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Abstract

Detecting and segmenting nuclei from hematoxylin and eosin (H&E) stained
images is important for many downstream applications, ranging from disease diag-
nosis in clinical setting to biomarkers development in the preclinical setting. Many
open-source models have been developed for cell segmentation on publicly avail-
able datasets, but they might not generalize well across different tissue and disease
conditions and finetuning these models can be costly owing to the labour-intensive
nature of annotating from H&E images. To address this, we propose a novel training
framework that leverages annotations derived from multiple pre-existing segmenta-
tion models, treating them as imperfect "annotators". Our approach mitigates the
risk of overfitting to the inherent biases of these source models by incorporating
learnable embedding vectors that explicitly represent the distinct annotation "style"
of each model. This allows our model to learn robust, generalizable features despite
the limited availability of ground-truth annotations. We show that this approach
results in a superior segmentation performance compared to naively training on the
aggregated outputs of pre-trained models.

1 Introduction

Nuclei segmentation is a crucial step in the analysis of pathology images, providing important
information such as cellular morphology and distribution that makes diagnosis and interpreting
of disease biology possible. Alterations in nuclear morphology, membrane irregularities, and
increased nuclear to cytoplasmic ratio, for example, are essential diagnostic features to distinguish
benign from malignant cells |[Fischer| [2020]. As such, a lot of efforts have been made in the field to
develop robust segmentation algorithms and many publicly available datasets Kumar et al.|[2019]],
Graham et al.|[2019} 2021]], (Gamper et al.| [2019} 2020, |Graham et al.| [2024], Lin et al.| [2023]]
have enabled the continuous improvement of these algorithms over the years. Recently, owing
to the growing availability of compute and datasets, Deep Learning (DL) based approaches have
emerged as the dominant paradigm for nuclei segmentation. Models such as StarDist|Schmidt et al.
[2018]], Hover-NetGraham et al.|[2019]], CellPose Stringer et al.|[2021]], and Instanseg Goldsborough
et al.|[2024] rely on some variant of the U-Net architecture [Ronneberger et al.|[2015]] with multiple
prediction heads, one for detecting pixels containing the nuclei and other heads for predicting
distance related measures for each nucleus to separate them into different instances. More recent
works such as Cell Vit Horst et al.|[2024] and CellVit++ Horst et al.|[2025] leverage large pretrained
Vision Transformers (ViT)Dosovitskiy et al.| [2020], Kirillov et al.| [2023]], [Chen et al.| [2022al],
Vorontsov et al. [2023]],|Chen et al.| [2024]], Zimmermann et al. [2024]] to achieve state-of-the-arts
(SOTA) results on several different cell segmentation benchmarks.
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Despite these advancements, the generalization capability of these models remains a chal-
lenge. The identification of nuclei can be challenging due to the vast number of different cell
types with diverse cellular morphologies across different tissue types and diseases, and the publicly
available annotated datasets that these models are trained on, while valuable, are often specific in
scope. Creating a comprehensive, manually annotated datasets that can capture the vast heterogeneity
of cellular appearances across all relevant domains, however, is prohibitively expensive and
labour-intensive. To address these limitations, we introduce a novel training framework designed to
effectively learn from diverse, model-derived annotations while actively mitigating the propagation
of source model biases. Here we frame the problem of learning from model-derived annotations
similarly as learning from multiple annotators, a topic that has been explored extensively in medical
imaging. Much prior work focuses on inferring a consensus label from annotators with different
level of reliability, followed by model training on this fused segmentation. The STAPLE algorithm
Warfield et al.|[2004], is a popular method for estimating a true segmentation label by weighting each
annotator’s contribution per pixel using EM algorithm Dempster et al.|[1977]. Subsequent works
aimed to improve STAPLE, such as by modeling accuracy per class to minimize the contribution of
background pixels|Asman and Landman|[2011]] or by incorporating annotators’ spatial variability
Asman and Landman| [2012]. In instance segmentation, Le [Le et al.|[2023]] combined annotations
using Weighted Box Fusion (WBF) [Solovyeyv et al.|[2021]] and more recently, Zhang [Zhang et al.
[2023]] proposed an end-to-end approach where consensus labels from different experts are learned
jointly with the annotator reliability.

In contrast with existing approaches, our goal here is to decouple generalizable nuclear fea-
tures from model-specific artefacts. Our approach incorporates a learnable embedding vector to
capture the distinct “annotation style” of each pre-trained model. We show that this approach
outperforms naively training on source model outputs especially in low data regimes.

2 Methods

2.1 Network Structure

Following the success of CellVit in integrating large foundation models with the HoverNet approach,
we leverage Optimus H-0 [Saillard et al.|[2024] as the backbone of our network with the ViT adapter
Chen et al.[[2022b]] module to inject spatial information from the input image into the ViT backbone
to produce multi-scale feature maps. We adopt a similar strategy to HoVer-Net by having two decoder
branches, each based on an U-Net shaped encoder-decoder architecture. The first branch (NP branch)
predicts the binary segmentation map of all nuclei and the second branch (HV branch) predicts the
horizontal and vertical distance maps from the center of each nucleus. Our training strategy follows
CellVit closely where we have an additional tissue classification head (TC) based on the class token
output from our ViT encoder and the the model is trained to minimize the weighted sum of the
loss terms related to the output of each branch. More details can be found in the appendix of this paper.

During inference, we first obtain the binary segmentation map by thresholding the output
of the NP branch. Afterwards, we separate the nuclei instances using HoVer-Net’s postprocessing
pipeline where we apply Sobel operator to the distance maps followed by marker-controlled
watersheld algorithm to generate the individual nuclear boundary.

2.2 Learning from model-generated annotations

Most of the work involved in learning from multiple annotators aims to generate a consensus label
by minimizing noise from multiple annotators. However, our approach focuses on leveraging
model-generated annotations to enrich training data and improve segmentation performance,
particularly when gold-standard annotations are scarce. Pre-trained models, often trained with
different DNN architectures and training objectives, invariably learn distinct "styles" of feature
projection and produce systematically different annotations. As shown in Figure[I] our architecture
comprises three main components 1) a ViT encoder, 2) a ViT adapter module, 3) and a multi-branch
decoder. Here, we modify our decoder to incorporate style-aware convolutional block to capture the
different annotation styles in our datasets.
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Figure 1: The architecture of our multi-annotation approach. An input H&E image is processed
by a ViT backbone to extract multi-scale features (zr, ). In the U-Net-like decoder, feature maps
are modulated by a StyleConvBlock conditioned on a style embedding (s;) that is unique for each
annotator. During training, annotator embedding s; is determined by a randomly sampled annotation
source (human or model). During inference, the embedding for the human ground truth (s¢) is used
exclusively. The decoder produces Nuclear Pixel (NP) and Horizontal/Vertical (HV) maps, which are
post-processed to yield the final instance segmentation.

Formally, given an input image =z, our encoder outputs a multi-scale feature map

» = {z1,,21,, %1, 21,} Where zp, € R X3 *Pr for k= 1.2 3 4 (level L, being
the coarsest). The decoder reconstructs the segmentation map through a series of deconvolution
blocks. The output feature map of the k-th decoder block f, is given by:

fr(x) = Gr.(Concat(fr—1(x),21,)) (1
G (z) = Upsample(ConvBlock(ConvBlock(z))) 2)
ConvBlock(z) = ReLU(BatchNorm(Conv(z))) 3)

Here, Gy, typically comprises two blocks of 3 x 3 convolutional layer followed by BatchNorm and
ReLu layer with one deconvolutional layer to upsample the output feature map at the end.

We have access to pixel level ground truth 37 € R¥”*W from a set of N4 annotators (source models)
plus, for some images, a gold-standard human annotation »°. Our goal is to enable the segmentation
model to distinguish annotator-specific characteristics from robust features that are genuinely
indicative of the presence of nuclei in the input image. We propose to modulate the features within
each processing block Gy, based on the annotator j whose annotation ¢/ is used for supervision. We
modify Gy, to Gy, by replacing ConvBlock with the style-aware StyleConvBlock as follows:

Gx(x, s;) = Upsample(StyleConvBlock(StyleConvBlock(z, 5))) )
StyleConvBlock(z, s;) = ReLU(BatchNorm(cv(s;) - Conv(z) + v4(s;))) )

Here s; is a learnable embedding vector for annotator j. The functions ag(-) and 4(-) are small
neural networks (e.g., linear layers) with parameters 6 and ¢ respectively, which transform s; into
channel-wise scale and shift parameters. This transformation applies annotator-conditional affine
transformation to the convolutional features before batch normalization and ReLU activation.

3 Results

Our primary objective is to evaluate the contribution of the StyleConvBlock in learning robust feature
representations from noisy, model-generated annotations. To this end, we designed experiments to



test our framework on the PanNuke, a dataset that contains 7,901 images, with over 189,744 labeled
nuclei, following the split in|{Horst et al.|[2024]]. We then simulate two challenging scenarios on this
dataset: 1) a zero ground-truth scenario, where only model-generated labels are available for training,
and 2) a limited-annotation scenario, where only a small fraction of ground-truth data is available.

Table 1: Performance analysis of model finetuning on the outputs of three source models, Stardist
Schmidt et al.|[2018]], Cellpose |Stringer et al.| [2021]], and Instanseg |Goldsborough et al.| [2024]
model on the PanNuke dataset against finetuning pretrained ViT on the source model outputs and our
approach (Multi-annotators) conditioned on the embedding style of each pretrained model

Source Model Model bPQ Precision Recall F1
Stardist 0.570 0.708 0.798 0.750
Stardist Finetuned ViT 0.592 0.732 0.795 0.767
Multi-annotations Finetuned ViT  0.598 0.738 0.794 0.765
Instanseg 0.581 0.810 0.712  0.758
Instanseg Finetuned ViT 0.593 0.817 0.715 0.762
Multi-annotations Finetuned ViT  0.602 0.816 0.731  0.771
Cellpose 0.543 0.740 0.706  0.723
Cellpose Finetuned ViT 0.555 0.774 0.695 0.732
Multi-annotations Finetuned ViT  0.569 0.779 0.708 0.742
Full Groundtruth 0.661 0.832 0.784  0.807

3.1 Performance in a Zero-Annotation Setting

First, we assessed whether our framework could improve performance without access to any human-
annotated ground-truth labels. We used annotations generated by three source models (Stardist,
Instanseg, Cellpose) for training and evaluate the performance of the model on held-out ground-truth
annotations. As shown in Table[I] simply finetuning a pre-trained ViT on the outputs of a single
source model (Finetuned ViT) consistently improves the performance over the source model. The
Finetuned ViT achieves a bPQ of 0.592, 0.593 and 0.555, surpassing the source Stardist, Instanseg,
and Cellpose models’ bPQ of 0.570, 0.581, and 0.543. Crucially, when training a single network on
annotations from all three models using our proposed multi-annotation framework, performance is
enhanced further. By conditioning the network on the specific "style" embedding of a source model,
our Multi-annotations Finetuned ViT outperforms both the original source model and the naively
finetuned ViT across the board. For instance, when conditioned on the Instanseg style, our model
achieves a bPQ of 0.602, higher than both the source Instanseg (0.581) and naively finetuned model
(0.593). These results suggest that the StyleConvBlock is able to disentagle model-specific artifacts
from generalizable nuclear features, allowing for a more robust learning even when ground-truth
annotation is absent

3.2 Performance in a Limited-Annotation Setting

To simulate a more realistic scenario where annotation budgets are limited, we evaluated performance
when only a small fraction (5% to 25%) of the ground-truth data is available, supplementing the rest
with model-generated annotations. We repeat the experiment 5 times for each fold to account for the
variability in model performance due to sampling and we compared three training strategies:

1. GT only: Training solely on the available subset of the ground-truth annotations

2. GT + Instanseg/Stardist/Cellpose/All : Naively mixing the ground-truth subset with anno-
tations from the source models. In GT + All, we randomly sample the source annotation
for each training pass, just like the multi-annotations approach but without incorporating
annotator embedding vector to the model.

3. Multi-annotations: Our proposed framework, using the ground-truth subset and annotations
from all three source models. Inference is done conditioned on the ground-truth style
embedding.

The results, summarized in Table E] demonstrate the superiority of our multi-annotation framework,
particularly in low-data regimes. At just 5% of ground-truth availability, our model achieves a bPQ of



Table 2: Model performance Metrics at Different Training Fractions. For each fraction we compare
training on a mixture of a source model and ground-truth annotations against training only on images
with annotations and training using the multi-annotations approach

Training Label % Model bPQ Precision Recall F1
GT + Instanseg ~ 0.596 0.780 0.758  0.769
GT + Stardist 0.583 0.709 0.808 0.755

5 GT + Cellpose 0.561 0.738 0.735 0.736
GT + All 0.604 0.769 0.784  0.777
GT only 0.571 0.715 0.774  0.743

Multi-annotators  0.620 0.776 0.790 0.783
GT + Instanseg 0.594 0.776 0.759  0.767
GT + Stardist 0.584 0.710 0.809 0.756

10 GT + Cellpose 0.564 0.743 0.635 0.739
GT + All 0.604 0.771 0.784  0.777
GT only 0.595 0.745 0.784 0.764

Multi-annotators  0.627 0.796 0.783 0.789
GT + Instanseg 0.596 0.782 0.756  0.769
GT + Stardist 0.586 0.712 0.809 0.757
15 GT + Celpose 0.561 0.736 0.736 0.736
GT only 0.606 0.763 0.792 0.777
Multi-annotators  0.631 0.796 0.791  0.793
GT + Instanseg ~ 0.594 0.786 0.750 0.767
GT + Stardist 0.584 0.706 0.810 0.754

20 GT + Cellpose 0.558 0.740 0.732  0.736
GT + All 0.606 0.765 0.791 0.778
GT only 0.615 0.776 0.782  0.779

Multi-annotators  0.635 0.804 0.788 0.796
GT + Instanseg ~~ 0.593 0.783 0.753  0.768
GT + Stardist 0.584 0.706 0.810 0.754

25 GT + Cellpose 0.562 0.742 0.734 0.738
GT + All 0.609 0.769 0.790 0.779
GT only 0.622 0.779 0.789 0.784

Multi-annotators  0.633 0.805 0.785 0.795

0.620 and and F1-score of 0.783. This is a dramatic improvement over training on the ground-truth
subset alone (bPQ 0.571, F1 0.743) and naively mixing in model-generated labels. Furthermore, the
performance of the naively finetuned ViT model fails to improve as more ground-truth data is added,
indicating that the network is overfitting to the noisy, model-generated labels rather than learning
from the sparse, high quality ground-truth. In contrast, our framework effectively leverages both
sources of information, consistently outperforming the other approaches across all tested fractions
of training annotations. This highlights the robustness of our proposed framework and its ability to
mitigate the negative impact of noisy labels during training.

4 Discussion

Nuclear segmentation in H&E stained images remains a foundational yet challenging task in compu-
tational pathology. The vast diversity in cellular morphology across different tissues and diseases,
coupled with the high cost of generating expert annotations, limits the generalization capabilities of
existing models. To address this, we proposed a novel training framework that incorporates a style-
aware StyleConvBlock into a ViT-based segmentation network. This approach effectively leverages
annotations from multiple pre-existing models, treating them as imperfect annotators with distinct
"styles". Our approach outperforms naively finetuning on pre-existing models’ outputs and shows a
strong baseline performance in low data regimes. Our framework shows a promise in providing a
cost-effective strategy to develop a more-customized computational pathology tools, accelerating
both research and clinical applications. Future work will include improvement and validation of
the framework across different datasets as well as its effectiveness in improving model performance
when more annotations are available.
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5 Appendix

5.1 Training details

We optimize our network to minimize the following loss function:
Lo = Lyp + Luv + Lro (6)

Here £ p denotes the binary segmentation loss, £z denotes the horizontal and vertical distance
loss and Lp¢ denotes the tissue type classification loss. The losses are composed of the following
weighted loss functions:

LNp = ANP1LFT + AN Pyies £DICE @)
LV = AHViss LMSE + A H Vo LMSGE (®)
Lrc = ArcLce ©))

where Lrg is the Focal-Tversky loss, Lpicg is the dice loss, Lysg is the mean squared error of
the horizontal and vertical distance maps, Lyscg is the mean squared error of the gradients of the
horizontal and vertical distance maps and Lcg is the cross entropy loss for the tissue classification.

We trained our model over 100 epochs using the Pytorch library [Paszke| [2019] with LoRA
Hu et al.[[2022] as implemented by HuggingFace PEFT library Mangrulkar et al.|[2022]]. Training
is performed with a batch size of 16 on 8 x NVIDIA A100 (40 GB) GPUs with 0.0005 learning
rate and learning rate decay of 0.9. We also followed the weights used in [Horst et al.| [2024]] for
our loss function. Our training dataset contains images with annotations from up to 4 sources: one
human-generated ground truth (denoted 7 = 0) and 3 model-generated annotations |Schmidt et al.
[2018], Stringer et al.| [2021]], Goldsborough et al.| [2024](denoted 7 = 1,2, 3). For each image
during a training iteration, we randomly sample one annotation source 3’ from the available sources
for that image. The corresponding annotator embedding s; is then used in the style modulation layers
(Eq. ). The loss weights An pe, s AN Poce » M Vigse » M Vigsee and Arc as[Horst et al.| [2024].

5.2 Metrics

To assess the quality of nuclear instance segmentation, we use the binary panoptic quality (bPQ)
Kirillov et al.|[2019] metrics. The bPQ is defined as

|TP| E(y,g})GTP IOU(:%?))

bPQ = X
©= TP IFP| 1 1[FN TP

(10)

with ToU denoting the intersection over unionKirillov et al.| [2019], y denoting the ground
truth segment and ¢ denoting the model prediction, and the pair (y, §) being a unique matching
prediction between ground truth segment and model prediction with a minimum /oU of 0.5. The
True Positives |T'P| is the total number of matched pairs of segments, the False Positives |F'P| is the
total number of predicted segments that are not matched with any ground truth segments, and False
Negatives |F'N| is the total number of ground truth nuclei without matching predicted segments.
Furthermore, we also compare the model predictions in terms of their precision Pr, recall R, and F}
score as follows:

2|TP|
F = 11
' T 9ITP|+ [FP[+|FN| (an
TP
Pr=—1—"1_ 12
"= TP+ |FP] 12)
TP
_ 13
TP+ [FN] (13)
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* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: We do not have any theoretical results in this paper
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes we fully disclose the information needed to reproduce the main experimen-
tal results. We provide the hyper-parameters for this experiment and all model architectures
and datasets are publicly available.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The model and data are publicly available. The code will be made available
upon request.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: They are specified in the paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We do not have enough time to generate the error bars needed for this question
for this submission. We observed that the differences in the metrics we measured in the
experiment were sufficiently large and the experiments for the main results on table 2 and
each experiment was repeated 15 times. We can provide more details if needed during the
rebuttal period.

Guidelines:
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8.

10.

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Yes the paper provides sufficient information on the computer resources.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cited the original owners of assets
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: Our paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA] .

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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