
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HEURAGENIX: A MULTI-AGENT LLM-BASED
PARADIGM FOR ADAPTIVE HEURISTIC EVOLUTION
AND SELECTION IN COMBINATORIAL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Combinatorial Optimization (CO) is a class of problems where the goal is to identify
an optimal solution from a finite set of feasible solutions under specific constraints.
Despite its ubiquity across industries, existing heuristic algorithms struggle with
limited adaptability, complex parameter tuning, and limited generalization to novel
problems. Recent approaches leveraging machine learning have made incremental
improvements but remain constrained by extensive data requirements and reliance
on historical problem-specific adjustments. Large Language Models (LLMs) offer a
new paradigm to overcome these limitations due to their ability to generalize across
domains, autonomously generate novel insights, and adapt dynamically to different
problem contexts. To harness these capabilities, we introduce HeurAgenix, a
novel multi-agent hyper-heuristic framework that leverages LLMs to generate,
evolve, evaluate, and select heuristics for solving CO problems. Our framework
comprises four key agents: heuristic generation, heuristic evolution, benchmark
evaluation, and heuristic selection. Each agent is designed to exploit specific
strengths of LLMs, such as their capacity for synthesizing knowledge from diverse
sources, autonomous decision-making, and adaptability to new problem instances.
Experiments on both classic and novel CO tasks show that HeurAgenix significantly
outperforms state-of-the-art approaches by enabling scalable, adaptable, and data-
efficient solutions to complex optimization challenges.

1 INTRODUCTION

Combinatorial Optimization (CO) problems are fundamental to many disciplines, ranging from
production scheduling and resource allocation to finance and energy management. These problems
require finding optimal solutions from a discrete set of possibilities while adhering to predefined
constraints. Traditional algorithms, particularly exact methods, are limited to small-scale problems
due to their computational complexity. In contrast, heuristic methods, although more scalable, often
face issues such as limited adaptability, difficult parameter tuning, and limited generalization across
problem domains. The manual effort required to fine-tune heuristics for each new problem instance
is a significant bottleneck (Peres & Castelli, 2021).

In recent years, hyper-heuristic approaches have attempted to bridge this gap by automating the
selection or generation of heuristics based on problem characteristics. These methods include adaptive
selection hyper-heuristics (Drake et al., 2020), genetic programming-based heuristic generation
(Nguyen et al., 2011), and iterative local search techniques (Burke et al., 2010). While these
approaches enhance generalization, they still struggle with domain-specific sensitivity, requiring
extensive testing and adjustment. Karimi-Mamaghan et al. (2022) and Mahendran et al. (2020) have
incrementally enhanced these methods with machine learning-based improvements, but challenges
such as data dependency, overfitting, and scalability remain.

Large Language Models (LLMs) offer a transformative leap forward in solving these shortcomings.
Unlike traditional approaches that rely on domain-specific heuristics or rigid algorithms, LLMs
possess several unique capabilities that make them well-suited for CO problems:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

• Generalization across domains: LLMs are pre-trained on diverse corpora, enabling them
to understand and apply knowledge across various problem types without the need for
extensive domain-specific fine-tuning.

• Autonomous knowledge synthesis: LLMs can generate novel heuristics by combining
internal knowledge with external references, allowing them to propose creative, previously
unexplored solutions.

• Adaptability to dynamic environments: LLMs can rapidly adapt to new problem instances
by generating solutions informed by the specific context of the problem, making them highly
versatile in handling evolving or unseen CO tasks.

• Efficient decision-making through abstraction: LLMs excel at abstract reasoning, allow-
ing them to decompose complex optimization problems and propose solutions that balance
immediate gains with future improvements.

These capabilities, when applied to CO, can significantly reduce the need for manual intervention,
extensive data requirements, and problem-specific tuning, providing a more scalable and robust
solution to complex optimization problems. Despite the potential of LLMs, existing applications of
LLMs in CO have several limitations. Previous studies such as FunSearch(Romera-Paredes et al.,
2024), EoH(Liu et al., 2024a), and ReEvo(Ye et al., 2024) have successfully leveraged LLMs for
heuristic generation and evolutionary search. However, these approaches still rely heavily on existing
approaches. Moreover, they often follow rigid, single-agent architectures where each heuristic
operates in isolation, limiting the system’s ability to adapt dynamically to new and complex problem
instances.

To address these limitations, we propose HeurAgenix, a multi-agent hyper-heuristic framework
that fully integrates LLMs across all stages of CO problem-solving. Unlike previous approaches,
HeurAgenix deploys a multi-agent system that leverages the specific strengths of LLMs for different
stages of heuristic management, as follows:

• Heuristic Generation Agent: This agent capitalizes on the LLMs’ ability to generate
heuristics from multiple sources, including internal knowledge, reference papers, and related
problem heuristics. By synthesizing diverse knowledge, the agent generates novel and
adaptive heuristics tailored to a wide variety of CO tasks.

• Heuristic Evolution Agent: Using LLMs’ capabilities for autonomous decision-making
and reflection, this agent evolves heuristics by comparing multiple solutions, identifying
bottlenecks, and iteratively refining the heuristics based on performance data without relying
on human domain knowledge.

• Benchmark Evaluation Agent: LLMs’ abstract reasoning allows this agent to develop
comprehensive feature extractors that characterize both the problem instance and the current
solution. This enables deeper insights into the problem, allowing for more informed decision-
making during the optimization process.

• Heuristic Selection Agent: LLMs’ capacity for dynamic decision-making enables this
agent to choose the most appropriate heuristic based on real-time evaluation of features.
This ensures robust performance across different problem instances and states, dynamically
adapting to changes as the problem evolves.

By leveraging the full suite of LLM capabilities, our multi-agent framework not only automates
heuristic design but also provides a highly adaptable, scalable solution to a wide range of CO problems.
Extensive experiments on classical problems such as the Traveling Salesman Problem (TSP) and
novel challenges like the Dynamic Production Order Scheduling Problem (DPOSP) demonstrate that
HeurAgenix significantly outperforms existing approaches in terms of adaptability, performance, and
scalability. We will make all the codes publicly available upon the publication of our paper.

2 RELATED WORK

Generative Hyper-Heuristics Generative hyper-heuristics are techniques that automatically gener-
ate new heuristics by amalgamating elementary operations or decision-making rules, such as genetic
programming, genetic algorithms, and particle swarm optimization (Hou et al., 2023; Singh & Pillay,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2022). However, generative hyper-heuristics face challenges such as high computational load, pa-
rameter tuning complexity, and limited adaptability. To address these issues, contemporary research
has been concentrating on integrating of deep learning techniques, and the development of adaptive
heuristic generation strategies. These advancements aim to significantly enhance the adaptability,
efficiency, and overall performance of generative hyper-heuristics (Jia et al., 2019; Wu et al., 2021).

Selection Hyper-Heuristics Selection hyper-heuristics optimize by selecting the most suitable
heuristic from a predefined set to adapt to the current problem scenario. These algorithms typically
employ rule-based selection, meta-heuristic selection, or learning-based selection methods, making
them well-suited for dynamic optimization problems and complex combinatorial scenarios (de Car-
valho et al., 2021; Drake et al., 2020). However, selection hyper-heuristics face challenges such as
complex selection strategies, reliance on historical data, and limited generalization ability. Recent
advancements aim to improve robustness and adaptability by incorporating reinforcement learning
to enhance selection strategies, exploring online learning methods, and developing hybrid selection
techniques that effectively combine multiple strategies (de Santiago Junior et al., 2020; Sopov, 2016).

LLMs for Combinatorial Optimization LLMs have demonstrated significant potential in various
domains, including CO. Zhang et al. (2024) evaluated the performance of current LLMs on various
graph optimization problems. Iklassov et al. (2024) designed effective prompt strategies to address
CO issues. Xiao et al. (2023) introduced the Chain-of-Experts approach, leveraging multi-agent
cooperation to directly solve optimization problems.

More relevant to our work are studies leveraging LLMs to generate and evolve heuristic algorithms
for solving CO problems. Romera-Paredes et al. (2024) introduced FunSearch, a novel approach that
utilizes LLMs to evolve heuristics for CO problems. EoH (Liu et al., 2024a) advances FunSearch
by introducing multi-directional evolution to increase the diversity of heuristic algorithms. ReEvo
(Ye et al., 2024) further refines this process by integrating LLM-driven reflection, enhancing the
efficiency of the evolution of heuristics. These works have significantly improved the effectiveness
of heuristics by leveraging the strengths of LLMs. However, these approaches still rely on expert
knowledge and manual design, and thus, they cannot directly yield end-to-end solutions, especially
when addressing novel problems.

As illustrated in Table 1, our HeurAgenix approach introduces key innovations to tackle these issues.
These include integrating multiple sources (LLMs’ internal knowledge, reference papers, and related
problems) for heuristic generation, employing a data-driven approach for heuristic evolution, and
using LLM-generated features for evaluation and heuristic selection to ensure robust performance
across diverse problems.

Table 1: Comparison of LLM-based CO paradigms on heuristic generation, evolution, evaluation and
selection.

Paradigm Heuristic generation Heuristic evolution Benchmark evaluation Heuristic selection

FunSearch Generation from LLM Single-direction evolution Manual design metrics Manual design strategies
EoH Generation from LLM Multiple-directions evolution Manual design metrics Manual design strategies

ReEvo Generation from LLM Feedback-guided evolution Manual design metrics Manual design strategies
HeurAgenix (Ours) Generation from multiple sources Data-driven evolution LLM-generated feature Feature-based LLM selection

3 METHODOLOGY

As depicted in Figure 1, HeurAgenix operates through two main phases to solve CO problems. In
the heuristic generation phase, the heuristic generation agent generates heuristics from LLM’s
internal knowledge, reference papers, or related problems’ heuristics, while the heuristic evolution
agent evolves these heuristics using training data. During the problem solving phase, the benchmark
evaluation agent generates feature extractors for the problem instance and solution, and the heuristic
selection agent dynamically selects the appropriate heuristic based on these features.

3.1 HEURISTIC GENERATION PHASE

In this paper, the heuristic is represented as the function H : H(G,S, P) → S′, where G is the
instance data, S is the current (partial) feasible solution, and P consists of all heuristic parameters.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: The framework and agents of HeurAgenix.

The function H yields a new solution state S′ through a single-step operation such as addition,
deletion, replacement, exchange, or perturbation, ensuring the search process is controlled (Hillier &
Lieberman, 2015).

3.1.1 HEURISTIC GENERATION AGENT

Due to a phenomenon known as hallucinations, directly using LLMs to generate heuristics for new
problems often leads to incorrect heuristics (Mündler et al., 2024). As illustrated in Figure 2, to
reduce hallucinations, the heuristic generation agent learns from multiple sources and employs a
smoke test to ensure the correctness of the generated heuristics.

Figure 2: The heuristic generation process. The red text indicates interactions with the LLM.

Heuristics can be generated directly from LLM’s internal knowledge. A similar approach has
been adopted by Funsearch (Romera-Paredes et al., 2024), EoH (Liu et al., 2024a), and ReEvo (Ye
et al., 2024) to obtain initial heuristics. Besides, we can also learn heuristics from reference
papers. The LLM first reads the abstract to determine relevance, then selects interesting sections,
and finally decides whether to generate heuristics. Another approach is to transfer heuristics from
related problems, which is particularly useful for entirely new problems. The LLM decomposes the
new problem into components and matches these components with those of classic CO problems.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

If a match is found, heuristics from the original problems can be transferred into new problem.
Appendix A provides examples of the three generation methods.

When implementing the code, we provide common reminders, including input/output data formats,
required libraries, annotations, and edge case considerations etc. to improve the quality of code. To
reduce common errors, we optionally conduct a smoke test, where the LLM predicts the heuristic’s
output based on the detailed design and we then run the generated heuristic function. If the results
are inconsistent or the code crashes, the error message is fed back to the LLM for adjustments until
correct. For example, in the TSP, if the LLM expects a heuristic to select node A next but the heuristic
either crashes or selects another node, the test fails and requires correction.

For novel problems without any reference, our approach supports to create basic algorithms like
random ones and evolve them using methods from Section 3.1.2. The detailed workflow and prompts
for the heuristic generation agent are provided in Appendix G.1.

3.1.2 HEURISTIC EVOLUTION AGENT

Relying solely on LLMs for heuristic evolution encounters inherent limitations due to constrained
exploration capabilities and a lack of intrinsic motivation for evolution. Therefore, we employ a
data-driven approach to enhance exploration capabilities in heuristic evolution.

Single-round Evolution We adopt a data-driven heuristic evolution approach. Initially, we run
heuristic on the training dataset to generate a baseline solution. Subsequently, we iteratively perturb
the original solution, seeking enhancements or discontinuing if no progress is evident. The LLM
then compares the two solutions and identifies bottlenecks that could affect the quality of the solution.
For each identified bottleneck, we reproduce the scenario leading up to it independently, the LLM
proposes a suggestion to navigate past the bottleneck, and we implement the recommendation to
verify the suggestion. Should the solution quality improve, the LLM summarizes the experience
from this instance and assimilates the effective recommendation. Ultimately, the LLM updates the
heuristic with the validated recommendations. Figure3 illustrates this evolutionary process using the
nearest neighbor heuristic as an exemplar within the TSP context. The comprehensive workflow and
prompts for the single evolutionary round are detailed in AppendixG.2.

Multi-round Evolution For further evolution, multi-round evolution is essential. Different data
may yield various heuristics; thus additional validation data is required to filter effective heuristics
for subsequent rounds. Both execution performance and execution time must be considered. Figure 4
displays the performance of multiple rounds of evolution for the nearest neighbor in the TSP.

3.2 PROBLEM SOLVING PHASE

As shown in Figure 5, before solving the problem, the benchmark evaluation agent provides feature
extractors, and the heuristic selection agent dynamically selects heuristics during the problem solving
process based on various instances and states.

3.2.1 BENCHMARK EVALUATION AGENT

Handling data directly can be challenging for LLMs, necessitating key feature extraction to reduce
data dimensionality for efficient processing (Achiam et al., 2023; Zawbaa et al., 2018). Surface-level
features often fail to capture problem complexity, requiring deeper features that describe both instance
data and current solutions (Guan et al., 2021; Kim & Lee, 2019). Therefore, we built the benchmark
evaluation agent to generate instance and solution feature extractors, providing detailed features for
heuristic selection, as shown in Figure 5.

These feature extractors concentrate on distinct characteristics to discern between various instances,
effective representation to alleviate computational demands, characteristic attributes for distin-
guishing between solution phases, detailed insights to pinpoint specific traits, and comprehensive
evaluations to gauge the progress, quality, and scope of the solution. Table 5 in Appendix E details
the features generated by the agent for different CO problems. The detailed workflow and prompts
for the evaluation benchmark agent are provided in Appendix G.3.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: Single-round evolution for the nearest neighbor heuristic in TSP. The red text indicates
interactions with the LLM. Evolution Round 1 in Appendix B. indicates the evolved code.

Figure 4: Performance of multi-round evolution on the nearest neighbor heuristic for TSP on pr1002,
pcb561, a280 from TSPLIB. A smaller gap indicates better performance. The detailed evolved codes
can be found in Appendix B.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 5: The problem solving process. The red text indicates interactions with the LLM. The Chain
of Thought (CoT) for heuristic selection is completed in one query.

3.2.2 HEURISTIC SELECTION AGENT

The performance of heuristics is significantly influenced by the diversity of instances, making it
crucial to dynamically select the most appropriate heuristic based on varying data characteristics
(Burke et al., 2006). Different stages of the problem solving process also require distinct heuristics
for effective optimization (Guan et al., 2021). Therefore, we dynamically select different heuristics
for various instances and stages of problem solving.

As shown in Figure 5, for each round of selection, the heuristic selection agent receives information
including instance features, solution features, descriptions of available heuristics, and selection
trajectory, then makes the decision of the heuristic, parameters, and execution steps. The decision-
making process is completed in one query with the following steps: analyze problem characteristics
based on instance features such as scale and distribution, evaluate the current state to determine the
progress and phase of the current solution using solution features, determine whether to construct
or improve the solution based on both instance and solution features, narrow down the selection
of suitable heuristics based on their descriptions, assess potential heuristics with the selection
trajectory, and then make final decision.

Appendix F summarizes common selection patterns observed in LLMs without human guidance. The
detailed workflow and prompts for the heuristic selection agent are provided in Appendix G.4.

4 EXPERIMENTS

In this section, we conducted experiments on HeurAgenix using GPT-4 as the foundational LLM. We
assessed the complete workflow, including heuristic generation, evolution, benchmark evaluation, and
selection, for both classic CO problems (Section 4.1) and new CO problems (Section 4.2), compared
our evolution approach with state-of-the-art methods (Section 4.3) and combined our work with other
hyper-heuristics (Section 4.4). For the detailed setting for whole experiment and dataset, please refer
to Appendix D.

4.1 EXPERIMENTS ON CLASSIC PROBLEMS

We conducted experiments on five classic CO problems: the Traveling Salesman Problem (TSP),
Capacitated Vehicle Routing Problem (CVRP), Job Shop Scheduling Problem (JSSP), Maximum Cut
Problem (MaxCut), and Multidimensional Knapsack Problem (MKP). For problem details, refer to
Appendix H.

To validate performance, we use the average gap defined by average_gap = 1
n

∑n
i=1

∣∣∣ vi−vu
i

vu
i

∣∣∣×100%,
where n is the number of test instances, vi is the heuristic value for the i-th test instance (e.g. tour

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

cost in TSP) and vui is the corresponding best known or upper bound. Variance is assessed using the
average standard error of the mean (SEM) as average_sem = 1

n

∑n
i=1

σi√
mi

, where n is the number
of test instances, mi is the experiment times on the i-th test instance, and σi denotes the standard
error on the i-th test instance. A lower gap indicates better performance, and a lower sem suggests
less variance. These settings are used throughout the rest of the paper unless otherwise specified.

Heuristic Generation and Evolution Experiment We conducted experiments on five classic
problems to test the basic heuristics generated by the heuristic generation agent and the evolved
heuristics from the heuristic evolution agent. Each experiment contains seven instances from publicly
available academic datasets.
Figure 6 summarizes the experimental results, and the full experimental results and analyses are

Figure 6: Heuristic generation and evolution experiment results. For each problem, we evolved three
basic deterministic heuristics and compared their average gap.

provided in Table 6 in Appendix E. The experiments demonstrate that our HeurAgenix can correctly
generate heuristic algorithms and effectively evolve them across different problems, even the basic
heuristic’s performance is poor, such as "first come first serve" in JSSP and "balance cut" in MaxCut.

Heuristic Selection Experiment We evaluated the heuristic selection agent using both basic and
evolved heuristic pools on the same test instances and employed random selection from corresponding
heuristic pools as our baseline.

Figure 7 summarizes the experimental results, and the full experimental results and analyses are
provided in Table 7 in Appendix E. These results show that the heuristic selection agent yields better
performance with lower fluctuation than random selection. Additionally, selecting heuristics from the
evolved heuristics pool yields better performance compared to selecting from the basic heuristics pool.
Combining the results from Figure 6 and Figure 7, it is shown that the dynamic selection heuristic is
better than single heuristics, indicating that heuristic selection agent works well.

4.2 EXPERIMENTS ON A NEW PROBLEM

In this section, we introduce a novel, real-world, production-related, and complex CO problem: the
Dynamic Production Order Scheduling Problem (DPOSP) to validate the effectiveness of HeurAgenix
for new CO problems. DPOSP involves multiple production lines producing various products with

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 7: Results of heuristic selection experiments. Each experiment was conducted multiple times
to reduce fluctuations, and the error bars (I-bars) represent the average sem.

transition times between products. Each order specifies the required product, quantity, and deadline,
and all orders share the same priority. The objective is to fulfill as many orders as possible before
their respective deadlines. For a detailed introduction, please refer to Appendix C.

Addressing novel problems, LLMs frequently face challenges in devising suitable heuristic algorithms.
In DPOSP, even in the absence of order prioritization and production line capacity constraints within
DPOSP, GPT-4 may nonetheless generate non-executable heuristics influenced by these hallucinated
characteristics. To mitigate this, we adopt the heuristic transfer method mentioned in Section 3.1.1 to
generate heuristics. Through this method, we have demonstrated that GPT-4 is capable of adeptly map-
ping the vehicle, node, demands, travel_time and service_time components in CVRP
to the analogous production_line, order, order_quantity, transition_time and
production_time in DPOSP. For detailed subsequent transferred code, we refer interested
readers to Appendix A.3.

The test data and results in Table 2 show HeurAgenix works well on transfer heuristics from related
problems, heuristic evolution, and heuristic selection for new CO problem.

Table 2: DPOSP experimental results. Heuristics marked with (*) are evolved versions. Solver results
represent upper bounds ("-" indicates incomplete within one hour). The lower bound is provided by a
random algorithm (not random heuristic selection). Higher fulfilled order numbers indicate better
performance. The best results are in bold, and the second-best results are underlined.

Data

production line num 5 5 5 10 10 20 20
product num 5 10 10 20 20 40 40
order num 10 50 100 100 200 500 2000

order deadline 12h [0h, 24h] [0h, 48h] [0h, 24h] [0h, 48h] [0h, 120h] [0h, 480h]

Fulfilled Order Num

shortest operation 8 40 76 43 138 344 1416
shortest operation(*) 10 40 82 46 144 378 1451
least order remaining 5 40 62 37 118 300 1130

least order remaining(*) 9 39 66 40 140 371 1386
greedy by order density 9 43 69 45 118 328 1388

greedy by order density(*) 10 44 82 51 130 392 1420

LLM selection (basic) 9.7±0.2 44.0±0.0 77.7±2.4 46.5±0.3 134.8±2.2 358.0±1.2 1482.7±3.0
LLM selection (evolved) 10.0±0.0 44.7±0.2 82.2±0.4 50.0±0.4 143.6±1.5 395.0±3.0 1492.8±1.3
random selection (basic) 8.8±0.4 38.4±1.3 66.2±1.3 41.8±0.3 120.4±0.8 325.2±1.9 1198.0±6.7

random selection (evolved) 9.6±0.4 42.3±0.9 72.3±1.2 47.2±1.1 132.8±3.0 344.5±1.8 1398.7±3.4

random(lower bound) 7.8±0.5 31.3±0.7 31.3±1.0 31.7±2.2 71.7±5.4 110.67±5.5 381.0±18.4
results from solver(upper bound) 10 46 85 52 152 - -

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 8: Evolution comparison results. Figure 9: Combination results with GLS.

4.3 COMPARISON WITH OTHER EVOLUTION ALGORITHMS

We conduct a comparison of our heuristic evolution method against the approaches presented in EoH
(Liu et al., 2024a) and ReEvo (Ye et al., 2024), using the nearest neighbor heuristic for TSP as a
common benchmark. To ensure a fair comparison, we reran all EoH and ReEvo on GPT-4. and result
of ReEvo (GPT-3.5 Turbo) is sourced from ReEvo’s paper.
The experiments were conducted on both the test instances used in ReEvo’s paper and another
selected instances with a larger number of nodes. Figure 8 summarizes the experimental results,
and the full experimental results and analyses are provided in Table 8 in Appendix E. These results
indicate that our heuristic evolution method surpasses existing evolution algorithms based on LLMs.

4.4 COMBINATION WITH OTHER HYPER-HEURISTICS

We further explore the potential of HeurAgenix within hyper-heuristic frameworks. In this section,
we aim to enhance the performance of Guided Local Search (GLS) (Voudouris & Tsang, 1999) by
generating initial solutions using our evolved heuristic. We conducted four sets of experiments: (1)
GLS with the classic nearest neighbor heuristic (GLS), (2) GLS with our evolved nearest neighbor
heuristic (GLS + Ours), (3) GLS with the classic nearest neighbor heuristic and the updated distance
matrix from EoH (GLS + EoH), and (4) GLS with our evolved nearest neighbor heuristic and the
updated distance matrix from EoH (GLS + EoH + Ours).
The experiments were conducted on both the test instances used in EoH’s paper and another selected
instances with a larger number of nodes. Figure 9 summarizes the experimental results, and the full
experimental results and analyses are provided in Table 9 in Appendix E. These results indicate that
HeurAgenix can significantly enhance the capabilities of GLS.

5 CONCLUSION AND FUTURE WORK

We propose a multi-agent LLM-based paradigm, HeurAgenix, that employs LLMs to generate, evolve,
evaluate, and select heuristic strategies for addressing CO problems. Our framework can effectively
generate diverse heuristics for both classic and novel CO problems, showcasing its remarkable
adaptability and flexibility. The data-driven evolution process enables the efficient evolution of
heuristics without the need for prior knowledge, while the dynamically heuristic selection ensures
robustness by continuously adapting to specific problem instance and the current state.

In the future, we will improve the efficiency of the generated code by enhancing the quality of heuristic
code through supervised fine-tuning of open-source LLMs (Poesia et al., 2022). Additionally, we will
enable LLMs to analyze larger instance data during the evolution phase by integrating data mining
technique (Fink et al., 2023; Wan et al., 2024). We aim to improve the rationality of heuristic selection
in the selection phase by exploring multiple LLM-enhanced machine learning algorithms, such as
LLM-enhanced decision trees (Li et al., 2023), LLM-enhanced unsupervised learning techniques
(Jung et al., 2024), and LLM-enhanced reinforcement learning approaches (Kwon et al., 2023; Liu
et al., 2024b).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Edmund Burke, Tim Curtois, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Sanja Petrovic,
José A Vázquez-Rodríguez, and Michel Gendreau. Iterated local search vs. hyper-heuristics:
Towards general-purpose search algorithms. In IEEE congress on evolutionary computation, pp.
1–8. IEEE, 2010.

Edmund K Burke, Sanja Petrovic, and Rong Qu. Case-based heuristic selection for timetabling
problems. Journal of Scheduling, 9:115–132, 2006.

Vinicius Renan de Carvalho, Ender Özcan, and Jaime Simão Sichman. Comparative analysis of
selection hyper-heuristics for real-world multi-objective optimization problems. Applied Sciences,
11(19):9153, 2021.

Valdivino Alexandre de Santiago Junior, Ender Özcan, and Vinicius Renan de Carvalho. Hyper-
heuristics based on reinforcement learning, balanced heuristic selection and group decision accep-
tance. Applied Soft Computing, 97:106760, 2020.

Vladimir Deineko and Alexander Tiskin. Fast minimum-weight double-tree shortcutting for metric
tsp: is the best one good enough? Journal of Experimental Algorithmics (JEA), 14:4–6, 2010.

John H Drake, Ahmed Kheiri, Ender Özcan, and Edmund K Burke. Recent advances in selection
hyper-heuristics. European Journal of Operational Research, 285(2):405–428, 2020.

Matthias A Fink, Arved Bischoff, Christoph A Fink, Martin Moll, Jonas Kroschke, Luca Dulz,
Claus Peter Heußel, Hans-Ulrich Kauczor, and Tim F Weber. Potential of chatgpt and gpt-4 for
data mining of free-text ct reports on lung cancer. Radiology, 308(3):e231362, 2023.

Boxin Guan, Yuhai Zhao, Ying Yin, and Yuan Li. A differential evolution based feature combination
selection algorithm for high-dimensional data. Information Sciences, 547:870–886, 2021.

Frederick S Hillier and Gerald J Lieberman. Introduction to operations research. McGraw-Hill,
2015.

Qingchun Hou, Jingwei Yang, Yiqiang Su, Xiaoqing Wang, and Yuming Deng. Generalize learned
heuristics to solve large-scale vehicle routing problems in real-time. In The Eleventh International
Conference on Learning Representations (ICLR), 2023.

Z Iklassov, Y Du, F Akimov, et al. Self-guiding exploration for combinatorial problems. arXiv
preprint arXiv:2405.17950, 2024.

Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and Alex Aiken. Taso:
optimizing deep learning computation with automatic generation of graph substitutions. In
Proceedings of the 27th ACM Symposium on Operating Systems Principles, pp. 47–62, 2019.

Hae Sun Jung, Haein Lee, Young Seok Woo, Seo Yeon Baek, and Jang Hyun Kim. Expansive
data, extensive model: Investigating discussion topics around llm through unsupervised machine
learning in academic papers and news. Plos one, 19(5):e0304680, 2024.

Maryam Karimi-Mamaghan, Mehrdad Mohammadi, Patrick Meyer, Amir Mohammad Karimi-
Mamaghan, and El-Ghazali Talbi. Machine learning at the service of meta-heuristics for solving
combinatorial optimization problems: A state-of-the-art. European Journal of Operational Re-
search, 296(2):393–422, 2022.

Jin-Gyeom Kim and Bowon Lee. Appliance classification by power signal analysis based on multi-
feature combination multi-layer lstm. Energies, 12(14):2804, 2019.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models. arXiv preprint arXiv:2303.00001, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Binbin Li, Tianxin Meng, Xiaoming Shi, Jie Zhai, and Tong Ruan. Meddm: Llm-executable clinical
guidance tree for clinical decision-making. arXiv preprint arXiv:2312.02441, 2023.

F Liu, T Xialiang, M Yuan, et al. Evolution of heuristics: Towards efficient automatic algorithm
design using large language model. In Forty-first International Conference on Machine Learning,
2024a.

Zhihao Liu, Xianliang Yang, Zichuan Liu, Yifan Xia, Wei Jiang, Yuanyu Zhang, Lijuan Li, Guoliang
Fan, Lei Song, and Bian Jiang. Knowing what not to do: Leverage language model insights for
action space pruning in multi-agent reinforcement learning. arXiv preprint arXiv:2405.16854,
2024b.

Nivedhitha Mahendran, PM Durai Raj Vincent, Kathiravan Srinivasan, and Chuan-Yu Chang. Ma-
chine learning based computational gene selection models: a survey, performance evaluation, open
issues, and future research directions. Frontiers in genetics, 11:603808, 2020.

Niels Mündler, Jingxuan He, Slobodan Jenko, and Martin T. Vechev. Self-contradictory hallucinations
of large language models: Evaluation, detection and mitigation. In The Twelfth International
Conference on Learning Representations (ICLR), 2024.

Su Nguyen, Mengjie Zhang, and Mark Johnston. A genetic programming based hyper-heuristic
approach for combinatorial optimisation. In Proceedings of the 13th annual conference on Genetic
and evolutionary computation, pp. 1299–1306, 2011.

Fernando Peres and Mauro Castelli. Combinatorial optimization problems and metaheuristics:
Review, challenges, design, and development. Applied Sciences, 11(14):6449, 2021.

Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and
Sumit Gulwani. Synchromesh: Reliable code generation from pre-trained language models. arXiv
preprint arXiv:2201.11227, 2022.

B Romera-Paredes, M Barekatain, A Novikov, et al. Mathematical discoveries from program search
with large language models. Nature, 625(7995):468–475, 2024.

Emilio Singh and Nelishia Pillay. A study of ant-based pheromone spaces for generation constructive
hyper-heuristics. Swarm and Evolutionary Computation, 72:101095, 2022.

Evgenii Sopov. A selection hyper-heuristic with online learning for control of genetic algorithm
ensemble. International Journal of Hybrid Intelligent Systems, 13(2):125–135, 2016.

Christos Voudouris and Edward Tsang. Guided local search and its application to the traveling
salesman problem. European journal of operational research, 113(2):469–499, 1999.

Mengting Wan, Tara Safavi, Sujay Kumar Jauhar, Yujin Kim, Scott Counts, Jennifer Neville, Siddharth
Suri, Chirag Shah, Ryen W White, Longqi Yang, et al. Tnt-llm: Text mining at scale with large
language models. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 5836–5847, 2024.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuristics
for solving routing problems. IEEE transactions on neural networks and learning systems, 33(9):
5057–5069, 2021.

Z Xiao, D Zhang, Y Wu, et al. Chain-of-experts: When llms meet complex operations research
problems. In The Twelfth International Conference on Learning Representations (ICLR), 2023.

H Ye, J Wang, Z Cao, et al. Reevo: Large language models as hyper-heuristics with reflective
evolution. arXiv preprint arXiv:2402.01145, 2024.

Hossam M Zawbaa, Eid Emary, Crina Grosan, and Vaclav Snasel. Large-dimensionality small-
instance set feature selection: A hybrid bio-inspired heuristic approach. Swarm and Evolutionary
Computation, 42:29–42, 2018.

Y Zhang, H Wang, S Feng, et al. Can llm graph reasoning generalize beyond pattern memorization?
arXiv preprint arXiv:2406.15992, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A HEURISTIC GENERATION EXAMPLE

A.1 GENERATE FROM LLMS INTERNAL KNOWLEDGE EXAMPLE

The following code is the original nearest neighbor heuristic for TSP, generated from LLMs’ internal
knowledge. The heuristic generation agent generates complete code with annotations, and here, for
brevity, some content is omitted.

Nearest Neighbor In TSP

def nearest_neighbor_f91d(
global_data: dict,
state_data: dict,
algorithm_data: dict,
get_state_data_function: callable

) > tuple[AppendOperator, dict]:
"""Implements the nearest neighbor heuristic for the TSP problem.
Starting from an first city, at each step extend the tour by moving from the current city to

its nearest unvisited neighbor.
Args:...
Returns:...
"""
Retrieve necessary data from global_data and state_data
...

If the tour is empty, start from first node.
if not current_solution.tour:

start_node = unvisited_nodes[0]
return AppendOperator(start_node), {}

If all nodes are visited, return an empty operator
if no unvisited_nodes:

return None, {}

min_cost = float(’inf’)
Find the nearest unvisited node to the last visited node
for node in unvisited_nodes:

cost = distance_matrix[last_visited][node]
if cost < min_cost:

nearest_node = node
min_cost = cost

Insert the nearest at the end of the current solution
return AppendOperator(node=nearest_node), {}

Some additional remarks:

• The function name ends with a unique 4-digit identifier (f91d in this example) to avoid
naming conflicts.

• The input consists of instance_data, state_data, and algorithm_data, which
store instance data, current state data, and control parameters, respectively. The
get_state_data_function receives a new solution and returns its state dictionary,
useful for validating operations in complex problems, though not used here.

• The output consists of the current solution’s operation and additional information.
In this example, AppendOperator(node) adds a node to the end of the cur-
rent tour. Other TSP heuristics may use InsertOperator, SwapOperator,
ReverseSegmentOperator, etc. Some algorithms may output additional informa-

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

tion for controlling subsequent processes (e.g., updated pheromone levels in ant colony
algorithms), but these are empty here.

A.2 LEARN FROM REFERENCE PAPER EXAMPLE

The following heuristic is generated from "Fast minimum-weight double-tree shortcutting for Metric
TSP: Is the best one good enough?" (Deineko & Tiskin, 2010) available at https://arxiv.org/
abs/0710.0318. Below is the main work summarized and judged by GPT-4:

Based on the content provided from the "Heuristic improvements" section, the
paper discusses two heuristic improvements for the minimum-weight double-tree
shortcutting algorithm: one aimed at increasing the speed and the other at improving
the approximation quality.

The first heuristic involves limiting the search across a subtree to a depth-k list of a
node for a chosen value of k, which dramatically improves running time without
significantly affecting approximation quality. The second heuristic expands the
search space by constructing a new tree that allows an enlarged tour neighborhood,
increasing the likelihood of finding a better solution.

These heuristic improvements are substantive and can be implemented in your
framework. The bounded neighbor lists and the degree-increasing operation can be
incorporated into the minimum-weight double-tree shortcutting algorithm to form
a new heuristic.

Given that we have detailed information on the algorithm and the heuristic improve-
ments, we appear to have enough to implement a heuristic for the TSP problem
based on this paper. We can name the heuristic based on the improvements outlined,
indicating the use of bounded neighbor lists and degree-increasing operations.

These are the heuristic descriptions from GPT-4:

Let G be a complete graph representing the TSP problem on n nodes, with a weight
function w: E(G) −→ R+ representing the distances between nodes. Let T be a
minimum spanning tree (MST) of G rooted at a node of degree 1. The heuristic
operates on T to generate a Hamiltonian cycle H approximating the optimal TSP
tour.

1. Depth-k limitation: Define a tree distance td(u, v) as the number of edges in
the unique path between nodes u and v in T. For a fixed parameter k, the heuristic
considers only nodes v in T(u) such that td(u, v) ≤ k when searching for minimum-
weight paths during the upsweep and downsweep stages of the algorithm.

2. Degree-increasing operation: For a node u in T with a child v that is not a leaf
and for which deg(u) + deg(v) ≤ D (a fixed parameter), redefine all children of v
to be children of u, effectively making v a leaf and expanding the search space for
tours.

The heuristic then constructs a Hamiltonian cycle H by shortcutting an Eulerian
tour of the doubled tree T’ obtained from T after applying the degree-increasing
operations. The shortcutting process ensures that for each node u in T, all nodes of
the subtree rooted at u appear consecutively in H.

These are generated code, here we only show the main heuristic function, which will generate the
complete code after actual execution:

14

https://arxiv.org/abs/0710.0318
https://arxiv.org/abs/0710.0318

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Double Tree Heuristic With Improvements In TSP

def double_tree_heuristic_with_improvements_d1fd(
global_data: dict,
state_data: dict,
algorithm_data: dict,
get_state_data_function: callable,
depth_k=2,
depth_D=5

) -> tuple[InsertOperator, dict]:
"""Double Tree Heuristic with Improvements heuristic algorithm for the TSP problem.
This heuristic is based on the minimum-weight double-tree shortcutting algorithm, with

enhancements for limited search depth and expanded tour neighborhoods.
Args:

...
depth_k (int): The depth limit for the limited search across subtrees (default: 2).
degree_D (int): The degree limit for the expanded tour neighborhood (default: 5).

Returns: ...
"""
Extract necessary data from global_data and state_data
...

Step 1: Construct the Minimum Spanning Tree (MST)
mst = construct_minimum_spanning_tree(global_data["distance_matrix"])

Step 2: Apply the degree-increasing operation to expand the tour neighborhood
expanded_tree = apply_degree_increasing_operation(mst, degree_D)

Step 3: Double the edges of the expanded tree to create an Eulerian graph
eulerian_graph = double_edges(expanded_tree)

Step 4: Find an Eulerian tour of the Eulerian graph
euler_tour = find_eulerian_tour(eulerian_graph)

Step 5: Perform depth-limited search to find minimum-weight shortcutting of
the Euler tour

shortcutting_path = depth_limited_search(euler_tour, depth_k)

Step 6: Convert the shortcutting path to a Hamiltonian cycle (tour) and update
the solution

hamiltonian_cycle = convert_to_hamiltonian_cycle(shortcutting_path)

Verify the new solution is valid before returning the operator
if not get_state_data_function(hamiltonian_cycle)[’is_valid’]:

return None, {} # If the solution is not valid, return None

Generate the operator that leads to the new solution
operator = generate_operator_from_hamiltonian_cycle(hamiltonian_cycle, cur-

rent_solution)
return operator, {}

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.3 TRANSFER FROM RELATED PROBLEM EXAMPLE

GPT-4 decomposes the CVPR and DPOSP, and maps the corresponding components, resulting in
Table3.

Table 3: Component Mapping from CVRP to DPOSP

CVRP Component DPOSP Component
vehicle production_line
node order

unvisited_nodes unfulfilled_orders
demands order_quantity

travel_time transition_time
service_time production_time

Based on the mapping in Table3, the GPT-4 can obtain the transferred code as:
Nearest Neighbor In CVRP

def nearest_neighbor_99ba(
global_data: dict, state_data: dict,
state_data: dict,
algorithm_data: dict,
get_state_data_function: callable

) -> tuple[AppendOperator, dict]:
"""Nearest Neighbor heuristic for CVRP.
This algorithm iterates over each vehicle, starting from the depot. For each vehicle, it

finds the nearest unvisited node and appends it to the route, respecting the vehicle’s capacity
constraints.

This process repeats until no further nodes can be visited without exceeding the vehicle’s
capacity or all nodes have been visited.

Args:...
Returns:...
"""
Retrieve necessary data from global_data and state_data
...
Iterate over each vehicle
for vehicle_id, remaining_capacity in enumerate(remaining_vehicle):

if not unvisited_nodes or remaining_capacity <= 0:
If there are no unvisited nodes or the vehicle has no remaining capacity, continue to

the next vehicle
continue

last_visited = depot if not current_solution[vehicle_id] else
current_solution[vehicle_id][-1]

nearest_node = None
min_distance = float(’inf’)
Find the nearest unvisited node that doesn’t exceed the vehicle’s capacity
for node in unvisited_nodes:

if demands[node] <= remaining_capacity
and distance_matrix[last_visited][node] < min_distance:
nearest_node = node
min_distance = distance_matrix[last_visited][node]

if nearest_node is not None:
position=len(current_solution[vehicle_id])
return InsertOperator(vehicle_id, nearest_node, position), {}

If no vehicle has no remaining capacity, return None
return None, {}

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Shortest Operation In DPOSP

def shortest_operation_ff40(
global_data: dict,
state_data: dict,
algorithm_data: dict,
get_state_data_function: callable

) -> tuple[AppendOperator, dict]:
"""Shortest Operation Heuristic for DPOSP.
This heuristic iterates over each production line and attempts to insert the shortest

unfulfilled order
that can be appended to the end of the production line’s schedule without violating any

constraints.
Args:...
Returns:...
"""
Retrieve necessary data from global_data and state_data
...

Check if there are any feasible orders to fulfill
if not feasible_orders_to_fulfill:

return None, {}

Sort unfulfilled orders based on their quantity (shortest first)
sorted_orders = sorted(feasible_orders_to_fulfill,

key=lambda order: order_quantity[order])

Iterate over each production line
for line_id in range(production_line_num):

Iterate over the sorted unfulfilled orders
for order_id in sorted_orders:

Check if the production line can produce the product
product_id = global_data["order_product"][order_id]
if production_rate[line_id][product_id] == 0:

continue
Generate a new schedule by appending the order to the selected production line
new_schedule = current_solution.production_schedule[line_id][:]
new_schedule.append(order_id)
Validate the new schedule
if validation_single_production_schedule(line_id, new_schedule):

If valid, create and return the InsertOperator
position=len(new_schedule) - 1
return InsertOperator(line_id, order_id, position), {}

If no valid operation is found, return None
return None, {}

B HEURISTIC EVOLUTION EXAMPLE

The following evolution codes show the evolution process for the nearest neighbor in TSP. The red
text indicates deleted content, and the green text indicates added content.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Evolution Round 1: Centroid Start And Consider Future Impact
...
If the tour is empty, start from node with the lowest average distance to all other nodes
if not current_solution.tour:

start_node = unvisited_nodes[0]
avg_distances = [np.mean([

distance_matrix[i][j] for j in range(node_num)])
for i in range(node_num)]

start_node = np.argmin(avg_distances)
return AppendOperator(start_node), {}

...
Utilize f(x) = d(l, x) + k * g(x) to weigh immediate and future node distances
future_ratio = algorithm_data.get("future_ratio", 0.20)
for node in unvisited_nodes:

min_distance = distance
future_cost = np.min([

distance_matrix[node][other]
for other in unvisited_nodes if node != other])

cost = distance_matrix[last_visited][node]
+ future_ratio * future_cost

if distance < min_distance:
nearest_node = node
min_distance = distance

...

Evolution Round 2: Sub-Central Nearest Start
...
If the tour is empty, start from node with the lowest average distance to all other nodes
if not current_solution.tour:

avg_distances = [np.mean([
distance_matrix[i][j] for j in range(node_num)

])for i in range(node_num)]
start_node = np.argmin(avg_distances)
start_node = np.argsort(avg_distances)[1]
return AppendOperator(start_node), {}

...

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Evolution Round 3: Search In Comparable Nodes
...
future_ratio = algorithm_data.get("future_ratio", 0.20)
significance_threshold = algorithm_data.get("significance_threshold", 0.30)
comparable_threshold = algorithm_data.get("comparable_threshold", 1.20)
nearest_node = min(unvisited_nodes,

key=lambda node: distance_matrix[last_visited][node])
nearest_distance = distance_matrix[last_visited][nearest_node]

If distance of nearest neighbor is significantly shorter than others, insert the
nearest neighbor

avg_distance = np.mean([
distance_matrix[last_visited][node] for node in unvisited_nodes])

if nearest_distance < significance_threshold * avg_distance:
return AppendOperator(node), {}

Evaluate multiple unvisited nodes with comparable distances
comparable_distance = comparable_threshold * nearest_distance
comparable_nodes = [node for node in unvisited_nodes

if distance_matrix[last_visited][node] <= comparable_distance]
for node in unvisited_nodes:
for node in comparable_nodes:

future_cost = np.min([
...

Evolution Round 4: Insert Position Optimization
...
best_increase = float(’inf’)
for node in comparable_nodes:

future_cost = np.min([
distance_matrix[node][other]
for other in unvisited_nodes if node != other])

cost = distance_matrix [last_visited][node]
+ future_ratio * future_cost

if distance < min_distance:
nearest_node = node
min_distance = distance

for i in range(len(current_solution.tour) + 1):
if i == 0:

next_node = current_solution.tour[0]
cost_increase = distance_matrix[node][next_node]

elif i == len(current_solution.tour):
prev_node = current_solution.tour[-1]
cost_increase = distance_matrix[prev_node][node]

else:
prev_node = current_solution.tour[i - 1]
next_node = current_solution.tour[i]
cost_increase = \

distance_matrix[prev_node][node] \
+ distance_matrix[node][next_node] \
- distance_matrix[prev_node][next_node]

if cost_increase < best_increase:
best_increase, best_node, best_position = cost_increase, node, i

return InsertOperator(node=best_node, position=best_position), {}

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Evolution Round 5: Endgame Optimal Search
...
future_ratio = kwargs.get("future_ratio", 0.20)
significance_threshold = kwargs.get("significance_threshold", 0.30)
comparable_threshold = kwargs.get("comparable_threshold", 1.20)
endgame_threshold = algorithmdata.get("endgame_threshold", 10)

If the number of unvisited nodes is less than the threshold, perform exhaustive
search

if len(unvisited_nodes) < endgame_threshold:
min_distance = float(’inf’)
for perm in permutations(unvisited_nodes):

Calculate the distance for the rest path, including: the distance between last visited
node and rest path’s start node, the total distance of rest path, and the distance between rest
path’s end node and whole path’s start node

path_distance =
distance_matrix[last_visited, perm[0]] \
+ sum(distance_matrix[perm[i], perm[i+1]] \

for i in range(len(perm) - 1)) \
+ distance_matrix[perm[-1], current_solution.tour[0]]

Update the shortest path
if path_distance < min_distance:

min_distance, best_path = path_distance, perm
return AppendOperator(best_path[0]), {}

best_increase = float(’inf’)
for node in comparable_nodes:

...

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Evolution Round 6: Frequent Refinement

future_ratio = kwargs.get("future_ratio", 0.20)
significance_threshold = kwargs.get("significance_threshold", 0.30)
comparable_threshold = kwargs.get("comparable_threshold", 1.20)
end_game_threshold = kwargs.get("end_game_threshold", 10)
apply_2opt_frequency = kwargs.get("apply_2opt_frequency", 5)
Apply the 2-opt heuristic periodically
N = len(current_solution.tour)
if N > 2 and N % apply_2opt_frequency == 0:

best_delta = 0
best_pair = None

for i in range(N - 1):
for j in range(i + 2, N):

if j == N - 1 and i == 0:
continue

a = current_solution.tour[i]
b = current_solution.tour[(i + 1) % N]
c = current_solution.tour[j]
d = current_solution.tour[(j + 1) % N]
current_cost = distance_matrix[a][b] + distance_matrix[c][d]
new_cost = distance_matrix[a][c] + distance_matrix[b][d]
delta = new_cost - current_cost

if delta < best_delta:
best_delta = delta
best_pair = (i + 1, j)

if best_pair:
return ReverseSegmentOperator([best_pair]), {}

If the number of unvisited nodes is less than the threshold, perform exhaustive search
if len(unvisited_nodes) < end_game_threshold:

...

C INTRODUCTION TO DPOSP

DPOSP involves multiple production lines, each capable of producing various products at different
production speeds. When switching between different products on the production line, transition
times are required, and no production occurs during these transitions. Each order specifies one
required product, quantity, and deadline. Each order must be produced in its entirety on a single
production line and completed before the deadline. Our objective is to maximize the number of
completed orders, with each order having the same priority regardless of the quantity required.

To formally describe DPOSP, we build the following optimization model:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Maximize
∑
i

∑
j

I(Xij ̸= 0) (1)

subject to
∑
i

∑
j

I(Xij = k) ≤ 1 ∀k (2)

sij =

{
0 if j = 1

ei,j−1 + ti,Pkj−1
,Pkj

if j > 1
(3)

eij = sij +
Qk

viPk

if Xij = k (4)

eij ≤ Dk if Xij = k (5)

where:

• Xij (Decision Variable): represents the j-th production action on the i-th production line,
where Xij ∈ {0, 1, . . . , k}, with Xij = k indicating production of order k and Xij = 0
indicating no production action.

• vip (Input Variable): production speed of production line i for product p.
• ti,p,p′ (Input Variable): transition time for production line i from product p to product p′.
• Qk (Input Variable): quantity required for order k.
• Pk (Input Variable): product required for order k.
• Dk (Input Variable): deadline for order k.
• sij (Intermediate Variable): start time of the j-th production action on production line i.
• eij (Intermediate Variable): end time of the j-th production action on production line i.
• I(·) (Indicator Function): equals 1 if the condition is true, and 0 otherwise.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

D EXPERIMENT SETTINGS

Table 4: Detailed Parameters and Settings

Feild Item Value

LLM Setting GPT-4, version 2024-05-01-preview, temperature 0.7, top-p 0.95, max tokens 1600

TSP

Data Source http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
Test Data tsp225, a280, pcb442, pa561, gr666, pr1002, pr2392

Validation Data brg180, eil101, gr202, pr124, pr152, rd100, u159
Training Data 20 cases that sampled from other instances

Generated(Evolved, Selected) Heuristics

ant colony, cheapest insertion, farthest insertion, greedy algorithm,
greedy randomized adaptive search procedure grasp

nearest insertion, nearest neighbor, random pairwise insertion,
insertion heuristics, simulated annealing, 2opt, 3opt

CVRP

Data source http://vrp.galgos.inf.puc-rio.br/index.php/en/
Test Data A-n80-k10, B-n78-k10, E-n101-k14, F-n135-k7, M-n200-k17, P-n101-k4, X-n1001-k43

Validation Data A-n63-k10, B-n67-k10, E-n76-k10, F-n45-k4, M-n101-k10, P-n70-k10, X-n101-k25
Training Data 20 cases that sampled from other instances

Generated(Evolved, Selected) Heuristics farthest insertion, greedy, min cost insertion, nearest neighbor
node shift between routes, petal algorithm, saving algorithm, three opt, two opt

JSSP

Data source https://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/
Test Data LA05, LA10, LA15, LA20, LA25, LA30, LA35

Validation Data LA01, LA06, LA11, LA16, LA21, LA26, LA31, LA36
Training Data 20 cases that sampled from other instances

Generated(Evolved, Selected) Heuristics
first come first served, least work remaining, longest job next,

longest processing time first, most work remaining, shift operator,
shortest job next, shortest processing time first, 2opt, 3opt

MaxCut

Data source https://grafo.etsii.urjc.es/optsicom/maxcut.html#instances
Test Data g10, g20, g30, toursg3-15, toursg3-8, tourspm3-15-50, tourspm3-8-50

Validation Data g1, g11, g21, g41, g51, sg3dl051000, sg3dl052000, sg3dl053000, sg3dl054000
Training Data 20 cases that sampled from other instances

Generated(Evolved, Selected) Heuristics balanced cut, greedy swap, highest delta edge, highest delta node,
highest weight edge, most weight neighbors, multi swap 2, simulated annealing

MKP

Data source https://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/
Test Data gmknap1 _1, mknap1 _7, mknapcb9-01, mknapcb9-11, mknapcb9-21, PB7.DAT, WEING1.DAT

Validation Data mknap1 _2, mknap1 _6, mknapcb9-02, mknapcb9-12, mknapcb9-22, PB1.DAT, SENTO1.DAT
Training Data 20 cases that sampled from other instances

Generated(Evolved, Selected) Heuristics
block flip, greedy by cost benefit, greedy by density, greedy by least remaining capacity,

greedy by profitto weight ratio, greedy by profit, greedy by resource balance,
greedy by weight, greedy improvement, k flip, single swap heuristic, two opt

DPOSP

Data source Sampled from distribution

Generated(Evolved, Selected) Heuristics

exchange production orders, farthest deadline insertion, greedy by order density,
greedy deadline proximity, greedy order selection, least order remaining,

longest order next, maximum remaining work order, nearest order scheduling,
order shift between lines, random, shortest operation, shortest order next, 2opt production sequence

Heuristic evolution setting Max evolution round 7
Running time limitation within 3 times of the original heuristic

Perturbation ratio 0.1
Max perturbation times 1000

Max filterd number for next round 3

Heuristic selection setting Max steps 2 times of task num (such as node num in TSP, order num in DPOSP)
Max feature context length 1000

Queries Number for Evolution

EoH Fixed strategies * population maximum iterations
5 * 10 * 20 = 1000 in our experiment for nearest neighbor

ReEvo related to population size and evolution
112 in our experiment for nearest neighbor

HeurAgenix varies based training samples, perturbation success rate, and bottleneck number
228 in our experiment for nearest neighbor

GLS setting GLS searhing time 10s

E DETAILED EXPERIMENT RESULT

From the benchmark evaluation agent, we can get various features for both the instance and the
solution. Despite the fluctuating outputs of the LLM, the core essential features can be extracted.
Table 5 displays the common features of classic CO problems.

Table 6 shows the average gap of base heuristics (without ∗) from the heuristic generation agent and
evolved heuristics (with ∗) from the heuristic evolution agent.

From Table 6, we can observe the following points:

• The same heuristic can perform differently under different data distributions. For example,
the "farthest insertion" heuristic for the CVRP problem performs particularly well on datasets
B-n78-k10, E-n101-k14, and F-n135-k7, but not on others. This verifies the statement that
the performance of heuristics is significantly influenced by the diversity of problem data in
Section 3.2.2.

• Most heuristics show significant improvement after evolution. For instance, in the TSP
problem, the evolved "nearest neighbor" heuristic consistently outperforms the base heuristic
across all datasets.

23

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
http://vrp.galgos.inf.puc-rio.br/index.php/en/
https://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/
https://grafo.etsii.urjc.es/optsicom/maxcut.html##instances
https://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 5: Features from benchmark evaluation agent. Commonly considered features by the heuristic
selection agent are in bold.

Instance data feature Current solution feature

TSP node num, average distance, std dev dis-
tance, edge length distribution

visited num, current cost, last visited,
nearest neighbors for last visited, unvisited
edge length distribution

CVRP task num, vehicle num, capacity, average
demands, average distance, edge length
distribution

finished tasks, current cost, max vehi-
cle loads, min vehicle loads, average ve-
hicle loads, fulfilled demands, remaining
demands

JSSP job operation sequence, job operation
time, job num, machine num, total pro-
cessing times

finished jobs, job operation index, job last
operation end times, machine last operation
end times, current makespan

MaxCut total nodes, total edges, average weights,
min weights, max weights, positive weight
num, negative weight num

selected num, set a count, current cut
value, average weight for unselected node

MKP item num, resource num, average profit,
max profit, min profit, average weight, max
weight, min weight, average capacity, max
capacity, min capacity

current profit, current weight, remaining
capacity, selected num, profit per remain-
ing capacity

Table 6: Detailed heuristic generation and evolution experiment result. Heuristics without an (*) are
basic heuristics that generated by the heuristics generation agent and heuristics with (*) are evolved
heuristics that evolved by the heuristic evolution agent.

Problem Heuristic Data

tsp

tsp225 a280 pcb442 pa561 gr666 pr1002 pr2392
nearest neighbor 28.35 22.41 22.03 23.85 24.67 27.82 21.99

nearest neighbor(*) 5.31 10.00 11.99 8.76 13.72 9.74 12.9
farthest insertion 18.12 23.85 22.31 24.14 17.7 19.56 21.7

farthest insertion(*) 10.41 5.00 7.83 9.55 9.86 11.92 11.86
cheapest insertion 14.49 13.07 18.86 21.5 19.19 25.01 28.82

cheapest insertion(*) 7.43 8.10 8.23 8.54 14.98 11.16 11.74

cvrp

A-n80-k10 B-n78-k10 E-n101-k14 F-n135-k7 M-n200-k17 P-n101-k4 X-n1001-k43
nearest neighbor 33.26 43.98 55.39 54.22 56.00 49.93 19.54

nearest neighbor(*) 25.63 37.26 47.27 34.89 41.84 29.83 11.50
farthest insertion 29.57 36.94 85.10 23.84 104.00 30.10 40.16

farthest insertion(*) 26.61 33.61 44.44 23.32 47.02 28.09 22.10
cheapest insertion 20.60 42.92 39.93 41.82 36.00 38.03 17.12

cheapest insertion(*) 17.73 37.85 30.61 28.93 32.65 32.75 9.90

JSSP

LA05 LA10 LA15 LA20 LA25 LA30 LA35
most work remaining 12.31 27.77 25.19 55.65 53.02 43.47 36.55

most work remaining(*) 0.00 41.13 29.01 20.93 25.93 18.01 37.05
first come first serve 200.0 253.03 227.17 332.93 522.72 524.06 508.42

first come first serve(*) 38.84 47.86 46.45 36.11 40.31 28.71 39.81
shortest processing time first 141.82 127.77 161.56 235.81 381.99 290.77 316.15

shortest processing time first(*) 16.32 25.17 20.65 29.08 37.43 29.44 83.06

MaxCut

g10 g20 g30 toursg3-8 toursg3-15 tourspm3-8-50 tourspm3-15-50
most weight neighbors 25.93 28.80 29.89 24.22 22.46 25.99 24.43

most weight neighbors(*) 16.80 18.07 19.01 18.21 14.38 17.62 15.52
highest weight edge 59.58 45.06 56.10 44.18 36.57 36.56 35.83

highest weight edge(*) 17.85 14.13 18.22 13.27 11.37 14.10 15.38
balance cut 96.29 95.54 99.82 98.75 98.73 98.24 99.87

balance cut(*) 14.24 18.07 14.49 13.32 13.18 21.59 24.43

MKP

mknap1_1 mknap1_7 WEING1.DAT PB7.DAT mknapcb9-01 mknapcb9-11 mknapcb9-21
greedy by profit 36.84 16.17 3.97 15.36 12.55 3.94 2.52

greedy by profits(*) 0.00 4.26 3.97 15.36 12.55 3.94 2.52
greedy by weight 36.84 38.68 33.24 43.19 27.01 21.46 10.79

greedy by weight(*) 0.00 0.00 9.24 6.99 7.27 7.36 3.13
greedy by dense 0.00 4.26 1.42 1.26 5.27 2.49 1.50

greedy by dense(*) 0.00 0.00 1.40 1.06 2.69 1.35 1.07

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

• The heuristic evolution agent effectively improves heuristics, even the origin heurisitic
performance is poor. For example, the "first come first serve" heuristic for the JSSP problem
and the "balance cut" heuristic for the MaxCut problem both show substantial improvements
after evolution.

• Similar to machine learning algorithms, heuristic evolution effectiveness is influenced by
training data. In some cases, "overfitting" may occur, leading to poor results on certain
datasets. For instance, the "most work remaining" heuristic for the JSSP problem performs
poorly on the LA10, LA15, LA35 dataset, indicating potential overfitting.

Table 7 shows the average gap of LLM selection from basic heuristics(LLM (B)), LLM selection
from evolved heuristics (LLM (E)), random selection from basic heuristics (Random (B)) random
selection from evolved heuristics(Random (E)).

Table 7: Detailed heuristic selection experiment result. Each experiment was conducted multiple
times and the ± represent the standard errors of the mean (SEMs) for the results. The best results are
highlighted in bold, and the second-best results are underlined.

Problem Function Data

TSP

tsp225 a280 pcb442 pa561 gr666 pr1002 pr2392
LLM (B) 7.2±0.99 9.79±1.06 6.73±1.59 9.86±0.82 9.07±0.85 8.45±0.4 10.21±1.58
LLM (E) 3.96±1.07 7.06±1.55 10.81±1.29 6.88±1.2 7.45±0.8 5.29±1.15 6.82±0.42

Random (B) 48.61±3.48 63.55±12.73 65.03±9.62 63.92±6.85 90.28±11.5 98.48±19.97 38.37±5.5
Random (E) 12.02±3.62 19.92±5.56 14.88±4.73 17.27±8.61 22.02±9.77 31.74±2.89 20.57±7.03

CVRP

A-n80-k10 B-n78-k10 E-n101-k14 F-n135-k7 M-n200-k17 P-n101-k4 X-n1001-k43
LLM (B) 26.14±6.0 29.2±8.88 43.28±4.48 41.95±6.68 41.78±4.59 27.49±5.6 23.62±3.24
LLM (E) 13.12±0.17 20.57±1.6 21.83±0.79 10.62±1.16 17.18±0.72 6.74±0.67 7.49±1.92

Random (B) 58.73±3.04 72.6±4.54 79.74±6.29 105.63±2.31 128.6±5.28 94.39±5.21 130.69±2.27
Random (E) 23.57±9.65 51.62±4.71 33.64±4.35 37.0±2.34 42.88±14.48 31.07±8.08 21.26±3.11

JSSP

LA05 LA10 LA15 LA20 LA25 LA30 LA35
LLM (B) 21.92±18.36 10.68±5.92 22.78±7.56 34.24±11.15 40.57±12.36 38.45±15.65 18.49±2.91
LLM (E) 0.00±0.00 0.00±0.00 6.17±0.53 6.18±2.44 6.86±0.26 10.17±0.78 12.8±0.87

Random (B) 23.24±5.12 17.49±2.67 26.91±1.48 60.89±7.72 62.21±7.08 53.49±7.76 44.94±3.12
Random (E) 12.2±2.2 10.2±4.2 9.09±4.44 34.19±3.53 18.83±1.87 12.14±2.51 10.74±4.73

MaxCut

g10 g20 g30 toursg3-8 toursg3-15 tourspm3-8-50 tourspm3-15-50
LLM (B) 7.97±0.72 9.86±1.22 9.73±0.46 8.35±0.0 6.65±0.21 9.14±0.91 8.3±0.0
LLM (E) 1.85±1.69 2.59±1.91 3.84±0.88 2.45±0.86 3.5±2.02 3.55±2.66 4.2±1.43

Random (B) 12.34±1.09 10.39±0.64 12.35±0.66 11.79±0.78 8.35±1.15 13.04±0.83 10.27±1.01
Random (E) 4.63±1.44 8.73±2.4 7.06±2.08 6.3±2.11 8.2±1.26 10.25±1.67 6.7±1.71

MKP

mknap1_1 mknap1_7 WEING1.DAT PB7.DAT mknapcb9-01 mknapcb9-11 mknapcb9-21
LLM (B) 11.65±5.26 13.69±4.53 4.51±2.11 4.93±0.56 5.05±2.14 8.14±4.88 1.5±0.26
LLM (E) 0.00±0.00 0.00±0.00 1.83±1.83 1.96±0.6 1.08±0.8 2.23±0.93 0.9±0.45

Random (B) 29.47±6.59 13.89±0.47 4.12±0.84 8.7±2.74 11.08±2.36 13.9±6.14 3.24±0.83
Random (E) 0.00±0.00 4.56±0.24 4.31±0.82 8.38±3.52 6.41±2.62 6.14±3.3 4.67±0.46

From Table 7, we can observe the following points:

• In most case, the result from LLM selection is better than single heuristic and random
selection.

• Selection from the evolved heuristics improved overall quality and reduced fluctuations in
performance.

• Random selection performs worse than many single heuristic algorithms because poorly
performing heuristics still have a chance of being selected.

We compare our evolution mothed with EoH and ReEvo by evolution nearest neighbor in TSP. Table 9
shows the average gap from evolved heurisitcs. EoH (GPT-4) and ReEvo (GPT-4) are reran on GPT-4
and ReEvo with default parameters, and result for ReEvo (GPT-3.5 Turbo) is sourced from ReEvo’s
paper.

The results in Table 8 show that our method (HeurAgenix , GPT-4) generally outperforms both EoH
and ReEvo methods. The query count for EoH is fixed as 5 strategies * 10 population * 20 maximum
iterations = 1000 queries in EoH (GPT-4). The query count for ReEvo is related to population size
and evolution iterations with some fluctuations from LLM, and in this experiment the total number
of queries for ReEvo (GPT-4) is 112. Our HeurAgenix has a query count that varies based on the
number of training samples, perturbation success rate, and the number of bottlenecks identified per
iteration, leading to some instability. In this experiment, the total number of queries for HeurAgenix
is 228.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 8: TSP heuristic evolution experiment based on nearest neighbor. "-" indicates that the heuristics
did not complete within the time limit (one hour). The best results are highlighted in bold. The
nearest neighbor result is different from ReEvo because their implementation starts with a random
selection while ours is fixed to the first node. The upper part is the test dataset in ReEvo, and the
lower part is our data with large number of nodes.

Instance nearest neighbor EoH (GPT-4) ReEvo (GPT-3.5 Turbo) ReEvo (GPT-4) Ours (GPT-4)

ts225 20.41 18.33 6.6 6.02 8.5
rat99 28.32 19.49 12.4 9.46 7.84

rl1889 22.98 24.39 17.5 - 10.2
u1817 25.92 22.28 16.6 - 11.08
d1655 19.16 15.09 17.5 - 12.85

bier127 14.76 14.63 10.8 12.49 10.2
lin318 28.53 21.82 16.6 13.58 8.55
eil51 19.95 9.86 6.5 7.38 6.1
d493 19.04 22.03 13.4 11.3 18.2

kroB100 31.69 9.84 12.2 12.66 12.88
kroC100 26.4 16.71 15.9 14.17 9.49

ch130 24.04 7.81 9.4 11.54 10.59
pr299 24.28 19.41 20.6 19.89 11.4
fl417 26.57 29.58 19.2 16.56 7.58
d657 26 23.71 16 16.56 9.41

kroA150 26.8 27.88 11.6 14.16 10.44
fl1577 25.83 20.81 12.1 - 5.06
u724 26.33 23.87 16.9 18.1 11.04
pr264 18.09 17.6 16.8 15.32 11.73
pr226 17.81 30.61 18 20.07 7.74
pr439 22.44 22.89 19.3 18.4 7.73

average gap 23.59 19.94 14.57 13.98 9.93
tsp225 28.35 25.11 18.32 9.33 5.31
a280 22.41 17.56 12.49 15.61 10.00

pcb442 22.03 29.56 16.85 15.86 11.99
pa561 23.85 20.09 15.6 16 8.76
gr666 24.67 19.1 21.91 21.91 13.72

pr1002 27.82 26.28 21.87 19.96 9.74
pr2392 21.99 22.86 - - 12.91

average gap 24.45 22.94 17.84 16.44 10.35

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

We employ our evolved nearest neighbor generating init solution for GLS. Table 9 shows average
gap.

Table 9: Comparison of TSP combination experiments with GLS using initial solutions from nearest
neighbor (NN). NN(*) refers to the evolved nearest neighbor heuristic from HeurAgenix , and dist(*)
refers to the updated distance matrix in EoH’s paper. The best results are highlighted in bold. The
upper part is the test dataset in EoH, and the lower part is our data with large number of nodes.

Instance NN NN + GLS NN(*) + GLS NN + dist(*) + GLS NN(*) + dist(*) + GLS

rd100 25.64 9.22 5.12 0.00 0.00
pr124 17.39 2.44 1.45 0.00 0.00

bier127 14.76 1.78 1.36 0.40 0.28
kroA150 26.8 7.1 5.82 0.00 0.00

u159 29.93 5.78 2.91 0.00 0.00
kroB200 25.92 5.61 6.09 0.20 0.32

average gap 23.41 5.32 3.79 0.1 0.1
tsp225 28.35 4.09 5.31 0.23 0.00
a280 22.41 7.6 5.27 0.23 0.19

pcb442 22.03 7.91 3.46 1.03 0.91
pa561 23.85 5.79 5.36 3.4 2.71
gr666 24.67 6.74 4.29 3.05 2.81

pr1002 27.82 7.5 5.52 4.56 3.53
pr2392 21.99 4.81 3.87 4.81 3.35

average gap 24.45 6.35 4.73 2.47 1.93

The experimental results in Table 9 show that our evolved nearest neighbor heuristic generally
provides better performance when combined with GLS, compared to the standard nearest neighbor.
Furthermore, the combination of our evolved nearest neighbor with the updated distance matrix from
EoH and GLS also outperforms the corresponding standard nearest neighbor combination. This
demonstrates that a better initial solution can enhance the effectiveness of hyper-heurisitics.

F COMMON STRATEGIES FOR HEURISTIC SELECTION

The strategies employed by the heuristic selection agent generally fall into four categories:

1. Select a constructive heuristic(e.g. nearest neighbor in TSP) to build an initial solution, then
optimize it using improvement heuristics (e.g. 2-opt in TSP) until no further optimization is
possible.

2. Try multiple constructive heuristics, observe feedback from the benchmark evaluation agent,
select the best one, and then optimize the solution using improvement heuristics.

3. Switch different constructive and improvement heuristics based on different solution features
during execution.

4. Try different combinations of constructive and improvement heuristics to find the optimal
combination, and then run these fixed combinations.

Strategies 3 and 4 generally yield better results, indicating that real-time execution of improvement
heuristics is more effective than first building and then optimizing the solution.

G DETAILED PROCESS AND PROMPT

In this section, we introduce the detailed process with prompt. {Placeholders} will be replaced with
actual content content during program execution automatically.

Standard Response Format

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Each prompt ends with a standardized response format, the key is a task-specific keyword
recognizable by the next program, and we will omit in subsequent prompts for brevity.

Standard Response Format
The response format is very important. For better communication,
please respond to me in this format:
key:xxx
Ensure there is no other content inside the ***, and analysis outside
*** are welcome.
If you have no information to provide, simply respond with ***None***.

Background

All tasks require background information, including problem description, data structure,
code format, etc. Therefore, background are shared for varous tasks.

Background
I am working on Hyper-heuristics for Combinatorial Operation (CO)
problem.
In this conversation, I will introduce the problem and then framework
we have built now, you just remember this.
In next conversation, I will describe the challenges I’m encountering
and explore how we can collaborate to resolve them.

Currently, I am working on {problem} problem:
{problem_description}

To support different heuristic algorithms, I build the Solution and
Operator framework.
The Solution is designed as:
{solution_class}
Operator servers as a mechanism to modify solution, which enables the
application of heuristic algorithms.
To support heuristic algorithm, we have build the following operators:
{operator_class}

In pursuit of augmenting our heuristic algorithmic suite, we require
the following standardized heuristic function signature:
def heuristic(instance_data: dict, solution_data: dict,
algorithm_data: dict, get_solution_data_function: call) ->
tuple[TargetOperatorType, dict]:
The inputs are:
instance_data contains the instance data with:
{instance_data_introduction}
solution_data contains the solution data with:
{solution_data_introduction}
algorithm_data contains the hyper-parameters that necessary to control
algorithms.
get_solution_data_function is the function that receives the new
solution as input and return the state dictionary for new solution.
It will not modify the origin solution.
The outputs includes the operator that must be an instance of a
predefined target operator type and updated algorithm dict, which
contains new information for future work for both this or other
algorithm.

Please commit to memory the problem and our constructed framework.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

G.1 HEURISTIC GENERATION

Generate From LLM

Generate From LLM
I need your help to implement some basic heuristic for this problem
{problem}.

Learn from Paper:

The detailed steps to learn from paper are as follows:

1. Decompose Paper: Decompose the paper into the abstract and various sections.

2. Read Abstract: The LLM reads the abstract to determine if the paper is relevant to the
problem. If it deems the paper irrelevant or unsuitable for generating heuristics, the process
is abandoned.

3. Identify Interesting Sections: If the abstract is relevant, the LLM identifies sections of
interest, and we provide the content of these sections to the LLM.

4. Evaluate And Generate: Based on the section LLM chooses to 1) generates the heuristic;
2) abandons this paper; 3) continues to read additional sections.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Reading Paper Abstract
Here I will introduce a related paper for {problem}.

The title of this paper is:
{title}
The abstract of this paper is:
{abstract}

If you think we can not generate heuristic from this paper, we will
skip this paper.
If you think we can generate heuristic from this paper, we can work
in this way: you provide the interested section and I provide the
content, until you think you rea ready to implement the code.

Please consider whether we can generate heuristic for {problem}:
1. Consider whether this paper is related to {problem}.
2. Consider whether this paper is suitable to generate heuristic, for
example some paper are related to this problem, but it is based on NN,
not heuristic, we have to ignore this paper.

Also remember we just generate one heuristic for this paper, so keep
focus on the best heuristic author claimed in paper.

Read Paper Section
Since this paper is suitable to generate heuristic for {problem}, we
start to read.
The previous section you are interested in is: {last_interested_section}.
The content is:
{last_interested_content}

This is all sections in dict format:
{remaining_section_dict}

Please consider whether the read content are enough for you to generate
the heuristic for {problem}.
1. If you think you are ready to implement the heuristic, respond to
me the heuristic name.
2. If you think you need to read more, respond to me the heuristic
name.respond to me the interested sections.
3. If you think we can not generate heuristic from this paper, respond
to me None.
Please select at most one section each time, and the section name
should align with provided dict.
Also to avoid the content is too large, we can start from leaf section.

Transfer From Related Problem

The detailed steps to transfer from related problem are as follows:

1. Decompose New and Source Problems: The LLM decomposes the new problem and
source problems into components.

2. Try to Match Components: The LLM compares the components of the new problem with
those of known problems to identify if heuristics from these problems can be leveraged.

3. Read Source Heuristics: If heuristics from known problems can be leveraged, the LLM
reads the heuristics from these problems.

4. Evaluate And Transfer: For each heuristic, if the LLM determines it can be transferred, it
translates the components and begins the transfer process; otherwise, skip this heuristic.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Reference Problem
This problem is a new classical problems, we can reference from some
classical problems.
We have already studied the following problems:
{studied_problems}

Please tell me which of these questions are relevant to our current
research.

Mapping Component In Problem
Now, try to analysis the similarities between {referenced_problem} and
this new problem {problem}

this is introduction for {referenced_problem}:
{referenced_problem_description}

Now I hope to decompose these 2 problems, find the similarities between
{referenced_problem} and this new problem {problem}, and mapping some
components.

Reference Heuristic
OK. Now let’s review the all heuristic we have built for
{referenced_problem}:
{candidate_heuristic_pool}

Tell me, which heuristics can be transfer into {problem}?
It can be transferred from a single heuristic or multiple heuristics.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Mapping Component In Heuristic
Now, we have already found the similarities between
{referenced_problem} and this new problem {problem}:
{similarities_in_problem}

To support {referenced_problem}, I build the Solution and Operator
framework.
The Solution is designed as:
{referenced_problem_solution_class}
Operator servers as a mechanism to modify solution, which enables the
application of heuristic algorithms.
To support heuristic algorithm, we have build the following operators:
{referenced_problem_operation_class}

This is the code for {referenced_heuristic}:
{referenced_heuristic_code}

instance_data in {referenced_heuristic} contains the instance data
for {referenced_problem} with:
{referenced_instance_data_introduction}
solution_data in {referenced_heuristic} contains the solution data for
{referenced_problem} with:
{referenced_solution_data_introduction}

Try to make up the similarities between {referenced_heuristic} and
this new problem {problem}.
If no more similarities, return me ***similarities:None***

Transfer Heuristic
Let’s try to transfer {referenced_heuristic}.

First generate a new heuristic name for this new heuristic and also
a new detailed description to guide us how to get the new heuristic
description for {problem}.
Please consider the differences between {referenced_heuristic} and the
new problem that may lead to different algorithms.
By the way, the last 4 digits after last ’_’ are identifiers and we can
ignore in new_heuristic_name.

Implement Code

LLM generates the detailed heuristic design with some common reminders, including spec-
ified input/output data formats, required libraries, annotations, and edge case considerations, etc, and
then translates the design into code.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Implement Code
Based on previous discuss, we get the heuristic {heuristic_name}:
{description}
Now please implement it in python function {function_name}.
To implement this heuristic function in python, please note:
1. We can assume that Solution and all Operators are imported in
"src.problems.{problem}.components".
2. The operator type must be defined previously, do not create a new
one.
3. Never modify the instance_data, state_data and algorithm data.
4. All hyper parameters in algorithm_data should be set a default
value, and use as algorithm_data.get("xx", default_value).
5. Any reasonable partial solution may be used as input, such as an
empty solution.
6. Comments in the code are very important. They must clearly explain
which data are required by the algorithm, how the algorithm proceeds,
and under what circumstances it will not return any operator or will
return an empty operator. We hope that people can understand the
principles and workflow of the algorithm clearly just by reading the
comments, without needing to look at the code.
7. The name of function must be {function_name}.
8. No any omissions or placeholders, I’m just going to use the code.
9. For the algorithm to update the algorithm_data, do not modify
directly "algorithm_data["abc"] = 123", we should return operator,
{"abc": 123}.
10. For the circumstances that algorithm return empty operator, please
return None, {}.
11. Make the result must be valid.

Detailed Heuristic Design
Before implementing the heuristic, we need to verify its feasibility.
Therefore, we will first attempt to translate this description into
rigorous detailed design.

Please note:
1. The heuristic function yields an Operator, a construct intricately
designed to manipulate Solution instances.f the goals of the heuristic
do not align with the existing Solution structure, it will be
necessary to modify the algorithm so that it is compatible with the
current Solution classes. In the event that such modifications prove
impossible, we may need to consider discontinuing the use of the
algorithm.
2. The state and instance_data have been detailed previously. It
is essential to determine whether the heuristic’s logic requires
any additional information beyond what has been provided. If the
heuristic logic naturally requires more data, please indicate this
by returning "reasonable_input: we need xxx inputs" and we will halt
the implementation.
3. The type of returned operator that the algorithm can potentially
yield have been enumerated above. If the heuristic logic naturally
leads to an operator type that is not listed, please indicate this by
returning "reasonable_output: we need xxx operator" and we will halt
the implementation.
4. Currently our framework only support the single tour solution, so
the heuristic algorithm must works on this design. We can not merge
and fusion of two or more solutions to get a new solution.
5. We must assume that operator will run on current solution outside
heuristic algorithm.
Now let’s consider the logic for {heuristic_name}: {description}
This involves evaluating whether the algorithm’s intrinsic logic can
be expressed within our Solution, and Operator constructs without
necessitating further data or operator types.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Smoke Test

The detailed steps for smoke test are as follows:

1. LLM predicts heuristic output: The LLM predicts the heuristic’s output based on the
detailed heuristic description and smoke data.

2. Run heuristic in environment: We set up the environment and run the heuristic in smoke
data.

3. Validation and adjustment:

(a) Crash: If the run fails, return the exception to the LLM to further adjust the code until
it is correct or abandon the heuristic.

(b) Inconsistent Results: If the run is successful but the results are inconsistent, return
both the expected and actual results to the LLM, and further adjust until correct or
abandon the heuristic.

(c) Successful Test: If the run is successful and the results are consistent with expectations,
the code passes the test.

Smoke Test Expected Result
To verify whether the code is correct, we conducted a smoke test.
This is the test data:
{smoke_instance_data}

We run the following operations:
{previous_operations}

The current solution are
{smoke_solution}
with detailed data
{smoke_solution_data}

First think about what the expected output is.

Smoke Test Compare
In fact we run the {function_name} once, and now we got the output
operation from {function_name}:
{output_result}

The updated solution are
{updated_smoke_solution}
with detailed data
{updated_smoke_solution_data}

Please compare with your expected result: {expected_result}
1. If the result is aligned with your target output, respond to me
python_code:correct and we will save the code and finish this
generation.
2. If the result is not aligned with your target output and you can
not generate correct one, respond to me ***python_code:None*** and we
will stop this generation.
3. If the result is not aligned with your target output and you can
fix up this issues, update the python code in previous format.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Smoke Test Crashed
To verify whether the code is correct, we conducted a smoke test.
This is the test data:
{smoke_instance_data}

While executing {function_name} with the given dataset, the program
encountered an error and crashed. The following error message was
displayed:
{error_message}

Please try to fix it. 1. If you think this heuristic can not be
implemented, respond to me ***python_code:None*** and we will stop
this generation.
2. If you can fix up this issues, please update the python code in
previous format.

G.2 SINGLE ROUND EVOLUTION

The detailed steps for single-round evolution are as follows:

1. Generate Comparison Data

(a) Run Heuristic: Use the heuristic and training data to generate an initial solution as the
original solution.

(b) Perturbation For Better Solution: Continuously perturb the original solution until a
better solution is found, or abandoned if no better solution is found.

2. Identify bottlenecks

(a) Decompose: Decompose both solutions.

(b) Identify Bottlenecks: LLM identifies differences and identifies core differences that
potentially impact solution quality, marking them as potential bottlenecks.

3. Validate Each bottleneck

(a) Reproduce Scenario: For each bottleneck, we reproduce the scenario before them
independently.

(b) Propose Suggestion: The LLM proposes suggestion to replace the bottleneck.

(c) Verify Suggestion: We validate by replacing the bottlenecks with proposed suggestion
to test the suggested alternatives.

(d) Raise Experience: If performance improves, LLM try to summarize this case and
extract the suggestion; otherwise, we skip.

4. Update Heuristic

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Compare Solution
In this instance, I have developed a heuristic function, although its
performance has not reached a satisfactory level. My goal is to learn
from case studies to improve and optimize this heuristic. To achieve
this, I will provide the following:
1. The heuristic function code.
2. Test data for evaluation.
3. Negative solution from heuristic function.
4. Positive solution from external.

The function {function_name} is the heuristic function:
{function_code}

The instance data for this problem:
{instance_data}

Negative solution from {function_name}:
{negative_solution}

Positive solution from external:
{positive_solution}

Please based on the data and solution, compare the difference between
these two solution and list the difference.

Decompose Solution
Then we decompose the solution.

The positive solution leads {positive_result} with the following
trajectory:
{positive_trajectory}
The negative solution leads {negative_result} with the following
trajectory:
{negative_trajectory}

Now we hope to analysis in operation level why negative operations
leads to poor performance.

Please note:
1. Some operations look different, but actually express the same
effect.

Identify Bottleneck
Now, we hope to pick out the bottleneck operations in negative
solution.
Please note:
1. Some operations, although they appear different, are essentially
the same.
2. Some operations may lead to solutions that look different but are
essentially the same.
3. Some operations may cause changes to the solution but do not affect
the final cost; these are not considered bottlenecks.
4. When an operation A is performed poorly, leading to a series of
subsequent operations experiencing issues, we consider the first
operation A to be a bottleneck.

Please remember that these results were produced by {function_name},
and we hope to use them to identify the weaknesses of {function_name}.
Combine the solution_difference and operation difference before, try to
find out the bottleneck operations ids.
The negative solution leads {negative_result} with the following
trajectory:
{negative_trajectory}

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Propose Operation
Now focus on {bottleneck_operation_id}: {bottleneck_operation}.

Do not forget the instance data for this problem:
{instance_data}

The state before {bottleneck_operation} is:
{solution_data}

Please consider whether there is better operations in step
{bottleneck_operation_id} than {bottleneck_operation}.
To analyze the operation, we must delve into the detail design that
underpin it in following aspects:
1. How can we get this operations, we need to analysis and calculate
to get this operation.
2. Why this operation is superior.
3. Examine the commonality of this phenomenon and identify any
specific conditions under which this operation is particularly suitable
or optimal, including instance data’s conditions or current state’s
conditions.

Extract Suggestion
To evaluate the validity of your suggestion, we keep the operations
before step {bottleneck_operation_id}, integrate {proposed_operation}
in step {bottleneck_operation_id} and applying the {function_name} for
remaining steps. Now we got the update result

The updated result: {proposed_solution} with {proposed_result}
{proposed_trajectory}

Compared with origin negative result from {function_name}:
{negative_solution} with {negative_result}
{negative_trajectory}

Your propose works well.

Now review the {function_name}:
{function_introduction}.
We hope to extract this into rule to get the suggestion for improvement
of {function_name}:
Please note:
1. I believe that in most cases, our rule works in a scope of
applicability, that is, it is effective in certain circumstances.
Outside of this scope, we still maintain the original algorithm.
2. The rule must be clear and calculate. For example, choosing
operation A brings greater benefits in the form of rebates, but we
do not know how to measure future benefits.
3. Rule must have nothing todo with current data. It should be
general experience.

Combined previous calculate process:
{calculation_process}
And application scope:
{application_scope}
By the way, we believe no rule can works for all application scope,
sometimes it works and sometimes it may not work. So application scope
is important.
Extract this analysis into rule to improve the {function_name}.
consider to raise suggestion:
1. better selection
2. better parameters
3. insert more structure
4. learn from other heuristics

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Sort Suggestion
Now review the origin code {function_name}:
{function_code}

After analysis on between positive and negative solution, we have
already got some suggestions:
{suggestions}

We hope to apply these suggestions into nearest_neighbor heuristic,
while before to implement the code, we need to review and update the
suggestions:
1. Some suggestions are similar or duplicated, we can merge them.
2. Some suggestions conflict and we need to modify them.
3. The application conditions of some suggestions are unreasonable, we
need to correct them.
4. Some suggestions will bring too heavy calculation, we have to
optimize.
5. We only need to keep the suggestions that have a greater impact and
are likely to be useful.

So based on these, please refine these suggestions with clear
conditions and sort them into heuristic code improve suggestion
consider to sort suggestion:
1. better selection
2. better parameters
3. insert more structure
4. learn from other heuristics

G.3 GENERATE FEATURE EXTRACTOR

The detailed steps to generate feature extractor are as follows:

1. Instance Feature Generation: LLM lists the features of the instance data that characterized
by:

• Distinct Characteristics: Incorporating distinct attributes that help in clearly differen-
tiating between various instances.

• Effective Representation: Ensuring that the data representation is compact to reduce
computational load.

2. Solution Feature Generation: LLM lists the features of the current soluton that character-
ized by:

• Characteristic Attributes: Including unique attributes that facilitate the clear distinc-
tion between different stages of the solution process.

• Detailed Insights: Maintaining a detailed enough representation to identify the specific
characteristics of the current solution while being concise to ensure efficient processing.

• Comprehensive Evaluation: Evaluating the current solution from various perspectives,
such as the progress of the solution, its quality, and the status of the remaining data.

3. Generate Feature Extractors: LLM generates the feature extractors that ingests instance
data and the current solution, then outputs the corresponding features.

4. Smoke Test: We validate the feature extractors by running with smoke test data and if the
validation fails, the feature extractor functions are revised and updated.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Instance Feature
We aim to collaboratively create two distinct functions. The first
function will be designed to methodically extract and distill features
from instance data. The second function will focus on extracting
features that encompass both the characteristics and quality of current
solution. These functions will be underpinned by rigorous statistical
analysis and domain-specific knowledge, ensuring they are both accurate
and relevant.

Let’s begin by focusing on the features of the instance data for the
{problem}.
Instance data in the context of {problem} includes:
{instance_data_introduction}

In determining the optimal features (statistical data) to represent
instance features, we must adhere to the following criteria:
1. The data representation should be succinct to minimize
computational load while retaining sufficient granularity to recognize
the feature of the problem and solution.
2. It must incorporate unique attributes that aid in the clear
distinction between different instances.

Now, please tell me which features are best serve as instance features.

Implement Instance Feature Code
Let’s go future.
Try to implement the get_instance_data_feature function in python:
def get_instance_data_feature(instance_data: dict) -> dict

The input is instance_data, which contains the instance data with:
{instance_data_introduction}

The output is algo a dict, which contains the following features as
keys: {instance_data_features}.

Please notes:
1. Never modify the instance_data, solution_data and algorithm_data.
2. The name of function must be get_instance_data_feature.
3. No any omissions or placeholders, I’m just going to use the code.
4. Comments in the code are very important.

Solution Feature
Then, let’s focus on the features of the solution data for the
{problem}.
Instance data in the context of {problem} includes:
{instance_data_introduction}
Solution data in the context of {problem} includes:
{solution_data_introduction}

In determining the optimal features (statistical data) to represent
solution features and quality, we must adhere to the following
criteria:
1. The data representation should be succinct to minimize
computational load while retaining sufficient granularity to recognize
the solution feature.
2. It must incorporate unique attributes that aid in the clear
distinction between different solution stage.
3. We need to evaluate the current status from multiple dimensions,
including the current progress of the solution, the quality of the
solution, the status of the remaining data, etc.

Now, please tell me which features are best serve as solution features.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Implement Solution Feature Code
Let’s go future.
Try to implement the get_solution_data_feature function in python:
def get_solution_data_feature(instance_data: dict, solution_data:
dict) -> dict

The input are instance_data and solution_data.
instance_data contains the instance data with:
{instance_data_introduction}
solution_data contains the solution data with:
{solution_data_introduction}

The output is algo a dict, which contains the following features as
keys: {solution_data_features}.

Please notes:
1. Never modify the instance_data, solution_data and algorithm_data.
2. The name of function must be get_solution_data_feature.
3. No any omissions or placeholders, I’m just going to use the code.
4. Comments in the code are very important.

G.4 HEURISTIC SELECTION

The detailed steps to select heuristics are as follows:

• Input Information: Instance features; Solution features; Heuristics description; Selection
trajectory.

• Chain of Thought (CoT) for heuristic selection in one query:

– Analyze Problem Characteristics: Based on the instance data features, analyze the
problem’s scale and characteristics to preliminarily assess the applicability of different
heuristics.

– Evaluate the Current State: Using the current solution features, evaluate the status
and phase of the current solution to determine if further execution is necessary.

– Construct or Improve: If further execution is needed, analyze whether to construct a
new solution or improve the existing one.

– Narrow down Selection: Based on the selection trajectory, identify potentially suitable
heuristics and exclude those likely to result in poor performance.

– Assess Potential Heuristics: Review the performance of the potential heuristics from
tracjectory.

– Make Final Decision: Using the heuristic descriptions, select the most appropriate
heuristic.

• Final decision: Select heuristic, set parameters and execution step.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Heuristic Pool
We have already implement the following heuristics.
These are the heuristics inb format: heuristic_name(
parameter=default_value, ..): introduction
{heuristic_pool_introduction}

Before we solve the actual problem, please try to analysis the
scenarios where each algorithm is applicable, and these scenarios are
best quantif

Heuristic Selection
The instance data with some heuristic values for this problem:
{instance_data_feature}
Note: Some data are omitted due to space constraints.

The solution data some heuristic values for current stage:
{solution_data_feature}
Note: Some data are omitted due to space constraints.

Before this discuss, we have already {discuss_round} rounds discuss
and the summary are:
{heuristic_traject}

Considerations for Next Steps
- Is the current data sufficient for decision-making?
- Is there a need to construct or refine the solution further?
- The last heuristic is: {last_heuristic}. How does {last_heuristic}
perform, and should we continue with it?
- How much steps should we run for next heuristic?

Decision Options:
We aim to incrementally construct an optimal solution by strategically
applying a set of heuristic algorithms. Each heuristic, when applied,
contributes one operator to the evolving solution. Here is the refined
process:
1. I will present you with the initial data. Your role will be
to evaluate this data and select the most appropriate heuristic
algorithm from our pool of heuristics. This selection will be based
on predefined criteria and heuristic performance measures.
2. I will then execute the chosen heuristic for a number of steps,
resulting in a partial solution. Once this stage is complete, I will
provide you with the updated solution state. Your task will be to
assess the progress and determine whether to:
- Continue with the same heuristic algorithm to further develop the
current solution, or
- Switch to a different heuristic algorithm from our pool to either
enhance the existing solution or take a new approach to the problem.

As the selection hyper-heuristic algorithm agent, your role is critical
in orchestrating the application of these heuristics to navigate
towards an improved or final solution. Please familiarize yourself
with the available heuristic algorithms and the overall decision-making
pipeline. Once I introduce the specific data for our problem, we will
collaborate to advance towards the solution.

H INTRODUCTION TO CLASSIC COMBINATORIAL OPTIMIZATION PROBLEMS

Traveling Salesman Problem (TSP) seeks to determine the shortest possible route that visits a
given set of cities exactly once and returns to the origin city, based on the distances between each
pair of cities.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Capacitated Vehicle Routing Problem (CVRP) involves determining the most efficient routes
for a fleet of vehicles to deliver goods to various locations, taking into account vehicle capacity
constraints.

Job Shop Scheduling Problem (JSSP) involves scheduling a series of jobs, each comprising a
sequence of operations, across different machines to optimize production efficiency. Each job must
be processed on specific machines in a predetermined order.

Max Cut Problem aims to partition the vertices of a graph into two disjoint subsets such that the
total weight of the edges between the two sets is maximized.

Multidimensional Knapsack Problem (MKP) aims to maximize the total profit of selected items,
each with a given profit value, subject to multiple constraints on the cumulative resource consumption
of the items.

42

