryen W White, Longqi Yang, et al. Tnt-1lm: Text mining at scale with large
language models. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 5836-5847, 2024.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuristics
for solving routing problems. IEEFE transactions on neural networks and learning systems, 33(9):

5057-5069, 2021.

Z Xiao, D Zhang, Y Wu, et al. Chain-of-experts: When llms meet complex operations research
problems. In The Twelfth International Conference on Learning Representations (ICLR), 2023.

H Ye, J] Wang, Z Cao, et al. Reevo: Large language models as hyper-heuristics with reflective
evolution. arXiv preprint arXiv:2402.01145, 2024.

Hossam M Zawbaa, Eid Emary, Crina Grosan, and Vaclav Snasel. Large-dimensionality small-
instance set feature selection: A hybrid bio-inspired heuristic approach. Swarm and Evolutionary
Computation, 42:29-42, 2018.

Y Zhang, H Wang, S Feng, et al. Can llm graph reasoning generalize beyond pattern memorization?
arXiv preprint arXiv:2406.15992, 2024.

12

Under review as a conference paper at ICLR 2025

A HEURISTIC GENERATION EXAMPLE

A.1 GENERATE FROM LLMS INTERNAL KNOWLEDGE EXAMPLE

The following code is the original nearest neighbor heuristic for TSP, generated from LLMs’ internal
knowledge. The heuristic generation agent generates complete code with annotations, and here, for
brevity, some content is omitted.

Nearest Neighbor In TSP

def nearest_neighbor_{91d(
global_data: dict,
state_data: dict,
algorithm_data: dict,
get_state_data_function: callable
) > tuple[AppendOperator, dict]:
"""Implements the nearest neighbor heuristic for the TSP problem.
Starting from an first city, at each step extend the tour by moving from the current city to
its nearest unvisited neighbor.
Args:...
Returns:...

Retrieve necessary data from global_data and state_data

If the tour is empty, start from first node.
if not current_solution.tour:

start_node = unvisited_nodes[0]

return AppendOperator(start_node), {}

If all nodes are visited, return an empty operator
if no unvisited_nodes:
return None, {}

min_cost = float(’inf’)
Find the nearest unvisited node to the last visited node
for node in unvisited_nodes:
cost = distance_matrix[last_visited][node]
if cost < min_cost:
nearest_node = node
min_cost = cost

Insert the nearest at the end of the current solution
return AppendOperator(node=nearest_node), { }

Some additional remarks:

* The function name ends with a unique 4-digit identifier (£91d in this example) to avoid
naming conflicts.

* The input consists of instance_data, state_data, and algorithm_data, which
store instance data, current state data, and control parameters, respectively. The
get_state_data_function receives a new solution and returns its state dictionary,
useful for validating operations in complex problems, though not used here.

* The output consists of the current solution’s operation and additional information.
In this example, AppendOperator (node) adds a node to the end of the cur-
rent tour. Other TSP heuristics may use InsertOperator, SwapOperator,
ReverseSegmentOperator, etc. Some algorithms may output additional informa-

13

Under review as a conference paper at ICLR 2025

tion for controlling subsequent processes (e.g., updated pheromone levels in ant colony
algorithms), but these are empty here.

A.2 LEARN FROM REFERENCE PAPER EXAMPLE

The following heuristic is generated from "Fast minimum-weight double-tree shortcutting for Metric
TSP: Is the best one good enough?" (Deineko & Tiskin, 2010) available athttps://arxiv.org/
abs/0710.0318| Below is the main work summarized and judged by GPT-4:

Based on the content provided from the "Heuristic improvements" section, the
paper discusses two heuristic improvements for the minimum-weight double-tree
shortcutting algorithm: one aimed at increasing the speed and the other at improving
the approximation quality.

The first heuristic involves limiting the search across a subtree to a depth-k list of a
node for a chosen value of k, which dramatically improves running time without
significantly affecting approximation quality. The second heuristic expands the
search space by constructing a new tree that allows an enlarged tour neighborhood,
increasing the likelihood of finding a better solution.

These heuristic improvements are substantive and can be implemented in your
framework. The bounded neighbor lists and the degree-increasing operation can be
incorporated into the minimum-weight double-tree shortcutting algorithm to form
a new heuristic.

Given that we have detailed information on the algorithm and the heuristic improve-
ments, we appear to have enough to implement a heuristic for the TSP problem
based on this paper. We can name the heuristic based on the improvements outlined,
indicating the use of bounded neighbor lists and degree-increasing operations.

These are the heuristic descriptions from GPT-4:

Let G be a complete graph representing the TSP problem on n nodes, with a weight
function w: F(G) — R™ representing the distances between nodes. Let T be a
minimum spanning tree (MST) of G rooted at a node of degree 1. The heuristic
operates on T to generate a Hamiltonian cycle H approximating the optimal TSP
tour.

1. Depth-k limitation: Define a tree distance ¢d(u, v) as the number of edges in
the unique path between nodes u and v in T. For a fixed parameter k, the heuristic
considers only nodes v in T(u) such that td(u, v) < k when searching for minimum-
weight paths during the upsweep and downsweep stages of the algorithm.

2. Degree-increasing operation: For a node u in T with a child v that is not a leaf
and for which deg(u) 4+ deg(v) < D (a fixed parameter), redefine all children of v
to be children of u, effectively making v a leaf and expanding the search space for
tours.

The heuristic then constructs a Hamiltonian cycle H by shortcutting an Eulerian
tour of the doubled tree T° obtained from T after applying the degree-increasing
operations. The shortcutting process ensures that for each node u in T, all nodes of
the subtree rooted at u appear consecutively in H.

These are generated code, here we only show the main heuristic function, which will generate the
complete code after actual execution:

14

https://arxiv.org/abs/0710.0318
https://arxiv.org/abs/0710.0318

Under review as a conference paper at ICLR 2025

Double Tree Heuristic With Improvements In TSP

def double_tree_heuristic_with_improvements_d1fd(
global_data: dict,
state_data: dict,
algorithm_data: dict,
get_state_data_function: callable,
depth_k=2,
depth_D=5
) -> tuple[InsertOperator, dict]:
"""Double Tree Heuristic with Improvements heuristic algorithm for the TSP problem.
This heuristic is based on the minimum-weight double-tree shortcutting algorithm, with
enhancements for limited search depth and expanded tour neighborhoods.
Args:

depth_k (int): The depth limit for the limited search across subtrees (default: 2).
degree_D (int): The degree limit for the expanded tour neighborhood (default: 5).
Returns: ...

Extract necessary data from global_data and state_data

Step 1: Construct the Minimum Spanning Tree (MST)
mst = construct_minimum_spanning_tree(global_data["distance_matrix"])

Step 2: Apply the degree-increasing operation to expand the tour neighborhood
expanded_tree = apply_degree_increasing_operation(mst, degree_D)

Step 3: Double the edges of the expanded tree to create an Eulerian graph
eulerian_graph = double_edges(expanded_tree)

Step 4: Find an Eulerian tour of the Eulerian graph
euler_tour = find_eulerian_tour(eulerian_graph)

Step 5: Perform depth-limited search to find minimum-weight shortcutting of
the Euler tour
shortcutting_path = depth_limited_search(euler_tour, depth_k)

Step 6: Convert the shortcutting path to a Hamiltonian cycle (tour) and update
the solution
hamiltonian_cycle = convert_to_hamiltonian_cycle(shortcutting_path)

if not get_state_data_function(hamiltonian_cycle)[’is_valid’]:
return None, {} # If the solution is not valid, return None

operator = generate_operator_from_hamiltonian_cycle(hamiltonian_cycle, cur-
rent_solution)
return operator, { }

15

Under review as a conference paper at ICLR 2025

A.3 TRANSFER FROM RELATED PROBLEM EXAMPLE

GPT-4 decomposes the CVPR and DPOSP, and maps the corresponding components, resulting in
Table3l

Table 3: Component Mapping from CVRP to DPOSP

CVRP Component DPOSP Component
vehicle production_line
node order
unvisited_nodes wunfulfilled_orders
demands order_quantity
travel_time transition_time
service_time production_time

Based on the mapping in Tablg3] the GPT-4 can obtain the transferred code as:
Nearest Neighbor In CVRP

def nearest_neighbor_99ba(

global_data: dict, state_data: dict,

state_data: dict,

algorithm_data: dict,

get_state_data_function: callable
) -> tuple[AppendOperator, dict]:

"""Nearest Neighbor heuristic for CVRP.

This algorithm iterates over each vehicle, starting from the depot. For each vehicle, it
finds the nearest unvisited node and appends it to the route, respecting the vehicle’s capacity
constraints.

This process repeats until no further nodes can be visited without exceeding the vehicle’s
capacity or all nodes have been visited.

Args:...

Returns:...

nn

Retrieve necessary data from global_data and state_data

Iterate over each vehicle
for vehicle_id, remaining_capacity in enumerate(remaining_vehicle):
if not unvisited_nodes or remaining_capacity <= 0:
If there are no unvisited nodes or the vehicle has no remaining capacity, continue to
the next vehicle
continue

last_visited = depot if not current_solution[vehicle_id] else
current_solution[vehicle_id][-1]
nearest_node = None
min_distance = float(’inf”)
Find the nearest unvisited node that doesn’t exceed the vehicle’s capacity
for node in unvisited_nodes:
if demands[node] <= remaining_capacity
and distance_matrix[last_visited][node] < min_distance:
nearest_node = node
min_distance = distance_matrix[last_visited][node]
if nearest_node is not None:
position=len(current_solution[vehicle_id])
return InsertOperator(vehicle_id, nearest_node, position), {}
If no vehicle has no remaining capacity, return None
return None, {}

16

Under review as a conference paper at ICLR 2025

Shortest Operation In DPOSP

def shortest_operation_ff40(

global_data: dict,

state_data: dict,

algorithm_data: dict,

get_state_data_function: callable
) -> tuple[AppendOperator, dict]:

"""Shortest Operation Heuristic for DPOSP.

This heuristic iterates over each production line and attempts to insert the shortest
unfulfilled order

that can be appended to the end of the production line’s schedule without violating any
constraints.

Args:...

Returns:...

Retrieve necessary data from global_data and state_data

Check if there are any feasible orders to fulfill
if not feasible_orders_to_fulfill:
return None, {}

Sort unfulfilled orders based on their quantity (shortest first)
sorted_orders = sorted(feasible_orders_to_fulfill,
key=lambda order: order_quantity[order])

Iterate over each production line
for line_id in range(production_line_num):
Iterate over the sorted unfulfilled orders
for order_id in sorted_orders:
Check if the production line can produce the product
product_id = global_data["order_product"][order_id]
if production_rate[line_id][product_id] == 0:
continue
Generate a new schedule by appending the order to the selected production line
new_schedule = current_solution.production_schedule[line_id][:]
new_schedule.append(order_id)
Validate the new schedule
if validation_single_production_schedule(line_id, new_schedule):
If valid, create and return the InsertOperator
position=len(new_schedule) - 1
return InsertOperator(line_id, order_id, position), {}
If no valid operation is found, return None
return None, {}

B HEURISTIC EVOLUTION EXAMPLE

The following evolution codes show the evolution process for the nearest neighbor in TSP. The red
text indicates deleted content, and the green text indicates added content.

17

Under review as a conference paper at ICLR 2025

Evolution Round 1: Centroid Start And Consider Future Impact

If the tour is empty, start from node with the lowest average distance to all other nodes
if not current_solution.tour:
start—node=-unvisited—nodes{0}
avg_distances = [np.mean([
distance_matrix[i][j] for j in range(node_num)])
for i in range(node_num)]
start_node = np.argmin(avg_distances)
return AppendOperator(start_node), {}

Utilize f(x) = d(1, x) + k * g(x) to weigh immediate and future node distances
future_ratio = algorithm_data.get("future_ratio", 0.20)
for node in unvisited_nodes:
future_cost = np.min([
distance_matrix[node][other]
for other in unvisited_nodes if node != other])
cost = distance_matrix[last_visited][node]
+ future_ratio * future_cost
if distance < min_distance:
nearest_node = node
min_distance = distance

Evolution Round 2: Sub-Central Nearest Start

If the tour is empty, start from node with the lowest average distance to all other nodes
if not current_solution.tour:
avg_distances = [np.mean([
distance_matrix[i][j] for j in range(node_num)
Dfor i in range(node_num)]
start_node = np.argsort(avg_distances)[1]
return AppendOperator(start_node), {}

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Evolution Round 3: Search In Comparable Nodes

future_ratio = algorithm_data.get("future_ratio", 0.20)
significance_threshold = algorithm_data.get("significance_threshold", 0.30)
comparable_threshold = algorithm_data.get("comparable_threshold", 1.20)
nearest_node = min(unvisited_nodes,

key=lambda node: distance_matrix[last_visited][node])
nearest_distance = distance_matrix[last_visited][nearest_node]

If distance of nearest neighbor is significantly shorter than others, insert the
nearest neighbor
avg_distance = np.mean([
distance_matrix[last_visited][node] for node in unvisited_nodes])
if nearest_distance < significance_threshold * avg_distance:
return AppendOperator(node), { }

Evaluate multiple unvisited nodes with comparable distances
comparable_distance = comparable_threshold * nearest_distance
comparable_nodes = [node for node in unvisited_nodes

if distance_matrix[last_visited][node] <= comparable_distance]
for node in comparable_nodes:

future_cost = np.min([

Evolution Round 4: Insert Position Optimization

best_increase = float(’inf”)

fornode-in-comparable—nodes:

for i in range(len(current_solution.tour) + 1):
ifi==0:
next_node = current_solution.tour[0]
cost_increase = distance_matrix[node][next_node]
elif i == len(current_solution.tour):
prev_node = current_solution.tour[-1]
cost_increase = distance_matrix[prev_node][node]
else:
prev_node = current_solution.tour[i - 1]
next_node = current_solution.tour][i]
cost_increase =\
distance_matrix[prev_node][node] \
+ distance_matrix[node][next_node] \
- distance_matrix[prev_node][next_node]
if cost_increase < best_increase:
best_increase, best_node, best_position = cost_increase, node, i
return InsertOperator(node=best_node, position=best_position), { }

19

Under review as a conference paper at ICLR 2025

1823 Evolution Round 5: Endgame Optimal Search

1028 gr
1029 future_ratio = kwargs.get("future_ratio", 0.20)

1030 significance_threshold = kwargs.get("significance_threshold", 0.30)
1031 comparable_threshold = kwargs.get("comparable_threshold", 1.20)
J0an endgame_threshold = algorithmdata.get("endgame_threshold", 10)

1033 # If the number of unvisited nodes is less than the threshold, perform exhaustive
1034 search
1035 if len(unvisited_nodes) < endgame_threshold:
1036 min_distance = float(’inf”)
1037 for perm in permutations(unvisited_nodes):
1038 # Calculate the distance for the rest path, including: the distance between last visited
1039 node and rest path’s start node, the total distance of rest path, and the distance between rest
1040 path’s end node and whole path’s start node
1041 path_distance =
1042 distance._matrix[last_.visited, perm[O]] \
. + sum.(c.hstance_matnx[perm[l], perm[i+1]]\

for i in range(len(perm) - 1)) \
1044 + distance_matrix[perm[-1], current_solution.tour[0]]
1045 # Update the shortest path
1046 if path_distance < min_distance:
1047 min_distance, best_path = path_distance, perm
1048 return AppendOperator(best_path[0]), {}
1049 best_increase = float(’inf”)
1050 for node in comparable_nodes:
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

20

Under review as a conference paper at ICLR 2025

Evolution Round 6: Frequent Refinement

future_ratio = kwargs.get("future_ratio", 0.20)
significance_threshold = kwargs.get("significance_threshold", 0.30)
comparable_threshold = kwargs.get("comparable_threshold", 1.20)
end_game_threshold = kwargs.get("end_game_threshold", 10)
apply_2opt_frequency = kwargs.get("apply_2opt_frequency", 5)
Apply the 2-opt heuristic periodically
N = len(current_solution.tour)
if N > 2 and N % apply_2opt_frequency == 0:

best_delta =0

best_pair = None

for i in range(N - 1):
for j in range(i + 2, N):
ifj==N-landi==0:
continue

a = current_solution.tour][i]

b = current_solution.tour[(i + 1) % N]

¢ = current_solution.tour([j]

d = current_solution.tour[(j + 1) % N]

current_cost = distance_matrix[a][b] + distance_matrix[c][d]
new_cost = distance_matrix[a][c] + distance_matrix[b][d]
delta = new_cost - current_cost

if delta < best_delta:
best_delta = delta
best_pair=(i+ 1,])

if best_pair:
return ReverseSegmentOperator([best_pair]), {}
If the number of unvisited nodes is less than the threshold, perform exhaustive search
if len(unvisited_nodes) < end_game_threshold:

C INTRODUCTION TO DPOSP

DPOSP involves multiple production lines, each capable of producing various products at different
production speeds. When switching between different products on the production line, transition
times are required, and no production occurs during these transitions. Each order specifies one
required product, quantity, and deadline. Each order must be produced in its entirety on a single
production line and completed before the deadline. Our objective is to maximize the number of
completed orders, with each order having the same priority regardless of the quantity required.

To formally describe DPOSP, we build the following optimization model:

21

Under review as a conference paper at ICLR 2025

Maximize » > I(X; #0) (1
(2

subject to ZZI(XU’ =k)<1 Vk)
i g

0 ifj=1

ij = e 3

%ii {ei,j—l ttip, P ifj>1 S

€ij = Sij + Q. it X5 =k 4)

Vipy,

where:

* X;; (Decision Variable): represents the j-th production action on the i-th production line,
where X;; € {0,1,...,k}, with X;; = k indicating production of order £ and X;; = 0
indicating no production action.

* v;;, (Input Variable): production speed of production line ¢ for product p.

* t; . (Input Variable): transition time for production line 7 from product p to product p’.
* @ (Input Variable): quantity required for order k.

* P (Input Variable): product required for order k.

¢ Dy, (Input Variable): deadline for order k.

* 5;; (Intermediate Variable): start time of the j-th production action on production line ¢.
* ¢;; (Intermediate Variable): end time of the j-th production action on production line s.

* I(-) (Indicator Function): equals 1 if the condition is true, and 0 otherwise.

22

Under review as a conference paper at ICLR 2025

D EXPERIMENT SETTINGS

Table 4: Detailed Parameters and Settings

Feild Ttem Value
LLM Setting GPT-4, version 2024-05-01-preview, temperature 0.7, top-p 0.95, max tokens 1600
Data Source http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
Test Data tsp225, a280, pcb442, pa5>61, gro66, pri002, pr2392
Validation Data brg180, eil101, gr202, pr124, pr152, rd100, ul59
s 0000 ._______T i ta 20c mpled from other i

ant colony, cheape:
greedy randomized adaptive search procedure grasp

nearest insertion, nearest neighbor, random pairwise insertion,
insertion heuristics, simulated annealing, 2opt, 3opt

Generated(Evolved, Selected) Heuristics

Data source http://vrp.galgos.inf.puc-rio.br/index.php/en/
Test Data A-n80-k10, B-n78-K10, E-n101-k14, F-n135-k7, M-n200-k17, P-n101-k4, X-n1001-k43
Validation Data A-n63-k10, B-n67-k10, E-n76-k10, F-n45-k4, M-n101-k10, P-n70-k10, X-n101-k25
CVRP S . . e cins
Training Data ases that sampled from other instances
- farthest insertion, greedy, min cost insertion, nearest neighbor
Generated(Evolved, Selected) Heuristics node shift between routes, petal algorithm, saving algorithm, three opt, two opt
Data source https://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/
Test Data LAOS, LA10, LATS, LA20, LA25, LA30, LA35
Validation Data LAO1, LAO6, LA11, LA16, LA21, LA26, LA31, LA36
JSSp Training Data 20 cases that sampled from other instances
777777777777777777777777777777777 first come first served, least work remaining, longest job next, ~~ ~ ~ ~ ~ ~ ~ ~
Generated(Evolved, Selected) Heuristics longest processing time first, most work remaining, shift operator,
shortest job next, shortest processing time first, 2opt, 3opt
Data source https://grafo.etsii.urjc.es/optsicom/maxcut.html#instances
Test Data g10, g20, g30, toursg3-15, toursg3-8, tourspm3-15-50, tourspm3-8-50
Validation Data gl, gll, g21, g41, g51, sg3dl051000, sg3d1052000, sg3d1053000, sg3d1054000
MaxCut Training Data 20 cases that sampled from other es
- balanced cut, greedy swap, highest delta edge, highest delta node,
Generated(Evolved, Selected) Heuristics highest weight cdgc.gmosl)ivcigk[:l ncigghbors. mulligswang, simulated annealing
Data source https://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/
Test Data gmknapl _I, mknapl _7, mknapcb9-01, mknapcb9-11, mknapcb9-21, PB7.DAT, WEING1.DAT
Validation Data mknapl _2, mknapl _6, mknapcb9-02, mknapcb9-12, mknapcb9-22, PB1.DAT, SENTO1.DAT
MKP oo TrainingData _____________________ 20 cases that sampled from other instances ____ ___________
block flip, greedy by cost benefit, greedy by density, greedy by least remaining capacity,
Generated(Evolved, Selected) Heuristics greedy by profitto weight ratio, greedy by profit, greedy by resource balance,
greedy by weight, greedy improvement, k flip, single swap heuristic, two opt
Data source Sampled from distribution
exchange production orders rtion, greedy by order density,
DPOSP greedy deadline proximity, greedy order selection, least order remaining,

Generated(Evolved, Selected) Heuristics N . >
longest order next, maximum remaining work order, nearest order scheduling,

order shift between lines, random, shortest operation, shortest order next, 2opt production sequence

- . . Max evolution round
Heuristic evolution setting

Running time limitation within 3 times of the original heuristic
Perturbation ratio A
Max perturbation times 1000
Max filterd number for next round 3
Heuristic selection setting Max steps 2 times of task num (such as node num in TSP, order num in DPOSP)
e Max feature context length 1000

Fixed strategies * population maximum iterations
5% 10 * 20 = 1000 in our experiment for nearest neighbor

Queries Number for Evolution

varies based training samples, perturbation success rate, and bottleneck number
228 in our experiment for nearest neighbor

HeurAgenix

GLS setting GLS searhing time 10s

E DETAILED EXPERIMENT RESULT

From the benchmark evaluation agent, we can get various features for both the instance and the
solution. Despite the fluctuating outputs of the LLM, the core essential features can be extracted.
Table [5]displays the common features of classic CO problems.

Table[6]shows the average gap of base heuristics (without) from the heuristic generation agent and
evolved heuristics (with) from the heuristic evolution agent.

From Table[6] we can observe the following points:

* The same heuristic can perform differently under different data distributions. For example,
the "farthest insertion" heuristic for the CVRP problem performs particularly well on datasets
B-n78-k10, E-n101-k14, and F-n135-k7, but not on others. This verifies the statement that
the performance of heuristics is significantly influenced by the diversity of problem data in
Section

* Most heuristics show significant improvement after evolution. For instance, in the TSP
problem, the evolved "nearest neighbor" heuristic consistently outperforms the base heuristic
across all datasets.

23

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
http://vrp.galgos.inf.puc-rio.br/index.php/en/
https://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/
https://grafo.etsii.urjc.es/optsicom/maxcut.html##instances
https://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/

Under review as a conference paper at ICLR 2025

Table 5: Features from benchmark evaluation agent. Commonly considered features by the heuristic
selection agent are in bold.

Instance data feature

Current solution feature

TSP

node num, average distance, std dev dis-
tance, edge length distribution

visited num, current cost, last visited,
nearest neighbors for last visited, unvisited
edge length distribution

CVRP

task num, vehicle num, capacity, average
demands, average distance, edge length
distribution

finished tasks, current cost, max vehi-
cle loads, min vehicle loads, average ve-
hicle loads, fulfilled demands, remaining
demands

JSSP

job operation sequence, job operation
time, job num, machine num, total pro-
cessing times

finished jobs, job operation index, job last
operation end times, machine last operation
end times, current makespan

MaxCut

total nodes, total edges, average weights,
min weights, max weights, positive weight
num, negative weight num

selected num, set a count, current cut
value, average weight for unselected node

MKP

item num, resource num, average profit,
max profit, min profit, average weight, max
weight, min weight, average capacity, max

capacity, min capacity

current profit, current weight, remaining
capacity, selected num, profit per remain-
ing capacity

Table 6: Detailed heuristic generation and evolution experiment result. Heuristics without an (*) are
basic heuristics that generated by the heuristics generation agent and heuristics with (*) are evolved

heuristics that evolved by the heuristic evolution agent.

Problem Heuristic Data
tsp225 a280 pcb442 pas61 gro66 pr1002
77777 nearestneighbor 2835 2241 2203 2385 2467 2782 2199
nearest neighbor(*) 5.31 10.00 11.99 8.76 13.72 9.74
wp . farthestinsertion ~ ~ | 1812 ~ ~ 72 2385 7 2231 T 2414”7 7 77"~~~ 71956 2177 0
) farthest insertion(*) 10.41 5.00 7.83 9.55 9.86 11.92
77777 cheapestinsertion ~ ~ ~ ~ 1449 ~ ~ " 13.07 ~ 1886 215 T T 71919 T T 72501 © 7T T 2882 T
cheapest insertion(*) 743 8.10 8.23 8.54 14.98 11.16
A-n80-k10 B-n78-k10 E-nl01-k14 F-n135-k7 M-n200-k17 P-n101-k4
77777 nearest neighbor ~ ~ 3326 ~ T 4398~~~ T 5539~ 7 " T54227 7 775600 © T 49937 T 71954 T
nearest neighbor(*) 25.63 37.26 47.27 34.89 41.84 29.83
o farthestinsertion” ~ 2957 © 7 2 3694 ~ T 8510 23847 7 7 710400 T T T 730100 T 7 T T 40060
P farthest insertion 26.61 33.61 44.44 23.32 47.02

20.60 42.92 39.93 41.82 36.00 38.03
17.73 37.85 30.61 28.93 32.65 32.75
LAO5 LAI10 LAIS LA20 LA25 LA30
"7 7 “most work remaining | 1230~ ~ 7 72 2777 © T 2519 0 T 5565 53.02 © 7 4347 T 7T T 73655 0
most work remaining(*) 0.00 41.13 29.01 20.93 25.93 18.01
JSSP "7 7 " firstcome firstserve . - 200.0 © © 25303 T 22717 T T 33293 7 522720 T T 52406 50842 T -
first come first serve(*) 38.84 47.86 46.45 36.11 40.31 28.71
" “shortest processing time first” ~ ~ 141.82 ~ ~ ~ 12777~~~ T 16136 ~ ~ ~ 23581 38199~~~ 290.77 ~ " 31615 T
shortest processing time first(*) 16.32 25.17 20.65 29.08 3743 29.44
glo 220 230 toursg3-8 toursg3-15 tourspm3-8-50 tourspm3-15-50
"~ 7 ‘most weight neighbors ~ 2593~ 7 72 28800 T 7 2989 T T 242277 T 2246 7 7 25997 T T T T 2443 770
MaxCut - - _most weight neighbors(*) 1680] 1807 1901 1821 1438 _17e2 1552
highest weight edge 59.58 45.06 56.10 44.18 36.57 36.56 35.83
highest weight edge(*) 17.85 14.13 18.22 13.27 11.37 14.10 15.38
"7 7 77 " balancecut T ¢ 9629 © G 9554~ " T 9982 T T T 9875 T T 9873~ T T 798247 T T T 9987 T
balance cut(*) 14.24 18.07 14.49 13.32 13.18 21.59 24.43
mknapl_1 mknapl_7 WEING1.DAT PB7.DAT mknapcb9-01 mknapcbh9-11 mknapcb9-21
77777 greedy by profit” ~ ~ ~ ~ ~ 36.84 ~ " " 16.17 ~ ~ "~ 397~~~ 1536 12535 © T 3947 2520 70
greedy by profits(*) 0.00 4.26 3.97 15.36 12.55 3.94 2.52
MKP greedy by weight ~— ~ ~ ~ 7 36.84 © 3868 3324 7 43197 7 T 2700~ 7 20460 7 T 1079 T
greedy by weight(*) 0.00 0.00 9.24 6.99 7.27 7.36 3.13
o greedy by dense 000~ 4260 42 126 5217 249 T 150
greedy by dense(*) 0.00 0.00 1.40 1.06 2.69 1.35 1.07

24

Under review as a conference paper at ICLR 2025

» The heuristic evolution agent effectively improves heuristics, even the origin heurisitic
performance is poor. For example, the "first come first serve" heuristic for the JSSP problem
and the "balance cut" heuristic for the MaxCut problem both show substantial improvements
after evolution.

» Similar to machine learning algorithms, heuristic evolution effectiveness is influenced by
training data. In some cases, "overfitting" may occur, leading to poor results on certain
datasets. For instance, the "most work remaining" heuristic for the JSSP problem performs
poorly on the LA10, LA15, LA35 dataset, indicating potential overfitting.

Table [/| shows the average gap of LLM selection from basic heuristics(LLM (B)), LLM selection
from evolved heuristics (LLM (E)), random selection from basic heuristics (Random (B)) random
selection from evolved heuristics(Random (E)).

Table 7: Detailed heuristic selection experiment result. Each experiment was conducted multiple
times and the £ represent the standard errors of the mean (SEMs) for the results. The best results are
highlighted in bold, and the second-best results are underlined.

Problem Function Data
tsp225 a280 pcb442 pas61 gro66 pr1002 pr2392
TSP LLM (B) 7.240.99 9.79+1.06 6.73+£1.59 9.86+0.82 9.07+0.85 8.45+0.4 10.214+1.58
LLM (E) 3.96+1.07 7.06+1.55 10.81+1.29 6.88+1.2 7.45+0.8 5.29+1.15 6.821+0.42
Random (B) 48.61+£3.48 63.55+12.73 65.03+£9.62 63.92+6.85 90.28+11.5 98.48+19.97 38.37+5.5
Random (E) 12.02+3.62 19.92+5.56 14.88+4.73 17.27+8.61 22.02+9.77 31.74+2.89 20.57+7.03
A-n80-k10 B-n78-k10 E-n101-k14 F-n135-k7 M-n200-k17 P-n101-k4 X-n1001-k43
CVRP LLM (B) 26.14+6.0 29.2+8.88 43.28+4.48 41.95+6.68 41.78+4.59 27.49+5.6 23.62+3.24
LLM (E) 13.124+0.17 20.57+1.6 21.83+0.79 10.62+1.16 17.18+0.72 6.74+0.67 7.49+1.92
Random (B) 58.73+3.04 72.6+4.54 79.74+6.29 105.63+2.31 128.6+£5.28 94.39+5.21 130.694+2.27
Random (E) 23.574+9.65 51.62+4.71 33.64+4.35 37.042.34 42.88+14.48 31.07+8.08 21.2643.11
LAO5 LA10 LAIS LA20 LA25 LA30 LA35
JSSP LLM (B) 21.92+18.36 10.68+5.92 22.78+7.56 34.24+11.15 40.57+12.36 38.45+15.65 18.49+2.91
LLM (E) 0.00+0.00 0.00-£0.00 6.17+0.53 6.18+2.44 6.86+0.26 10.17+0.78 12.8+0.87
Random (B) 23.2445.12 17.494+2.67 26.91+1.48 60.89+7.72 62.21+7.08 53.49+7.76 44.94+3.12
Random (E) 12.242.2 10.2+£4.2 9.0944.44 34.19+3.53 18.83+1.87 12.1442.51 10.74+4.73
gl0 220 230 toursg3-8 toursg3-15 tourspm3-8-50 tourspm3-15-50
MaxCut LLM (B) 7.97+£0.72 9.86+£1.22 9.734+0.46 8.35+0.0 6.65+0.21 9.144+0.91 8.3+0.0
LLM (E) 1.85+1.69 2.59+1.91 3.8440.88 2.45+0.86 3.54+2.02 3.55+2.66 4.2+1.43
Random (B) 12.34+1.09 10.394+0.64 12.354+0.66 11.79+0.78 8.35+1.15 13.04+0.83 10.27+1.01
Random (E) 4.63+1.44 8.73+£2.4 7.064+2.08 6.34+2.11 8.2+1.26 10.25+1.67 6.7+1.71
mknapl_1 mknapl_7 WEING1.DAT PB7.DAT mknapcb9-01 mknapcb9-11 mknapcb9-21
MKP LLM (B) 11.65£5.26 13.69+4.53 4.5142.11 4.9340.56 5.0542.14 8.14+4.88 1.540.26
LLM (E) 0.00+0.00 0.00-£0.00 1.83+1.83 1.96+0.6 1.08+0.8 2.23+0.93 0.9+0.45
Random (B) 29.47+6.59 13.89+0.47 4.1240.84 8.7£2.74 11.08+2.36 13.9+6.14 3.24+0.83
Random (E) 0.00+0.00 4.5640.24 4.3140.82 8.38+3.52 6.414+2.62 6.14+3.3 4.6740.46

From Table[7} we can observe the following points:

* In most case, the result from LLM selection is better than single heuristic and random
selection.

* Selection from the evolved heuristics improved overall quality and reduced fluctuations in
performance.

* Random selection performs worse than many single heuristic algorithms because poorly
performing heuristics still have a chance of being selected.

We compare our evolution mothed with EoH and ReEvo by evolution nearest neighbor in TSP. Table[9]
shows the average gap from evolved heurisitcs. EoH (GPT-4) and ReEvo (GPT-4) are reran on GPT-4
and ReEvo with default parameters, and result for ReEvo (GPT-3.5 Turbo) is sourced from ReEvo’s
paper.

The results in Table [show that our method (HeurAgenix , GPT-4) generally outperforms both EoH
and ReEvo methods. The query count for EoH is fixed as 5 strategies * 10 population * 20 maximum
iterations = 1000 queries in EoH (GPT-4). The query count for ReEvo is related to population size
and evolution iterations with some fluctuations from LLM, and in this experiment the total number
of queries for ReEvo (GPT-4) is 112. Our HeurAgenix has a query count that varies based on the
number of training samples, perturbation success rate, and the number of bottlenecks identified per
iteration, leading to some instability. In this experiment, the total number of queries for HeurAgenix
is 228.

25

Under review as a conference paper at ICLR 2025

Table 8: TSP heuristic evolution experiment based on nearest neighbor.

indicates that the heuristics

did not complete within the time limit (one hour). The best results are highlighted in bold. The
nearest neighbor result is different from ReEvo because their implementation starts with a random
selection while ours is fixed to the first node. The upper part is the test dataset in ReEvo, and the
lower part is our data with large number of nodes.

Instance nearest neighbor EoH (GPT-4) ReEvo (GPT-3.5 Turbo) ReEvo (GPT-4) Ours (GPT-4)
ts225 20.41 18.33 6.6 6.02 8.5
rat99 28.32 19.49 12.4 9.46 7.84
r11889 22.98 24.39 17.5 - 10.2
ul8l7 25.92 22.28 16.6 - 11.08
d1655 19.16 15.09 17.5 - 12.85

bier127 14.76 14.63 10.8 12.49 10.2
1lin318 28.53 21.82 16.6 13.58 8.55
eil51 19.95 9.86 6.5 7.38 6.1
d493 19.04 22.03 13.4 11.3 18.2

kroB100 31.69 9.84 12.2 12.66 12.88

kroC100 26.4 16.71 15.9 14.17 9.49
ch130 24.04 7.81 9.4 11.54 10.59
pr299 24.28 19.41 20.6 19.89 114
fl417 26.57 29.58 19.2 16.56 7.58
d657 26 23.71 16 16.56 9.41

kroA150 26.8 27.88 11.6 14.16 10.44
11577 25.83 20.81 12.1 - 5.06
u724 26.33 23.87 16.9 18.1 11.04
pr264 18.09 17.6 16.8 15.32 11.73
pr226 17.81 30.61 18 20.07 7.74
pr439 22.44 22.89 19.3 18.4 7.73

average gap 23.59 19.94 14.57 13.98 9.93
tsp225 28.35 25.11 18.32 9.33 5.31
a280 22.41 17.56 12.49 15.61 10.00

pcb442 22.03 29.56 16.85 15.86 11.99
pas61 23.85 20.09 15.6 16 8.76
gro66 24.67 19.1 21.91 21.91 13.72

pr1002 27.82 26.28 21.87 19.96 9.74
pr2392 21.99 22.86 - - 12.91
average gap 24.45 22.94 17.84 16.44 10.35

26

Under review as a conference paper at ICLR 2025

We employ our evolved nearest neighbor generating init solution for GLS. Table 9] shows average
gap.

Table 9: Comparison of TSP combination experiments with GLS using initial solutions from nearest
neighbor (NN). NN(*) refers to the evolved nearest neighbor heuristic from HeurAgenix , and dist(*)
refers to the updated distance matrix in EoH’s paper. The best results are highlighted in bold. The
upper part is the test dataset in EoH, and the lower part is our data with large number of nodes.

Instance NN NN+GLS NN(*)+GLS NN +dist(*) + GLS NN(¥) + dist(*) + GLS

rd100 25.64 9.22 5.12 0.00 0.00
pri24 17.39 2.44 1.45 0.00 0.00
bier127 14.76 1.78 1.36 0.40 0.28
kroA150 26.8 7.1 5.82 0.00 0.00
uls9 29.93 5.78 291 0.00 0.00
kroB200 25.92 5.61 6.09 0.20 0.32
average gap 23.41 5.32 3.79 0.1 0.1
tsp225 28.35 4.09 5.31 0.23 0.00
a280 2241 7.6 5.27 0.23 0.19
pcb44?2 22.03 791 3.46 1.03 0.91
pas61 23.85 5.79 5.36 3.4 2.71
gro666 24.67 6.74 4.29 3.05 2.81
pr1002 27.82 7.5 5.52 4.56 3.53
pr2392 21.99 4.81 3.87 4.81 3.35
average gap 24.45 6.35 4.73 2.47 1.93

The experimental results in Table [9] show that our evolved nearest neighbor heuristic generally
provides better performance when combined with GLS, compared to the standard nearest neighbor.
Furthermore, the combination of our evolved nearest neighbor with the updated distance matrix from
EoH and GLS also outperforms the corresponding standard nearest neighbor combination. This
demonstrates that a better initial solution can enhance the effectiveness of hyper-heurisitics.

F COMMON STRATEGIES FOR HEURISTIC SELECTION

The strategies employed by the heuristic selection agent generally fall into four categories:

1. Select a constructive heuristic(e.g. nearest neighbor in TSP) to build an initial solution, then
optimize it using improvement heuristics (e.g. 2-opt in TSP) until no further optimization is
possible.

2. Try multiple constructive heuristics, observe feedback from the benchmark evaluation agent,
select the best one, and then optimize the solution using improvement heuristics.

3. Switch different constructive and improvement heuristics based on different solution features
during execution.

4. Try different combinations of constructive and improvement heuristics to find the optimal
combination, and then run these fixed combinations.

Strategies 3 and 4 generally yield better results, indicating that real-time execution of improvement
heuristics is more effective than first building and then optimizing the solution.

G DETAILED PROCESS AND PROMPT

In this section, we introduce the detailed process with prompt. {Placeholders} will be replaced with
actual content content during program execution automatically.

Standard Response Format

27

Under review as a conference paper at ICLR 2025

Each prompt ends with a standardized response format, the key is a task-specific keyword
recognizable by the next program, and we will omit in subsequent prompts for brevity.

Standard Response Format

The response format is very important. For better communication,
please respond to me in this format:

* Kk kKEY I XXX * % %

Ensure there is no other content inside the **x, and analysis outside
*%% are welcome.

If you have no information to provide, simply respond with x**Nonexxx.

Background

All tasks require background information, including problem description, data structure,
code format, etc. Therefore, background are shared for varous tasks.

Background

I am working on Hyper—-heuristics for Combinatorial Operation (CO)
problem.

In this conversation, I will introduce the problem and then framework
we have built now, you just remember this.

In next conversation, I will describe the challenges I’m encountering
and explore how we can collaborate to resolve them.

Currently, I am working on {problem} problem:
{problem_description}

To support different heuristic algorithms, I build the Solution and
Operator framework.

The Solution is designed as:

{solution_class}

Operator servers as a mechanism to modify solution, which enables the
application of heuristic algorithms.

To support heuristic algorithm, we have build the following operators:
{operator_class}

In pursuit of augmenting our heuristic algorithmic suite, we require
the following standardized heuristic function signature:

def heuristic(instance_data: dict, solution_data: dict,
algorithm_data: dict, get_solution_data_function: call) ->
tuple[TargetOperatorType, dict]:

The inputs are:

instance_data contains the instance data with:
{instance_data_introduction}

solution_data contains the solution data with:
{solution_data_introduction}

algorithm _data contains the hyper-parameters that necessary to control
algorithms.

get_solution_data_function is the function that receives the new
solution as input and return the state dictionary for new solution.
It will not modify the origin solution.

The outputs includes the operator that must be an instance of a
predefined target operator type and updated algorithm dict, which
contains new information for future work for both this or other
algorithm.

Please commit to memory the problem and our constructed framework.

\ J

28

Under review as a conference paper at ICLR 2025

G.1 HEURISTIC GENERATION

Generate From LLM

Generate From LLM

I need your help to implement some basic heuristic for this problem
{problem}.

Learn from Paper:

The detailed steps to learn from paper are as follows:

1. Decompose Paper: Decompose the paper into the abstract and various sections.

2. Read Abstract: The LLM reads the abstract to determine if the paper is relevant to the
problem. If it deems the paper irrelevant or unsuitable for generating heuristics, the process
is abandoned.

3. Identify Interesting Sections: If the abstract is relevant, the LLM identifies sections of
interest, and we provide the content of these sections to the LLM.

4. Evaluate And Generate: Based on the section LLM chooses to 1) generates the heuristic;
2) abandons this paper; 3) continues to read additional sections.

29

Under review as a conference paper at ICLR 2025

Reading Paper Abstract

Here I will introduce a related paper for {problem}.

The title of this paper is:
{title}

The abstract of this paper is:
{abstract}

If you think we can not generate heuristic from this paper, we will
skip this paper.

If you think we can generate heuristic from this paper, we can work
in this way: you provide the interested section and I provide the
content, until you think you rea ready to implement the code.

Please consider whether we can generate heuristic for {problem}:

1. Consider whether this paper is related to {problem}.

2. Consider whether this paper is suitable to generate heuristic, for
example some paper are related to this problem, but it is based on NN,
not heuristic, we have to ignore this paper.

Also remember we Jjust generate one heuristic for this paper, so keep
focus on the best heuristic author claimed in paper.

Read Paper Section

Since this paper is suitable to generate heuristic for {problem}, we
start to read.

The previous section you are interested in is: {last_interested_section
The content is:

{last_interested_content}

This is all sections in dict format:
{remaining_section_dict}

Please consider whether the read content are enough for you to generate
the heuristic for {problem}.

1. 1If you think you are ready to implement the heuristic, respond to
me the heuristic name.

2. If you think you need to read more, respond to me the heuristic
name.respond to me the interested sections.

3. 1If you think we can not generate heuristic from this paper, respond
to me None.

Please select at most one section each time, and the section name
should align with provided dict.

kAlso to avoid the content is too large, we can start from leaf section.

J

Transfer From Related Problem

The detailed steps to transfer from related problem are as follows:

1. Decompose New and Source Problems: The LLM decomposes the new problem and
source problems into components.

2. Try to Match Components: The LLM compares the components of the new problem with
those of known problems to identify if heuristics from these problems can be leveraged.

3. Read Source Heuristics: If heuristics from known problems can be leveraged, the LLM
reads the heuristics from these problems.

4. Evaluate And Transfer: For each heuristic, if the LLM determines it can be transferred, it
translates the components and begins the transfer process; otherwise, skip this heuristic.

30

Under review as a conference paper at ICLR 2025

Reference Problem

This problem is a new classical problems, we can reference from some
classical problems.

We have already studied the following problems:

{studied_problems}

Please tell me which of these questions are relevant to our current
research.

Mapping Component In Problem

Now, try to analysis the similarities between {referenced_problem} and
this new problem {problem}

this is introduction for {referenced_ problem}:
{referenced_problem_description}

Now I hope to decompose these 2 problems, find the similarities between
{referenced_problem} and this new problem {problem}, and mapping some
components.

Reference Heuristic

OK. Now let’s review the all heuristic we have built for
{referenced_problem}:

{candidate_heuristic_pool}

Tell me, which heuristics can be transfer into {problem}?
It can be transferred from a single heuristic or multiple heuristics.

Under review as a conference paper at ICLR 2025

Mapping Component In Heuristic

Now, we have already found the similarities between
{referenced_problem} and this new problem {problem}:
{similarities_in_problem}

To support {referenced_problem}, I build the Solution and Operator
framework.

The Solution is designed as:

{referenced_problem_solution_class}

Operator servers as a mechanism to modify solution, which enables the
application of heuristic algorithms.

To support heuristic algorithm, we have build the following operators:
{referenced_problem_ operation_class}

This is the code for {referenced_heuristic}:
{referenced_heuristic_code}

instance_data in {referenced_heuristic} contains the instance data

for {referenced_problem} with:

{referenced_instance_data_introduction}

solution_data in {referenced_heuristic} contains the solution data for
{referenced_problem} with:

{referenced_solution_data_introduction}

Try to make up the similarities between {referenced_heuristic} and
this new problem {problem}.
If no more similarities, return me *+**similarities:Nonexxx

 eeeeeeeeeeeeeeeeee———————————————————————————————————
Transfer Heuristic

Let’s try to transfer {referenced_heuristic}.

First generate a new heuristic name for this new heuristic and also

a new detailed description to guide us how to get the new heuristic
description for {problem}.

Please consider the differences between {referenced_heuristic} and the
new problem that may lead to different algorithms.

By the way, the last 4 digits after last ’_’ are identifiers and we can
ignore in new_heuristic_name.

€ J

Implement Code

LLM generates the detailed heuristic design with some common reminders, including spec-
ified input/output data formats, required libraries, annotations, and edge case considerations, etc, and
then translates the design into code.

Under review as a conference paper at ICLR 2025

Implement Code

Based on previous discuss, we get the heuristic {heuristic_name}:
{description}

Now please implement it in python function {function_name}.

To implement this heuristic function in python, please note:

1. We can assume that Solution and all Operators are imported in
"src.problems. {problem}.components”.

2. The operator type must be defined previously, do not create a new
one.

3. Never modify the instance_data, state_data and algorithm data.

4. All hyper parameters in algorithm_data should be set a default
value, and use as algorithm_data.get ("xx", default_value).

5. Any reasonable partial solution may be used as input, such as an
empty solution.

6. Comments in the code are very important. They must clearly explain
which data are required by the algorithm, how the algorithm proceeds,
and under what circumstances it will not return any operator or will
return an empty operator. We hope that people can understand the
principles and workflow of the algorithm clearly just by reading the
comments, without needing to look at the code.

7. The name of function must be {function_name}.

8. No any omissions or placeholders, I’'m just going to use the code.
9. For the algorithm to update the algorithm_data, do not modify
directly "algorithm data["abc"] = 123", we should return operator,
{"abc": 123}.

10. For the circumstances that algorithm return empty operator, please
return None, {}.

11. Make the result must be valid.

Detailed Heuristic Design

Before implementing the heuristic, we need to verify its feasibility.
Therefore, we will first attempt to translate this description into
rigorous detailed design.

Please note:

1. The heuristic function yields an Operator, a construct intricately
designed to manipulate Solution instances.f the goals of the heuristic
do not align with the existing Solution structure, it will be
necessary to modify the algorithm so that it is compatible with the
current Solution classes. In the event that such modifications prove
impossible, we may need to consider discontinuing the use of the
algorithm.

2. The state and instance_data have been detailed previously. It

is essential to determine whether the heuristic’s logic requires

any additional information beyond what has been provided. If the
heuristic logic naturally requires more data, please indicate this

by returning "reasonable_input: we need xxx inputs" and we will halt
the implementation.

3. The type of returned operator that the algorithm can potentially
yield have been enumerated above. If the heuristic logic naturally
leads to an operator type that is not listed, please indicate this by
returning "reasonable_output: we need xxx operator" and we will halt
the implementation.

4. Currently our framework only support the single tour solution, so
the heuristic algorithm must works on this design. We can not merge
and fusion of two or more solutions to get a new solution.

5. We must assume that operator will run on current solution outside
heuristic algorithm.

Now let’s consider the logic for {heuristic_name}: {description}
This involves evaluating whether the algorithm’s intrinsic logic can
be expressed within our Solution, and Operator constructs without
knecessitating further data or operator types.

L

Under review as a conference paper at ICLR 2025

Smoke Test

The detailed steps for smoke test are as follows:

1. LLM predicts heuristic output: The LLM predicts the heuristic’s output based on the
detailed heuristic description and smoke data.

2. Run heuristic in environment: We set up the environment and run the heuristic in smoke
data.

3. Validation and adjustment:

(a) Crash: If the run fails, return the exception to the LLM to further adjust the code until
it is correct or abandon the heuristic.

(b) Inconsistent Results: If the run is successful but the results are inconsistent, return
both the expected and actual results to the LLM, and further adjust until correct or
abandon the heuristic.

(c) Successful Test: If the run is successful and the results are consistent with expectations,
the code passes the test.

Smoke Test Expected Result

To verify whether the code is correct, we conducted a smoke test.
This is the test data:
{smoke_instance_data}

We run the following operations:
{previous_operations}

The current solution are
{smoke_solution}

with detailed data
{smoke_solution_data}

First think about what the expected output is.

Smoke Test Compare

In fact we run the {function_name} once, and now we got the output
operation from {function_name}:
{output_result}

The updated solution are
{updated_smoke_solution}

with detailed data
{updated_smoke_solution_data}

Please compare with your expected result: {expected_result}

1. 1If the result is aligned with your target output, respond to me
**x*xpython_code:correctxxx and we will save the code and finish this
generation.

2. If the result is not aligned with your target output and you can
not generate correct one, respond to me x*x*xpython_ code:Nonex**x and we
will stop this generation.

3. If the result is not aligned with your target output and you can
fix up this issues, update the python code in previous format.

Under review as a conference paper at ICLR 2025

Smoke Test Crashed

To verify whether the code is correct, we conducted a smoke test.
This is the test data:
{smoke_instance_data}

While executing {function_name} with the given dataset, the program
encountered an error and crashed. The following error message was
displayed:

{error_message}

Please try to fix it. 1. If you think this heuristic can not be
implemented, respond to me ***python_code:Nonex** and we will stop
this generation.

2. If you can fix up this issues, please update the python code in
previous format.

G.2 SINGLE ROUND EVOLUTION

The detailed steps for single-round evolution are as follows:

1. Generate Comparison Data
(a) Run Heuristic: Use the heuristic and training data to generate an initial solution as the
original solution.
(b) Perturbation For Better Solution: Continuously perturb the original solution until a
better solution is found, or abandoned if no better solution is found.

2. Identify bottlenecks

(a) Decompose: Decompose both solutions.
(b) Identify Bottlenecks: LLM identifies differences and identifies core differences that
potentially impact solution quality, marking them as potential bottlenecks.
3. Validate Each bottleneck
(a) Reproduce Scenario: For each bottleneck, we reproduce the scenario before them
independently.
(b) Propose Suggestion: The LLM proposes suggestion to replace the bottleneck.

(c) Verify Suggestion: We validate by replacing the bottlenecks with proposed suggestion
to test the suggested alternatives.

(d) Raise Experience: If performance improves, LLM try to summarize this case and
extract the suggestion; otherwise, we skip.

4. Update Heuristic

35

Under review as a conference paper at ICLR 2025

Compare Solution

In this instance, I have developed a heuristic function, although its
performance has not reached a satisfactory level. My goal is to learn
from case studies to improve and optimize this heuristic. To achieve
this, I will provide the following:

1. The heuristic function code.

2. Test data for evaluation.

3. Negative solution from heuristic function.
4. Positive solution from external.

The function {function_name} 1is the heuristic function:
{function_code}

The instance data for this problem:
{instance_data}

Negative solution from {function_name}:
{negative_solution}

Positive solution from external:
{positive_solution}

Please based on the data and solution, compare the difference between
these two solution and list the difference.

Decompose Solution

Then we decompose the solution.

The positive solution leads {positive_result} with the following
trajectory:

{positive_trajectory}

The negative solution leads {negative_result} with the following
trajectory:

{negative_trajectory}

Now we hope to analysis in operation level why negative operations
leads to poor performance.

Please note:
1. Some operations look different, but actually express the same
effect.

Identify Bottleneck

Now, we hope to pick out the bottleneck operations in negative
solution.

Please note:

1. Some operations, although they appear different, are essentially
the same.

2. Some operations may lead to solutions that look different but are
essentially the same.

3. Some operations may cause changes to the solution but do not affect
the final cost; these are not considered bottlenecks.

4. When an operation A is performed poorly, leading to a series of
subsequent operations experiencing issues, we consider the first
operation A to be a bottleneck.

Please remember that these results were produced by {function_name},
and we hope to use them to identify the weaknesses of {function_name}.
Combine the solution_difference and operation difference before, try to
find out the bottleneck operations ids.
The negative solution leads {negative_result} with the following
trajectory:

‘{negativeitrajectory}

Under review as a conference paper at ICLR 2025

Propose Operation

Now focus on {bottleneck_operation_id}: {bottleneck_operation}.

Do not forget the instance data for this problem:
{instance_data}

The state before {bottleneck_operation} is:
{solution_data}

Please consider whether there is better operations in step
{bottleneck_operation_id} than {bottleneck_operation}.

To analyze the operation, we must delve into the detail design that
underpin it in following aspects:

1. How can we get this operations, we need to analysis and calculate
to get this operation.
2. Why this operation is superior.

3. Examine the commonality of this phenomenon and identify any
specific conditions under which this operation is particularly suitable
or optimal, including instance data’s conditions or current state’s
conditions.

Extract Suggestion

To evaluate the validity of your suggestion, we keep the operations
before step {bottleneck_operation_id}, integrate {proposed_operation}
in step {bottleneck_operation_id} and applying the {function_name} for
remaining steps. Now we got the update result

The updated result: {proposed_solution} with {proposed_result}
{proposed_trajectory}

Compared with origin negative result from {function_name}:
{negative_solution} with {negative_result}
{negative_trajectory}

Your propose works well.

Now review the {function name}:

{function_introduction}.

We hope to extract this into rule to get the suggestion for improvement
of {function_name}:

Please note:

1. I believe that in most cases, our rule works in a scope of
applicability, that is, it is effective in certain circumstances.
Outside of this scope, we still maintain the original algorithm.
2. The rule must be clear and calculate. For example, choosing
operation A brings greater benefits in the form of rebates, but we
do not know how to measure future benefits.

3. Rule must have nothing todo with current data. It should be
general experience.

Combined previous calculate process:

{calculation_process}

And application scope:

{application_scope}

By the way, we believe no rule can works for all application scope,
sometimes it works and sometimes it may not work. So application scope
is important.

Extract this analysis into rule to improve the {function_name}.
consider to raise suggestion:

1. Dbetter selection
2. better parameters
3. 1insert more structure
4. learn from other heuristics)

Under review as a conference paper at ICLR 2025

Sort Suggestion

Now review the origin code {function_name}:
{function_code}

After analysis on between positive and negative solution, we have
already got some suggestions:
{suggestions}

We hope to apply these suggestions into nearest_neighbor heuristic,
while before to implement the code, we need to review and update the
suggestions:

1. Some suggestions are similar or duplicated, we can merge them.

2. Some suggestions conflict and we need to modify them.

3. The application conditions of some suggestions are unreasonable, we
need to correct them.

4. Some suggestions will bring too heavy calculation, we have to
optimize.

5. We only need to keep the suggestions that have a greater impact and

are likely to be useful.

So based on these, please refine these suggestions with clear
conditions and sort them into heuristic code improve suggestion
consider to sort suggestion:

1. better selection

2 better parameters

3. insert more structure

4 learn from other heuristics

G.3 GENERATE FEATURE EXTRACTOR

The detailed steps to generate feature extractor are as follows:

1. Instance Feature Generation: LLM lists the features of the instance data that characterized
by:

* Distinct Characteristics: Incorporating distinct attributes that help in clearly differen-
tiating between various instances.
* Effective Representation: Ensuring that the data representation is compact to reduce

computational load.

2. Solution Feature Generation: LLM lists the features of the current soluton that character-
ized by:

* Characteristic Attributes: Including unique attributes that facilitate the clear distinc-
tion between different stages of the solution process.

* Detailed Insights: Maintaining a detailed enough representation to identify the specific
characteristics of the current solution while being concise to ensure efficient processing.

* Comprehensive Evaluation: Evaluating the current solution from various perspectives,
such as the progress of the solution, its quality, and the status of the remaining data.

3. Generate Feature Extractors: LLM generates the feature extractors that ingests instance
data and the current solution, then outputs the corresponding features.

4. Smoke Test: We validate the feature extractors by running with smoke test data and if the
validation fails, the feature extractor functions are revised and updated.

38

Under review as a conference paper at ICLR 2025

Instance Feature

We aim to collaboratively create two distinct functions. The first
function will be designed to methodically extract and distill features
from instance data. The second function will focus on extracting
features that encompass both the characteristics and quality of current
solution. These functions will be underpinned by rigorous statistical
analysis and domain-specific knowledge, ensuring they are both accurate
and relevant.

Let’s begin by focusing on the features of the instance data for the
{problem}.

Instance data in the context of {problem} includes:
{instance_data_introduction}

In determining the optimal features (statistical data) to represent
instance features, we must adhere to the following criteria:

1. The data representation should be succinct to minimize
computational load while retaining sufficient granularity to recognize
the feature of the problem and solution.

2. It must incorporate unique attributes that aid in the clear
distinction between different instances.

Now, please tell me which features are best serve as instance features.

|

Implement Instance Feature Code

Let’s go future.
Try to implement the get_instance_data_feature function in python:
def get_instance_data_feature(instance_data: dict) —-> dict

The input is instance_data, which contains the instance data with:
{instance_data_introduction}

The output is algo a dict, which contains the following features as
keys: {instance_data_features}.

Please notes:

1. Never modify the instance_data, solution_data and algorithm_data.
2. The name of function must be get_instance_data_feature.

3. No any omissions or placeholders, I’'m just going to use the code.
4. Comments in the code are very important.

Solution Feature

Then, let’s focus on the features of the solution data for the
{problem}.

Instance data in the context of {problem} includes:
{instance_data_introduction}

Solution data in the context of {problem} includes:
{solution_data_introduction}

In determining the optimal features (statistical data) to represent
solution features and quality, we must adhere to the following
criteria:

1. The data representation should be succinct to minimize
computational load while retaining sufficient granularity to recognize
the solution feature.

2. It must incorporate unique attributes that aid in the clear
distinction between different solution stage.

3. We need to evaluate the current status from multiple dimensions,
including the current progress of the solution, the quality of the
solution, the status of the remaining data, etc.

Now, please tell me which features are best serve as solution features.

-

Under review as a conference paper at ICLR 2025

Implement Solution Feature Code

Let’s go future.

Try to implement the get_solution_data_feature function in python:
def get_solution_data_feature (instance_data: dict, solution_data:
dict) -> dict

The input are instance_data and solution_data.
instance_data contains the instance data with:
{instance_data_introduction}
solution_data contains the solution data with:
{solution_data_introduction}

The output is algo a dict, which contains the following features as
keys: {solution_data_features}.

Please notes:

1. Never modify the instance_data, solution_data and algorithm_data.
2. The name of function must be get_solution_data_feature.

3. No any omissions or placeholders, I’'m Jjust going to use the code.
4. Comments in the code are very important.

G.4 HEURISTIC SELECTION

The detailed steps to select heuristics are as follows:

* Input Information: Instance features; Solution features; Heuristics description; Selection
trajectory.

¢ Chain of Thought (CoT) for heuristic selection in one query:

— Analyze Problem Characteristics: Based on the instance data features, analyze the
problem’s scale and characteristics to preliminarily assess the applicability of different
heuristics.

Evaluate the Current State: Using the current solution features, evaluate the status
and phase of the current solution to determine if further execution is necessary.

Construct or Improve: If further execution is needed, analyze whether to construct a
new solution or improve the existing one.

Narrow down Selection: Based on the selection trajectory, identify potentially suitable
heuristics and exclude those likely to result in poor performance.

Assess Potential Heuristics: Review the performance of the potential heuristics from
tracjectory.

— Make Final Decision: Using the heuristic descriptions, select the most appropriate
heuristic.

* Final decision: Select heuristic, set parameters and execution step.

40

Under review as a conference paper at ICLR 2025

Heuristic Pool

We have already implement the following heuristics.
These are the heuristics inb format: heuristic_name (
parameter=default_value, ..): introduction
{heuristic_pool_introduction}

Before we solve the actual problem, please try to analysis the
scenarios where each algorithm is applicable, and these scenarios are
best quantif

Heuristic Selection

The instance data with some heuristic values for this problem:
{instance_data_feature}
Note: Some data are omitted due to space constraints.

The solution data some heuristic values for current stage:
{solution_data_feature}
Note: Some data are omitted due to space constraints.

Before this discuss, we have already {discuss_round} rounds discuss
and the summary are:
{heuristic_traject}

Considerations for Next Steps

- Is the current data sufficient for decision-making?

— Is there a need to construct or refine the solution further?

— The last heuristic is: {last_heuristic}. How does {last_heuristic}
perform, and should we continue with it?

- How much steps should we run for next heuristic?

Decision Options:

We aim to incrementally construct an optimal solution by strategically
applying a set of heuristic algorithms. Each heuristic, when applied,
contributes one operator to the evolving solution. Here is the refined
process:

1. I will present you with the initial data. Your role will be

to evaluate this data and select the most appropriate heuristic
algorithm from our pool of heuristics. This selection will be based
on predefined criteria and heuristic performance measures.

2. I will then execute the chosen heuristic for a number of steps,
resulting in a partial solution. Once this stage is complete, I will
provide you with the updated solution state. Your task will be to
assess the progress and determine whether to:

— Continue with the same heuristic algorithm to further develop the
current solution, or

- Switch to a different heuristic algorithm from our pool to either
enhance the existing solution or take a new approach to the problem.

As the selection hyper-heuristic algorithm agent, your role is critical
in orchestrating the application of these heuristics to navigate
towards an improved or final solution. Please familiarize yourself
with the available heuristic algorithms and the overall decision-making
pipeline. Once I introduce the specific data for our problem, we will
| collaborate to advance towards the solution.

H INTRODUCTION TO CLASSIC COMBINATORIAL OPTIMIZATION PROBLEMS

Traveling Salesman Problem (TSP) seeks to determine the shortest possible route that visits a
given set of cities exactly once and returns to the origin city, based on the distances between each
pair of cities.

41

Under review as a conference paper at ICLR 2025

Capacitated Vehicle Routing Problem (CVRP) involves determining the most efficient routes
for a fleet of vehicles to deliver goods to various locations, taking into account vehicle capacity
constraints.

Job Shop Scheduling Problem (JSSP) involves scheduling a series of jobs, each comprising a
sequence of operations, across different machines to optimize production efficiency. Each job must
be processed on specific machines in a predetermined order.

Max Cut Problem aims to partition the vertices of a graph into two disjoint subsets such that the
total weight of the edges between the two sets is maximized.

Multidimensional Knapsack Problem (MKP) aims to maximize the total profit of selected items,
each with a given profit value, subject to multiple constraints on the cumulative resource consumption
of the items.

42

