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ABSTRACT

In the quest for controlled thermonuclear fusion, tokamaks present complex chal-
lenges in understanding burning plasma dynamics. This study introduces a multi-
region multi-timescale transport model, employing Neural Ordinary Differential
Equations (Neural ODEs) to simulate the intricate energy transfer processes within
tokamaks. Our methodology leverages Neural ODEs for the numerical derivation
of diffusivity parameters from DIII-D tokamak experimental data, enabling the
precise modeling of energy interactions between electrons and ions across various
regions, including the core, edge, and scrape-off layer. These regions are concep-
tualized as distinct nodes, capturing the critical timescales of radiation and trans-
port processes essential for efficient tokamak operation. Validation against DIII-D
plasmas under various auxiliary heating conditions demonstrates the model’s ef-
fectiveness, ultimately shedding light on ways to enhance tokamak performance
with deep learning.

1 INTRODUCTION

Fusion burning plasmas (Green et al., 2003), pivotal in ITER’s deuterium-tritium (D-T) fusion ex-
periments, produce high-energy neutrons and fusion alpha particles. The latter, confined within
the tokamak’s magnetic field, sequentially transfer energy to electrons and ions, leading to so-
phisticated radiation and energy transport mechanisms like electron cyclotron radiation (ECR) and
bremsstrahlung. To effectively manage the complex dynamics of energy transfer and mitigate po-
tential thermal runaway instability, it is crucial to model the interactions between instantaneous
radiation and gradual diffusion transport across the tokamak’s multiple regions. This thorough un-
derstanding of energy dynamics is essential for controlling the plasma’s behavior, emphasizing the
need for models that accurately represent various processes across different timescales.

To address these complexities, our study introduces a multi-region multi-timescale transport model
(Liu & Stacey, 2021; Liu, 2022) that leverages Neural Ordinary Differential Equations (Neural
ODEs) (Chen et al., 2018) for enhanced burning plasma simulation fidelity in tokamaks. Inspired
by previous researches (Hill, 2019; Stacey, 2021), our model distinguishes between the core, edge,
and scrape-off layer (SOL) regions, where each region is represented as a unique node with spe-
cific energy dynamics influenced by radiation and transport processes. By employing Neural ODEs,
we dynamically optimize diffusivity parameters from DIII-D tokamak experimental data, enabling
precise modeling of energy interactions. This method not only facilitates a deeper understanding
of the plasma dynamics but also improves model accuracy and predictive capability, particularly in
capturing the intricate interactions between regions. Our application of Neural ODEs exemplifies
the potential of deep learning techniques in advancing tokamak plasma analysis, providing a ro-
bust framework for future explorations in controlled thermonuclear fusion, including ITER’s D-T
experiments.
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2 TOKAMAK PLASMA DYNAMICS MODEL

This section introduces a multinodal model for tokamak plasma dynamics, starting with its geometry,
then detailing particle and energy balance equations for the core, edge, and scrape-off layer (SOL)
nodes, and concluding with the presentation of a parametric diffusivity model.

2.1 MODEL GEOMETRY

In the multinodal model, a tokamak plasma is partitioned into three distinct regions, each modeled
as a separate node: the core region (0 ≤ ρ ≤ ρcore = 0.9), the edge region (ρcore ≤ ρ ≤ ρedge =
1.0), and the SOL region (ρedge ≤ ρ ≤ ρsol = 1.1), with the minor radius a and the normalized
minor radius ρ = r/a, as illustrated in Figure 1. This division simplifies the tokamak into a torus,
whose cross section is considered circular, and delineates the core, edge, and SOL as toroidal shells,
separated by torus surfaces at radii rcore, redge, and rsol corresponding to surfaces Acore, Aedge, and
Asol, respectively. Distances between these regions are defined as ∆rcore-edge (core to edge), ∆redge-sol
(edge to SOL), and ∆rsol-div (SOL node center to its outer surface).
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Figure 1: Multinodal model representation of tokamak plasma regions, where the left figure shows
the cross section of a DIII-D plasma, and the right figure is the simplified geometry for the multin-
odal model.

2.2 BALANCE EQUATIONS

The multinodal plasma dynamics model for DIII-D deuterium-deuterium (D-D) plasmas employs
two fundamental groups of equations to capture the complex interactions within the plasma: parti-
cle and energy balance equations. Particle balance equations quantify the conservation of particles
within each node accounting for particle sources and sinks, whereas energy balance equations track
the thermal energy’s distribution and evolution, considering heating, radiation, and energy transport.
These equations form the backbone of the model, enabling detailed simulation of plasma behavior
across different regions. However, this model’s diffusive approach may oversimplify plasma dy-
namics by omitting convective (pinch) terms, with future enhancements potentially including pinch
dynamics to improve accuracy, as highlighted in Angioni et al. (2009).

Particle balance equations for deuterons in the core, edge, and SOL nodes are

dncore
D

dt
= Score

D,ext + Score
D,tran,

dnedge
D

dt
= Sedge

D,ext + Sedge
D,tran + Sedge

D,IOL,

dnsol
D

dt
= Ssol

D,ion + Ssol
D,rec + Ssol

D,tran + Ssol
D,IOL,

(1)
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where node ∈ { core, edge, sol }, Snode
σ,ext is the external particle source, Snode

σ,IOL is the ion orbit loss
(IOL) term (Stacey, 2011), Ssol

σ,ion is for ionization processes, Ssol
σ,rec is for recombination processes,

and Snode
σ,tran is the particle transport term. The particle transport for the core region is Score

σ,tran =

−ncore
σ −nedge

σ

τ core→edge
P,σ

, where the internodal particle transport time is τ core→edge
P,σ =

Vcore∆rcore-edge

AcoreDcore
σ

with the core

node volume Vcore and the core-edge interface area Acore, and Dcore
σ is the diffusion coefficient at

Acore. Similarly, Sedge
σ,tran = Vcore

Vedge

ncore
σ −nedge

σ

τ core→edge
P,σ

− nedge
σ

τ edge→sol
P,σ

and Ssol
σ,tran =

Vedge

Vsol

nedge
σ

τ edge→sol
P,σ

− nsol
σ

τ sol→div
P,σ

with particle

diffusivities Dedge
σ and Dsol

σ . Other particle terms are computed by following Stacey (2012; 2021);
Liu (2022). The electron densities are solved from the charge neutrality: nnode

e = zDn
node
D + zzn

node
z ,

where atomic numbers are zD = 1 and zz = 6, and the impurity density nnode
z is obtained from

experiment data.

Energy balance equations for deuterons and electrons in the core, edge, and SOL nodes are
dU core

D

dt
= P core

D,aux +Qcore
D + P core

D,tran,

dU edge
D

dt
= P edge

D,aux +Qedge
D + P edge

D,tran + P edge
D,IOL,

dU sol
D

dt
= P sol

D,at +Qsol
D + P sol

D,tran + P sol
D,IOL,

dU core
e

dt
= P core

Ω + P core
e,aux − P core

R +Qcore
e + P core

e,tran,

dU edge
e

dt
= P edge

Ω + P edge
e,aux − P core

R +Qedge
e + P edge

e,tran,

dU sol
e

dt
= P sol

e,ion + P sol
e,rec − P sol

R +Qsol
e + P sol

e,tran,

(2)

where the nodal energy density is U node
σ = 3

2n
node
σ T node

σ , P node
σ,aux is the auxiliary heating, P node

Ω is the
ohmic heating, P node

R is the radiative energy loss, Qnode
σ is the collisional energy transfer, P node

σ,IOL is the
IOL term (Stacey, 2011), P sol

σ,ion, P sol
σ,rec, and P sol

σ,at are for atomic and molecular processes, and P node
σ,tran

is the energy transport term. The energy transport for the core region is P core
σ,tran = −U core

σ −U edge
σ

τ core→edge
E,σ

, where

the internodal energy transport time is τ core→edge
E,σ =

Vcore∆rcore-edge

Acoreχcore
σ

and χcore
σ is the thermal diffusivity

at the surface Acore. Similarly, P edge
σ,tran = Vcore

Vedge

U core
σ −U edge

σ

τ core→edge
E,σ

− U edge
σ

τ edge→sol
E,σ

and P sol
σ,tran =

Vedge

Vsol

U edge
σ

τ edge→sol
E,σ

− U sol
σ

τ sol→div
E,σ

with thermal diffusivities χedge
σ and χsol

σ . Similarly, other energy terms are calculated as Stacey
(2012; 2021); Liu (2022).

2.3 DIFFUSIVITY MODELS

In order to calculate internodal transport times, formulas for particle and thermal diffusivities are
required. One empirical scaling for the effective thermal diffusivity (Becker, 2004) in the ELMy
H-mode tokamak plasma is

χH98(ρ) = αHB−3.5
T ne(ρ)

0.9Te(ρ) |∇Te(ρ)|1.2 q(ρ)3.0κ(ρ)−2.9M−0.6R0.7a−0.2
(
m2/s

)
, (3)

where the terms in this formula are the thermal diffusivity χH98 in m2/s, normalized radius ρ = r/a,
coefficient αH = 0.123, toroidal magnetic field BT in T, electron density ne in 1019 m−3, electron
temperature Te in keV, electron temperature gradient ∇Te in keV/m, safety factor q = qψ , local
elongation κ, hydrogenic atomic mass number M in 1 amu, major radius R in m, and minor radius
a in m. The particle and thermal diffusivities for electrons and ions (Becker & Kardaun, 2006) are
assumed as χe(ρ) = χi(ρ) = χH98(ρ) and Di(ρ) = 0.6χH98(ρ), which can be replaced by separate
formulas in future. This empirical scaling is used as the baseline in this study.

Besides, a parametric diffusivity formula is proposed for particle and energy diffusivities as

χ(ρ)

1m2/s
= αH

(
BT
1T

)αB
(

ne(ρ)

1019 m−3

)αn
(
Te(ρ)

1 keV

)αT
( |∇Te(ρ)|
1 keV/m

)α∇T

q(ρ)αqκ(ρ)ακ

·
(

M

1 amu

)αM
(

R

1m

)αR ( a

1m

)αa

.

(4)

where αH , αB , . . . , αa are diffusivity parameters for each species and node, and these parameters
will be determined from experimental data. This diffusivity formula can be grouped and reformu-
lated into a vector form: lnχnode = bnode +Wnode lnxnode, where χnode is the vector of internodal
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diffusivities, bnode is the bias vector, Wnode is the weight matrix, and xnode is the vector of corre-
sponding physical values.

3 COMPUTATIONAL FRAMEWORK

In this section, we develop a computational framework for simulating plasma dynamics in tokamaks.
This framework consists of a series of interconnected modules designed to process experimental
data, simulate plasma behavior, and optimize model parameters. Initially, a data module reads ex-
perimental inputs, such as two-dimensional plasma profiles and one-dimensional global parameters,
from the OMFIT (Meneghini et al., 2015) for DIII-D data. A preprocessing module then standard-
izes these inputs into uniform time sequences and performs volume averaging on two-dimensional
signals to obtain nodal particle densities and temperatures.

The core of the framework includes a diffusivity model that calculates particle and thermal diffusivi-
ties based on experimental conditions, and a transport time model that determines the timescales for
particle and energy transport between nodes. These models feed into a reactor simulation module
that integrates sources, sinks, and transport terms into a dynamical system, which is then solved
using the Neural Ordinary Differential Equation (Neural ODE) solver (Chen et al., 2018). This
dynamical system solver outputs estimated particle densities and temperatures, which are refined
through an optimization module. This module computes the mean square error (MSE) between
model predictions and experimental data, utilizing back-propagation for gradient computation and
parameter updating via gradient descent, ensuring the model’s parameters are optimized for accurate
plasma behavior representation.

A workflow diagram in Figure 2 visually represents the framework’s structure, where cylinders are
datasets, rectangles are modules, solid lines are forward flows to solve the problem, and dashed lines
are back propagation processes to optimize the parameters in the diffusivity model. This architecture
enables a comprehensive analysis of tokamak plasma dynamics, leveraging modern computational
techniques for enhanced modeling accuracy and predictive capability in fusion research.
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Figure 2: Computational framework diagram, including cylinders as datasets, squares as modules,
solid lines as forward flows, and dashed lines as back propagation processes.

4 SIMULATIONS

This section details simulations of the multinodal model for DIII-D shots, covering data preparation,
training and testing dataset division, model training, model evaluation, and presentation of results.
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4.1 SIMULATION METHODS

In the development of the multinodal model for DIII-D plasma simulations, 25 shots from experi-
mental data listed in Appendix A Table 2 are utilized, adhering to the criteria set by Hill & Stacey
(2017) for ELMing non-RMP H-mode. Particle density and temperature profiles, derived from ZIP-
FIT (Peng et al., 2002) integrated with EFIT and Thomson scattering data, are used to establish nodal
densities and temperatures. To ensure the model’s generalizability across various experimental con-
ditions and prevent overfitting to specific shots, the data are split into two sets: a training dataset
comprising 20 shots for optimizing the parametric diffusivity model, and a testing dataset of 5 shots
for model performance evaluation. The training process involves solving the multinodal model’s
dynamical system using the training dataset, where the diffusivity parameters are initialized with the
χH98 model (Becker, 2004), and the nodal source and sink terms are combined into a dynamical
system and solved for simulated nodal densities and temperatures. The mean squared error (MSE)
between the model’s predictions and experimental data is calculated to guide the optimization of
diffusivity parameters through gradient descent, iterating over multiple epochs until a satisfactory
MSE is achieved. Once optimized, the model’s effectiveness is assessed on the testing dataset by
comparing its predictions against experimental measurements, thereby evaluating the computational
method’s overall accuracy and reliability.

4.2 SIMULATION RESULTS

Following the training of the parametric diffusivity model with the designated training shots, the
multinodal model’s performance is evaluated on testing shots by comparing the mean squared errors
(MSEs) between the model’s solutions and experimental measurements, where the particle densities
and temperatures are normalized by 1019 m−3 and 1 keV respectively. The multinodal model with
the empirical diffusivity scaling (Becker, 2004) is used as the baseline. This comparison, detailed
in Table 1, highlights the improvements achieved through optimization, with MSE reductions ex-
ceeding 96% across individual shots and an overall average MSE decrease of more than 98%. Such
significant reductions in MSEs, achieved without the model being directly trained on the testing
dataset, underscore the computational method’s efficacy and the optimized multinodal model’s ca-
pability to generalize and accurately predict the behavior of new, unseen shots. Detailed results of
the model’s performance for two specific testing shots are provided in Appendix B, including ex-
periment signals and model solutions for the core, edge, and SOL nodes. The model with optimized
parameters outperforms its original, unoptimized version in performance, especially in the core and
edge nodes, where the original model exhibits significant deviations between simulation results and
experimental measurements.

Table 1: Mean squared errors (MSEs) of testing shots for both the multinodal model with the empir-
ical diffusivity scaling (baseline) and the multinodal model with optimized diffusivity parameters.

Shot Original Model MSE Optimized Model MSE Relative Decrease

131190 11.5861 0.4075 96.48%
140418 56.6859 0.3170 99.44%
140420 70.3650 0.5876 99.16%
140427 29.7967 0.7105 97.62%
140535 88.4208 0.7348 99.17%

Average 51.3709 0.5515 98.93%

5 CONCLUSION

This study introduces a multinodal plasma dynamics model for tokamak analysis, segmenting the
plasma into core, edge, and SOL regions as distinct nodes with tailored timescales for various phe-
nomena. We detail computational techniques for refining diffusivity parameters within this model,
demonstrating its validation and parameter optimization using DIII-D plasma data. The enhanced
performance of the optimized model signifies its advancement over previous models. This work
illustrates the effectiveness of employing Neural Ordinary Differential Equations (Neural ODEs)
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in tokamak plasma dynamics research, highlighting an advancement in simulation methodologies.
Looking forward, applying these techniques to ITER fusion plasmas is promising but challenging
due to the absence of direct training sets, potentially requiring extrapolation with derived parameters
to address ITER’s distinct conditions.
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A EXPERIMENT DATA

The DIII-D shots used in this research, following Hill & Stacey (2017), are limited to the ELMing
non-RMP (non-resonant magnetic perturbation) H-mode with the standard magnetic field configu-
ration. Basic descriptions of these shots are listed in Table 2, including the ohmic heating power
PΩ, electron cyclotron heating (ECH) power PECH, ion cyclotron heating (ICH) power PICH, neutral
beam injection (NBI) power PNBI, gas puffing GAS, magnetic field B0, electron density ne, and
electron temperature Te.

Table 2: Experiment shots from DIII-D used in this study, where electron densities and temperatures
are volume-averaged over the whole plasma. (Shots with * are in the testing dataset.)

Shot PΩ/MW PECH/MW PICH/MW PNBI/MW GAS/(Torr · L/s) |B0| /T ne/10
19 m−3 Te/keV

131190* -0.18-0.57 0.00-2.44 0.00 2.01-9.21 11.29-162.33 1.72-1.92 1.25-4.65 0.50-2.80
131191 -0.11-0.26 0.00-2.38 0.00 2.57-9.20 14.11-87.21 1.73-1.87 1.08-3.89 0.46-3.24
131195 0.07-0.43 0.00-2.23 0.00 2.61-9.65 7.99-76.45 1.77-1.86 1.14-3.27 0.89-2.29
131196 0.00-0.78 0.00-1.27 0.00 2.02-9.79 11.35-84.68 1.76-1.87 1.14-3.63 0.49-2.63
134350 -0.22-0.82 0.00-3.15 0.00 2.39-9.27 0.00-90.14 1.73-1.93 1.11-6.60 0.45-2.96
135837 -0.06-0.58 0.00 0.00 0.00-14.44 0.05-46.83 1.73-2.04 1.22-4.85 0.35-1.65
135843 0.16-1.43 0.00 0.00 0.06-7.12 0.05-115.68 1.82-2.13 0.65-6.55 0.29-1.80
140417 0.02-0.89 0.00 0.00 0.61-4.37 0.00-70.65 1.90-2.02 1.82-5.18 0.48-1.44
140418* -0.07-0.85 0.00 0.00 0.61-4.13 0.00-64.55 1.87-2.05 1.70-5.00 0.43-1.30
140419 -0.12-0.82 0.00 0.00 0.61-4.12 0.00-39.96 1.92-2.05 1.43-5.26 0.48-1.49
140420* 0.10-0.98 0.00-3.34 0.00 0.61-4.12 0.00-21.69 1.88-2.07 0.96-6.94 0.45-1.76
140421 -0.23-0.84 0.00-3.23 0.00 0.61-4.11 0.00-17.94 1.90-2.06 0.99-5.77 0.57-1.76
140422 -0.20-0.89 0.00 0.00 0.61-4.13 0.00-23.60 1.92-2.06 0.93-4.85 0.51-1.78
140423 -0.13-0.86 0.00 0.00 0.61-4.11 0.00-30.99 1.93-2.06 0.96-4.44 0.50-1.88
140424 -0.02-0.85 0.00 0.00 0.61-4.14 0.05-104.98 1.92-2.05 1.22-6.94 0.51-1.66
140425 0.05-0.84 0.00 0.00 0.61-4.14 0.02-112.07 1.90-2.06 1.19-7.73 0.42-1.49
140427* 0.09-0.96 0.00 0.00 0.61-4.15 0.02-109.97 1.93-2.05 1.94-7.15 0.42-1.19
140428 0.10-0.87 0.00 0.00 0.61-4.15 0.00-0.20 1.91-2.06 1.50-7.06 0.48-1.13
140429 0.16-0.84 0.00 0.00 0.61-4.15 0.00-6.46 1.92-2.05 1.09-6.82 0.46-1.24
140430 0.00-0.88 0.00 0.00-0.04 0.61-4.15 0.00-26.28 1.93-2.08 1.08-4.24 0.48-1.61
140431 -0.06-0.95 0.00 0.00-0.04 0.61-4.16 0.00-38.34 1.91-2.09 1.00-4.17 0.53-1.86
140432 -0.08-0.95 0.00 0.00 0.61-4.13 0.00-50.36 1.90-2.09 0.98-3.85 0.48-2.06
140440 0.12-1.03 0.00 0.00 0.61-4.14 0.03-108.87 1.95-2.09 1.47-7.43 0.49-1.29
140535* 0.18-0.69 0.00 0.00-0.03 0.63-4.48 0.07-118.15 1.92-2.10 1.13-2.11 0.23-1.29
140673 0.00-0.49 0.00-3.38 0.00-0.29 1.95-11.26 0.00-102.17 1.65-1.78 1.16-4.76 0.34-1.39

B MORE SIMULATION RESULTS

Two shots are selected from the testing set. Their experiment signals are shown in Figures 3 and 7,
where several important signals, including the plasma current IP , toroidal magnetic field B0, safety
factor q95, gas puffing rate GAS, ohmic heating power PΩ, neutral beam injection (NBI) power
PNBI, electron cyclotron heating (ECH) power PECH, and ion cyclotron heating (ICH) power PICH,
are presented. Then, their results are shown in Figures 4-6 and 8-10. In each figure, the first column
is the solution from the multinodal model with the empirical diffusivity scaling (Becker, 2004), and
the second column is from the multinodal model with the optimized diffusivity parameters. The
densities are presented in the top row, while the temperatures are in the bottom row. The n̂node

σ and
T̂ node
σ are from the simulations of the multinodal model, and nnode

σ and T node
σ are from the experiment

measurements. The optimized multinodal model outperforms its original version, especially in the
core and edge nodes, and more accurately tracks density and temperature with a single power source.
However, improvements are needed in handling multiple power sources, such as NBI versus ICH
and ECH, and in refining gas puffing distributions and addressing edge effects like ion orbit loss
(IOL) (Stacey, 2011) for enhanced edge transport accuracy.
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Figure 3: Signals of shot 131190, including (from top to bottom, left to right) plasma current IP ,
toroidal magnetic field B0, safety factor q95, gas puffing rate GAS, ohmic heating power PΩ, neutral
beam injection (NBI) power PNBI, electron cyclotron heating (ECH) power PECH, and ion cyclotron
heating (ICH) power PICH.
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2 4

2

4

6

n
[m
−

3
]

×1019 Shot 131190 Core

n̂core
D

ncore
D

n̂core
e

ncore
e

2 4

t [s]

1

2

3

T
[k

eV
]

T̂ core
D

T core
D

T̂ core
e

T core
e

(b) Optimized diffusivity model

Figure 4: Simulation results of shot 131190 core node from both the original and optimized diffu-
sivity models, where n̂node

σ and T̂ node
σ are from the simulations of the multinodal model, and nnode

σ
and T node

σ are from the experiment measurements.
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Figure 5: Simulation results of shot 131190 edge node from both the original and optimized diffu-
sivity models, where n̂node

σ and T̂ node
σ are from the simulations of the multinodal model, and nnode

σ
and T node

σ are from the experiment measurements.
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Figure 6: Simulation results of shot 131190 scrape-off layer (SOL) node from both the original
and optimized diffusivity models, where n̂node

σ and T̂ node
σ are from the simulations of the multinodal

model, and nnode
σ and T node

σ are from the experiment measurements.
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Figure 7: Signals of shot 140418, including (from top to bottom, left to right) plasma current IP ,
toroidal magnetic field B0, safety factor q95, gas puffing rate GAS, ohmic heating power PΩ, neutral
beam injection (NBI) power PNBI, electron cyclotron heating (ECH) power PECH, and ion cyclotron
heating (ICH) power PICH.
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Figure 8: Simulation results of shot 140418 core node from both the original and optimized diffu-
sivity models, where n̂node

σ and T̂ node
σ are from the simulations of the multinodal model, and nnode

σ
and T node

σ are from the experiment measurements.
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Figure 9: Simulation results of shot 140418 edge node from both the original and optimized diffu-
sivity models, where n̂node

σ and T̂ node
σ are from the simulations of the multinodal model, and nnode

σ
and T node

σ are from the experiment measurements.
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Figure 10: Simulation results of shot 140418 scrape-off layer (SOL) node from both the original
and optimized diffusivity models, where n̂node

σ and T̂ node
σ are from the simulations of the multinodal

model, and nnode
σ and T node

σ are from the experiment measurements.
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