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Abstract

We propose ManiPose, a manifold-constrained multi-hypothesis model for human-
pose 2D-to-3D lifting. We provide theoretical and empirical evidence that, due to
the depth ambiguity inherent to monocular 3D human pose estimation, traditional
regression models suffer from pose-topology consistency issues, which standard
evaluation metrics (MPJPE, P-MPJPE and PCK) fail to assess. ManiPose addresses
depth ambiguity by proposing multiple candidate 3D poses for each 2D input,
each with its estimated plausibility. Unlike previous multi-hypothesis approaches,
ManiPose forgoes generative models, greatly facilitating its training and usage. By
constraining the outputs to lie on the human pose manifold, ManiPose guarantees
the consistency of all hypothetical poses, in contrast to previous works. We show-
case the performance of ManiPose on real-world datasets, where it outperforms
state-of-the-art models in pose consistency by a large margin while being very
competitive on the MPJPE metric.

1 Introduction

We propose ManiPose, a novel approach for human-pose 2D-to-3D lifting. ManiPose directly
addresses the depth ambiguity inherent to monocular 3D human pose estimation by being both multi-
hypothesis and manifold-constrained, thus avoiding pose consistency issues, which plague traditional
regression-based methods. Unlike previous multi-hypothesis approaches, ManiPose forgoes the use
of costly generative models, while still estimating the plausibility of each hypothesis.

Monocular 3D human pose estimation (HPE) is a challenging learning problem that aims to predict
3D human poses given an image or a video from a single camera. Often, the problem is split into
two successive steps: first 2D human pose estimation, then 2D-to-3D lifting. Such separation is
favorable because 2D-HPE is much more mature, leading to better overall results. Due to depth
ambiguity and occlusions, 2D-to-3D lifting is intrinsically ill-posed: multiple 3D poses correspond to
the same projection observed in 2D. Despite that, the field has experienced fast developments, with
substantial improvements in terms of mean-per-joint-prediction error (MPJPE) and derived metrics
(e.g., P-MPJPE, PCK) [52, 53, 42, 47].

However, recent studies [49, 12, 40] noted that poses predicted by state-of-the-art models fail to
respect basic invariances of human morphology, such as bilateral sagittal symmetry, or constant length
across time of rigid body segments connecting the joints. Not only do we address those concerns with
ManiPose (see Fig. 1), but we also provide theoretical elements clarifying the cause of those issues.
We show in particular that pose consistency and traditional performance metrics (such as MPJPE)
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Figure 1: Optimizing both 3D position
and pose consistency requires combin-
ing constraints and multiple hypothe-
ses. Results from Tables 2 and 4. Pre-
vious unconstrained methods provide in-
consistent poses (top). Regularization
(MR) and disentanglement constraints
improve consistency, but degrade joint
position error (bottom-right). Ours is
the only method that achieves both good
joint error and consistency, thanks to a
combination of disentanglement and a
few hypotheses (see circles sizes).

cannot be optimized simultaneously by a standard regression model, because MPJPE ignores the
topology of the space of human poses, and traditional regression models imply unimodality, thus
overlooking the inherently ambiguous nature of 3D-HPE.

Our contributions include:

• ManiPose, a novel, multi-hypothesis, manifold-constrained model for human-pose 2D-to-
3D lifting, which is able to estimate the plausibility of each hypothesis without resorting to
costly generative models.

• Theoretical insights that elucidate why traditional regression models associated with standard
metrics such as MPJPE fail to enforce pose consistency.

• Extensive empirical results, including comparison to strong baselines, evaluation on two
challenging datasets (Human 3.6M and MPI-INF-3DHP), and ablations. ManiPose outper-
forms state-of-the-art methods by a substantial margin in terms of pose consistency, while
still beating them in the MPJPE metric. The ablations confirm the importance of both
multiple hypotheses and of constraining the poses to their manifold.

The PyTorch [37] implementation of ManiPose and code used for all our experiments can be found at
https://github.com/cedricrommel/manipose.

2 Related work

Regression-based 2D-to-3D pose lifting. While 2D-to-3D human pose lifting was initially restricted
to static frames [31, 3], the field embraced recurrent [13], convolutional [38] and graph neural
networks [2, 55, 14, 51] to handle motion. Spatial-temporal transformers appear more recently [42,
53], including MixSTE [52], arguably becoming the state of the art. We adopt them in our work.
A few previous works constrain predicted poses to respect human symmetries [50, 4], an idea we
advance with a novel constraint implementation, in a multi-hypothesis setting.

SMPL-based methods. While 3D human pose lifting’s objective is to predict 3D joint positions
based on 2D keypoints, the neighboring field of human pose and shape reconstruction (HPSR) aims
at estimating whole 3D body meshes from images. HPSR is hence more challenging than 3D-HPE,
which explains why models are often larger, frame-based and more reliant on optimization-based
post-processing [16, 39, 46, 9]. Nonetheless, our work shares some ideas from this field. Indeed,
modern HPSR methods often predict joint angles (and body shape parameters), which are fed to
the pre-trained parametric model SMPL [29] to produce human body meshes, thus ensuring that
limbs’ sizes remain constant along a movement. Note, however, that these are also single-hypothesis
regression methods and hence share the same caveats as most 3D-HPE approaches.
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Multi-hypothesis 3D-HPE. The intrinsic depth-ambiguity of 3D-HPE led the community to inves-
tigate multi-hypothesis approaches, including Mixture Density Networks [25, 36, 1], variational
autoencoders [44], normalizing flows [18, 49] and diffusion models [12, 6, 10]. Contrary to ours,
those methods rely on a generative model to sample 3D pose hypotheses conditioned on the 2D
input. A notable exception is MHFormer [27], which, like ManiPose, is deterministic, but treats
the hypotheses as intermediate representations to be aggregated at the final network layers, thus
concluding with a one-to-one 2D-to-3D mapping. We strive to avoid such injectivity and to preserve
the multiple hypotheses, for reasons we will justify both empirically and theoretically in the next
sessions. Moreover, none of the previous multi-hypothesis approaches constrain hypotheses to lie on
the human pose manifold, thus failing to guarantee good pose consistency.

Multiple choice learning (MCL) [11] is a simple approach for estimating multimodal distributions,
suited for ambiguous tasks, using the winner-takes-all loss. Adapted for deep learning by Lee
et al. [20, 21], it produces diverse predictors, each specialized in a particular subset of the data
distribution. MCL has proved its effectiveness in several computer vision tasks [41, 19, 33, 8, 30, 45],
and was first applied to 2D-HPE in [41]. Our work is the first to employ MCL for the 3D-HPE task,
by leveraging recent innovations of Letzelter et al. [22].

3 ManiPose

Rotations
Module

Segments
Module

Pose
Decoder

Head 1

Head K

... ...

Hyp. 1

Hyp. K

Learned

Not learned

Rotations

Scores

Segments
length

2D keypoints

Legend:

Figure 2: Overview of ManiPose. The rotations module predicts K possible sequences of segment
rotations with their corresponding likelihoods (scores), while the segments module estimates the
shared segment lengths. Hence, predicted poses are constrained to a manifold defined by the estimated
lengths, guaranteeing their consistency.

Following the previous state of the art, we split 3D-HPE into two steps, first estimating J human 2D
keypoints in the pixel space from a sequence of T video frames [x1, . . . , xT ] ∈ R2×J×T , and then
lifting them to 3D joint positions [p̂1, . . . , p̂T ] ∈ R3×J×T . We focus on the second step (i.e., lifting)
in the rest of the paper, assuming the availability of 2D keypoints xi. Our method aims to both ensure
pose consistency and resolve depth ambiguity, as we will discuss in the next section.

3.1 Constraining predictions to the pose manifold

Rationale. Human morphology prevents the joints from arbitrarily occupying the whole space.
Instead, the poses within a movement are restricted to a manifold, reflecting the human skeleton’s
rigidity. If we knew the length of each segment connecting pairs of joints for a given subject, we
could guarantee that the predicted poses lie on the correct pose manifold by only predicting the body
part’s rotations with respect to a reference skeleton. Since we do not have access to ground-truth
segment lengths in real use cases, we propose to predict them, thus disentangling the estimation of the
reference lengths (fixed across time) from the estimation of the joint rotations (variable across time).

Disentangled representations. We constrain model predictions to lie on an estimated manifold by
predicting parametrized disentangled transformations of a reference pose u ∈ (R3)J , for which all
segments have unit length. Namely, we propose to split the network into two parts (cf. Fig. 2):
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1. Segments module, which predicts segment lengths s ∈ RJ−1, shared by the T frames (time
steps) of the input sequence;

2. Rotations module, which predicts the rotation r = [r1,0, . . . , rT,J−1] ∈ (Rd)J×T of each
joint relative to their parent joint at each time step.

Rotations representation. We represent rotations using 6D continuous embeddings (i.e., d = 6).
Compared to quaternions or axis-angles, those representations are continuous and, hence, better
learned by neural networks, as demonstrated by their proposers [54].

Pose decoding. To deliver pose predictions in (R3)J×T , the intermediate representations (s, r) must
be decoded. We achieve that in three steps (cf. Fig. 3):

1. We scale the unit segments of the reference pose u ∈ (R3)J using s, forming a scaled
reference pose u′: u′j = u′τ(j) + sj(uj − uτ(j)) for 0 < j ≤ J − 1, where τ maps the index
of a joint to its parent’s, if any.

2. For each time step 1 ≤ t ≤ T and joint 0 ≤ j < J , we convert the predicted rotation
representations rt,j into rotation matrices Rt,j ∈ SO(3) (Algorithm 1).

3. We apply those rotation matrices Rt,j at each time step t to the scaled reference pose u′

using forward kinematics (Algorithm 2).

3.2 Multiple choice learning

ManiPose architecture. As explained in the introduction, the inherent depth ambiguity of pose
lifting requires multiple hypotheses to conciliate pose consistency and MPJPE performance. To
address this, we adopt the multiple choice learning (MCL) [21] framework, more precisely leveraging
the resilient MCL approach as proposed by Letzelter et al. [22]. This methodology allows the
estimation of conditional distributions for regression tasks, enabling our model to predict multiple
plausible 3D poses for each 2D input. Specifically, instead of a single rotation rt ∈ (Rd)J per time
step, ManiPose’s rotations module predicts an intermediate representation et ∈ (Rd′

)J that feeds K
linear heads (with weights W k

r and W k
γ ), each predicting its own rotation hypothesis rkt ∈ (Rd)J

with a corresponding likelihood γk
t ∈ [0, 1]. That is, for all 1 ≤ t ≤ T , rkt = W k

r et and γk
t = σ[γ̃t]k,

where the softmax function σ is applied to the vector γ̃t = [γ̃1
t , . . . , γ̃

K
t ] ∈ RK of intermediate values

γ̃k
t = W k

γ et.

All rotation hypotheses are decoded together with the shared segment-length predictions s, result-
ing in K hypothetical pose sequences p̂k = (p̂kt )

T
t=1, with corresponding likelihood sequences

γk = (γk
t )

T
t=1, called scores hereafter (Fig. 2).

Loss function. As in [22], ManiPose is trained with a composite loss

L = Lwta + βLscore . (1)

The first term, Lwta, is the winner-takes-all loss [21]

Lwta(p̂(x),p) =
1

T

T∑
t=1

min
k∈J1,KK

ℓ(p̂kt (x),pt) , (2)

where ℓ(p̂kt (x),pt) ≜
1
J

∑J−1
j=0 ∥pt,j − p̂kt,j(x)∥2, and p̂kt (x) denotes the pose prediction at time t

using the kth head. The second term, Lscore, is the scoring loss

Lscore(p̂(x), γ(x),p) =
1

T

T∑
t=1

H
(
δ(p̂t,pt), γt(x)

)
, (3)

whereH(·, ·) is the cross-entropy, p̂t = (p̂kt )
K
k=1, and

[δ(p̂t,pt)]k ≜ 1
[
k ∈ argmin

k′∈J1,KK
ℓ
(
p̂k

′

t ,pt

) ]
(4)
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is the indicator function of the winner pose hypothesis, which is the closest to the ground truth. Eq. (3)
is the average cross-entropy between target and predicted scores γt(x) ∈ [0, 1]K at each time t.

Those losses are complementary. The winner-takes-all loss updates only the best predicted hypothesis,
specializing each head on part of the data distribution [21]. The scoring loss allows the model to learn
how likely each head is to winning, thus avoiding overconfidence of non-winner heads (cf. [19, 45]).

Conditional distribution estimation. As detailed in [22], the model may be interpreted probabilisti-
cally as a multimodal conditional density estimator. More precisely, it models the distribution P(p|x)
of 3D poses conditioned on 2D poses as a mixture of Dirac distributions:

P̂(p|x)≜
K∑

k=1

γk(x)δp̂k(x)(p) . (5)

Hence, the predicted conditional distribution has, at each predicted hypothesis p̂k, a peak whose
likelihood is given by the predicted score γk. As described in Section 4, interpreting hypotheses and
scores probabilistically enables us to handle depth ambiguity.

4 Formal analysis

Rotations
Conversion

Forward
Kinematics

Segments
Scaling

Predicted
movement

Scaled ref. pose

Unit ref. pose

Figure 3: Pose decoder overview.

ManiPose, as outlined in Section 3, is crafted to address
the flaws inherent in unconstrained, single-hypothesis
lifting-based 3D-HPE methods (see Fig. 1). This section
illustrates that without ManiPose’s critical components
(multiple hypotheses and manifold constraint), it is im-
possible to simultaneously minimize joint error and en-
sure pose consistency (Section 4.1). To illustrate this, a
toy example within a simplified 1D-to-2D framework is
provided in Section 4.2.

4.1 Single-hypothesis position-error
minimization leads to inconsistent skeleton lengths

We formally highlight the limitations of unconstrained single-hypothesis 3D-HPE, justifying our ap-
proach, which combines consistency constraints and multiple hypotheses to resolve depth ambiguity.

Let p = [p1, . . . ,pJ ] ∈ R3×J be a human pose, defined by the Cartesian 3D coordinates of each of
the J joints of a predefined skeleton. Then, a sequence of T poses of the same subject at increasing
time steps t1 . . . tT ∈ R forms a movement m = [p0, . . . ,pT ] ∈ R3×J×T . Assuming bone length is
fixed during a movement (which is empirically verifiable in human pose datasets), then the poses pt
of m must all lie on the same smooth manifold.
Proposition 4.1 (Human pose manifold). Assuming a rigid skeleton, all poses of a movement
m = [pt]

T
t=1 lie on a manifoldM of dimension 2(J − 1):

∀t ∈ {1, . . . , T}, pt ∈M . (6)

Proof sketch. (Detailed in Appendix B). Skeleton rigidity implies that, if i is a joint connected to
the root, then it lies on a 2D sphere S2 (0, si,0) centered at the origin with fixed radius si,0. Another
joint j linked to i has a position expressible by its spherical coordinates relative to i with fixed radius
sj,i. That implies an homeomorphism between the position pt,j of joint j and the direct product of
spheres centered at the origin S2 (0, si,0)× S2 (0, sj,i). By induction, one can show that pt lies on a
subspace of (R3)J , which is homeomorphic to a product of spheres centered at the origin. ■

Proposition 4.1 implies that all poses predicted for a video sequence should ideally lie on the same
manifoldM as the ground-truth data, which is homeomorphic to the direct product of 2D unit spheres
(S2)J−1 (cf. Appendix B). Crucially, we can further show that minimizing joint position error using
a single-hypothesis model necessarily leads to predicted poses lying outside the true manifold:
Proposition 4.2 (Inconsistency of MSE minimizer). With a rigid skeleton and mild assumptions on
the training distribution, predicted 3D poses minimizing the traditional mean squared error (MSE)
loss lie outside the pose manifoldM.
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Proof sketch. (See Appendix B). Consider a skeleton with J joints, with (x,p), as pairs of corre-
sponding 2D inputs and 3D poses. Let the function ℓ = (ℓj)

J−1
j=1 compute the lengths of the segments

in a pose, which shall remain constant. On a dataset {(xi,pi)}Ni=1 drawn from the joint distribution
of 2D and 3D poses, let the expected MSE of a traditional predictive model f be Ex,p

[
∥p− f(x)∥22

]
.

Let the ideal model f∗ be the one minimizing that expected MSE, which is the conditional expec-
tation f∗(x) = E[p | x]. Jensen inequality and the rigidity assumption imply that, for any joint j,
ℓ2j (f

∗(x)) < s2j where sj is the true length of the segment associated with joint j. This shows that the
poses predicted by f⋆ violate the original segment length constraints, and thus, the original rigidity
assumption. ■

Proposition 4.2 has the following implications:

1. Traditional unconstrained single-hypothesis approaches are bound to predict inconsistent
movements, where bone lengths may vary.

2. With a single hypothesis, models constrained to the manifold will always lose to uncon-
strained models in terms of MPJPE performance (formalized in Corollary B.1).

3. The only way of reaching both optimal MPJPE and consistency is through multiple hypothe-
ses (formalized in Corollary B.3).

Therefore, the MPJPE metric (and its traditional extensions) is insufficient to assess 3D-HPE, as it
completely ignores pose consistency. Furthermore, we are able to prove in Appendix B.2 that multiple
hypotheses (constrained or not) can always reach better joint position errors than single-hypothesis
models.

4.2 Insights to the formal argument on a simplified setting

Table 1: 1D-to-2D performance. Fig. 4-D setting,
results averaged over five random seeds.

MPJPE ↓ Distance to circle ↓
Unconst. MLP 0.753 ± 0.008 0.42 ± 0.01
Constrained MLP 0.777 ± 0.027 0.00 ± 0.00
ManiPose 0.752 ± 0.012 0.00 ± 0.00

We illustrate the argument of Section 4.1 with
a simplified 1D-to-2D setup. We further gener-
alize this intuitive illustration to the 2D-to-3D
setting in Appendix C of the supplementary.

As in human pose lifting, we take a root joint
J0 as reference, fixed at (0, 0). For a joint
J1, the problem amounts to predicting the 2D
position (x, y), given its 1D projection u = x, assuming a constant distance s = 1 between them.
This simplification ignores the camera perspective and considers the joints to be connected by a rigid
segment as in the case of human poses.

We train three different models with comparable architectures on two datasets {(xi, (xi, yi))}Ni=1
sampled from the angular distributions represented in blue on Fig. 4. The models correspond to:

1. A 2-layer MLP ( ) trained to minimize the mean squared error between true (x, y) and
predicted joint positions (x̂, ŷ);

2. A constrained MLP of the same size ( ), predicting the angle θ̂ instead of the joint position;
3. ManiPose: our constrained multi-hypothesis model capable of predicting K = 2 possible

angles (θ̂k)Kk=1 with their corresponding likelihoods.

Fig. 4 shows that the traditional unconstrained single-hypothesis approach ( ) leads to good results
in an easy unimodal scenario (C), but fails when facing a more challenging bimodal distribution
(D), leading to predictions outside the circle manifold, as depth ambiguity makes the lifting problem
ill-posed. The single-hypothesis constrained model ( ) delivers predictions on the circle, at the cost
of worse MPJPE performance than the unconstrained MLP. Such performance decrease is due to the
Euclidean topology of the MPJPE metric having its minimum ( ) outside the manifold (Fig. 4-B).

Crucially, this implies that the unconstrained single-hypothesis models are bound to make inconsistent
predictions, with varying “bone lengths” (the circle radius). It also shows that models constrained to
the manifold (circle) will always be outcompeted by unconstrained models on MPJPE performance.

Predicting multiple hypotheses constrained to the circle, with their respective likelihoods (⋆ in
Fig. 4-B) allows escaping this dilemma, which is exactly what ManiPose does ( in Fig. 4-D). The
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Figure 4: (A) 1D-to-2D articulated pose lifting problem. (B) True MSE minimizers under a multi-
modal distribution. One-to-one mappings cannot both reach optimal performance and stay on the
pose manifold (dashed circle). (C) Without depth ambiguity, unconstrained models are effective. (D)
Ambiguity from multimodal distributions challenges both constrained and unconstrained models.
Multi-hypothesis approaches can deliver an acceptable solution to the problem.

predicted hypotheses are all on the circle, contrary to the unconstrained MLP, and spread between the
two distribution modes, unlike the constrained single-hypothesis method.

Moreover, the predicted scores (length of green lines) match the 2
3 and 1

3 ground-truth likelihoods of
the two modes. Those advantages translate into perfect pose consistency and into comparable MPJPE
performance with respect to the unconstrained MLP (Table 1).

5 Experiments

5.1 Experimental setup

Datasets. We evaluate our model on two 3D-HPE datasets. Human 3.6M [15] contains 3.6 million
images of 7 actors performing 15 different indoor actions. It is the most widely used dataset for
3D-HPE. Following previous works [52, 27, 53, 38], we train on subjects S1, S5, S6, S7, S8, and test
on subjects S9 and S11, adopting a 17-joint skeleton (cf. Fig. 5). We employ a pre-trained CPN [5] to
compute the input 2D keypoints, as in [38, 52]. MPI-INF-3DHP [32] also adopts a 17-joint skeleton,
but, with fewer samples and containing both indoor and outdoor scenes, it is more challenging than
Human 3.6M. We used ground-truth 2D keypoints for this dataset, as usually done [53, 4, 52].

Traditional evaluation metrics. The mean per-joint position error (MPJPE) is the usual performance
metric for the datasets above, under different protocols, both reported in mm. In protocol #1,
the root joint position is set as a reference, and the predicted root position is translated to 0. In
protocol #2 (P-MPJPE), predictions are additionally Procrustes-corrected. For MPI-INF-3DHP,
additional thresholded metrics derived from MPJPE are often reported, such as AUC (Area Under
Curve) and PCK (Percentage of Correct Keypoints) with a threshold at 150 mm, as explained in [32].

Pose consistency metrics. MPJPE being insufficient to assess pose consistency (Section 4), we
further assess to which extent predicted skeletons are rigid by measuring the average standard
deviations of segment lengths across time in predicted action sequences:

MPSCE ≜
1

J − 1

J−1∑
j=1

√√√√ 1

T

T∑
t=1

(st,j,τ(j) − s̄j,τ(j))2 , (7)

with st,j,i = ∥p̂t,j − p̂t,i∥2 and s̄j,i =
1
T

∑T
t=1 st,j,i, where τ was defined in Section 3.1. We call

this metric, reported in mm, the Mean Per Segment Consistency Error (MPSCE).
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Following [12, 40], we also assess the bilateral symmetry of predicted skeletons through the Mean
Per Segment Symmetry Error (MPSSE), in mm:

MPSSE ≜
1

T |Jleft|

T∑
t=1

∑
j∈Jleft

|st,j,τ(j) − st,j′,τ(j′)| , with j′ = ζ(j) , (8)

where Jleft denotes the set of indices of left-side joints and ζ maps left-side joint indices to their
right-side counterparts.

Multi-hypothesis evaluation protocol. One must decide how to use multiple hypotheses to compute
the metrics. The dominant approach [24, 25, 36, 44, 49, 12] is the oracle evaluation, i.e., using
the predicted hypothesis closer to the ground truth (i.e., Eq. (2) for MPJPE). That makes sense for
multi-hypothesis methods, as the oracle metric measures the distance between the target and the
discrete set of predicted hypotheses. It aligns with the idea of many possible outputs for a given input.

Hypotheses can also be aggregated into a final pose, e.g., through unweighted or weighted averaging
(using predicted scores). The latter has the disadvantage of falling back to a one-to-one mapping
scheme, which is precisely what we want to avoid in a multi-hypothesis setting.

We report both oracle and aggregated metrics in our experiments, favoring oracle results.

Implementation details. ManiPose, as presented in Section 3, is compatible with any backbone.
Here, we chose to build on the MixSTE [52] network for both the rotations and the segment modules
(the latter in a reduced scale). Details about our architecture and training appear in Appendix D.

5.2 Comparison with the state of the art

Table 2: Pose consistency evaluation of state-of-the-art methods on Human3.6M. MPJPE perfor-
mance and pose consistency are not correlated; only ManiPose excels in both. T : sequence length.
K: number of hypotheses. Orac.: Metric computed using oracle hypothesis. Grey lines: Methods
where the Oracle MPJPE is computed with non-comparable number of hypotheses with respect to the
other baselines. Bold: best; Underlined: second best. *: Method with unavailable code ; MPSSE
values reported in [12]. †: Results with comparable number of hypotheses. ‡: Results computed with
official checkpoint and code.

T K Orac. MPJPE ↓ MPSSE ↓ MPSCE ↓
Single-hypothesis methods:
ST-GCN [2] 7 1 48.8 8.9 10.8
VideoPose3D [38] 243 1 46.8 6.5 7.8
PoseFormer [53] 81 1 44.3 4.3 7.2
Anatomy3D [4] 243 1 44.1 1.4 2.0
MixSTE [52] 243 1 40.9 8.8 9.9

Multi-hypothesis methods:
Wehrbein et al. [49] 1 200 ✓ 44.3 12.2 14.8
DiffPose (Holmquist et al.) [12]* 1 200 ✓ 43.3 14.9 -
GFPose [6] 1 200 ✓ 35.6 13.1 16.5
D3DP (P-Best) [43] 243 20 ✓ 39.5 6.9 9.0
GFPose [6]† 1 10 ✓ 45.1 13.1 16.5
Sharma et al. [44] 1 10 ✓ 46.8 13.0 9.9
DiffPose (Gong et al.) [10]‡ 243 5 ✓ 39.3 5.2 6.1
MHFormer [27] 351 3 43.0 5.7 8.0

ManiPose (Ours) 243 5 42.1 0.4 0.8
ManiPose (Ours) 243 5 ✓ 39.1 0.3 0.5

Human 3.6M. Comparisons with state-of-the-art single- and multi-hypothesis methods are presented
in Table 2 and illustrated in Fig. 1. ManiPose outperforms previous methods in terms of Oracle
MPJPE in comparable scenarios, while reaching nearly perfect consistency. Moreover, note that
MPJPE and consistency metrics are not positively correlated for single-hypothesis methods. As
predicted in Section 4.1, our empirical results show that MPJPE improvements achieved by MixSTE
come at the cost of poorer consistency compared to previous models. In contrast, the only single-
hypothesis constrained model, Anatomy3D [4], achieves good consistency at the expense of inferior
MPJPE. Those results empirically validate the theoretical predictions of Sections 4.1 and B, further
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confirming what we have shown, intuitively, in the simplified 1D-to-2D setting (Section 4.2). Note
that while ManiPose is deterministic, previous multi-hypothesis methods are generative, except for
MHFormer. Table 2 shows that they require up to two orders of magnitude more hypotheses than
ManiPose to reach competitive performance (see, e.g., the performance of GFPose). This property is
expected. Indeed, optimization based on Winner-Takes-All theoretically leads to an optimal coverage
of the modes of the conditional distribution with a fixed number of samples [23], in contrast to
generative-based approaches. This is reflected in the oracle metric, which approximates the so-called
quantization (or Distortion) error, as defined in (27), when the number of data points is large. More
detailed MPJPE results per action appear in Tables 8 and 9 in the supplemental. We also complement
our analysis on the diversity of ManiPose in Fig. 11 of the appendix.

Fig. 6 showcases qualitative results, where multiple hypotheses help in depth-ambiguous situations.

Table 3: Comparison with the state-of-the-art on MPI-INF-3DHP using ground-truth 2D poses.
T : sequence length.

T PCK ↑ AUC ↑ MPJPE ↓ MPSSE ↓ MPSCE ↓
VideoPose3D [38] 81 85.5 51.5 84.8 10.4 27.5
PoseFormer [53] 9 86.6 56.4 77.1 10.8 14.2
MixSTE [52] 27 94.4 66.5 54.9 17.3 21.6
P-STMO [42] 81 97.9 75.8 32.2 8.5 11.3

ManiPose (Ours) Aggr. 27 98.0 75.3 37.7 0.6 1.3
ManiPose (Ours) Orac. 27 98.4 77.0 34.6 0.6 1.3

MPI-INF-3DHP. Similar results were obtained for this dataset (cf. Table 3). Not only does ManiPose
reach consistency errors close to 0, but also best PCK and AUC performance. As for MPJPE, only
[42] achieves slightly better performance, at the cost of large pose consistency errors.

5.3 Ablation study

Table 4: Ablation study: Single hypothesis cannot optimize both MPJPE and consistency.
ManiPose uses the same backbone as MixSTE. MR: with manifold regularization. MC: manifold-
constrained. Bold: best. Underlined: second best.

MR MC K # Params. MPJPE ↓ MPSSE ↓ MPSCE ↓
ManiPose (Ours) ✗ ✓ 5 34.44 M 39.1 0.3 0.5
w/o MH ✗ ✓ 1 34.42 M 44.6 0.3 0.5
w/o MC, w/ MR ✓ ✗ 1 33.78 M 42.3 5.7 7.3
w/o MR (MixSTE) ✗ ✗ 1 33.78 M 40.9 8.8 9.9

Figure 5: MPSCE, MPSSE and MPJPE per segment/coordinate (lower is better). ManiPose
mostly helps to deal with the depth ambiguity (z coordinate). Ground-truth poses are represented but
not visible because they have perfect consistency.

Impact of components. We evaluate the impact of removing each component of ManiPose on the
Human 3.6M performance (Table 4). The components tested are the multiple hypotheses (MH) and
the manifold constraint (MC). We also compare MC to a more standard manifold regularization (MR),
i.e., adding Eq. (7) to the loss. Note that without all these components, we fall back to MixSTE [52],
and that the performances reported in Table 4 also appear in Fig. 1.

We see that MR helps to improve pose consistency, but not as much as MC. However, without multiple
hypotheses, MC consistency improvements come at the cost of degraded MPJPE performance, as
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foreseen by our formal analysis (Section 4). Only the combination of both MC and MH allows us to
optimize both consistency and MPJPE.

Fine error analysis. We can see in Fig. 5 that, compared to MixSTE, ManiPose reaches substantially
superior MPSSE and MPSCE, consistency across all skeleton segments. Furthermore, note that larger
MixSTE errors occur for segments KNEE-FOOT and ELBOW-WRIST, which are the most prone to
depth ambiguity. That agrees with coordinate-wise errors depicted in Fig. 5, showing that ManiPose
improvements mostly translate into a reduction of MixSTE depth errors, which are twice as large
as for other coordinates. Further ablations, including the effect of the number of hypotheses K, the
score loss weight β and the rotations representation choice appear in the supplemental.

Ground-truth

Hypothesis 1: p1(x)

Single hypothesis

Hypothesis 2: p2(x)

10
Score : γk(x)

Hypothesis 3: p3(x)

Figure 6: Qualitative comparison between ManiPose and state-of-the-art regression method,
MixSTE. Two pairs of predicted hypotheses by ManiPose are illustrated in green-pink (left) and
green-purple (right), where opacity is used to represent the predicted scores. Multiple hypotheses and
constraints help to deal with depth ambiguities and avoids predicting shorter limbs (red circles).

6 Conclusion

We presented a new manifold-constrained multi-hypothesis human pose lifting method (ManiPose)
and demonstrated its empirical superiority to the existing state-of-the-art on two challenging datasets.
Further, we provided theoretical evidence supporting the tenets of our method, by showing the
inherent limitation of unconstrained single-hypothesis approaches to 3D-HPE. We established that
unconstrained single-hypothesis methods cannot deliver consistent poses and that constraining or
regularizing single-hypothesis models leads to worse position errors. We also showed that traditional
MPJPE-like metrics are insufficient to assess consistency.

Limitations. To guarantee its consistency, ManiPose relies on the forward kinematics algorithm,
which is inherently sequential across joints. Removing that dependence is an interesting avenue for
accelerating the method. On another note, while ManiPose ensures the rigidity of the predicted poses,
imposing constraints within human body articulation limits presents another area for enhancement.
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Appendix / supplemental material

This supplemental material is organized as follows:

• Appendix A contains empirical verification of our assumptions,
• Appendix B presents the proofs of our theoretical results, together with a few corollaries,
• Appendix C provides further implementation details concerning the 1D-to-2D experiment,

as well as an extension to the 2D-to-3D setting,
• Appendix D contains implementation and training details concerning ManiPose, as well as

compared baselines,
• Appendix E presents further results of the Human 3.6M experiment,
• and finally, Appendix F explains the provided experiment code.

A Assumption verifications

Let us first define a few elements that we will need needed for our derivations.
Definition A.1 (Human skeleton). We define a human skeleton as an undirected connected graph
G = (V,E) with J = |V | nodes, called joints, associated with different human body articulation
points. We assume a predefined order of joints and denote A = [Aij ]0≤i,j<J ∈ {0, 1}J×J the
adjacency matrix of G, defining joints connections.
Definition A.2 (Human pose and movement). Let G be a skeleton of J joints. We attach to each joint
i a position pGi in R3 and call the vector pG = [pG0 , . . . ,p

G
J−1] ∈ (R3)J a human pose. Furthermore,

given a series of increasing time steps t1 < t2 < · · · < tT ∈ R, we define a human movement m as a
sequence of poses of the same subject at those instants m = [pGt1 , . . . ,p

G
tT ] ∈ (R3)J×T .

We base the theoretical results of Section 4.1 on the following assumptions. The first states the
reference frame traditionally used for assessing 3D-HPE models:
Assumption A.3 (Reference root joint). For any skeleton G and movement m of length T , the joint
of index 0, called the root joint, is at the origin pGt,0 = [0, 0, 0] at all times t1 ≤ t ≤ tT . That is
equivalent to measuring positions pGt in a reference frame attached to the root joint.

The second assumption concerns the rigidity of human body parts:
Assumption A.4 (Rigid segments). We assume that the Euclidean distance between adjacent joints
is constant within a movement m: for any pair of instants t and t′ and for any joints i, j such that
Aij = 1, we assume that

st,i,j = st′,i,j = si,j , (9)

where st,i,j = ∥pGt,i − pGt,j∥2 > 0.

Finally, we assume that the conditional distribution of poses does not collapse to a single point, i.e.,
that we have a one-to-many problem:
Assumption A.5 (Non-degenerate conditional distribution). Given a joint distribution P(xG,pG)
of 3D poses pG ∈ (R3)J and corresponding 2D inputs xG ∈ (R2)J , we assume that the conditional
distribution P(pG|xG) is non-degenerate, i.e., it is not a single Dirac distribution.

Note that can be true even when P(xG,pG) is unimodal (e.g., Fig. 4).

We verified on Human 3.6M [15] ground-truth data that assumptions A.4 and A.5 hold for actual
poses in both training and test splits.

Segments rigidity. As shown on Figs. 5 and 9, ground-truth 3D poses have perfect MPSSE (8)
and MPSCE (7) metrics, meaning that ground-truth skeletons are perfectly symmetric, with rigid
segments. Assumption A.4 is thus verified in actual training and test data.

Non-degenerate distributions. As shown on Fig. 7, the conditional distribution of ground-truth 3D
poses given 2D keypoints position is clearly multimodal, and, thus, non-degenerate (not reduced
to a single Dirac distribution). That validates assumption A.5 and explains why multi-hypothesis
techniques are necessary.
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Figure 7: Estimated joint distributions of ground-truth 2D inputs (u, v pixel coordinates)
together with 3D z-coordinates (depth) for different subjects and actions. The depth density
conditional on inputs is clearly multimodal. Vertical red lines are examples of depth-ambiguous inputs.
Distributions are estimated with a kernel density estimator from the Seaborn plotting library [48].
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B Proofs and additional corollaries

B.1 Properties of manifold constraint and multi-hypotheses models

This section contains the proofs of the theoretical results presented in Section 4.1, together with a few
corollaries.

PROOF. [Proposition 4.1] Let i be a joint connected to the root p0 (i.e., Ai0 = 1). From assumptions
A.3 and A.4, we know that at any instant t, pGt,i lies on the sphere S2(0, si,0) centered at 0 with radius
si,0 independent of time. Therefore, its position can be fully parameterized in spherical coordinates
by two angles (θt,i, ϕt,i). Let j be a joint connected to i. Like before, assumption A.4 implies
that at any instant t, pGt,j lies on the moving sphere S2(pGt,i, sj,i) centered at pGt,i with radius sj,i
independent of time. Thus, we can fully describe pGt,j with the position of its center, pGt,i and the
spherical coordinates (θt,j , ϕt,j) of joint j relative to the center of the sphere, i.e., joint i. That
means that there is a bijection between the possible positions attainable by pGt,j at any instant and the
direct product of spheres S2(0, si,0) ⊗ S2(0, sj,i).1 That bijection is an homeomorphism since it is
a composition of homeomorphisms: we can compute pGt,j from (θt,i, ϕt,i, θt,j , ϕt,j) following the
forward kinematics algorithm [34] (cf. algo. 2), i.e., using a composition of rotations and translations.

Now let us assume for some arbitrary joint k that pGt,k lies at all times on a spaceM2d homeomorphic
to a product of spheres of dimension 2d. That means that pGt,k can be fully parametrized using 2d

spherical angles (θ1, ϕ1, . . . , θd, ϕd). Let l be a joint connected to k (typically one further step away
from the root joint p0 and not already represented inM2d). As before, at any instant t, pGt,l needs
to lie on the sphere centered on pGt,k of constant radius sk,l. Thus, we can fully describe pGt,l using
the 2(d+ 1)-tuple of angles obtained by concatenating its spherical coordinates relative to joint k,
together with the 2d-tuple describing pGt,k, i.e.the center of the sphere. So pGt,l lies on a spaceM2(d+1)

homeomorphic to a product of spheres of dimension 2(d+ 1).

We can conclude by induction that at any instant t, pt = [pGt,1, . . . ,p
G
t,J ] lies on the same subspace of

(R3)J , which is homeomorphic to a product of spheres centered at the origin:⊗
i<j/Aij=1

S2(0, si,j) . (10)

Finally, the previous space is trivially homeomorphic to (S2)J−1 through the scaling
(1/si,j)i<j/Aij=1. (S2)J−1 is a manifold of dimension 2(J − 1) as the direct product of J − 1
manifolds of dimension 2. ■

PROOF. [Proposition 4.2] Let G be a skeleton with J joints, x ∈ (R2)J a 2D pose, p ∈ (R3)J its
corresponding 3D pose, and P(x,p) a joint distribution of poses in 2D and 3D. We define ℓ = (ℓj)

J−1
j=1

as the function allowing us to compute the length of the segments of a pose p:

ℓj : p 7→ ∥pj − pτ(j)∥2 , 0 < j ≤ J − 1 , (11)

where τ : {1, . . . , J − 1} → {0, . . . , J − 1} maps joint indices to the index of their parent joint:

τ(i) = j < i, s.t. Aij = 1 . (12)

From assumption A.4, we know that for any pose p from the training distribution,

∀j , ℓj(p) = sj,τ(j) . (13)

Given D = {(xi,pi)}Ni=1 ∼ P(x,p), some i.i.d. evaluation data, the MSE of a model f is defined as:

MSE(f ;N) =
1

N

N∑
i=1

∥pi − f(xi)∥22 , (14)

and converges to
MSE∗(f) = Ex,p

[
∥p− f(x)∥22

]
(15)

1S2(0, sj,i) is homeomorphic to S2(pG
t,j ; sj,i).
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as the dataset size N goes to infinity. We then define the oracle MSE minimizer as
f∗ = argmin

f
MSE∗(f) . (16)

The quantity in (15) is known in statistics as the expected L2-risk and it is a well-known fact that its
minimizer is the conditional expectation:

f∗(x) = E[p|x = x] . (17)
Thus, since ℓ2j are strictly convex and P(p|x) is non-degenerate according to assumption A.5, we can
conclude from Jensen’s strict inequality that for all j,

ℓ2j (f
∗(x)) = ℓ2j (E[p|x = x]) < E[ℓ2j (p)|x = x] = s2jτ(j) , (18)

where the last equality arises from the fact that ℓ2j (p) is not random according to (13). Thus, given
that ℓj > 0 and sj,τ(j) > 0, we can say that ℓj(f∗(x)) < sj,τ(j) for all joints j. We conclude that the
model f∗ minimizing MSE∗ predicts poses that violate assumption A.4 and are inconsistent. ■

As an immediate corollary of proposition 4.2, we may state the following result, which was empirically
illustrated in many parts of our paper:
Corollary B.1. Given a fixed training distribution P(x,p) respecting assumptions A.3-A.5, for all
3D-HPE model f predicting consistent poses, i.e., that respect assumption A.4, there is an inconsistent
model f ′ with lower mean-squared error.

PROOF. Let f ′ ∈ argminf̃ MSE∗(f̃). According to proposition 4.2, f ′ is inconsistent. Suppose that
the consistent model f is such that

MSE∗(f) ≤ MSE∗(f ′) . (19)
Since MSE∗ reaches its minimum at f ′, we have MSE∗(f) = MSE∗(f ′). Thus, f ∈
argminf̃ MSE∗(f̃), which means that f is also inconsistent according to proposition 4.2. That
is impossible given that we assumed f to be consistent. We conclude that Eq. (19) is wrong and that

MSE∗(f) > MSE∗(f ′) . (20)
■

Note that propositions 4.2 and B.1 assume the use of the MSE loss, which is the most widely used
loss in 3D-HPE. We can however extend them to the case where MPJPE serves as optimization
criteria under an additional technical assumption:
Corollary B.2. The predicted poses minimizing the mean-per-joint-position-error loss are inconsis-
tent if the training poses distribution P(x,p) verifies Asm. A.3-A.5 and if the joint-wise residuals’
norm standard deviation is small compared to the joint-wise loss:

0 ≤ j < J ,

√
Vx,p

[
∥pj − fj(x)∥2

]
Ex,p

[
∥pj − fj(x)∥2

] ≃ 0 . (21)

PROOF. From proposition 4.2 we know that the poses predicted by the minimizer f∗ of
MSE∗(f) = Ex,p

[
∥p− f(x)∥22

]
(22)

are inconsistent. Let fj be the component of f corresponding to the jth joint. We define the jth

mean-per-joint-position-error component as:

MPJPE∗
j (f) ≜ Ex,p

[
∥pj − fj(x)∥2

]
. (23)

Under the small variance assumption, we have:
Vx,p

[
∥pj − fj(x)∥2

]
Ex,p

[
∥pj − fj(x)∥2

]2 (24)

=
Ex,p

[
∥p− f(x)∥22

]
− Ex,p

[
∥pj − fj(x)∥2

]2
Ex,p

[
∥pj − fj(x)∥2

]2 (25)

=
MSE∗

j (f)−MPJPE∗
j (f)

2

MPJPE∗
j (f)

2
≃ 0 , (26)

so both criteria, MSE and MPJPE, are asymptotically equivalent and have the same minimizer f∗,
which is inconsistent according to proposition 4.2. ■
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Corollary B.3. Under Asm. A.4-A.5 and under (21), the only way to get both optimal MPJPE and
consistency is to use multiple hypotheses.

PROOF. Corollary B.1 and Proposition 4.2 imply that single-hypothesis models (constrained or not)
deliver either suboptimal MPJPE or inconsistent pose predictions. Hence, by negation, we get our
result.

In the next section, we further show that multi-hypotheses models, constrained or not, can theoretically
show a better L2-risk (or quantization) performance compared with single-hypotheses models.

B.2 Multiple hypotheses (constrained or not) can improve L2-risk over single-hypothesis
models

Let X = R2×J denote the space of input 2D poses and P = R3×J the space of 3D poses. Also,
let R(f) = Ex,p[∥p − f(x)∥22] be the L2-risk of some pose estimator f under some underlying
continuous joint distribution of 2D-3D pose pairs P(x,p), with density ρ (when it exists).

Before stating the proposition, we need to define an adapted notion of risk for multi-hypothesis
models under the oracle aggregation scheme:
Definition B.4 (Winner-takes-all risk, [41]). As in [41] (section 3.2) and in [23] (section 2.2), we
define the L2-risk for K-head models fWTA = (f1

WTA, . . . , f
K
WTA) as:

RK
WTA(fWTA) ≜

∫
X

K∑
k=1

∫
Vk(fWTA(x))

∥fk
WTA(x)− p∥22ρ(x,p) dp dx , (27)

where Vk(g)’s denotes the kth cell of the Voronoi tesselation of the output space P defined by
generators g = (g1, . . . , gK) ∈ PK :

Vk(g) ≜
{
p ∈ P | ∥gk − p∥22 < ∥gr,−p∥22,∀r ̸= k

}
. (28)

The risk above translates the notion of oracle pose, since it partitions the space of ground-truth poses
P into regions where some hypothesis is the closest, and uses only that hypothesis to compute the
risk in that region. Note thatR1

WTA(f) = R(f) for any function f , since a single-cell tessellation of
P is P itself.

In the following, we assume that f is expressive enough, so that, minimizing the risk (27) comes
down to minimizing

K∑
k=1

∫
Vk(fWTA(x))

∥fk
WTA(x)− p∥22ρ(x,p) dp ,

for each x ∈ X .
Proposition B.5 (Optimality of manifold constrained multi-hypothesis models). A K-hypotheses
model f∗

WTA = (f1,∗
WTA, . . . , f

K,∗
WTA ) minimizing (27) has always a risk lower or equal to a single-

hypothesis model f∗
MSE minimizingR:

RK
WTA(f

∗
WTA) ≤ R1

WTA(f
∗
MSE) = R(f∗

MSE) . (29)

PROOF. Following [23] (Section 2.2), we decouple the cell generators from the risk arguments in
(27):

K(g, z) ≜
K∑

k=1

∫
Vk(g)

∥zk − p∥22ρ(p|x) dp , (30)

for any generators g = (g1, . . . , gK) ∈ PK and arguments z = (z1, . . . , zK) ∈ PK . Note that
RK

WTA(f) =
∫
X K(f(x), f(x))ρ(x) dx.

According to Proposition 3.1 of [7] (or Proposition 2.1 in [23]), if f∗
WTA minimizes RK

WTA, then
(f∗

WTA(x), f
∗
WTA(x)) has to minimize K for all x ∈ X :

K(f∗
WTA(x), f

∗
WTA(x)) ≤ K(g, z), ∀g, z ∈ PK × PK . (31)
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Let’s choose g such that gk = fk,∗
WTA(x) and z such that zk = f∗

MSE(x) for all 1 ≤ k ≤ K. Then

RK
WTA(f

1
∗ , . . . , f

K
∗ ) ≤

∫
X

K∑
k=1

∫
Vk(f∗

WTA(x))

∥f∗
MSE(x)− p∥22ρ(p|x)ρ(x) dp dx = R(f∗

MSE) , (32)

where the last equality comes from the fact that Vk(f∗
WTA(x)) defines a partition of P .

C Further details of 1D-to-2D case study

C.1 Implementation details

Datasets. We created a dataset of input-output pairs {(xi, (xi, yi))}Ni=1, divided into 1 000 training
examples, 1 000 validation examples and 1 000 test examples. Since the 2D position of J1 is fully
determined by the angle θ between the segment (J0, J1) and the x-axis, the dataset is generated by
first sampling θ from a von Mises mixture distribution, then converting it into Cartesian coordinates
(xi, yi) to form the outputs, and finally projecting them into the x-axis to obtain the inputs.

Distribution scenarios. We considered three different distribution scenarios with different levels of
difficulty:

1. Easy scenario: a unimodal distribution centered at θ = 2π
5 , where the axis of maximum 2D

variance is approximately parallel to the x-axis (Fig. 4-A).

2. Difficult unimodal scenario: a unimodal distribution centered at θ = 0, where the axis of
maximum 2D variance is perpendicular to the x-axis (Fig. 4-B).

3. Difficult multimodal scenario: a bimodal distribution, with modes at θ1 = π
3 and θ2 = −π

3

and mixture weights w1 = 2
3 and w2 = 1

3 , i.e., where the projection of modes onto the
x-axis are close to each other (Fig. 4-C).

All von Mises components in all scenarios had concentrations equal to 20.

Architectures and training. All three models were based on a multi-layer perceptron (MLP) with 2
hidden layers of 32 neurons each, using tanh activation.

The constrained and unconstrained MLPs were trained using the mean-squared loss 1
N

∑N
i=1((x̂i −

xi)
2 + (ŷi − yi)

2). ManiPose was trained with the loss in Eq. (1), and had K = 2 heads. We
trained all models with batches of 100 examples for a maximum of 50 epochs. We used the Adam
optimizer [17], with default hyperparameters and no weight decay. Learning rates were searched for
each model and distribution independently over a small grid: [10−5, 10−4, 10−3, 10−2] (cf. selected
values in Table 5). They were scheduled during training using a plateau strategy of factor 0.5, patience
of 10 epochs and threshold of 10−4.

Table 5: Selected learning rates for 1D-to-2D synthetic experiment.
Distribution A B C

Unconstr. MLP 10−3 10−3 10−2

Constrained MLP 10−2 10−4 10−2

ManiPose 10−2 10−3 10−2

C.2 Extension to 2D-to-3D setup with more joints

We further extend the two-joint 1D-to-2D lifting experiment of Section 4.2 to 2D-to-3D with three
joints, aiming at providing a scenario that is closer to real-world 3D-HPE, but that can still be fully
dissected and visualized.

As in Section 4.2, we suppose that joint J0 is at the origin at all times, that J1 is connected to J0
through a rigid segment of length s1 and that J2 is connected to J1 through a second rigid segment
of length s1 < s0. We further assume that both J1 and J2 are allowed to rotate around two axes
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orthogonal to each other. Thus, J1 is constrained to lie on a circle S1(0, s0), while J2 lies on a torus
T homeomorphic to S1(0, s0)⊗ S1(0, s1). Without loss of generality, we set the radii s0 = 2 and
s1 = 1 and assume them to be known.

Given that setup, we are interested in learning to predict the 3D pose
(J1, J2) = (x1, y1, z1, x2, y2, z2) ∈ R6, given its 2D projection (K1,K2) = (x1, z1, x2, z2) ∈ R4.
We create a dataset comprising 20000 training, 2000 validation, and 2000 test examples, sampled
using an arbitrary von Mises mixture of poloidal and toroidal angles (θ, ϕ) in T . We set the modes
of such a mixture at [(−π, 0), (0, π/4), ( 12 ,−π/4), (2π/3, π/2)], with concentrations of [2, 4, 3, 10]
and weights [0.3, 0.4, 0.2, 0.1]. Similarly to Fig. 4-C, that creates a difficult multimodal distribution,
depicted in Fig. 8.
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Figure 8: Visualisation of the von Mises mixture distribution on the torus T . The different colors
(blue, green, red, purple) represent the modes of the sampled points. We are only representing joint
J2 here for clarity.

We train and evaluate the same baselines as in Section 4.2 in that new scenario, using a similar setup
(cf. Appendix C.1, Architectures and training). Note that for those experiments, we used an initial
learning rate of 10−3 for each baseline, and a batch size of 1000 examples. The corresponding Mean
Per Segment Consistency Error (MPSCE) and Mean Per Joint Position Error (MPJPE) results are
reported in Table 6.

Table 6: Mean per joint prediction error (MPJPE) and mean per segment consistency error
(MPSCE) in a 2D-to-3D scenario. Results are averaged over five random seeds. ManiPose reaches
perfect MPSCE consistency without degrading MPJPE performance.

MPJPE ↓ MPSCE ↓
Unconst. MLP 1.152 ± 0.021 0.269 ± 0.018
Constrained MLP 1.166 ± 0.028 0.000 ± 0.000
ManiPose 1.149 ± 0.036 0.000 ± 0.000

We see that the same observations as in Section 4.2 also apply here: although the unconstrained
MLP yields competitive MPJPE results, its predictions are not consistently aligned with the manifold,
as indicated by its poor MPSCE performance. Again, we show here that ManiPose offers an
effective balance between maintaining manifold consistency and achieving high joint-position-error
performance.

D Further ManiPose implementation details

D.1 Architectural details

Our architecture is backbone-agnostic, as shown on Fig. 2. Thus, in order to have a fair comparison,
we decided to implement it using the most powerful architecture available, i.e., MixSTE [52].

In practice, the rotations module follows the MixSTE architecture with dl = 8 spatio-temporal trans-
former blocks of dimension dm = 512 and time receptive field of T = 243 frames for Human 3.6M
experiments and T = 43 frames for MPI-INF-3DHP experiments. Contrary to MixSTE, that network
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outputs rotation embeddings of dimension 6 for each joint and frame, instead of Cartesian coordinates
of dimension 3.

Concerning the segment module, it was also implemented with a smaller MixSTE backbone of depth
dl = 2 and dimension dm = 128.

The ablation study presented in Table 4 shows that the increase in the number of parameters between
MixSTE and ManiPose is negligible.

D.2 Pose decoding details

The pose decoding block from Fig. 2 is described in Section 3.1 and is based on Algorithms 1 and 2.
The whole procedure is illustrated on Fig. 3.

Table 7: Joint-wise weights used in the Winner-takes-all loss Eq. (2) (as in [52]).

Joint 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Weight 1 1 2.5 2.5 1 2.5 2.5 1 1 1 1.5 1.5 4 4 1.5 4 4

Algorithm 1 6D rotation representation conversion [54]

Require: Predicted 6D rotation representation r ∈ R6.
1: x′ ← [r0, r1, r2] ,
2: y′ ← [r3, r4, r5] ,
3: x← x′/∥x′∥2 ,
4: z′ ← x ∧ y′ ,
5: z ← z′/∥z′∥2 ,
6: y ← z ∧ x ,
7: return R = [x|y|z] ∈ R3×3 .

Algorithm 2 Forward Kinematics [34, 26]

Require: Scaled reference pose u′ ∈ (R3)J , predicted rotation matrices Rt,j , 0 ≤ j < J .
1: R′

t,0 ← Rt,0 ,
2: pt,0 ← u′0 ,
3: for j = 1, . . . , J − 1 do
4: R′

t,j ← Rt,jR
′
t,τ(j) , ▷ Compose relative rotations

5: pt,j ← R′
t,j(u

′
j − u′τ(j)) + pt,τ(j) ,

6: end for
7: return pt = [pt,j ]0≤j<J

D.3 Training details

Training tactics. In order to have a fair comparison with MixSTE [52], we trained ManiPose using
the same training tactics, such as pose flip augmentation both at training and test time. Moreover, the
training loss (1) was complemented with two additional terms described in [52]:

1. a TCloss term, initially introduced in [13];
2. a velocity loss term, introduced in [38].

We also weighted the Winner-takes-all MPJPE loss (2) as in [52] (cf. weights in Table 7). The score
loss weight, β, was set to 0.1 according to our hyperparameter study (Appendix E), while TCloss and
velocity loss terms had respective weights of 0.5 and 2 (values from [52]).

Training settings. We trained our model for a maximum of 200 epochs with the Adam optimizer [17],
using default hyperparameters, a weight decay of 10−6 and an initial learning rate of 4× 10−5. The
latter was reduced with a plateau scheduler of factor 0.5, patience of 11 epochs and threshold of 0.1
mm. Batches contained 3 sequences of T = 243 frames each for the Human 3.6M training, and 30
sequences of T = 43 frames for MPI-INF-3DHP.
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Compute resources. Trainings were carried out on a single NVIDIA RTX 2000 GPU with around
11GB of memory. The training of the large model with 243 frames on Human 3.6M dataset took
around 26 hours.

Dataset licences. Human 3.6M is a dataset released under a research-only custom license, and
is available upon request at this URL: http://vision.imar.ro/human3.6m/description.php.
MPI-INF-3DHP is released under non-commercial custom license and can be found at: https:
//vcai.mpi-inf.mpg.de/3dhp-dataset/.

D.4 Baselines evaluation.

All Human 3.6M evaluations of MPSSE and MPSCE listed in Tables 2 and 4 were performed using the
official checkpoints of these methods and their corresponding official evaluation scripts. Concerning
MPI-INF-3DHP evaluations from Table 3, checkpoints were not available (except for P-STMO).
Thus, baseline models were retrained from scratch using the official MPI-INF-3DHP training scripts
provided by the authors of each work, using hyperparameters reported in their corresponding papers.
We checked that we were able to reproduce the reported MPJPE results.

E Further results on the Human 3.6M dataset

Table 8: Quantitative comparison with the state-of-the-art methods on Human3.6M under
Protocol #1 (MPJPE in mm), using detected 2D poses. T : sequence length. K: number of
hypotheses. Orac.: Metric computed using oracle hypothesis. Bold: best; Underlined: second best.

T K Orac. Dir. Disc Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Single-hypothesis methods:
GraphSH [51] 1 1 45.2 49.9 47.5 50.9 54.9 66.1 48.5 46.3 59.7 71.5 51.4 48.6 53.9 39.9 44.1 51.9
MGCN [55] 1 1 45.4 49.2 45.7 49.4 50.4 58.2 47.9 46.0 57.5 63.0 49.7 46.6 52.2 38.9 40.8 49.4
ST-GCN [2] 7 1 44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9 57.9 61.9 49.7 46.6 51.3 37.1 39.4 48.8
VideoPose3D [38] 243 1 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8
UGCN [47] 96 1 41.3 43.9 44.0 42.2 48.0 57.1 42.2 43.2 57.3 61.3 47.0 43.5 47.0 32.6 31.8 45.6
Liu et al. [28] 243 1 41.8 44.8 41.1 44.9 47.4 54.1 43.4 42.2 56.2 63.6 45.3 43.5 45.3 31.3 32.2 45.1
PoseFormer [53] 81 1 41.5 44.8 39.8 42.5 46.5 51.6 42.1 42.0 53.3 60.7 45.5 43.3 46.1 31.8 32.2 44.3
Anatomy3D [4] 243 1 41.4 43.2 40.1 42.9 46.6 51.9 41.7 42.3 53.9 60.2 45.4 41.7 46.0 31.5 32.7 44.1
MixSTE [52] 243 1 37.6 40.9 37.3 39.7 42.3 49.9 40.1 39.8 51.7 55.0 42.1 39.8 41.0 27.9 27.9 40.9

Multi-hypothesis methods:
Li et al. [25] 1 10 ✓ 62.0 69.7 64.3 73.6 75.1 84.8 68.7 75.0 81.2 104.3 70.2 72.0 75.0 67.0 69.0 73.9
Li et al. [24] 1 5 ✓ 43.8 48.6 49.1 49.8 57.6 61.5 45.9 48.3 62.0 73.4 54.8 50.6 56.0 43.4 45.5 52.7
Oikarinen et al. [36] 1 200 ✓ 40.0 43.2 41.0 43.4 50.0 53.6 40.1 41.4 52.6 67.3 48.1 44.2 44.9 39.5 40.2 46.2
Sharma et al. [44] 1 10 ✓ 37.8 43.2 43.0 44.3 51.1 57.0 39.7 43.0 56.3 64.0 48.1 45.4 50.4 37.9 39.9 46.8
Wehrbein et al. [49] 1 200 ✓ 38.5 42.5 39.9 41.7 46.5 51.6 39.9 40.8 49.5 56.8 45.3 46.4 46.8 37.8 40.4 44.3
DiffPose [12] 1 200 ✓ 38.1 43.1 35.3 43.1 46.6 48.2 39.0 37.6 51.9 59.3 41.7 47.6 45.4 37.4 36.0 43.3
MHFormer [27] 351 3 39.2 43.1 40.1 40.9 44.9 51.2 40.6 41.3 53.5 60.3 43.7 41.1 43.8 29.8 30.6 43.0
D3DP [43] 243 20 ✓ 37.3 39.4 35.4 37.8 41.3 48.1 39.0 37.9 49.8 52.8 41.1 39.0 39.4 27.3 27.2 39.5

ManiPose (Ours) 243 5 ✗ 39.6 45.8 41.9 37.1 42.7 52.3 47.7 39.5 42.7 53.3 42.6 40.9 48.2 27.0 30.0 42.1
ManiPose (Ours) 243 5 ✓ 36.0 41.5 38.9 34.5 39.6 48.5 42.7 37.4 39.8 50.0 40.2 37.7 45.3 25.9 28.6 39.1

Protocol #1 and #2 detailed results. A detailed quantitative comparison in terms of MPJPE per action
on Human3.6M dataset between ManiPose and state-of-the-art methods is shown in Table 8. We see
that ManiPose reaches the best MPJPE performance on average and on most actions. Table 9 contains
a similar analysis in terms of P-MPJPE (i.e., MPJPE with procrust-aligned poses). We observe the
same patterns as in Table 8, namely that ManiPose reaches the second-best P-MPJPE performance
on average and for most actions. We confirm here again that the substantial improvements in pose
consistency brought by ManiPose are not obtained at the expense of traditional metrics derived from
MPJPE.

Errors per joint. On the top of Fig. 9 we see that most of MixSTE errors come from feet, elbows and
wrist joints, which are most prone to depth ambiguity. ManiPose helps to reduce the position errors
for most of those ambiguous joints, probably as a byproduct of its major consistency improvements
shown in Fig. 5.

Impact of hyperparameters. ManiPose introduces two additional hyperparameters when compared
to MixSTE: the number K of hypotheses and the score loss weight β (cf. Eq. (1)). We further assess
the impact of their respective values on MPJPE. For computational cost reasons, we used a smaller
version of our model for this study, with transformer blocks of dimension dm = 64 and time receptive
field of T = 27 frames. Fig. 10 (left) shows that more hypotheses help, but that the performance
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Table 9: Quantitative comparison with the state-of-the-art methods on Human3.6M under Proto-
col #2 (P-MPJPE in mm), using detected 2D poses. Bold: best; Underlined: second best. ManiPose
results using the oracle evaluation. Actions: Directions, Discussion, Eating, Greeting,
Talking on the Phone, Taking photo, Posing, Makes purchases, Sitting on
chair, Activities while seated, Smoking, Waiting, Walking dog, Walking,
Walking together.

T K Dir. Disc Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

MGCN [55] 1 1 35.7 38.6 36.3 40.5 39.2 44.5 37.0 35.4 46.4 51.2 40.5 35.6 41.7 30.7 33.9 39.1
ST-GCN [2] 1 1 35.7 37.8 36.9 40.7 39.6 45.2 37.4 34.5 46.9 50.1 40.5 36.1 41.0 29.6 33.2 39.0
Pavllo et al. [38] 243 1 34.2 36.8 33.9 37.5 37.1 43.2 34.4 33.5 45.3 52.7 37.7 34.1 38.0 25.8 27.7 36.8
Zheng et al. [53] 81 1 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5
Liu et al. [28] 243 1 32.3 35.2 33.3 35.8 35.9 41.5 33.2 32.7 44.6 50.9 37.0 32.4 37.0 25.2 27.2 35.6
Anatomy3D [4] 243 1 32.6 35.1 32.8 35.4 36.3 40.4 32.4 32.3 42.7 49.0 36.8 32.4 36.0 24.9 26.5 35.0
UGCN [47] 96 1 31.8 34.3 35.4 33.5 35.4 41.7 31.1 31.6 44.4 49.0 36.4 32.2 35.0 24.9 23.0 34.5
MixSTE [52] 243 1 30.8 33.1 30.3 31.8 33.1 39.1 31.1 30.5 42.5 44.5 34.0 30.8 32.7 22.1 22.9 32.6
ManiPose (Ours) 243 5 31.9 35.7 30.8 33.5 34.0 39.8 33.0 31.4 41.1 45.9 36.0 32.3 35.4 24.7 25.8 34.1

improvements saturate around 5 hypotheses. Concerning β, Fig. 10 (right) shows that lower values
help to improve the MPJPE performance.

Impact of the rotations representations used.

The disentanglement between segments’ length and orientation is not novel, and was proposed in
previous works restricted to the single-hypothesis case, such as Anatomy3D [4]. While ManiPose
represents segments’ orientations as full 3D rotations relatively to parent segments in the kinematics
tree, Anatomy3D simply predicts segments’ absolute directions, i.e., normalized vectors in the 3D
space. This solution has the advantage of not over-parametrizing the segments orientations (which
are invariant to rotations around the segment axis) and being lower dimensional (3 vs 6). One
might hence wonder whether Anatomy3D’s parametrization is not preferable. As shown in Table 10,
Anatomy3D’s implementation led to poorer results when compared to our rotations parametrization
in a multi-hypothesis setting. This motivated us to use full 3D rotations’ representations proposed in
[54] in our experiments, despite their caveats. Note that [54] also shows good empirical results in the
related problem of inverse kinematics of human 3D poses.

Table 10: Rotations representation ablation: learning 3D directions instead of full rotations
yields poorer results. Dim.: Dimension of rotations or directions representations. K: Number of
hypotheses. β Scores regularization. Bold: best. Underlined: second best.

Learn Dim. K β MPJPE ↓ MPSSE ↓ MPSCE ↓
ManiPose (Ours) Rotations 6 5 0.1 39.1 0.3 0.5
Anatomy3D-like [4] Directions 3 5 0.1 39.6 3.2 5.9

Directions 3 5 0.5 41.8 3.9 6.9
Directions 3 3 0.5 43.2 4.4 7.5

Diversity of predicted poses. As explained in Section 5.2, ManiPose’s state-of-the-art oracle MPJPE
results show that it excels in terms of diversity when the latter is assessed using the quantization
error. There are many other ways of assessing distribution diversity. In an attempt to quantify the
diversity of pose distributions learned by ManiPose by other means, we have computed the coverage
(as defined in [35]) of generated poses relatively to the ground-truth test set of Human 3.6M. For
computation cost reasons (it grows quadratically with sample size), we limited our analysis to 5
actions from subject S11. We compare ManiPose to DiffPose [10], using 5 hypotheses for both, and
observe similar diversity on average (cf. Fig. 11).

F Code

We provide the code to reproduce all our experiments under https://github.com/
cedricrommel/manipose.
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Figure 9: Detailed results on H3.6M. Top: Mean position errors per joint. Bottom: Human 3.6M
skeleton.
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Figure 10: Impact of the number K of hypotheses (left) and score loss weight β (right) on
ManiPose aggregated and oracle performance. Results are obtained on H3.6M with a smaller
network (dm = 64) and a shorter sequence (T = 27). Left plot obtained with β = 0.1 and right plot
with K = 5.
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Figure 11: ManiPose achieves similar diversity to DiffPose [10]. Diversity is assessed through the
coverage [35] over test data from subject 11 from Human 3.6M. 5 hypotheses were predicted/sampled
for each frame by both models.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our claims are enumerated at the bottom of the introduction and backed by
our experiments from Section 5 and our theoretical results from Section 4.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed in a separate section in the last page of the
manuscript.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All propositions start by stating their assumptions (some might be detailed in
the appendix, such as for Proposition 4.2). All results are proved formally in the supplemen-
tary material, with a proof sketch provided within the main article.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimental setting of all experiment is described in details, either in the
main article (Sections 4.2 and 5) or in the supplementary material (Appendices C.1 and D).

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code for the toy experiments was made completely available to reviewers
in the supplementary material, together with instructions to reproduce the paper figures and
tables, as well as environment configurations. Concerning Human3.6M and MPI-INF-3DHP
experiments, their code has been open-sourced to the community under publication (cf.
Appendix F).

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental setting of all experiment is described in details, either in the
main article (Sections 4.2 and 5) or in the supplementary material (Appendices C.1 and D).

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: In toy experiments, we do report error bars corresponding to the standard-
deviation across several 5 runs (cf. Tables 1 and 6). For real-world datasets, however, error
bars are not reported because it would be too computationally expensive. This is customary
in computer vision and practiced by all competing baselines.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Compute resources are described in Appendix D.3.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our experiments comply with NeurIPS Code of Ethics. For instance, we only
work with well-known publicly available datasets.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This is a foundational work on 3D human pose lifting, and is hence not tied to
any particular application. We do not believe that the enhancements it proposes could be
used to make existing 3D human pose technology more dangerous in any way.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The main assets used in this work are the human pose datasets Human 3.6M and
MPI-INF-3DHP, whose papers are duely cited. We also provide their licenses, availability
conditions and download URL in the supplementary material (Appendix D.3).

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The only asset introduced in this paper is the experimental code, which is well
documented in the its own README.md file a provided alongside its (open) license.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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