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ABSTRACT

In the past several years, the last-iterate convergence of the Stochastic Gradient
Descent (SGD) algorithm has triggered people’s interest due to its good perfor-
mance in practice but lack of theoretical understanding. For Lipschitz convex
functions, different works have established the optimal O(log(1/δ) log T/

√
T ) or

O(
√
log(1/δ)/T ) high-probability convergence rates for the final iterate, where

T is the time horizon and δ is the failure probability. However, to prove these
bounds, all the existing works are either limited to compact domains or require
almost surely bounded noises. It is natural to ask whether the last iterate of SGD
can still guarantee the optimal convergence rate but without these two restrictive
assumptions. Besides this important question, there are still lots of theoretical
problems lacking an answer. For example, compared with the last-iterate conver-
gence of SGD for non-smooth problems, only few results for smooth optimization
have yet been developed. Additionally, the existing results are all limited to a
non-composite objective and the standard Euclidean norm. It still remains unclear
whether the last-iterate convergence can be provably extended to wider compos-
ite optimization and non-Euclidean norms. In this work, to address the issues
mentioned above, we revisit the last-iterate convergence of stochastic gradient
methods and provide the first unified way to prove the convergence rates both in
expectation and in high probability to accommodate general domains, composite
objectives, non-Euclidean norms, Lipschitz conditions, smoothness, and (strong)
convexity simultaneously.

1 INTRODUCTION

In this paper, we consider the constrained composite optimization problem minx∈X F (x) := f(x)+
h(x) where both f(x) and h(x) are convex (but possibly satisfying additional conditions such as
strong convexity, smoothness, etc.) and X ⊆ Rd is a nonempty closed convex set. Since a true
gradient is computationally prohibitive to obtain (e.g., large-scale machine learning tasks) or even
infeasible to access (e.g., streaming data), the classic Stochastic Gradient Descent (SGD) (Robbins
& Monro, 1951) algorithm has emerged to be the gold standard for a light-weight yet effective
computational procedure commonly adopted in production for the majority of machine learning
tasks: SGD only requires a stochastic first-order oracle ∂̂f(x) satisfying E[∂̂f(x) | x] ∈ ∂f(x)
where ∂f(x) denotes the set of subgradients at x and guarantees provable convergence under certain
conditions (e.g., Lipschitz condition for f(x) and finite variance on the stochastic oracle).

A particularly important problem in this area is to understand the last-iterate convergence of SGD,
which has been motivated by experimental studies suggesting that returning the final iterate of SGD
(or sometimes the average of the last few iterates) – rather than a running average – often yields a so-
lution that works well in practice (e.g., Shalev-Shwartz et al. (2007)). As such, a fruitful line of liter-
ature (Rakhlin et al., 2011; Shamir & Zhang, 2013; Harvey et al., 2019a; Orabona, 2020; Jain et al.,
2021) developed an extensive theoretical understanding of the non-asymptotic last-iterate conver-
gence rate. Loosely speaking, two optimal upper bounds, Õ(1/

√
T ) for Lipschitz convex functions

∗An extended version including more results is available at https://arxiv.org/abs/2312.08531.
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and Õ(1/T ) for Lipschitz strongly convex functions, have been established for both expected and
high-probability convergence when h(x) = 0 (see Subsection 1.2 for a detailed discussion). How-
ever, to prove the high-probability rates, the existing works rely on restrictive assumptions: compact
domains or almost surely bounded noises (or both), which can simplify the analysis but are unreal-
istic in lots of problems. Until today, whether these two assumptions can be relaxed simultaneously
or not still remains unclear. Naturally, we want to ask the following question:

Q1: Is it possible to prove the high-probability last-iterate convergence of SGD for Lipschitz
(strongly) convex functions without the compact domain assumption and beyond bounded noises?

Compared with the fast development of non-smooth problems, the understanding of the last-iterate
convergence of SGD for smooth problems (i.e., the gradients of f(x) are Lipschitz) is much slower.
The best expected bound for smooth convex optimization under X = Rd until now is stillO(1/ 3

√
T )

due to Moulines & Bach (2011), which is far from the optimal rate O(1/
√
T ) of the averaging

output (Theorem 4.2 in Lan (2020)). However, temporarily suppose the domain is compact, one
can immediately improve the rate from O(1/ 3

√
T ) to Õ(1/

√
T ) by noticing that we can reduce the

smooth problem to the Lipschitz problem1 and use the known bounds from non-smooth convex
optimization. Hence, one may expect the last-iterate convergence rate of SGD for smooth convex
optimization should still be O(1/

√
T ) for any kind of domain. If one further considers smooth and

strongly convex problems, as far as we know, no formal result has been established for the final
iterate of SGD in a general domain except for the expected O(1/T ) rate when X = Rd under the
PL-condition (which is known as a relaxation for strong convexity) (Gower et al., 2021; Khaled &
Richtárik, 2023). The above discussion thereby leads us to the second main question:

Q2: Does the last iterate of SGD provably converge in the rate of O(1/
√
T ) for smooth and convex

functions and O(1/T ) for smooth and strongly convex functions in a general domain?

Besides the two aforementioned questions, there are still several important missing parts. First,
recalling that our original goal is to optimize the composite objective F (x) = f(x) + h(x), it is
still unclear whether – and if so, how – the last-iterate convergence of this harder problem can be
proved. Moreover, the previous works are limited to the standard Euclidean norm. Whereas, in
lots of specialized tasks, it may be beneficial to employ a general norm instead of the ℓ2 norm to
capture the non-Euclidean structure. However, whether this extension can be done remains open.
Additionally, the proof techniques in the existing works vary in different settings, which builds a
barrier for researchers to better understand the convergence of the last iterate of SGD. Motivated by
these challenges, we would like to ask the final question:

Q3: Is there a unified way to analyze the last-iterate convergence of stochastic gradient methods
both in expectation and in high probability to accommodate general domains, composite

objectives, non-Euclidean norms, Lipschitz conditions, smoothness, and (strong) convexity at once?

1.1 OUR CONTRIBUTIONS

We provide affirmative answers to the above three questions and establish several new results by
revisiting a simple algorithm, Composite Stochastic Mirror Descent (CSMD) (Duchi et al., 2010),
which is based on the famous Mirror Descent (MD) algorithm (Nemirovski & Yudin, 1983; Beck &
Teboulle, 2003) and includes SGD as a special case. Specifically, our contributions are as follows.

• We establish the first high-probability convergence result for the last iterate of CSMD in
general domains under sub-Gaussian noises to answer Q1 affirmatively.

• We prove the last iterate of CSMD can converge in the rate of Õ(1/
√
T ) for smooth convex

optimization and Õ(1/T ) for smooth strongly convex problems both in expectation and in
high probability for any general domain X , hence resolving Q2.

• We present a simple unified analysis that differs from the prior works and can be directly
applied to various scenarios simultaneously, thus leading to a positive answer to Q3.

1To see why gradients are bounded in this case, we first fix a point x0 in the domain. Then by smoothness,
there is ∥∇f(x)−∇f(x0)∥2 = O(∥x−x0∥2) for any other point x, which immediately implies ∥∇f(x)∥2 =
O(∥x− x0∥2 + ∥∇f(x0)∥2) = O(D + ∥∇f(x0)∥2) where D is the domain diameter.
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1.2 RELATED WORK

We review the literature related to the last-iterate convergence of plain stochastic gradient meth-
ods2 measured by the function value gap (see Subsection 2.1 for why we use this criterion) for both
Lipschitz and smooth (strongly) convex optimization. We only focus on the algorithms without
momentum or averaging since it is already known that, without further special assumptions, both
operations cannot help to improve the lower order term O(1/

√
T ) for general convex functions and

O(1/T ) for strongly convex functions. For the last iterate of accelerated or averaging based stochas-
tic gradient methods, we refer the reader to Nesterov & Shikhman (2015); Lan (2020); Orabona &
Pál (2021) for in-expectation rates and Davis & Drusvyatskiy (2020); Gorbunov et al. (2020); Liu
et al. (2023); Sadiev et al. (2023) for high-probability bounds. As for the last iterate of stochastic
gradient methods for structured problems (e.g., linear regression), the reader can refer to Lei & Zhou
(2017); Ge et al. (2019); Varre et al. (2021); Pan et al. (2022); Wu et al. (2022) for recent progress.

Last iterate for Lipschitz (strongly) convex functions: Rakhlin et al. (2011) is the first to show
an expected O(1/T ) convergence for strongly convex functions. But such a bound is obtained
under the additional assumption, smoothness with respect to optimum3, meaning their result does
not hold in general. Later on, Shamir & Zhang (2013) proves the first expected last-iterate rates
O(log T/

√
T ) and O(log T/T ) for convex and strongly convex objectives, respectively. The high-

probability bounds turn out to be much harder than the expected rates. After several years, Harvey
et al. (2019a) is the first to establish a high-probability bound in the rate of O(log(1/δ) log T/

√
T )

and O(log(1/δ) log T/T ) for convex and strongly convex problems where δ is the probability of
failure. Afterward, Jain et al. (2021) improves the previous two rates to O(

√
log(1/δ)/T ) and

O(log(1/δ)/T ) but with a non-standard step size schedule. They also prove the expected rates
O(1/

√
T ) and O(1/T ) under the new step size.

However, a main drawback for the general convex case in all the above papers is requiring a compact
domain. To our best knowledge, Orabona (2020) is the first and the only work showing how to shave
off this restriction, and thereby obtains an expected O(log T/

√
T ) rate for general domains yet it is

unclear whether his proof can be extended to the high-probability case or not. Until recently, Zamani
& Glineur (2023) exhibits a new proof on how to obtain the convergence rate for the last iterate but
only for the deterministic case. Lastly, we would like to mention that all of these prior results are
built for a non-composite objective f(x) with the standard Euclidean norm.

Last iterate for smooth (strongly) convex functions: Compared with Lipschitz problems, much
less work is done for smooth optimization. As far as we know, the only result showing a non-
asymptotic rate for smooth convex functions dates back to Moulines & Bach (2011), in which the
authors prove that the last iterate of SGD on Rd enjoys the expected rate O(1/ 3

√
T ) under addi-

tional restrictive assumptions (e.g., mean squared smoothness). As for the strongly convex case, the
expected rate O(1/T ) under the PL-condition (which is known as a relaxation for strong convex-
ity) has been established but only for non-composite optimization under the Euclidean norm on the
domain X = Rd (Gower et al., 2021; Khaled & Richtárik, 2023).

Lower bounds for last iterate: Under the requirement d = T where d is the dimension of the
problem, Harvey et al. (2019a) is the first to provide lower bounds Ω(log T/

√
T ) under the step

size Θ(1/
√
t) for non-smooth convex functions and Ω(log T/T ) under the step size Θ(1/t) when

strong convexity is additionally assumed. Note that these two rates are both proved for deterministic
optimization meaning that they can be also applied to the expected lower bounds. Subsequently,
when d < T holds, Liu & Lu (2021) extends the above two lower bounds to Ω(log d/

√
T ) (this

bound is also true for the step size Θ(1/
√
T )) and Ω(log d/T ) under the same step size in Harvey

et al. (2019a). As a consequence, lower bounds Ω(log(d∧T )/T ) and Ω(log(d∧T )/
√
T ) have been

established for both convex and strongly convex problems under the Lipschitz condition. For the
high-probability bounds, Harvey et al. (2019a) shows their two deterministic bounds will incur an
extra multiplicative factor Ω(log(1/δ)), namely, Ω(log(1/δ) log T/

√
T ) and Ω(log(1/δ) log T/T ).

However, under more sophisticated designed step sizes, better upper bounds without the Ω(log T )
factor are possible, for example, see Jain et al. (2021) as mentioned above.

2To clarify, we mean the algorithm does not contain momentum or averaging operations.
3This means ∃L > 0 such that f(x)− f(x∗) ≤ L

2
∥x− x∗∥2,∀x ∈ X where x∗ ∈ argminx∈X f(x).
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Another highly related work is Liu et al. (2023), which presents a generic approach to establish the
high-probability convergence of the average iterate under sub-Gaussian noises. We will show that
their idea can be further used to prove the high-probability convergence for the last iterate.

2 PRELIMINARIES

Notations: N is the set of natural numbers (excluding 0). [d] := {1, 2, · · · , d} for any d ∈ N. a ∨ b
and a∧b are defined as max {a, b} and min {a, b}, respectively. ⟨·, ·⟩ is the standard Euclidean inner
product on Rd. ∥ ·∥ represents a general norm on Rd and ∥ ·∥∗ is its dual norm. Given a setA ⊆ Rd,
int(A) stands for its interior points. For a function f , ∂f(x) denotes the set of subgradients at x.

We focus on the following optimization problem in this work
min
x∈X

F (x) := f(x) + h(x),

where f and h are both convex. X ⊆ int(dom(f)) ⊆ Rd is a closed convex set. The requirement
of X ⊆ int(dom(f)) is only to guarantee the existence of ∂f(x) for every point x in X with no
special reason. We emphasize that there is no compactness requirement on X . Additionally, given
ψ being a differentiable and 1-strongly convex function with respect to ∥ · ∥ on X (i.e., ψ(x) ≥
ψ(y) + ⟨∇ψ(y), x − y⟩ + 1

2∥x − y∥2,∀x, y ∈ X 4), the Bregman divergence with respect to ψ is
defined as Dψ(x, y) := ψ(x) − ψ(y) − ⟨∇ψ(y), x − y⟩. Throughout this paper, we assume that
argminx∈Xh(x) + ⟨g, x− y⟩+ Dψ(x,y)

η can be solved efficiently for any g ∈ Rd, y ∈ X , η > 0.

Next, we list the assumptions used in our analysis:

1. Existence of a local minimizer: ∃x∗ ∈ argminx∈X F (x) satisfying F (x∗) > −∞.

2. (µf , µh)-strongly convex: For k = f and k = h, ∃µk ≥ 0 such that µkDψ(x, y) ≤ k(x) −
k(y)− ⟨g, x− y⟩,∀x, y ∈ X , g ∈ ∂k(y). Moreover, we assume at least one of (µf , µh) is zero.

3. General (L,M)-smooth: ∃L ≥ 0,M ≥ 0 such that f(x)− f(y)− ⟨g, x− y⟩ ≤ L
2 ∥x− y∥2 +

M∥x− y∥,∀x, y ∈ X , g ∈ ∂f(y).

4. Unbiased gradient estimator: For a given xt ∈ X in the t-th iterate, we can access an unbiased
gradient estimator ĝt, i.e., E

[
ĝt | F t−1

]
∈ ∂f(xt), where F t := σ(ĝs, s ∈ [t]) is the σ-algebra.

5A. Finite variance: ∃σ ≥ 0 such that E
[
∥ξt∥2∗ | F t−1

]
≤ σ2 where ξt := ĝt − E

[
ĝt | F t−1

]
.

5B. Sub-Gaussian noises: ∃σ ≥ 0 such that E
[
exp(λ∥ξt∥2∗) | F t−1

]
≤ exp(λσ2),∀λ ∈

[
0, σ−2

]
.

We briefly discuss the assumptions here. Assumptions 1, 4, and 5A are standard in the stochastic
optimization literature. Assumption 2 is known as relative strong convexity appeared in previous
works (Hazan & Kale, 2014; Lu et al., 2018). We use it here since the last-iterate convergence rate
will be derived for the CSMD algorithm, which employs Bregman divergence to exploit the non-
Euclidean geometry. In particular, when ∥ · ∥ is the standard ℓ2 norm, we can take ψ(x) = 1

2∥x∥
2

to recover the common definition of strong convexity. Assumption 3 is borrowed from Section 4.2
in Lan (2020). Note that both L-smooth functions (by taking M = 0) and G-Lipschitz functions
(by taking L = 0 and M = 2G) are subclasses of Assumption 3. Additionally, we remark that
Assumption 3 can be further relaxed to the following inequality

f(x)− f(y)− ⟨g, x− y⟩ ≤ LDψ(x, y) +M
√
2Dψ(x, y),∀x, y ∈ X , g ∈ ∂f(y),

but without changing the convergence results proved in this paper (see (1) and (5) in the proof of
Lemma 4.1). Lastly, Assumption 5B is used for the high-probability convergence bound.

Our proofs for the high-probability convergence rely on the following simple fact for the centered
sub-Gaussian random vector. Similar results have been proved in prior works (Vershynin, 2018; Liu
et al., 2023). For completeness, we include the proof in Appendix A.
Lemma 2.1. Given a σ-algebra F and a random vector Z ∈ Rd that is F-measurable, if ξ ∈ Rd
is a random vector satisfying E [ξ | F ] = 0 and E

[
exp(λ∥ξ∥2∗) | F

]
≤ exp(λσ2),∀λ ∈

[
0, σ−2

]
,

then
E [exp (⟨ξ, Z⟩) | F ] ≤ exp

(
σ2∥Z∥2

)
.

4Rigorously speaking, y should be in int(X ). But one can think X ⊆ int(dom(ψ)) to avoid this issue.
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2.1 CONVERGENCE CRITERION

We always measure the convergence via the function value gap, i.e., F (x) − F (x∗). There are
several reasons to stick to this criterion. First, for the general convex case, the function value gap is
the standard metric. Next, for strongly convex functions, the function value gap is always a stronger
measurement than the squared distance to the optimal solution since ∥x−x∗∥2 = O(F (x)−F (x∗))
holds by strong convexity. Even if F (x) is additionally assumed to be (L, 0)-smooth (e.g., f(x)
is (L, 0)-smooth and h(x) = 0), the bound on ∥x − x∗∥2 cannot be converted to the bound on
F (x) − F (x∗) since F (x) − F (x∗) ≤ ⟨∇F (x∗), x − x∗⟩ + L

2 ∥x − x∗∥2 = O(∥∇F (x∗)∥∗∥x −
x∗∥ + ∥x − x∗∥2), which is probably worse than O(∥x − x∗∥2) as x∗ is only a local minimizer
meaning ∥∇F (x∗)∥∗ possibly to be non-zero. Moreover, the function value gap is important in both
the theoretical and practical sides of modern machine learning (e.g., the generalization error).

3 LAST-ITERATE CONVERGENCE OF STOCHASTIC GRADIENT METHODS

Algorithm 1 Composite Stochastic Mirror Descent (CSMD)
Input: x1 ∈ X , ηt > 0,∀t ∈ [T ].
for t = 1 to T do
xt+1 = argminx∈Xh(x) + ⟨ĝt, x− xt⟩+ Dψ(x,x

t)
ηt

Return xT+1

The algorithm, Composite Stochastic Mirror Descent, is presented in Algorithm 1. When h(x) = 0,
Algorithm 1 degenerates to the standard Stochastic Mirror Descent algorithm. If we further consider
the case ∥·∥ = ∥·∥2, Algorithm 1 can recover the standard projected SGD by taking ψ(x) = 1

2∥x∥
2
2.

We assume T ≥ 2 throughout the following paper to avoid some algebraic issues in the proof. The
full version of every following theorem with its proof is deferred into the appendix.

3.1 GENERAL CONVEX FUNCTIONS

In this section, we focus on the last-iterate convergence of Algorithm 1 for general convex functions
(i.e., µf = µh = 0). First, the in-expectation convergence rates are shown in Theorem 3.1.

Theorem 3.1. Under Assumptions 1-4 and 5A with µf = µh = 0:

If T is unknown, by taking ηt = 1
2L ∧ η√

t
,∀t ∈ [T ] with η = Θ

(√
Dψ(x∗,x1)
M2+σ2

)
, there is

E
[
F (xT+1)− F (x∗)

]
≤ O

(
LDψ(x

∗, x1)

T
+

(M + σ)
√
Dψ(x∗, x1) log T√
T

)
.

If T is known, by taking ηt = 1
2L ∧ η√

T
,∀t ∈ [T ] with η = Θ

(√
Dψ(x∗,x1)

(M2+σ2) log T

)
, there is

E
[
F (xT+1)− F (x∗)

]
≤ O

(
LDψ(x

∗, x1)

T
+

(M + σ)
√
Dψ(x∗, x1) log T√
T

)
.

Before moving on to the high-probability bounds, we would like to talk more about these in-
expectation convergence results. First, the constant η here is optimized to obtain the best dependence
on the parameters M,σ and Dψ(x

∗, x1). Indeed, the last iterate provably converges for arbitrary
η > 0 but with a worse dependence on M,σ and Dψ(x

∗, x1). We refer the reader to Theorem C.1
in the appendix for a full version of Theorem 3.1 with any η > 0.

Next, by taking L = 0, we immediately get the (nearly) optimal Õ(1/
√
T ) convergence rate of

the last iterate for non-smooth functions. Note that our bounds are better than Shamir & Zhang
(2013) since it only works for bounded domains and non-composite optimization. Besides, when
considering smooth problems (taking M = 0), to our best knowledge, our Õ(L/T + σ/

√
T ) bound
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is the first improvement since the O(1/ 3
√
T ) rate by Moulines & Bach (2011). Moreover, compared

to Moulines & Bach (2011), Theorem 3.1 does not rely on some restrictive assumptions like bounded
stochastic gradients or x∗ being a global optimal point but is able to be used for the more general
composite problems. Additionally, it is worth remarking that the Õ(L/T +σ/

√
T ) rate matches the

optimal O(L/T + σ/
√
T ) rate for the averaged output xT+1

avg = (
∑T+1
t=2 x

t)/T (Lan, 2020) up to an
extra logarithmic factor. Notably, our bounds are also adaptive to the noise σ in this case. In other
words, we can recover the well-known O(L/T ) rate for the last iterate of the GD algorithm in the
noiseless case. Last but most importantly, our proof is unified and thus can be applied to different
settings (e.g., general domains, (L,M )-smoothness, non-Euclidean norms, etc.) simultaneously.
Remark 3.2. Orabona (2020) exhibited a circuitous method based on comparing the last iterate with
the averaged output to show the expected last-iterate convergence for non-composite non-smooth
convex optimization in general domains. However, it did not explicitly generalize to the broader
problems considered in this paper. Moreover, our method is done in a direct manner (see Section 4).
Theorem 3.3. Under Assumptions 1-4 and 5B with µf = µh = 0 and let δ ∈ (0, 1):

If T is unknown, by taking ηt = 1
2L ∧ η√

t
,∀t ∈ [T ] with η = Θ

(√
Dψ(x∗,x1)

M2+σ2 log 1
δ

)
, then with

probability at least 1− δ, there is

F (xT+1)− F (x∗) ≤ O

LDψ(x
∗, x1)

T
+

(M + σ
√

log 1
δ )
√
Dψ(x∗, x1) log T

√
T

 .

If T is known, by taking ηt = 1
2L ∧ η√

T
,∀t ∈ [T ] with η = Θ

(√
Dψ(x∗,x1)

(M2+σ2 log 1
δ ) log T

)
, then with

probability at least 1− δ, there is

F (xT+1)− F (x∗) ≤ O

LDψ(x
∗, x1)

T
+

(M + σ
√

log 1
δ )
√
Dψ(x∗, x1) log T

√
T

 .

In Theorem 3.3, we present the high-probability bounds for (L,M)-smooth functions. Again, the
constant η is picked to get the best dependence on the parameters M,σ,Dψ(x

∗, x1) and log(1/δ).
The full version of Theorem 3.3 with arbitrary η, Theorem C.2, is deferred into the appendix. Com-
pared with Theorem 3.1, the high-probability rates only incur an extra O(

√
log(1/δ)) factor (or

O(log(1/δ)) for arbitrary η, which is known to be optimal for L = 0 (Harvey et al., 2019a)).

In contrast to the previous bounds (Harvey et al., 2019a; Jain et al., 2021) that only work for Lipschitz
functions in a compact domain, our results are the first to describe the high-probability behavior of
Algorithm 1 for the wider (L,M)-smooth function class in a general domain even with sub-Gaussian
noises, not to mention composite objectives and non-Euclidean norms. Even in the special smooth
case (setting M = 0), as far as we know, this is also the first last-iterate high-probability bound
being adaptive to the noise σ at the same time for plain stochastic gradient methods. Unlike the
previous proofs employing some new probability tools (e.g., the generalized Freedman’s inequality
in Harvey et al. (2019a)), our high-probability argument is simple and only based on the basic
property of sub-Gaussian random vectors (see Lemma 2.1). Therefore, we believe our work can
bring some new insights to researchers to gain a better understanding of the convergence for the last
iterate of stochastic gradient methods.

3.2 STRONGLY CONVEX FUNCTIONS

Now we turn our attention to strongly convex functions. Due to the space limitation, we only provide
the results for the case of µf > 0 and µh = 0. The other case, µf = 0 and µh > 0, will be delivered
in Appendix D.2.
Theorem 3.4. Under Assumptions 1-4 and 5A with µf > 0 and µh = 0, let κf := L

µf
≥ 0:

If T is unknown, by taking either ηt = 1
µf (t+2κf )

,∀t ∈ [T ] or ηt = 2
µf (t+1+4κf )

,∀t ∈ [T ], there is

E
[
F (xT+1)− F (x∗)

]
≤

O
(
LDψ(x

∗,x1)
T + (M2+σ2) log T

µf (T+κf )

)
ηt =

1
µf (t+2κf )

,∀t ∈ [T ]

O
(
L(1+κf )Dψ(x

∗,x1)
T (T+κf )

+ (M2+σ2) log T
µf (T+κf )

)
ηt =

2
µf (t+1+4κf )

,∀t ∈ [T ]
.
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If T is known, by taking ηt =


1

µf (1+2κf )
t = 1

1
µf (η+2κf )

2 ≤ t ≤ τ
2

µf (t−τ+2+4κf )
t ≥ τ + 1

,∀t ∈ [T ] with η := 1.5 and τ :=
⌈
T
2

⌉
,

there is

E
[
F (xT+1)− F (x∗)

]
≤ O

LDψ(x
∗, x1)

exp
(

T
3+4κf

) +
(M2 + σ2) log T

µf (T + κf )

 .

The in-expectation rates are stated in Theorem 3.4 where the constant η = 1.5 is chosen without any
special reason. Generally speaking, it can be any non-negative number satisfying η + κf > 1. The
interested reader could refer to Theorem D.1 in the appendix for a completed version of Theorem
3.4. We would like to remind that κf ≥ 1 is not necessary as we are considering the general
(L,M)-smooth functions. Hence, it can be zero.

As before, we first take L = 0 to consider the special Lipschitz case. Due to κf = 0 now, all bounds
will degenerate to O(log T/T ), which is known to be optimal for the step size 1/µf t (Harvey et al.,
2019a) and only incurs an extra O(log T ) factor compared with the best O(1/T ) bound when T is
known (Jain et al., 2021). We would also like to mention that Theorem 3.4 is the first to give the
in-expectation last-iterate bound for the step size 2/µf (t+1). Interestingly, the extra O(log T ) factor
appears again compared to the known O(1/T ) bound on the function value gap for the non-uniform
averaging strategy under this step size (Lacoste-Julien et al., 2012). Besides, Lacoste-Julien et al.
(2012) also shows E

[
∥xT+1 − x∗∥22

]
= O(1/T ). Whereas, it is currently unknown whether our

E
[
F (xT+1)− F (x∗)

]
= O(log T/T ) bound can be improved to match the O(1/T ) rate or not.

For the general (L,M)-smooth case (even for (L, 0)-smoothness), our bounds are the first conver-
gence results for the last iterate of stochastic gradient methods with respect to the function value
gap5. Remarkably, all of these rates do not require prior knowledge of M or σ to set the step size. In
particular, the bound for known T is adaptive to σ when M = 0, i.e., it can recover the well-known
linear convergence rate O(exp(−T/κf )) when σ = 0.

Theorem 3.5. Under Assumptions 1-4 and 5B with µf > 0 and µh = 0, let κf := L
µf

≥ 0 and
δ ∈ (0, 1):

If T is unknown, by taking either ηt = 1
µf (t+2κf )

,∀t ∈ [T ] or ηt = 2
µf (t+1+4κf )

,∀t ∈ [T ], then
with probability at least 1− δ, there is

F (xT+1)−F (x∗) ≤

O
(
µf (1+κf )Dψ(x

∗,x1)
T +

(M2+σ2 log 1
δ ) log T

µf (T+κf )

)
ηt =

1
µf (t+2κf )

,∀t ∈ [T ]

O
(
µf (1+κf )

2Dψ(x
∗,x1)

T (T+κf )
+

(M2+σ2 log 1
δ ) log T

µf (T+κf )

)
ηt =

2
µf (t+1+4κf )

,∀t ∈ [T ]
.

If T is known, by taking ηt =


1

µf (1+2κf )
t = 1

1
µf (η+2κf )

2 ≤ t ≤ τ
2

µf (t−τ+2+4κf )
t ≥ τ + 1

,∀t ∈ [T ] with η := 1.5 and τ :=
⌈
T
2

⌉
,

then with probability at least 1− δ, there is

F (xT+1)− F (x∗) ≤ O

µf (1 + κf )Dψ(x
∗, x1)

exp
(

T
3+4κf

) +
(M2 + σ2 log 1

δ ) log T

µf (T + κf )

 .

To finish this section, we provide the high-probability convergence results in Theorem 3.5. Again,
the constant η = 1.5 is set without any particular reason. The full statement with general η, Theorem
D.2, can be found in the appendix. Besides, κf is possible to be zero as mentioned above. Compared
with Theorem 3.4, only an additional O(log(1/δ)) factor appears. Such extra loss is known to be
inevitable for L = 0 due to Harvey et al. (2019a).

5Note that the rates under the PL-condition (e.g., Gower et al. (2021); Khaled & Richtárik (2023)) are
incompatible with our settings since they can be only applied to non-constrained, non-composite and (L, 0)-
smooth optimization problems with the Euclidean norm.
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For the Lipschitz case (i.e., L = κf = 0), by noticing Dψ(x
∗, x1) = O(M2/µ2

f )
6, all of these

bounds will degenerate to O(log(1/δ) log T/T ) matching the best-known last-iterate bound proved
by Harvey et al. (2019a) for the step size 1/µf t. For the step size 2/µf (t+1), Harvey et al. (2019b) has
proved the high-probability bound O(log(1/δ)/T ) for the non-uniform averaging output instead of
the last iterate. Hence, as far as we know, our high-probability rate for the step size 2/µf (t+1) is new.
However, we would like to mention that our bound for known T is worse by a logarithmic factor
than Jain et al. (2021), though, which assumes bounded noises.

Finally, let us go back to the general (L,M)-smooth case. To our best knowledge, our results are first
to prove the last iterate of plain stochastic gradient methods enjoying the provable high-probability
convergence even for the smooth case (M = 0). Hence, we believe our work closes the gap between
the lack of theoretical understanding and good performance of the last iterate of SGD for smooth and
strongly convex functions. Lastly, the same as the in-expectation bound for known T in Theorem
3.4, our high-probability bound is also adaptive to σ when M = 0.

4 UNIFIED THEORETICAL ANALYSIS

In this section, we introduce the ideas in our analysis and present three important lemmas, all the
missing proofs of which are deferred into Appendix B.

The key insight in our proofs is to utilize the convexity of F (x), which is highly inspired by the
recent work (Zamani & Glineur, 2023). To be more precise, using the classic convergence analysis
for non-composite Lipschitz convex problems as an example, people always consider to upper bound
the function value gap f(xt) − f(x∗) (probably with some weight before it) then sum them over
time to obtain the ergodic rate. Whereas, in such an argument, convexity is not necessary in fact
(except if one wants to bound the average iterate in the last step). Hence, if the convexity of f
can be utilized somewhere, it is reasonable to expect a last-iterate convergence guarantee. Actually,
this thought is possible as shown by Zamani & Glineur (2023), in which the authors upper bound
the quantity f(xt) − f(zt) where zt is a carefully chosen convex combination of other points and
finally obtain the last-iterate rate by lower bounding −f(zt) via convexity. More precisely, suppose
zt := αt0x

∗ +
∑t
s=1 α

t
sx
t where αts ≥ 0,∀s ∈ {0} ∪ [t] ,∀t ∈ [T ] satisfy

∑t
s=0 α

t
s = 1,∀t ∈ [T ],

then there is −f(zt) ≥ −αt0f(x∗)−
∑t
s=1 α

t
sf(x

t) by the convexity of f . By properly picking αts,
one can finally bound f(xT )− f(x∗) as proved by Zamani & Glineur (2023).

Though Zamani & Glineur (2023) only shows how to prove the last-iterate convergence for deter-
ministic non-composite Lipschitz convex optimization under the Euclidean norm, we can catch the
most important message conveyed by their paper and apply it to our settings. Formally speaking,
we will upper bound the term F (xt+1) − F (zt) for a well-designed zt rather than directly bound
the function value gap F (xt+1)−F (x∗). This idea can finally help us construct a unified proof and
obtain several novel results without prior restrictive assumptions. By careful calculations, the new
analysis leads us to the following most important and unified result, Lemma 4.1.
Lemma 4.1. Under Assumptions 1-3, suppose ηt ≤ 1

2L∨µf ,∀t ∈ [T ] and let γt :=

ηt
∏t
s=2

1+µhηs−1

1−µfηs ,∀t ∈ [T ], if wt ≥ 0,∀t ∈ [T ] is a non-increasing sequence and vt > 0 is
defined as vt := wT γT∑T

s=t wsγs
,∀t ∈ [T ] and v0 := v1, then we have

wT γT vT
(
F (xT+1)− F (x∗)

)
≤w1(1− µfη1)v0Dψ(x

∗, x1) +

T∑
t=1

2wtγtηtvt(M
2 + ∥ξt∥2∗)

+

T∑
t=1

wtγtvt−1⟨ξt, zt−1 − xt⟩+
T∑
t=2

(wt − wt−1)γt(η
−1
t − µf )vt−1Dψ(z

t−1, xt),

where ξt := ĝt − E
[
ĝt | F t−1

]
,∀t ∈ [T ] and zt := v0

vt
x∗ +

∑t
s=1

vs−vs−1

vt
xs,∀t ∈ {0} ∪ [T ].

Let us discuss Lemma 4.1 more here. The requirement of the step size ηt having an upper bound
1/2L∨µf is common in the optimization literature. γt is used to ensure we can telescope sum some

6This holds now due to µf∥x∗ − x1∥2/2 ≤ µfDψ(x
∗, x1) ≤M∥x∗ − x1∥.
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terms. For the special case µf = µh = 0, it degenerates to ηt. ξt naturally shows up as we are
considering stochastic optimization. The most important sequences are wt, vt and zt. As mentioned
above, the appearance of zt is to make sure to get the last-iterate convergence. For how to find such
a sequence, we refer the reader to our proofs in Appendix B for details.

We would like to say more about the sequence wt before moving on. Suppose we are in the de-
terministic case temporarily, i.e., ξt = 0, then a natural choice is to set wt = 1,∀t ∈ [T ] to
remove the last residual summation. It turns out this is the correct choice even for the following
in-expectation bound in Lemma 4.2. So why do we still need this redundant wt? The reason is that
setting wt to be one is not enough for the high-probability bound. More precisely, if we still choose
wt = 1,∀t ∈ [T ], then there will be some extra positive terms after the concentration argument
in the R.H.S. of the inequality in Lemma 4.1. To deal with this issue, we borrow the idea recently
developed by Liu et al. (2023), in which the authors employ an extra sequence wt to give a clear
proof for the high-probability bound for stochastic gradient methods. We refer the reader to Liu
et al. (2023) for a detailed explanation of this technique.
Lemma 4.2. Under Assumptions 1-4 and 5A, suppose ηt ≤ 1

2L∨µf ,∀t ∈ [T ] and let γt :=

ηt
∏t
s=2

1+µhηs−1

1−µfηs ,∀t ∈ [T ], then we have

E
[
F (xT+1)− F (x∗)

]
≤ (1− µfη1)Dψ(x

∗, x1)∑T
t=1 γt

+ 2(M2 + σ2)

T∑
t=1

γtηt∑T
s=t γs

.

Suppose Lemma 4.1 holds, Lemma 4.2 is immediately obtained by setting wt = 1,∀t ∈ [T ] and
using Assumptions 4 and 5A. This unified result for the expected last-iterate convergence can be
applied to many different settings like composite optimization and non-Euclidean norms without
any restrictive assumptions.
Lemma 4.3. Under Assumptions 1-4 and 5B, suppose ηt ≤ 1

2L∨µf ,∀t ∈ [T ] and let γt :=

ηt
∏t
s=2

1+µhηs−1

1−µfηs ,∀t ∈ [T ], then for any δ ∈ (0, 1), with probability at least 1− δ, we have

F (xT+1)− F (x∗) ≤2

(
1 + max

2≤t≤T

1

1− µfηt

)
×

[
Dψ(x

∗, x1)∑T
t=1 γt

+

(
M2 + σ2

(
1 + 2 log

2

δ

)) T∑
t=1

γtηt∑T
s=t γs

]
.

To get Lemma 4.3, we need some extra effort to find the correct wt and invoke a simple property
of sub-Gaussian random vectors (Lemma 2.1). The details can be found in Appendix B. Compared
with prior works, this unified high-probability bound can be applied to various scenarios including
general domains and sub-Gaussian noises.

Equipped with Lemma 4.2 and Lemma 4.3, we can prove all theorems provided in Section 3 by
plugging in different step sizes for different cases.

5 CONCLUSION

In this work, we present a unified analysis for the last-iterate convergence of stochastic gradient
methods and obtain several new results. More specifically, we establish the (nearly) optimal con-
vergence of the last iterate of the CSMD algorithm both in expectation and in high probability. Our
proofs can not only handle different function classes simultaneously but also be applied to com-
posite problems with non-Euclidean norms on general domains. We believe our work develops a
deeper understanding of stochastic gradient methods. However, there still remain many directions
worth exploring. For example, it could be interesting to see whether our proof can be extended to
adaptive gradient methods like AdaGrad (McMahan & Streeter, 2010; Duchi et al., 2011). We leave
this important question as future work and expect it to be addressed.

9



Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

This work is generously supported by the National Science Foundation grant CCF-2106508.
Zhengyuan Zhou would also like to thank the 2024-2025 NYU Center for Global Economy and
Business faculty grant and the NYU Research Catalyst Prize. We also thank the anonymous review-
ers for their constructive comments and suggestions.

Ethics Statement: This is a theory work. Hence, there are no potential ethics concerns.

Reproducibility Statement: We include the full proofs of all theorems in the appendix.

REFERENCES

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for
convex optimization. Operations Research Letters, 31(3):167–175, 2003.

Damek Davis and Dmitriy Drusvyatskiy. High probability guarantees for stochastic convex opti-
mization. In Conference on Learning Theory, pp. 1411–1427. PMLR, 2020.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

John C Duchi, Shai Shalev-Shwartz, Yoram Singer, and Ambuj Tewari. Composite objective mirror
descent. In COLT, volume 10, pp. 14–26. Citeseer, 2010.

Rong Ge, Sham M Kakade, Rahul Kidambi, and Praneeth Netrapalli. The step decay schedule:
A near optimal, geometrically decaying learning rate procedure for least squares. Advances in
neural information processing systems, 32, 2019.

Eduard Gorbunov, Marina Danilova, and Alexander Gasnikov. Stochastic optimization with heavy-
tailed noise via accelerated gradient clipping. Advances in Neural Information Processing Sys-
tems, 33:15042–15053, 2020.

Robert Gower, Othmane Sebbouh, and Nicolas Loizou. Sgd for structured nonconvex functions:
Learning rates, minibatching and interpolation. In International Conference on Artificial Intelli-
gence and Statistics, pp. 1315–1323. PMLR, 2021.

Nicholas JA Harvey, Christopher Liaw, Yaniv Plan, and Sikander Randhawa. Tight analyses for non-
smooth stochastic gradient descent. In Conference on Learning Theory, pp. 1579–1613. PMLR,
2019a.

Nicholas JA Harvey, Christopher Liaw, and Sikander Randhawa. Simple and optimal
high-probability bounds for strongly-convex stochastic gradient descent. arXiv preprint
arXiv:1909.00843, 2019b.

Elad Hazan and Satyen Kale. Beyond the regret minimization barrier: optimal algorithms for
stochastic strongly-convex optimization. The Journal of Machine Learning Research, 15(1):
2489–2512, 2014.

Prateek Jain, Dheeraj M. Nagaraj, and Praneeth Netrapalli. Making the last iterate of sgd information
theoretically optimal. SIAM Journal on Optimization, 31(2):1108–1130, 2021. doi: 10.1137/
19M128908X. URL https://doi.org/10.1137/19M128908X.

Ahmed Khaled and Peter Richtárik. Better theory for SGD in the nonconvex world. Transactions
on Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/
forum?id=AU4qHN2VkS. Survey Certification.

Simon Lacoste-Julien, Mark Schmidt, and Francis Bach. A simpler approach to obtaining
an o (1/t) convergence rate for the projected stochastic subgradient method. arXiv preprint
arXiv:1212.2002, 2012.

Guanghui Lan. First-order and stochastic optimization methods for machine learning. Springer,
2020.

10

https://doi.org/10.1137/19M128908X
https://openreview.net/forum?id=AU4qHN2VkS
https://openreview.net/forum?id=AU4qHN2VkS


Published as a conference paper at ICLR 2024

Yunwen Lei and Ding-Xuan Zhou. Analysis of online composite mirror descent algorithm. Neural
computation, 29(3):825–860, 2017.

Daogao Liu and Zhou Lu. The convergence rate of sgd’s final iterate: Analysis on dimension
dependence. arXiv preprint arXiv:2106.14588, 2021.

Zijian Liu, Ta Duy Nguyen, Thien Hang Nguyen, Alina Ene, and Huy Nguyen. High probability
convergence of stochastic gradient methods. In International Conference on Machine Learning,
pp. 21884–21914. PMLR, 2023.

Haihao Lu, Robert M Freund, and Yurii Nesterov. Relatively smooth convex optimization by first-
order methods, and applications. SIAM Journal on Optimization, 28(1):333–354, 2018.

H. Brendan McMahan and Matthew J. Streeter. Adaptive bound optimization for online convex
optimization. In Conference on Learning Theory (COLT), pp. 244–256. Omnipress, 2010.

Eric Moulines and Francis Bach. Non-asymptotic analysis of stochastic approximation algorithms
for machine learning. Advances in neural information processing systems, 24, 2011.

Arkadi Nemirovski and David Yudin. Problem complexity and method efficiency in optimization.
Wiley-Interscience, 1983.

Yu Nesterov and Vladimir Shikhman. Quasi-monotone subgradient methods for nonsmooth convex
minimization. Journal of Optimization Theory and Applications, 165(3):917–940, 2015.

Francesco Orabona. Last iterate of sgd converges (even in unbounded do-
mains). 2020. URL https://parameterfree.com/2020/08/07/
last-iterate-of-sgd-converges-even-in-unbounded-domains/.

Francesco Orabona and Dávid Pál. Parameter-free stochastic optimization of variationally coherent
functions. arXiv preprint arXiv:2102.00236, 2021.

Rui Pan, Haishan Ye, and Tong Zhang. Eigencurve: Optimal learning rate schedule for SGD on
quadratic objectives with skewed hessian spectrums. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=rTAclwH46Tb.

Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making gradient descent optimal for
strongly convex stochastic optimization. arXiv preprint arXiv:1109.5647, 2011.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pp. 400–407, 1951.

Abdurakhmon Sadiev, Marina Danilova, Eduard Gorbunov, Samuel Horváth, Gauthier Gidel, Pavel
Dvurechensky, Alexander Gasnikov, and Peter Richtárik. High-probability bounds for stochas-
tic optimization and variational inequalities: the case of unbounded variance. arXiv preprint
arXiv:2302.00999, 2023.

Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: Primal estimated sub-gradient
solver for svm. In Proceedings of the 24th international conference on Machine learning, pp.
807–814, 2007.

Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization: Conver-
gence results and optimal averaging schemes. In International conference on machine learning,
pp. 71–79. PMLR, 2013.

Aditya Vardhan Varre, Loucas Pillaud-Vivien, and Nicolas Flammarion. Last iterate convergence
of sgd for least-squares in the interpolation regime. Advances in Neural Information Processing
Systems, 34:21581–21591, 2021.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Jingfeng Wu, Difan Zou, Vladimir Braverman, Quanquan Gu, and Sham Kakade. Last iterate risk
bounds of sgd with decaying stepsize for overparameterized linear regression. In International
Conference on Machine Learning, pp. 24280–24314. PMLR, 2022.

11

https://parameterfree.com/2020/08/07/last-iterate-of-sgd-converges-even-in-unbounded-domains/
https://parameterfree.com/2020/08/07/last-iterate-of-sgd-converges-even-in-unbounded-domains/
https://openreview.net/forum?id=rTAclwH46Tb


Published as a conference paper at ICLR 2024

Moslem Zamani and François Glineur. Exact convergence rate of the last iterate in subgradient
methods. arXiv preprint arXiv:2307.11134, 2023.

12



Published as a conference paper at ICLR 2024

A PROOF OF LEMMA 2.1

Before giving the proof of Lemma 2.1, we need the following property of sub-Gaussian vectors.
This result is already known before (see Vershynin (2018)). We provide a proof here to make the
paper self-consistent.
Lemma A.1. Given a σ-algebra F , if ξ ∈ Rd is a random vector satisfying E

[
exp(λ∥ξ∥2∗) | F

]
≤

exp(λσ2),∀λ ∈
[
0, σ−2

]
, then for any integer k ≥ 1 we have

E
[
∥ξ∥2k∗ | F

]
≤
{
σ2 k = 1

e(k!)σ2k k ≥ 2
.

Proof. For the case k = 1, given any λ ∈
[
0, σ−2

]
, there is

exp
(
E
[
λ∥ξ∥2∗ | F

])
≤ E

[
exp

(
λ∥ξ∥2∗

)
| F
]
≤ exp(λσ2) ⇒ E

[
∥ξ∥2∗ | F

]
≤ σ2.

For k ≥ 2, we have

E
[
∥ξ∥2k∗ | F

]
= E

[∫ ∞

0

2kt2k−11 [∥ξ∥∗ ≥ t] dt | F
]
=

∫ ∞

0

2kt2k−1E [1 [∥ξ∥∗ ≥ t] | F ] dt

≤
∫ ∞

0

2kt2k−1E
[
exp(σ−2∥ξ∥2∗)
exp(σ−2t2)

| F
]
dt

(a)

≤
∫ ∞

0

2ekt2k−1 exp(−σ−2t2)dt

(b)
=

∫ ∞

0

ekσ2ksk−1 exp(−s)ds = ekσ2kΓ(k) = e(k!)σ2k,

where (a) is by E
[
exp(σ−2∥ξ∥2∗) | F

]
≤ exp(σ−2σ2) = e and (b) is by the change of variable

t = σ
√
s.

Now we are ready to prove Lemma 2.1.

Proof of Lemma 2.1. Note that
E [exp (⟨ξ, Z⟩) | F ]

=E

[
1 + ⟨ξ, Z⟩+

∞∑
k=2

(⟨ξ, Z⟩)k

k!
| F

]
≤ E [⟨ξ, Z⟩ | F ] + E

[
1 +

∞∑
k=2

∥ξ∥k∗∥Z∥k

k!
| F

]
(a)
=E

[
1 +

∞∑
k=1

∥ξ∥2k∗ ∥Z∥2k

(2k)!
+

∞∑
k=1

∥ξ∥2k+1
∗ ∥Z∥2k+1

(2k + 1)!
| F

]
(b)

≤E

[
1 +

∞∑
k=1

∥ξ∥2k∗ ∥Z∥2k

(2k)!
+

∞∑
k=1

∥ξ∥2k∗ ∥Z∥2k + ∥ξ∥2k+2
∗ ∥Z∥2k+2/4

(2k + 1)!
| F

]

=E

[
1 +

2∥ξ∥2∗∥Z∥2

3
+

∞∑
k=2

∥ξ∥2k∗ ∥Z∥2k
(

1

4(2k − 1)!
+

1

(2k)!
+

1

(2k + 1)!

)
| F

]

=E

[
1 +

2∥ξ∥2∗∥Z∥2

3
+

∞∑
k=2

∥ξ∥2k∗ ∥Z∥2k 1 + k/2 + 1/(2k + 1)

(2k)!
| F

]
(c)

≤1 +
2σ2∥Z∥2

3
+

∞∑
k=2

σ2k∥Z∥2k

k!
· e(1 + k/2 + 1/(2k + 1))(

2k
k

)
(d)

≤1 + σ2∥Z∥2 +
∞∑
k=2

σ2k∥Z∥2k

k!
= exp

(
σ2∥Z∥2

)
,

where (a) is by E [⟨ξ, Z⟩ | F ] = ⟨E [ξ | F ] , Z⟩ = 0, (b) holds due to AM-GM inequality, (c) is by
applying Lemma A.1 to E

[
∥ξ∥2k∗ ∥Z∥2k | F

]
= ∥Z∥2kE

[
∥ξ∥2k∗ | F

]
and (d) is by 2/3 < 1 and

max
k≥2,k∈N

e(1 + k/2 + 1/(2k + 1))(
2k
k

) =
e(1 + 1 + 1/5)

6
< 1.
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B MISSING PROOFS IN SECTION 4

In this section, we provide the missing proofs of the most important three lemmas.

B.1 PROOF OF LEMMA 4.1

Proof of Lemma 4.1. Inspired by Zamani & Glineur (2023), we first introduce the following auxil-
iary sequence

zt :=

{(
1− vt−1

vt

)
xt + vt−1

vt
zt−1 t ∈ [T ]

x∗ t = 0
⇔ zt :=

v0
vt
x∗ +

t∑
s=1

vs − vs−1

vt
xs,∀t ∈ {0} ∪ [T ] ,

where we recall that vt = wT γT∑T
s=t wsγs

≥ 0,∀t ∈ [T ] and v0 = v1 are non-decreasing. Note that zt

always falls in the domain X because it is a convex combination of x∗, x1, · · · , xt that are in X .

Now, we start the proof from the (L,M)-smoothness of f ,

f(xt+1)− f(xt) ≤⟨gt, xt+1 − xt⟩+ L

2
∥xt+1 − xt∥2 +M∥xt+1 − xt∥

=⟨ξt, zt − xt⟩+ ⟨ξt, xt − xt+1⟩︸ ︷︷ ︸
I

+ ⟨ĝt, xt+1 − zt⟩︸ ︷︷ ︸
II

+ ⟨gt, zt − xt⟩︸ ︷︷ ︸
III

+
L

2
∥xt+1 − xt∥2 +M∥xt+1 − xt∥︸ ︷︷ ︸

IV

, (1)

where gt := E
[
ĝt|F t−1

]
∈ ∂f(xt) and ξt := ĝt−gt. Next, we bound these four terms respectively.

• For term I, by applying Cauchy-Schwarz inequality, the 1-strong convexity of ψ and AM-
GM inequality, we can get the following upper bound

I ≤ ∥ξt∥∗∥xt − xt+1∥ ≤ ∥ξt∥∗
√
2Dψ(xt+1, xt) ≤ 2ηt∥ξt∥2∗ +

Dψ(x
t+1, xt)

4ηt
. (2)

• For term II, we recall that the update rule is xt+1 = argminx∈Xh(x) + ⟨ĝt, x − xt⟩ +
Dψ(x,x

t)
ηt

. Hence, by the optimality condition of xt+1, there exists ht+1 ∈ ∂h(xt+1) such
that for any y ∈ X

⟨ht+1 + ĝt +
∇ψ(xt+1)−∇ψ(xt)

ηt
, xt+1 − y⟩ ≤ 0,

which implies

⟨ĝt, xt+1 − y⟩ ≤⟨∇ψ(xt)−∇ψ(xt+1), xt+1 − y⟩
ηt

+ ⟨ht+1, y − xt+1⟩

≤Dψ(y, x
t)−Dψ(y, x

t+1)−Dψ(x
t+1, xt)

ηt
+ h(y)− h(xt+1)− µhDψ(y, x

t+1)

where the last inequality holds due to ⟨∇ψ(xt) − ∇ψ(xt+1), xt+1 − y⟩ = Dψ(y, x
t) −

Dψ(y, x
t+1) −Dψ(x

t+1, xt) and ⟨ht+1, y − xt+1⟩ ≤ h(y) − h(xt+1) − µhDψ(y, x
t+1)

by the µh-strong convexity of h. We substitute y with zt to obtain

II ≤ Dψ(z
t, xt)−Dψ(z

t, xt+1)−Dψ(x
t+1, xt)

ηt
+ h(zt)− h(xt+1)− µhDψ(z

t, xt+1).

(3)

• For term III, we simply use the µf -strong convexity of f to get

III ≤ f(zt)− f(xt)− µfDψ(z
t, xt). (4)
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• For term IV, we have

IV ≤ LDψ(x
t+1, xt) +M

√
2Dψ(xt+1, xt)

≤ LDψ(x
t+1, xt) + 2ηtM

2 +
Dψ(x

t+1, xt)

4ηt
, (5)

where the first inequality holds by the 1-strong convexity of ψ again and the second one is
due to AM-GM inequality.

By plugging the bounds (2), (3), (4) and (5) into (1), we obtain

f(xt+1)− f(xt)

≤⟨ξt, zt − xt⟩+ 2ηt∥ξt∥2∗ +
Dψ(x

t+1, xt)

4ηt

+
Dψ(z

t, xt)−Dψ(z
t, xt+1)−Dψ(x

t+1, xt)

ηt
+ h(zt)− h(xt+1)− µhDψ(z

t, xt+1)

+ f(zt)− f(xt)− µfDψ(z
t, xt) + LDψ(x

t+1, xt) + 2ηtM
2 +

Dψ(x
t+1, xt)

4ηt
.

Rearranging the terms to get

F (xt+1)− F (zt)

≤⟨ξt, zt − xt⟩+ (η−1
t − µf )Dψ(z

t, xt)− (η−1
t + µh)Dψ(z

t, xt+1)

+

(
L− 1

2ηt

)
Dψ(x

t+1, xt) + 2ηt(M
2 + ∥ξt∥2∗)

(a)

≤⟨ξt, zt − xt⟩+ (η−1
t − µf )Dψ(z

t, xt)− (η−1
t + µh)Dψ(z

t, xt+1) + 2ηt(M
2 + ∥ξt∥2∗)

(b)
=
vt−1

vt
⟨ξt, zt−1 − xt⟩+ (η−1

t − µf )Dψ(z
t, xt)− (η−1

t + µh)Dψ(z
t, xt+1) + 2ηt(M

2 + ∥ξt∥2∗)

(c)

≤ vt−1

vt
⟨ξt, zt−1 − xt⟩+ (η−1

t − µf )
vt−1

vt
Dψ(z

t−1, xt)− (η−1
t + µh)Dψ(z

t, xt+1) + 2ηt(M
2 + ∥ξt∥2∗),
(6)

where (a) is by ηt ≤ 1
2L∨µf ≤ 1

2L ,∀t ∈ [T ] ⇒ L − 1
2ηt

≤ 0, (b) holds due to the definition of

zt =
(
1− vt−1

vt

)
xt + vt−1

vt
zt−1 implying zt − xt = vt−1

vt

(
zt−1 − xt

)
, (c) is by noticing ηt ≤

1
2L∨µf ≤ 1

µf
,∀t ∈ [T ] ⇒ η−1

t − µf ≥ 0 and

Dψ(z
t, xt)

(d)

≤
(
1− vt−1

vt

)
Dψ(x

t, xt) +
vt−1

vt
Dψ(z

t−1, xt) =
vt−1

vt
Dψ(z

t−1, xt)

where (d) is by the convexity of the first argument in Dψ(·, ·).
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Multiplying both sides of (6) by wtγtvt (all of these three terms are non-negative) and summing up
from t = 1 to T , we obtain

T∑
t=1

wtγtvt
(
F (xt+1)− F (zt)

)
≤

T∑
t=1

wtγtvt−1⟨ξt, zt−1 − xt⟩+
T∑
t=1

2wtγtηtvt(M
2 + ∥ξt∥2∗)

+

T∑
t=1

wtγt(η
−1
t − µf )vt−1Dψ(z

t−1, xt)− wtγt(η
−1
t + µh)vtDψ(z

t, xt+1)

=w1γ1(η
−1
1 − µf )v0Dψ(z

0, x1)− wT γT (η
−1
T + µh)vTDψ(z

T , xT+1) +

T∑
t=1

2wtγtηtvt(M
2 + ∥ξt∥2∗)

+

T∑
t=1

wtγtvt−1⟨ξt, zt−1 − xt⟩+
T∑
t=2

(
wtγt(η

−1
t − µf )− wt−1γt−1(η

−1
t−1 + µh)

)
vt−1Dψ(z

t−1, xt)

(e)
=w1(1− µfη1)v0Dψ(x

∗, x1)− wT γT (η
−1
T + µh)vTDψ(z

T , xT+1) +

T∑
t=1

2wtγtηtvt(M
2 + ∥ξt∥2∗)

+

T∑
t=1

wtγtvt−1⟨ξt, zt−1 − xt⟩+
T∑
t=2

(wt − wt−1)γt(η
−1
t − µf )vt−1Dψ(z

t−1, xt), (7)

where (e) holds due to γ1(η−1
1 − µf ) = η1(η

−1
1 − µf ) = 1− µfη1, z0 = x∗ and γt(η−1

t − µf ) =

ηt(η
−1
t − µf )

∏t
s=2

1+µhηs−1

1−µfηs = (η−1
t−1 + µh)ηt−1

∏t−1
s=2

1+µhηs−1

1−µfηs = γt−1(η
−1
t−1 + µh),∀t ≥ 2.

By the convexity of F and the definition of zt = v0
vt
x∗+

∑t
s=1

vs−vs−1

vt
xs (which means zt is a con-

vex combination of x∗, x1, · · · , xt by noticing that the weights are summed up to 1 and nonnegative
since vt,∀t ∈ {0} ∪ [T ] is non-decreasing), we have

F (zt) ≤
t∑

s=1

vs − vs−1

vt
F (xs) +

v0
vt
F (x∗),

which implies

T∑
t=1

wtγtvt
(
F (xt+1)− F (zt)

)
≥

T∑
t=1

[
wtγtvtF (x

t+1)− wtγt

(
t∑

s=1

(vs − vs−1)F (x
s) + v0F (x

∗)

)]

=

T∑
t=1

[
wtγtvt

(
F (xt+1)− F (x∗)

)
− wtγt

t∑
s=1

(vs − vs−1) (F (x
s)− F (x∗))

]

=wT γT vT
(
F (xT+1)− F (x∗)

)
−

(
T∑
t=1

wtγt

)
(v1 − v0)

(
F (x1)− F (x∗)

)
+

T∑
t=2

[
wt−1γt−1vt−1 −

(
T∑
s=t

wsγs

)
(vt − vt−1)

] (
F (xt)− F (x∗)

)
.

Now by the definition of vt = wT γT∑T
s=t wsγs

,∀t ∈ [T ] and v0 = v1, we observe that(
T∑
t=1

wtγt

)
(v1 − v0) = 0,
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and for 2 ≤ t ≤ T ,

wt−1γt−1vt−1 −

(
T∑
s=t

wsγs

)
(vt − vt−1)

=

(
T∑

s=t−1

wsγs

)
vt−1 −

(
T∑
s=t

wsγs

)
vt

=

(
T∑

s=t−1

wsγs

)
wT γT∑T

s=t−1 wsγs
−

(
T∑
s=t

wsγs

)
wT γT∑T
s=t wsγs

=0.

These two equations immediately imply

T∑
t=1

wtγtvt
(
F (xt+1)− F (zt)

)
≥ wT γT vT

(
F (xT+1)− F (x∗)

)
. (8)

Plugging (8) into (7), we finally get

wT γT vT
(
F (xT+1)− F (x∗)

)
≤w1(1− µfη1)v0Dψ(x

∗, x1)− wT γT (η
−1
T + µh)vTDψ(z

T , xT+1) +

T∑
t=1

2wtγtηtvt(M
2 + ∥ξt∥2∗)

+

T∑
t=1

wtγtvt−1⟨ξt, zt−1 − xt⟩+
T∑
t=2

(wt − wt−1)γt(η
−1
t − µf )vt−1Dψ(z

t−1, xt)

≤w1(1− µfη1)v0Dψ(x
∗, x1) +

T∑
t=1

2wtγtηtvt(M
2 + ∥ξt∥2∗)

+

T∑
t=1

wtγtvt−1⟨ξt, zt−1 − xt⟩+
T∑
t=2

(wt − wt−1)γt(η
−1
t − µf )vt−1Dψ(z

t−1, xt).

B.2 PROOF OF LEMMA 4.2

Proof of Lemma 4.2. We invoke Lemma 4.1 with wt = 1,∀t ∈ [T ] to get

γT vT
(
F (xT+1)− F (x∗)

)
≤(1− µfη1)v0Dψ(x

∗, x1) +

T∑
t=1

2γtηtvt(M
2 + ∥ξt∥2∗) +

T∑
t=1

γtvt−1⟨ξt, zt−1 − xt⟩.

Taking expectations on both sides to obtain

γT vTE
[
F (xT+1)− F (x∗)

]
≤(1− µfη1)v0Dψ(x

∗, x1) +

T∑
t=1

2γtηtvt(M
2 + E

[
∥ξt∥2∗

]
) +

T∑
t=1

γtvt−1E
[
⟨ξt, zt−1 − xt⟩

]
≤(1− µfη1)v0Dψ(x

∗, x1) +

T∑
t=1

2γtηtvt(M
2 + σ2),

where the last line is due to E
[
∥ξt∥2∗

]
= E

[
E
[
∥ξt∥2∗ | F t−1

]]
≤ σ2 (Assumption 5A) and

E
[
⟨ξt, zt−1 − xt⟩

]
= E

[
⟨E
[
ξt|F t−1

]
, zt−1 − xt⟩

]
= 0 (zt−1 − xt ∈ F t−1 = σ(ĝs, s ∈ [t− 1])

and Assumption 4). Finally, we divide both sides by γT vT and plug in vt = wT γT∑T
s=t wsγs

=
γT∑T
s=t γs

,∀t ∈ [T ] and v0 = v1 to finish the proof.
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B.3 PROOF OF LEMMA 4.3

Proof of Lemma 4.3. We invoke Lemma 4.1 to get

wT γT vT
(
F (xT+1)− F (x∗)

)
≤w1(1− µfη1)v0Dψ(x

∗, x1) +

T∑
t=1

2wtγtηtvt(M
2 + ∥ξt∥2∗)

+

T∑
t=1

wtγtvt−1⟨ξt, zt−1 − xt⟩+
T∑
t=2

(wt − wt−1)γt(η
−1
t − µf )vt−1Dψ(z

t−1, xt). (9)

Let wt,∀t ∈ [T ] be defined as follows (note that w1 is also well-defined as w1 = 1∑T
s=1 2γsηsv̄sσ2 )

wt :=
1∑t

s=2
2γsηsv̄sσ2

1−µfηs +
∑T
s=1 2γsηsv̄sσ

2
,∀t ∈ [T ] , (10)

where
v̄t :=

γT∑T
s=t γs

,∀t ∈ [T ] and v̄1 := v̄0. (11)

Note that wt ≥ 0,∀t ∈ [T ] is non-increasing, from the definition of vt := wT γT∑T
s=t wsγs

,∀t ∈ [T ] and
v0 := v1, there are always

vt =
wT γT∑T
s=t wsγs

≤ γT∑T
s=t γs

= v̄t,∀t ∈ [T ] and v0 ≤ v̄0. (12)

Now we consider the following non-negative sequence with U0 := 1 and

Us := exp

(
s∑
t=1

2wtγtηtvt∥ξt∥2∗ − 2wtγtηtvtσ
2

)
∈ Fs,∀s ∈ [T ] .

We claim Ut is a supermartingale by observing that

E
[
Ut | F t−1

]
= Ut−1E

[
exp

(
2wtγtηtvt∥ξt∥2∗ − 2wtγtηtvtσ

2
)
| F t−1

]
(a)

≤ Ut−1 exp
(
2wtγtηtvtσ

2 − 2wtγtηtvtσ
2
)
= Ut−1,

where (a) holds due to Assumption 5B by noticing

2wtγtηtvt
(10)
=

2γtηtvt∑t
s=2

2γsηsv̄sσ2

1−µfηs +
∑T
s=1 2γsηsv̄sσ

2
≤ vt
v̄tσ2

(12)
≤ 1

σ2
.

Hence, we know E [UT ] ≤ U0 = 1. Thus, there is

Pr

[
UT >

2

δ

]
(b)

≤ δ

2
E [UT ] ≤

δ

2

⇒Pr

[
T∑
t=1

2wtγtηtvt∥ξt∥2∗ ≤
T∑
t=1

2wtγtηtvtσ
2 + log

2

δ

]
≥ 1− δ

2
, (13)

where we use Markov’s inequality in (b).

Next, we consider another non-negative sequence with R0 := 1 and

Rs := exp

(
s∑
t=1

wtγtvt−1⟨ξt, zt−1 − xt⟩ − w2
t γ

2
t v

2
t−1σ

2∥zt−1 − xt∥2
)

∈ Fs,∀s ∈ [T ] .

We prove that Rt is also a supermartingale by

E
[
Rt | F t−1

]
= Rt−1E

[
exp

(
wtγtvt−1⟨ξt, zt−1 − xt⟩ − w2

t γ
2
t v

2
t−1σ

2∥zt−1 − xt∥2
)
| F t−1

]
(c)

≤ Rt−1 exp
(
w2
t γ

2
t v

2
t−1σ

2∥zt−1 − xt∥2 − w2
t γ

2
t v

2
t−1σ

2∥zt−1 − xt∥2
)
= Rt−1,
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where (c) is by applying Lemma 2.1 (note that zt−1 − xt ∈ F t−1 = σ(ĝs, s ∈ [t− 1])). Hence, we
have E [RT ] ≤ R0 = 1, which immediately implies

Pr

[
RT >

2

δ

]
(d)

≤ δ

2
E [RT ] ≤

δ

2

⇒Pr

[
T∑
t=1

wtγtvt−1⟨ξt, zt−1 − xt⟩ ≤
T∑
t=1

w2
t γ

2
t v

2
t−1σ

2∥zt−1 − xt∥2 + log
2

δ

]
≥ 1− δ

2

⇒Pr

[
T∑
t=1

wtγtvt−1⟨ξt, zt−1 − xt⟩ ≤
T∑
t=1

2w2
t γ

2
t v

2
t−1σ

2Dψ(z
t−1, xt) + log

2

δ

]
≥ 1− δ

2
, (14)

where (d) is by Markov’s inequality and the last line is due to ∥zt−1 − xt∥2 ≤ 2Dψ(z
t−1, xt) from

the 1-strong convexity of ψ.

Combining (9), (13) and (14), with probability at least 1− δ, there is

wT γT vT
(
F (xT+1)− F (x∗)

)
≤w1(1− µfη1)v0Dψ(x

∗, x1) + 2 log
2

δ
+

T∑
t=1

2wtγtηtvt(M
2 + σ2)

+

T∑
t=1

2w2
t γ

2
t v

2
t−1σ

2Dψ(z
t−1, xt) +

T∑
t=2

(wt − wt−1)γt(η
−1
t − µf )vt−1Dψ(z

t−1, xt)

=
[
w1(1− µfη1)v0 + 2w2

1γ
2
1v

2
0σ

2
]
Dψ(x

∗, x1) + 2 log
2

δ
+

T∑
t=1

2wtγtηtvt(M
2 + σ2)

+

T∑
t=2

[
(wt − wt−1)(η

−1
t − µf ) + 2w2

t γtvt−1σ
2
]
γtvt−1Dψ(z

t−1, xt).

Observing that for t ≥ 2

(wt − wt−1)(η
−1
t − µf ) + 2w2

t γtvt−1σ
2

=2w2
t γtvt−1σ

2

−

 1∑t−1
s=2

2γsηsv̄sσ2

1−µfηs +
∑T
s=1 2γsηsv̄sσ

2
− 1∑t

s=2
2γsηsv̄sσ2

1−µfηs +
∑T
s=1 2γsηsv̄sσ

2

 (η−1
t − µf )

=2w2
t γtvt−1σ

2 − wtwt−1 ×
2γtηtv̄tσ

2

1− µfηt
× (η−1

t − µf )

=2wt(wtvt−1 − wt−1v̄t)γtσ
2 ≤ 0,

where the last line holds due to wt ≤ wt−1 and vt−1 ≤ vt ≤ v̄t. So we know

wT γT vT
(
F (xT+1)− F (x∗)

)
≤
[
w1(1− µfη1)v0 + 2w2

1γ
2
1v

2
0σ

2
]
Dψ(x

∗, x1) + 2 log
2

δ
+

T∑
t=1

2wtγtηtvt(M
2 + σ2)

(e)

≤w1

(
1− µfη1 + 2w1γ

2
1v0σ

2
)
v0Dψ(x

∗, x1) + 2 log
2

δ
+ w1

T∑
t=1

2γtηtvt(M
2 + σ2),
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where (e) is by wt ≤ w1,∀t ∈ [T ]. Dividing both sides by wT γT vT , we get

F (xT+1)− F (x∗)

≤w1

wT

[
(1− µfη1 + 2w1γ

2
1v0σ

2)
v0

γT vT
Dψ(x

∗, x1) +
2

w1γT vT
log

2

δ
+ 2

T∑
t=1

γtηtvt
γT vT

(M2 + σ2)

]
(f)

≤
(
1 + max

2≤t≤T

1

1− µfηt

)[
(2− µfη1)Dψ(x

∗, x1)∑T
t=1 γt

+ 2

(
M2 + σ2

(
1 + 2 log

2

δ

)) T∑
t=1

γtηt∑T
s=t γs

]

≤2

(
1 + max

2≤t≤T

1

1− µfηt

)[
Dψ(x

∗, x1)∑T
t=1 γt

+

(
M2 + σ2

(
1 + 2 log

2

δ

)) T∑
t=1

γtηt∑T
s=t γs

]
,

where (f) holds due to the following calculations

w1

wT
=

∑T
s=1 2γsηsv̄sσ

2 +
∑T
s=2

2γsηsv̄sσ
2

1−µfηs∑T
s=1 2γsηsv̄sσ

2
≤ 1 + max

2≤t≤T

1

1− µfηt
;

2w1γ
2
1v0σ

2 =
2γ21v0σ

2∑T
s=1 2γsηsv̄sσ

2
=

2γ1η1v1σ
2∑T

s=1 2γsηsv̄sσ
2
≤ 1;

v0
γT vT

≤ v̄0
γT vT

=
1∑T
t=1 γt

;

2

w1γT vT
log

2

δ
= 4σ2 log

2

δ

T∑
t=1

γtηtv̄t
γT vT

= 4σ2 log
2

δ

T∑
t=1

γtηt∑T
s=t γs

;

2

T∑
t=1

γtηtvt
γT vT

(M2 + σ2) ≤ 2(M2 + σ2)

T∑
t=1

γtηtv̄t
γT vT

= 2(M2 + σ2)

T∑
t=1

γtηt∑T
s=t γs

.

Hence, the proof is completed.

C GENERAL CONVEX FUNCTIONS

In this section, we present the full version of theorems for general convex functions (i.e., µf = µh =
0) with their proofs.
Theorem C.1. Under Assumptions 1-4 and 5A with µf = µh = 0:

If T is unknown, by taking ηt = 1
2L ∧ η√

t
,∀t ∈ [T ], there is

E
[
F (xT+1)− F (x∗)

]
≤ O

(
LDψ(x

∗, x1)

T
+

1√
T

[
Dψ(x

∗, x1)

η
+ η(M2 + σ2) log T

])
.

In particular, by choosing η = Θ

(√
Dψ(x∗,x1)
M2+σ2

)
, there is

E
[
F (xT+1)− F (x∗)

]
≤ O

(
LDψ(x

∗, x1)

T
+

(M + σ)
√
Dψ(x∗, x1) log T√
T

)
.

If T is known, by taking ηt = 1
2L ∧ η√

T
,∀t ∈ [T ], there is

E
[
F (xT+1)− F (x∗)

]
≤ O

(
LDψ(x

∗, x1)

T
+

1√
T

[
Dψ(x

∗, x1)

η
+ η(M2 + σ2) log T

])
.

In particular, by choosing η = Θ
(√

Dψ(x∗,x1)
(M2+σ2) log T

)
, there is

E
[
F (xT+1)− F (x∗)

]
≤ O

(
LDψ(x

∗, x1)

T
+

(M + σ)
√
Dψ(x∗, x1) log T√
T

)
.
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Proof. From Lemma 4.2, if ηt ≤ 1
2L∨µf ,∀t ∈ [T ], there is

E
[
F (xT+1)− F (x∗)

]
≤ (1− µfη1)Dψ(x

∗, x1)∑T
t=1 γt

+ 2(M2 + σ2)

T∑
t=1

γtηt∑T
s=t γs

, (15)

where γt := ηt
∏t
s=2

1+µhηs−1

1−µfηs ,∀t ∈ [T ]. Note that µf = µh = 0 now, so both ηt = 1
2L ∧ η√

t
,∀t ∈

[T ] and ηt = 1
2L ∧ η√

T
,∀t ∈ [T ] satisfy ηt ≤ 1

2L∨µf = 1
2L ,∀t ∈ [T ]. Besides, γt will degenerate to

ηt. Therefore, (15) can be simplified into

E
[
F (xT+1)− F (x∗)

]
≤ Dψ(x

∗, x1)∑T
t=1 ηt

+ 2(M2 + σ2)

T∑
t=1

η2t∑T
s=t ηs

. (16)

Before proving convergence rates for these two different step sizes, we first recall some standard
results.

T∑
t=1

1√
t
=

T∑
t=1

√
t− t− 1√

t
=

√
T +

T−1∑
t=1

√
t− t√

t+ 1
≥

√
T ; (17)

T∑
s=t

1√
s
≥
∫ T+1

t

1√
s
ds = 2(

√
T + 1−

√
t),∀t ∈ [T ] ; (18)

T∑
t=1

1

t
≤ 1 +

∫ T

1

1

t
dt = 1 + log T. (19)

If ηt = 1
2L ∧ η√

t
,∀t ∈ [T ], we consider the following three cases:

• η < 1
2L : In this case, we have ηt = η√

t
,∀t ∈ [T ] and

E
[
F (xT+1)− F (x∗)

]
≤ Dψ(x

∗, x1)

η
∑T
t=1 1/

√
t
+ 2η(M2 + σ2)

T∑
t=1

1

t
∑T
s=t 1/

√
s

(17),(18)
≤ Dψ(x

∗, x1)

η
√
T

+ η(M2 + σ2)

T∑
t=1

1

t(
√
T + 1−

√
t)

(a)

≤ Dψ(x
∗, x1)

η
√
T

+
4η(M2 + σ2)(1 + log T )√

T

=
1√
T

[
Dψ(x

∗, x1)

η
+ 4η(M2 + σ2)(1 + log T )

]
, (20)

where (a) is by

T∑
t=1

1

t(
√
T + 1−

√
t)

=

T∑
t=1

√
T + 1 +

√
t

t(T + 1− t)
≤

T∑
t=1

2
√
T + 1

t(T + 1− t)

=

T∑
t=1

2√
T + 1

(
1

t
+

1

T + 1− t

)
=

4√
T + 1

T∑
t=1

1

t

(19)
≤ 4(1 + log T )√

T
.
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• η ≥
√
T

2L : In this case, we have ηt = 1
2L ,∀t ∈ [T ] and

E
[
F (xT+1)− F (x∗)

]
≤ Dψ(x

∗, x1)

T/2L
+
M2 + σ2

L

T∑
t=1

1

T − t+ 1

=
2LDψ(x

∗, x1)

T
+
M2 + σ2

L

T∑
t=1

1

t

(19)
≤ 2LDψ(x

∗, x1)

T
+

(M2 + σ2)(1 + log T )

L
(b)

≤ 2LDψ(x
∗, x1)

T
+

2η(M2 + σ2)(1 + log T )√
T

, (21)

where (b) is by 1
L ≤ 2η√

T
.

• η ∈ [ 1
2L ,

√
T

2L ): In this case, we define τ = ⌊4η2L2⌋ where ⌊·⌋ is the floor function. Note
that

4η2L2 ∈ [1, T ) ⇒ τ = ⌊4η2L2⌋ ∈ [T − 1] .

By observing η√
t
≥ 1

2L ⇔ t ∈ [1, τ ], we can calculate

E
[
F (xT+1)− F (x∗)

]
≤ Dψ(x

∗, x1)∑T
t=1 ηt

+ 2(M2 + σ2)

T∑
t=1

η2t∑T
s=t ηs

(c)

≤ Dψ(x
∗, x1)

T 2

T∑
t=1

1

ηt︸ ︷︷ ︸
I

+2(M2 + σ2)


τ∑
t=1

η2t∑T
s=t ηs︸ ︷︷ ︸

II

+

T∑
t=τ+1

η2t∑T
s=t ηs︸ ︷︷ ︸

III

 ,

where (c) is by T 2 ≤
(∑T

t=1 ηt

)(∑T
t=1

1
ηt

)
. Now we bound terms I, II and III as follows

I =
T∑
t=1

2L ∨
√
t

η
≤

T∑
t=1

2L+

√
t

η
≤ 2LT +

√
T +

∫ T
1

√
tdt

η

= 2LT +

√
T + 2

3 (T
3
2 − 1)

η
≤ 2LT +

5T
3
2

3η
;

II =
τ∑
t=1

η2t∑τ
s=t ηs +

∑T
s=τ+1 ηs

=

τ∑
t=1

1/(4L2)

(τ − t+ 1)/2L+
∑T
s=τ+1 η/

√
s

=
1

2L

τ∑
t=1

1

τ − t+ 1 +
∑T
s=τ+1 2ηL/

√
s

(18)
≤ 1

2L

τ∑
t=1

1

τ − t+ 1 + 4ηL(
√
T + 1−

√
τ + 1)

≤


1
2L

∑τ
t=1

1
τ−t+1 ≤ 1

2L

(
1 +

∫ τ
1

1
t dt
)
= 1+log τ

2L

(d)

≤ η(1+log T )√
τ

1
2L

∑τ
t=1

1
4ηL(

√
T+1−

√
τ+1)

= τ
8ηL2(

√
T+1−

√
τ+1)

(e)

≤ η

2(
√
T+1−

√
τ+1)

⇒ II ≤ η(1 + log T )

(
1√
τ
∧ 1

2(
√
T + 1−

√
τ + 1)

)
≤ 2η(1 + log T )

√
τ + 2(

√
T + 1−

√
τ + 1)

(f)

≤ 2η(1 + log T )√
T

,
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where (d) is due to τ ≤ T and
√
τ ≤ 2ηL, (e) holds by τ ≤ 4η2L2 and (f) is by, for

τ ∈ [T − 1] and T ≥ 2,
√
τ + 2(

√
T + 1−

√
τ + 1) ≥

√
T − 1 + 2

√
T + 1− 2

√
T ≥

√
T .

III = η

T∑
t=τ+1

1

t
∑T
s=t 1/

√
s

(18)
≤ η

T∑
t=τ+1

1

2t(
√
T + 1−

√
t)

= η

T∑
t=τ+1

√
T + 1 +

√
t

2t(T + 1− t)
≤ η

T∑
t=τ+1

√
T + 1

t(T + 1− t)

= η

T∑
t=τ+1

1√
T + 1

(
1

t
+

1

T + 1− t

)
≤ 2η√

T + 1

T∑
t=1

1

t

(19)
≤ 2η(1 + log T )√

T
.

Thus, we have

E
[
F (xT+1)− F (x∗)

]
≤Dψ(x

∗, x1)

T 2

(
2LT +

5T
3
2

3η

)
+ 2(M2 + σ2)

[
2η(1 + log T )√

T
+

2η(1 + log T )√
T

]
≤2LDψ(x

∗, x1)

T
+

1√
T

(
5Dψ(x

∗, x1)

3η
+ 8η(M2 + σ2)(1 + log T )

)
. (22)

Combining (20), (21) and (22), we know

E
[
F (xT+1)− F (x∗)

]
≤ 1√

T

[
Dψ(x

∗, x1)

η
+ 4η(M2 + σ2)(1 + log T )

]
∨
[
2LDψ(x

∗, x1)

T
+

2η(M2 + σ2)(1 + log T )√
T

]
∨
[
2LDψ(x

∗, x1)

T
+

1√
T

(
5Dψ(x

∗, x1)

3η
+ 8η(M2 + σ2)(1 + log T )

)]
≤2LDψ(x

∗, x1)

T
+

1√
T

(
5Dψ(x

∗, x1)

3η
+ 8η(M2 + σ2)(1 + log T )

)
=O

(
LDψ(x

∗, x1)

T
+

1√
T

[
Dψ(x

∗, x1)

η
+ η(M2 + σ2) log T

])
. (23)

By plugging in η = Θ

(√
Dψ(x∗,x1)
M2+σ2

)
, we get the desired bound.

If ηt = 1
2L ∧ η√

T
,∀t ∈ [T ], we will obtain

E
[
F (xT+1)− F (x∗)

]
≤ Dψ(x

∗, x1)

T

(
2L ∨

√
T

η

)
+ 2

(
1

2L
∧ η√

T

)
(M2 + σ2)

T∑
t=1

1

T − t+ 1

=
Dψ(x

∗, x1)

T

(
2L ∨

√
T

η

)
+ 2

(
1

2L
∧ η√

T

)
(M2 + σ2)

T∑
t=1

1

t

(19)
≤ Dψ(x

∗, x1)

T

(
2L ∨

√
T

η

)
+ 2

(
1

2L
∧ η√

T

)
(M2 + σ2)(1 + log T )

≤ 2LDψ(x
∗, x1)

T
+

1√
T

[
Dψ(x

∗, x1)

η
+ 2η(M2 + σ2)(1 + log T )

]
= O

(
LDψ(x

∗, x1)

T
+

1√
T

[
Dψ(x

∗, x1)

η
+ η(M2 + σ2) log T

])
. (24)
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By plugging in η = Θ
(√

Dψ(x∗,x1)
(M2+σ2) log T

)
, we get the desired bound.

Theorem C.2. Under Assumptions 1-4 and 5B with µf = µh = 0 and let δ ∈ (0, 1):

If T is unknown, by taking ηt = 1
2L ∧ η√

t
,∀t ∈ [T ], then with probability at least 1− δ, there is

F (xT+1)− F (x∗) ≤ O

(
LDψ(x

∗, x1)

T
+

1√
T

[
Dψ(x

∗, x1)

η
+ η

(
M2 + σ2 log

1

δ

)
log T

])
.

In particular, by choosing η = Θ
(√

Dψ(x∗,x1)

M2+σ2 log 1
δ

)
, there is

F (xT+1)− F (x∗) ≤ O

LDψ(x
∗, x1)

T
+

(M + σ
√

log 1
δ )
√
Dψ(x∗, x1) log T

√
T

 .

If T is known, by taking ηt = 1
2L ∧ η√

T
,∀t ∈ [T ], then with probability at least 1− δ, there is

F (xT+1)− F (x∗) ≤ O

(
LDψ(x

∗, x1)

T
+

1√
T

[
Dψ(x

∗, x1)

η
+ η

(
M2 + σ2 log

1

δ

)
log T

])
.

In particular, by choosing η = Θ
(√

Dψ(x∗,x1)

(M2+σ2 log 1
δ ) log T

)
, there is

F (xT+1)− F (x∗) ≤ O

LDψ(x
∗, x1)

T
+

(M + σ
√

log 1
δ )
√
Dψ(x∗, x1) log T

√
T

 .

Proof. From Lemma 4.3, if ηt ≤ 1
2L∨µf ,∀t ∈ [T ], with probability at least 1− δ, there is

F (xT+1)− F (x∗) ≤2

(
1 + max

2≤t≤T

1

1− µfηt

)
×

[
Dψ(x

∗, x1)∑T
t=1 γt

+

(
M2 + σ2

(
1 + 2 log

2

δ

)) T∑
t=1

γtηt∑T
s=t γs

]
, (25)

where γt := ηt
∏t
s=2

1+µhηs−1

1−µfηs ,∀t ∈ [T ]. Note that µf = µh = 0 now, so both ηt = 1
2L ∧ η√

t
,∀t ∈

[T ] and ηt = 1
2L ∧ η√

T
,∀t ∈ [T ] satisfy ηt ≤ 1

2L∨µf = 1
2L ,∀t ∈ [T ]. Besides, γt will degenerate to

ηt. Then we can simplify (25) into

F (xT+1)− F (x∗) ≤ 4Dψ(x
∗, x1)∑T

t=1 ηt
+ 4

(
M2 + σ2

(
1 + 2 log

2

δ

)) T∑
t=1

η2t∑T
s=t ηs

. (26)

If ηt = 1
2L ∧ η√

t
,∀t ∈ [T ], similar to (23), we will have

F (xT+1)− F (x∗) ≤ O

(
LDψ(x

∗, x1)

T
+

1√
T

[
Dψ(x

∗, x1)

η
+ η

(
M2 + σ2 log

1

δ

)
log T

])
.

By plugging in η = Θ
(√

Dψ(x∗,x1)

M2+σ2 log 1
δ

)
, we get the desired bound.

If ηt = 1
2L ∧ η√

T
,∀t ∈ [T ], similar to (24), we will get

F (xT+1)− F (x∗) ≤ O

(
LDψ(x

∗, x1)

T
+

1√
T

[
Dψ(x

∗, x1)

η
+ η

(
M2 + σ2 log

1

δ

)
log T

])
.

By plugging in η = Θ
(√

Dψ(x∗,x1)

(M2+σ2 log 1
δ ) log T

)
, we get the desired bound.
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D STRONGLY CONVEX FUNCTIONS

In this section, we present the full version of theorems for strongly convex functions with their
proofs.

D.1 THE CASE OF µf > 0

Theorem D.1. Under Assumptions 1-4 and 5A with µf > 0 and µh = 0, let κf := L
µf

≥ 0:

If T is unknown, by taking either ηt = 1
µf (t+2κf )

,∀t ∈ [T ] or ηt = 2
µf (t+1+4κf )

,∀t ∈ [T ], there is

E
[
F (xT+1)− F (x∗)

]
≤

O
(
LDψ(x

∗,x1)
T + (M2+σ2) log T

µf (T+κf )

)
ηt =

1
µf (t+2κf )

,∀t ∈ [T ]

O
(
L(1+κf )Dψ(x

∗,x1)
T (T+κf )

+ (M2+σ2) log T
µf (T+κf )

)
ηt =

2
µf (t+1+4κf )

,∀t ∈ [T ]
.

If T is known, by taking ηt =


1

µf (1+2κf )
t = 1

1
µf (η+2κf )

2 ≤ t ≤ τ
2

µf (t−τ+2+4κf )
t ≥ τ + 1

,∀t ∈ [T ] where η ≥ 0 can be any

number satisfying η + κf > 1 and τ :=
⌈
T
2

⌉
, there is

E
[
F (xT+1)− F (x∗)

]
≤ O

 LDψ(x
∗, x1)

exp
(

T
2η+4κf

) +
(M2 + σ2) log T

µf (T + κf )

 .

Proof. When µf > 0 and µh = 0, suppose the condition of ηt ≤ 1
2L∨µf ,∀t ∈ [T ] in Lemma 4.2

holds, we have

E
[
F (xT+1)− F (x∗)

]
≤ (1− µfη1)Dψ(x

∗, x1)∑T
t=1 γt

+ 2(M2 + σ2)

T∑
t=1

γtηt∑T
s=t γs

. (27)

Now observing that for any t ∈ [T ]

γt := ηt

t∏
s=2

1 + µhηs−1

1− µfηs
= ηt

t∏
s=2

1

1− µfηs
= ηtΓt =

{
Γt−Γt−1

µf
t ≥ 2

η1 t = 1
,

where Γt :=
∏t
s=2

1
1−µfηs ,∀t ∈ [T ]. Hence, (27) can be rewritten as

E
[
F (xT+1)− F (x∗)

]
≤ (1− µfη1)Dψ(x

∗, x1)

η1 +
ΓT−1
µf

+ 2(M2 + σ2)

[
η21

η1 +
ΓT−1
µf

+

T∑
t=2

µfη
2
t

(ΓT /Γt−1 − 1)(1− µfηt)

]
. (28)

Now let us check the condition of ηt ≤ 1
2L∨µf ,∀t ∈ [T ] for our three choices respectively:

ηt =
1

µf (t+ 2κf )
≤ 1

µf + 2L
≤ 1

2L ∨ µf
,∀t ∈ [T ] ;

ηt =
2

µf (t+ 1 + 4κf )
≤ 1

µf + 2L
≤ 1

2L ∨ µf
,∀t ∈ [T ] ;

ηt =


1

µf (1+2κf )
= 1

µf+2L ≤ 1
2L∨µf t = 1

1
µf (η+2κf )

≤ 1
µf (2κf∨(η+κf ))

≤ 1
2L∨µf 2 ≤ t ≤ τ

2
µf (t−τ+2+4κf )

≤ 1
µf+2L ≤ 1

2L∨µf t ≥ τ + 1

.

Therefore, (28) holds for all cases.
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First, we consider ηt = 1
µf (t+2κf )

,∀t ∈ [T ]. We can calculate η1 = 1
µf (1+2κf )

and

Γt =

t∏
s=2

1

1− µfηs
=

t∏
s=2

s+ 2κf
s− 1 + 2κf

=
t+ 2κf
1 + 2κf

,∀t ∈ [T ] .

Hence, using (28), we have

E
[
F (xT+1)− F (x∗)

]
≤
(1− 1

1+2κf
)Dψ(x

∗, x1)

1
µf (1+2κf )

+ ΓT−1
µf

+ 2(M2 + σ2)

 1
µ2
f (1+2κf )2

1
µf (1+2κf )

+ ΓT−1
µf

+

T∑
t=2

µf · 1
µ2
f (t+2κf )2

(ΓT /Γt−1 − 1)(1− µf · 1
µf (t+2κf )

)


=

2LDψ(x
∗, x1)

(1 + 2κf )ΓT − 2κf
+

2(M2 + σ2)

µf

[
1

(1 + 2κf )((1 + 2κf )ΓT − 2κf )

+

T∑
t=2

1

(ΓT /Γt−1 − 1)(t− 1 + 2κf )(t+ 2κf )

]

=
2LDψ(x

∗, x1)

T
+

2(M2 + σ2)

µf

[
1

(1 + 2κf )T
+

T∑
t=2

1

(T − t+ 1)(t+ 2κf )

]

=
2LDψ(x

∗, x1)

T
+

2(M2 + σ2)

µf

T∑
t=1

1

(T − t+ 1)(t+ 2κf )

=
2LDψ(x

∗, x1)

T
+

2(M2 + σ2)

µf

T∑
t=1

1

T + 1 + 2κf

(
1

T − t+ 1
+

1

t+ 2κf

)

≤2LDψ(x
∗, x1)

T
+

2(M2 + σ2)

µf
·
1 + log T + 1

1+2κf
+ log

T+2κf
1+2κf

T + 1 + 2κf

≤2LDψ(x
∗, x1)

T
+

4(M2 + σ2)(1 + log T )

µf (T + 2κf )

=O

(
LDψ(x

∗, x1)

T
+

(M2 + σ2) log T

µf (T + κf )

)
. (29)

Next, for the case of ηt = 2
µf (t+1+4κf )

,∀t ∈ [T ], there are η1 = 1
µf (1+2κf )

and

Γt =

t∏
s=2

1

1− µfηs
=

t∏
s=2

s+ 1 + 4κf
s− 1 + 4κf

=
(t+ 4κf )(t+ 1 + 4κf )

(1 + 4κf )(2 + 4κf )
,∀t ∈ [T ] .
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Thus, we have
E
[
F (xT+1)− F (x∗)

]
≤
(1− 1

1+2κf
)Dψ(x

∗, x1)

1
µf (1+2κf )

+ ΓT−1
µf

+ 2(M2 + σ2)

 1
µ2
f (1+2κf )2

1
µf (1+2κf )

+ ΓT−1
µf

+

T∑
t=2

µf · 4
µ2
f (t+1+4κf )2

(ΓT /Γt−1 − 1)(1− µf · 2
µf (t+1+4κf )

)


=

2LDψ(x
∗, x1)

(1 + 2κf )ΓT − 2κf
+

2(M2 + σ2)

µf

[
1

(1 + 2κf )((1 + 2κf )ΓT − 2κf )

+

T∑
t=2

4

(ΓT /Γt−1 − 1)(t− 1 + 4κf )(t+ 1 + 4κf )

]

=
4(1 + 4κf )LDψ(x

∗, x1)

T (T + 1 + 8κf )

+
2(M2 + σ2)

µf

[
2(1 + 4κf )

(1 + 2κf )T (T + 1 + 8κf )
+

T∑
t=2

4(t+ 4κf )

(T + 1− t)(T + t+ 8κf )(t+ 1 + 4κf )

]

=
4(1 + 4κf )LDψ(x

∗, x1)

T (T + 1 + 8κf )
+

2(M2 + σ2)

µf

T∑
t=1

4(t+ 4κf )

(T + 1− t)(T + t+ 8κf )(t+ 1 + 4κf )

≤4(1 + 4κf )LDψ(x
∗, x1)

T (T + 1 + 8κf )
+

2(M2 + σ2)

µf

T∑
t=1

4

2T + 1 + 8κf

(
1

T + 1− t
+

1

T + t+ 8κf

)

≤4(1 + 4κf )LDψ(x
∗, x1)

T (T + 1 + 8κf )
+

2(M2 + σ2)

µf
·
4(1 + log T + log

2T+8κf
T+8κf

)

2T + 1 + 8κf

≤4(1 + 4κf )LDψ(x
∗, x1)

T (T + 1 + 8κf )
+

8(M2 + σ2)(1 + log 2T )

µf (2T + 1 + 8κf )

=O

(
L(1 + κf )Dψ(x

∗, x1)

T (T + κf )
+

(M2 + σ2) log T

µf (T + κf )

)
. (30)

Finally, if T is known, recall that we choose for any t ∈ [T ]

ηt =


1

µf (1+2κf )
t = 1

1
µf (η+2κf )

2 ≤ t ≤ τ
2

µf (t−τ+2+4κf )
t ≥ τ + 1

.

Note that we have η1 = 1
µf (1+2κf )

and for any t ∈ [T ]

Γt =

t∏
s=2

1

1− µfηs
=


(

η+2κf
η+2κf−1

)t−1

t ≤ τ(
η+2κf
η+2κf−1

)τ−1
(t−τ+1+4κf )(t−τ+2+4κf )

(1+4κf )(2+4κf )
t ≥ τ + 1

.

So we know
E
[
F (xT+1)− F (x∗)

]
≤ (1− µfη1)Dψ(x

∗, x1)

η1 +
ΓT−1
µf

+ 2(M2 + σ2)

[
η21

η1 +
ΓT−1
µf

+

T∑
t=2

µfη
2
t

(ΓT /Γt−1 − 1)(1− µfηt)

]

=
2LDψ(x

∗, x1)

(1 + 2κf )ΓT − 2κf
+

2(M2 + σ2)

µf
· 1

(1 + 2κf )((1 + 2κf )ΓT − 2κf )

+ 2µf (M
2 + σ2)


τ∑
t=2

η2t
(ΓT /Γt−1 − 1)(1− µfηt)︸ ︷︷ ︸

I

+

T∑
t=τ+1

η2t
(ΓT /Γt−1 − 1)(1− µfηt)︸ ︷︷ ︸

II

 .
(31)
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Note that we can bound

1

(1 + 2κf )ΓT − 2κf

=
1(

η+2κf
η+2κf−1

)τ−1
(T−τ+1+4κf )(T−τ+2+4κf )

2(1+4κf )
− 2κf

(a)

≤ 1(
η+2κf
η+2κf−1

)τ−1

(1 + 2κf )− 2κf

=
1

2κf

[(
η+2κf
η+2κf−1

)τ−1

− 1

]
+
(

η+2κf
η+2κf−1

)τ−1

(b)

≤
(
1− 1

η + 2κf

)τ−1

≤ exp

(
− τ − 1

η + 2κf

)
= exp

(
−τ

η + 2κf
+

1

η + 2κf

)
(c)

≤ exp

(
− T

2(η + 2κf )
+ 1

)
, (32)

where (a) holds due to T − τ ≥ 0, (b) is by κf ≥ 0 and
(

η+2κf
η+2κf−1

)τ−1

≥ 1, (c) is from τ ≥ T
2 ,

η + κf > 1 and κf ≥ 0. We can also bound

1

(1 + 2κf )((1 + 2κf )ΓT − 2κf )

=
1

(1 + 2κf )

[(
η+2κf
η+2κf−1

)τ−1
(T−τ+1+4κf )(T−τ+2+4κf )

2(1+4κf )
− 2κf

]
≤ 1

(1 + 2κf )
[
(T−τ+1+4κf )(T−τ+2+4κf )

2(1+4κf )
− 2κf

]
=

2(1 + 4κf )

(1 + 2κf )(T − τ + 1)(T − τ + 2 + 8κf )

(d)

≤ 2(1 + 4κf )

(1 + 2κf )(T − T+1
2 + 1)(T − T+1

2 + 2 + 8κf )

=
8(1 + 4κf )

(1 + 2κf )(T + 1)(T + 3 + 16κf )

(e)

≤ 8

T + 3 + 16κf
, (33)

where (d) is by τ ≤ T+1
2 and (e) is by T ≥ 1. Besides, there is

I =
1

µ2
f (η + 2κf )(η + 2κf − 1)

τ∑
t=2

1(
η+2κf
η+2κf−1

)τ−t+1
(T−τ+1+4κf )(T−τ+2+4κf )

(1+4κf )(2+4κf )
− 1

(f)

≤ 1

µ2
f (η + 2κf )(η + 2κf − 1)

η+2κf
η+2κf−1

τ∑
t=2

1
(T−τ+1+4κf )(T−τ+2+4κf )

(1+4κf )(2+4κf )
− 1

=
1

µ2
f (η + 2κf )2

τ∑
t=2

(1 + 4κf )(2 + 4κf )

(T − τ)(T − τ + 3 + 8κf )
=

(1 + 4κf )(2 + 4κf )

µ2
f (η + 2κf )2

· τ − 1

(T − τ)(T − τ + 3 + 8κf )

(g)

≤ (1 + 4κf )(2 + 4κf )

µ2
f (η + 2κf )2

·
T+1
2 − 1

(T − T+1
2 )(T − T+1

2 + 3 + 8κf )

=
(1 + 4κf )(2 + 4κf )

µ2
f (η + 2κf )2

· 2

T + 5 + 16κf

(h)

≤ 32

µ2
f (T + 5 + 16κf )

, (34)
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where (f) is by τ−t ≥ 0 (w.l.o.g., we can assume τ ≥ 2, otherwise, there is I= 0 ≤ 8
µ2
f (T+5+16κf )

)

and η+2κf
η+2κf−1 ≥ 1, (g) is due to τ ≤ T+1

2 and (h) is by η + κf > 1. We also have

II =
4

µ2
f

T∑
t=τ+1

1[
(T−τ+1+4κf )(T−τ+2+4κf )

(t−τ+4κf )(t−τ+1+4κf )
− 1
]
(t− τ + 2 + 4κf )(t− τ + 4κf )

=
4

µ2
f

T−τ∑
t=1

1[
(T−τ+1+4κf )(T−τ+2+4κf )

(t+4κf )(t+1+4κf )
− 1
]
(t+ 2 + 4κf )(t+ 4κf )

=
4

µ2
f

T−τ∑
t=1

t+ 1 + 4κf
[(T − τ + 1 + 4κf )(T − τ + 2 + 4κf )− (t+ 4κf )(t+ 1 + 4κf )] (t+ 2 + 4κf )

≤ 4

µ2
f

T−τ∑
t=1

1

(T − τ + 1 + 4κf )(T − τ + 2 + 4κf )− (t+ 4κf )(t+ 1 + 4κf )

=
4

µ2
f

T−τ∑
t=1

1

(T − τ + 1− t)(T − τ + 2 + 8κf + t)

=
4

µ2
f

T−τ∑
t=1

1

2T − 2τ + 3 + 8κf

(
1

T − τ + 1− t
+

1

T − τ + 2 + 8κf + t

)

≤
4(1 + log(T − τ) + log

2T−2τ+2+8κf
T−τ+2+8κf

)

µ2
f (2T − 2τ + 3 + 8κf )

≤ 4(1 + log T )

µ2
f (T + 2 + 8κf )

, (35)

where we use T
2 ≤ τ ≤ T+1

2 in the last inequality.

Plugging (32), (33), (34) and (35) into (31), we have
E
[
F (xT+1)− F (x∗)

]
≤2LDψ(x

∗, x1) exp

(
− T

2(η + 2κf )
+ 1

)
+

2(M2 + σ2)

µf
· 8

T + 3 + 16κf

+ 2µf (M
2 + σ2)

[
32

µ2
f (T + 5 + 16κf )

+
4(1 + log T )

µ2
f (T + 2 + 8κf )

]

=O

 LDψ(x
∗, x1)

exp
(

T
2η+4κf

) +
(M2 + σ2) log T

µf (T + κf )

 . (36)

Theorem D.2. Under Assumptions 1-4 and 5B with µf > 0 and µh = 0, let κf := L
µf

≥ 0 and
δ ∈ (0, 1):

If T is unknown, by taking either ηt = 1
µf (t+2κf )

,∀t ∈ [T ] or ηt = 2
µf (t+1+4κf )

,∀t ∈ [T ], then
with probability at least 1− δ, there is

F (xT+1)−F (x∗) ≤

O
(
µf (1+κf )Dψ(x

∗,x1)
T +

(M2+σ2 log 1
δ ) log T

µf (T+κf )

)
ηt =

1
µf (t+2κf )

,∀t ∈ [T ]

O
(
µf (1+κf )

2Dψ(x
∗,x1)

T (T+κf )
+

(M2+σ2 log 1
δ ) log T

µf (T+κf )

)
ηt =

2
µf (t+1+4κf )

,∀t ∈ [T ]
.

If T is known, by taking ηt =


1

µf (1+2κf )
t = 1

1
µf (η+2κf )

2 ≤ t ≤ τ
2

µf (t−τ+2+4κf )
t ≥ τ + 1

,∀t ∈ [T ] where η ≥ 0 can be any

number satisfying η + κf > 1 and τ :=
⌈
T
2

⌉
, then with probability at least 1− δ, there is

F (xT+1)−F (x∗) ≤ O

(1 ∨ 1

η + 2κf − 1

)µf (1 + κf )Dψ(x
∗, x1)

exp
(

T
2η+4κf

) +
(M2 + σ2 log 1

δ ) log T

µf (T + κf )

 .
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Proof. When µf > 0 and µh = 0, suppose the condition of ηt ≤ 1
2L∨µf ,∀t ∈ [T ] in Lemma 4.3

holds, we will have with probability at least 1− δ

F (xT+1)− F (x∗) ≤2

(
1 + max

2≤t≤T

1

1− µfηt

)
×

[
Dψ(x

∗, x1)∑T
t=1 γt

+

(
M2 + σ2

(
1 + 2 log

2

δ

)) T∑
t=1

γtηt∑T
s=t γs

]
. (37)

Now observing that for any t ∈ [T ]

γt := ηt

t∏
s=2

1 + µhηs−1

1− µfηs
= ηt

t∏
s=2

1

1− µfηs
= ηtΓt =

{
Γt−Γt−1

µf
t ≥ 2

η1 t = 1
,

where Γt :=
∏t
s=2

1
1−µfηs ,∀t ∈ [T ]. Hence, (37) can be rewritten as

F (xT+1)− F (x∗) ≤2

(
1 + max

2≤t≤T

1

1− µfηt

)
×

(
Dψ(x

∗, x1)

η1 +
ΓT−1
µf

+

(
M2 + σ2

(
1 + 2 log

2

δ

)) T∑
t=1

γtηt∑T
s=t γs

)
. (38)

Now let us check the condition of ηt ≤ 1
2L∨µf ,∀t ∈ [T ] for our three choices respectively:

ηt =
1

µf (t+ 2κf )
≤ 1

µf + 2L
≤ 1

2L ∨ µf
,∀t ∈ [T ] ;

ηt =
2

µf (t+ 1 + 4κf )
≤ 1

µf + 2L
≤ 1

2L ∨ µf
,∀t ∈ [T ] ;

ηt =


1

µf (1+2κf )
= 1

µf+2L ≤ 1
2L∨µf t = 1

1
µf (η+2κf )

≤ 1
µf (2κf∨(η+κf ))

≤ 1
2L∨µf 2 ≤ t ≤ τ

2
µf (t−τ+2+4κf )

≤ 1
µf+2L ≤ 1

2L∨µf t ≥ τ + 1

.

Therefore, (38) holds for all cases.

First, we consider ηt = 1
µf (t+2κf )

,∀t ∈ [T ]. We can find 1+max2≤t≤T
1

1−µfηt = 1+ 1
1−µfη2 ≤ 3,

η1 = 1
µf (1+2κf )

and

Γt =

t∏
s=2

1

1− µfηs
=

t∏
s=2

s+ 2κf
s− 1 + 2κf

=
t+ 2κf
1 + 2κf

,∀t ∈ [T ] .

Hence, using (38), we have

F (xT+1)− F (x∗) ≤ 6

(
Dψ(x

∗, x1)

η1 +
ΓT−1
µf

+

(
M2 + σ2

(
1 + 2 log

2

δ

)) T∑
t=1

γtηt∑T
s=t γs

)
.

Following similar steps in the proof of (29), we can get

F (xT+1)− F (x∗) ≤ O

(
µf (1 + κf )Dψ(x

∗, x1)

T
+

(M2 + σ2 log 1
δ ) log T

µf (T + κf )

)
.

Next, for the case of ηt = 2
µf (t+1+4κf )

,∀t ∈ [T ], there are 1+max2≤t≤T
1

1−µfηt = 1+ 1
1−µfη2 ≤

4, η1 = 1
µf (1+2κf )

and

Γt =

t∏
s=2

1

1− µfηs
=

t∏
s=2

s+ 1 + 4κf
s− 1 + 4κf

=
(t+ 4κf )(t+ 1 + 4κf )

2(1 + 4κf )(1 + 2κf )
,∀t ∈ [T ] .
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Thus, we have

F (xT+1)− F (x∗) ≤ 8

(
Dψ(x

∗, x1)

η1 +
ΓT−1
µf

+

(
M2 + σ2

(
1 + 2 log

2

δ

)) T∑
t=1

γtηt∑T
s=t γs

)
.

Following similar steps in the proof of (30), we can get

F (xT+1)− F (x∗) ≤ O

(
µf (1 + κf )

2Dψ(x
∗, x1)

T (T + κf )
+

(M2 + σ2 log 1
δ ) log T

µf (T + κf )

)
.

Finally, if T is known, we recall the current choice is for any t ∈ [T ]

ηt =


1

µf (1+2κf )
t = 1

1
µf (η+2κf )

2 ≤ t ≤ τ
2

µf (t−τ+2+4κf )
t ≥ τ + 1

,

where η > 1 and τ =
⌈
T
2

⌉
. Note that we have

1 + max
2≤t≤T

1

1− µfηt
= 1 +

1

1− µf (η2 ∨ ητ+1)
= 2 +

1

η ∧ 1.5 + 2κf − 1

= 2 +
1

η + 2κf − 1
∨ 1

0.5 + 2κf

≤ 4 +
1

η + 2κf − 1
,

η1 = 1
µf (1+2κf )

and for any t ∈ [T ]

Γt =

t∏
s=2

1

1− µfηs
=


(

η+2κf
η+2κf−1

)t−1

t ≤ τ(
η+2κf
η+2κf−1

)τ−1
(t−τ+1+4κf )(t−τ+2+4κf )

(1+4κf )(2+4κf )
t ≥ τ + 1

.

Thus, we have
F (xT+1)− F (x∗)

≤
(
8 +

2

η + 2κf − 1

)(
Dψ(x

∗, x1)

η1 +
ΓT−1
µf

+

(
M2 + σ2

(
1 + 2 log

2

δ

)) T∑
t=1

γtηt∑T
s=t γs

)
.

Following similar steps in the proof of (36), we can get
F (xT+1)− F (x∗)

≤O

(1 ∨ 1

η + 2κf − 1

)µf (1 + κf )Dψ(x
∗, x1)

exp
(

T
2η+4κf

) +
(M2 + σ2 log 1

δ ) log T

µf (T + κf )

 .

D.2 THE CASE OF µh > 0

Theorem D.3. Under Assumptions 1-4 and 5A with µf = 0 and µh > 0, let κh := L
µh

≥ 0:

If T is unknown, by taking ηt = 2
µh(t+4κh)

,∀t ∈ [T ], there is

E
[
F (xT+1)− F (x∗)

]
≤ O

(
µh(1 + κh)

2Dψ(x
∗, x1)

T (T + κh)
+

(M2 + σ2) log T

µh(T + κh)

)
.

If T is known, by taking ηt =

{
1

µh(η+2κh)
t ≤ τ

2
µh(t−τ+4κh)

t ≥ τ + 1
,∀t ∈ [T ] where η ≥ 0 can be any number

satisfying η + κh > 0 and τ :=
⌈
T
2

⌉
, there is

E
[
F (xT+1)− F (x∗)

]
≤ O

 µhDψ(x
∗, x1)

exp
(

T
2(1+η+2κh)

)
− 1

+

(
1 ∨ 1

η + 2κh

)
(M2 + σ2) log T

µh(T + κh)

 .
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Proof. When µf = 0 and µh > 0, suppose the condition of ηt ≤ 1
2L∨µf = 1

2L ,∀t ∈ [T ] in Lemma
4.2 holds, we will have

E
[
F (xT+1)− F (x∗)

]
≤ (1− µfη1)Dψ(x

∗, x1)∑T
t=1 γt

+ 2(M2 + σ2)

T∑
t=1

γtηt∑T
s=t γs

=
Dψ(x

∗, x1)∑T
t=1 γt

+ 2(M2 + σ2)

T∑
t=1

γtηt∑T
s=t γs

. (39)

Observing that

γt := ηt

t∏
s=2

1 + µhηs−1

1− µfηs
= ηt

t∏
s=2

(1 + µhηs−1) = ηtΓt−1 =
Γt − Γt−1

µh
,∀t ∈ [T ] ,

where Γt :=
∏t
s=1(1 + µhηs),∀t ∈ {0} ∪ [T ]. So (39) can be rewritten as

E
[
F (xT+1)− F (x∗)

]
≤ µhDψ(x

∗, x1)

ΓT − 1
+ 2µh(M

2 + σ2)

T∑
t=1

η2t
ΓT /Γt−1 − 1

. (40)

We can check that

ηt =
2

µh(t+ 4κh)
≤ 1

2κhµh
=

1

2L
,∀t ∈ [T ] ;

ηt =

{
1

µh(η+2κh)
≤ 1

2κhµh
= 1

2L t ≤ τ
2

µh(t−τ+4κh)
≤ 1

2κhµh
= 1

2L t ≥ τ + 1
.

Therefore, (40) is true for all cases.

If ηt = 2
µh(t+4κh)

,∀t ∈ [T ], we have

Γt =

t∏
s=1

(1 + µhηs) =
(t+ 1 + 4κh)(t+ 2 + 4κh)

(1 + 4κh)(2 + 4κh)
,∀t ∈ {0} ∪ [T ] .

Hence, by (40),

E
[
F (xT+1)− F (x∗)

]
≤ µhDψ(x

∗, x1)
(T+1+4κh)(T+2+4κh)

(1+4κh)(2+4κh)
− 1

+
8(M2 + σ2)

µh

T∑
t=1

1
(t+4κh)2

(T+1+4κh)(T+2+4κh)
(t+4κh)(t+1+4κh)

− 1

=
(1 + 4κh)(2 + 4κh)µhDψ(x

∗, x1)

T (T + 3 + 8κh)
+

8(M2 + σ2)

µh

T∑
t=1

t+ 1 + 4κh
t+ 4κh

· 1

(T + 1− t)(T + 2 + 8κh + t)

≤ (1 + 4κh)(2 + 4κh)µhDψ(x
∗, x1)

T (T + 3 + 8κh)
+

16(M2 + σ2)

µh

T∑
t=1

1

2T + 3 + 8κh

(
1

T + 1− t
+

1

T + 2 + 8κh + t

)

≤ (1 + 4κh)(2 + 4κh)µhDψ(x
∗, x1)

T (T + 3 + 8κh)
+

16(M2 + σ2)

µh
·
1 + log T + log 2T+2+8κh

T+2+8κh

2T + 3 + 8κh

≤ (1 + 4κh)(2 + 4κh)µhDψ(x
∗, x1)

T (T + 3 + 8κh)
+

16(M2 + σ2)(1 + log 2T )

µh(2T + 3 + 8κh)

=O

(
µh(1 + κh)

2Dψ(x
∗, x1)

T (T + κh)
+

(M2 + σ2) log T

µh(T + κh)

)
. (41)

If ηt =

{
1

µh(η+2κh)
t ≤ τ

2
µh(t−τ+4κh)

t ≥ τ + 1
,∀t ∈ [T ], we know for any t ∈ {0} ∪ [T ]

Γt =

t∏
s=1

(1 + µhηs) =


(
1 + 1

η+2κh

)t
t ≤ τ(

1 + 1
η+2κh

)τ
(t−τ+1+4κh)(t−τ+2+4κh)

(1+4κh)(2+4κh)
t ≥ τ + 1

.
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So we can obtain

E
[
F (xT+1)− F (x∗)

]
≤µhDψ(x

∗, x1)

ΓT − 1
+ 2µh(M

2 + σ2)

T∑
t=1

η2t
ΓT /Γt−1 − 1

=
µhDψ(x

∗, x1)(
1 + 1

η+2κh

)τ
(T−τ+1+4κh)(T−τ+2+4κh)

(1+4κh)(2+4κh)
− 1

+ 2µh(M
2 + σ2)

T∑
t=1

η2t
ΓT /Γt−1 − 1

(a)

≤ µhDψ(x
∗, x1)(

1 + 1
η+2κh

)T/2
− 1

+ 2µh(M
2 + σ2)

T∑
t=1

η2t
ΓT /Γt−1 − 1

(b)

≤ µhDψ(x
∗, x1)

exp
(

T
2(1+η+2κh)

)
− 1

+ 2µh(M
2 + σ2)

T∑
t=1

η2t
ΓT /Γt−1 − 1

=
µhDψ(x

∗, x1)

exp
(

T
2(1+η+2κh)

)
− 1

+ 2µh(M
2 + σ2)


τ∑
t=1

η2t
ΓT /Γt−1 − 1︸ ︷︷ ︸

I

+

T∑
t=τ+1

η2t
ΓT /Γt−1 − 1︸ ︷︷ ︸

II

 , (42)

where (a) is by T − τ ≥ 0 and τ ≥ T
2 , (b) is due to

(
1 +

1

η + 2κh

)T/2
= exp

(
T

2
log

(
1 +

1

η + 2κh

))
≥ exp

(
T

2(1 + η + 2κh)

)
.

Now we bound

I =
1

µ2
h(η + 2κh)2

τ∑
t=1

1(
1 + 1

η+2κh

)τ−t+1
(T−τ+1+4κh)(T−τ+2+4κh)

(1+4κh)(2+4κh)
− 1

(c)

≤ 1

µ2
h(η + 2κh)2

(
1 + 1

η+2κh

) τ∑
t=1

1
(T−τ+1+4κh)(T−τ+2+4κh)

(1+4κh)(2+4κh)
− 1

=
1

µ2
h(η + 2κh)(η + 1 + 2κh)

τ∑
t=1

(1 + 4κh)(2 + 4κh)

(T − τ)(T − τ + 8κh + 3)

=
(1 + 4κh)(2 + 4κh)

µ2
h(η + 2κh)(η + 1 + 2κh)

· τ

(T − τ)(T − τ + 8κh + 3)

(d)

≤ 2(1 + 4κh)

µ2
h(η + 2κh)

· 2(T + 1)

(T − 1)(T + 5 + 16κh)

(e)

≤
2
(
2 + 1

η+2κh

)
µ2
h

· 6

T + 5 + 16κh)
=

12
(
2 + 1

η+2κh

)
µ2
h(T + 5 + 16κh)

, (43)
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where (c) is by τ − t ≥ 0 and 1 + 1
η+2κh

≥ 1. We use η ≥ 0, τ ≤ T+1
2 in (d) and T ≥ 2 in (e).

Next, there is

II =
4

µ2
h

T∑
t=τ+1

1

(t− τ + 4κh)2
(

(T−τ+1+4κh)(T−τ+2+4κh)
(t−τ+4κh)(t−τ+1+4κh)

− 1
)

=
4

µ2
h

T−τ∑
t=1

1

(t+ 4κh)2
(

(T−τ+1+4κh)(T−τ+2+4κh)
(t+4κh)(t+1+4κh)

− 1
)

=
4

µ2
h

T−τ∑
t=1

t+ 1 + 4κh
(t+ 4κh) ((T − τ + 1 + 4κh)(T − τ + 2 + 4κh)− (t+ 4κh)(t+ 1 + 4κh))

≤ 8

µ2
h

T−τ∑
t=1

1

(T − τ + 1 + 4κh)(T − τ + 2 + 4κh)− (t+ 4κh)(t+ 1 + 4κh)

=
8

µ2
h

T−τ∑
t=1

1

(T − τ + 1− t)(T − τ + 2 + 8κh + t)

=
8

µ2
h

T−τ∑
t=1

1

2T − 2τ + 3 + 8κh

(
1

T − τ + 1− t
+

1

T − τ + 2 + 8κh + t

)
≤ 8

µ2
h(2T − 2τ + 3 + 8κh)

(
1 + log(T − τ) + log

2T − 2τ + 2 + 8κh
T − τ + 2 + 8κh

)
≤ 8(1 + log T )

µ2
h(T + 2 + 8κh)

, (44)

where we use T
2 ≤ τ ≤ T+1

2 in the last inequality.

Plugging (43) and (44) into (42) to get

E
[
F (xT+1)− F (x∗)

]
≤ µhDψ(x

∗, x1)

exp
(

T
2(1+η+2κh)

)
− 1

+
2(M2 + σ2)

µh

12
(
2 + 1

η+2κh

)
T + 5 + 16κh

+
8(1 + log T )

T + 2 + 8κh


=O

 µhDψ(x
∗, x1)

exp
(

T
2(1+η+2κh)

)
− 1

+

(
1 ∨ 1

η + 2κh

)
(M2 + σ2) log T

µh(T + κh)

 . (45)

Theorem D.4. Under Assumptions 1-4 and 5B with µf = 0 and µh > 0, let κh := L
µh

≥ 0 and
δ ∈ (0, 1):

If T is unknown, by taking ηt = 2
µh(t+4κh)

,∀t ∈ [T ], then with probability at least 1− δ, there is

F (xT+1)− F (x∗) ≤ O

(
µh(1 + κh)

2Dψ(x
∗, x1)

T (T + κh)
+

(M2 + σ2 log 1
δ ) log T

µh(T + κh)

)
.

If T is known, by taking ηt =

{
1

µh(η+2κh)
t ≤ τ

2
µh(t−τ+4κh)

t ≥ τ + 1
,∀t ∈ [T ] where η ≥ 0 can be any number

satisfying η + κh > 0 and τ :=
⌈
T
2

⌉
, then with probability at least 1− δ, there is

F (xT+1)− F (x∗) ≤ O

 µhDψ(x
∗, x1)

exp
(

T
2(1+η+2κh)

)
− 1

+

(
1 ∨ 1

η + 2κh

)
(M2 + σ2 log 1

δ ) log T

µh(T + κh)

 .
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Proof. When µf = 0 and µh > 0, suppose the condition of ηt ≤ 1
2L∨µf = 1

2L ,∀t ∈ [T ] in Lemma
4.3 holds, we will have with probability at least 1− δ

F (xT+1)− F (x∗)

≤2

(
1 + max

2≤t≤T

1

1− µfηt

)[
Dψ(x

∗, x1)∑T
t=1 γt

+

(
M2 + σ2

(
1 + 2 log

2

δ

)) T∑
t=1

γtηt∑T
s=t γs

]

=
4Dψ(x

∗, x1)∑T
t=1 γt

+ 4

(
M2 + σ2

(
1 + 2 log

2

δ

)) T∑
t=1

γtηt∑T
s=t γs

. (46)

Observing that

γt := ηt

t∏
s=2

1 + µhηs−1

1− µfηs
= ηt

t∏
s=2

(1 + µhηs−1) = ηtΓt−1 =
Γt − Γt−1

µh
,∀t ∈ [T ] ,

where Γt :=
∏t
s=1(1 + µhηs),∀t ∈ {0} ∪ [T ]. So (46) can be rewritten as

F (xT+1)−F (x∗) ≤ 4µhDψ(x
∗, x1)

ΓT − 1
+4µh

(
M2 + σ2

(
1 + 2 log

2

δ

)) T∑
t=1

η2t
ΓT /Γt−1 − 1

. (47)

We can check that

ηt =
2

µh(t+ 4κh)
≤ 1

2κhµh
=

1

2L
,∀t ∈ [T ] ;

ηt =

{
1

µh(η+2κh)
≤ 1

2κhµh
= 1

2L t ≤ τ
2

µh(t−τ+4κh)
≤ 1

2κhµh
= 1

2L t ≥ τ + 1
.

Therefore, (47) is true for all cases.

If ηt = 2
µh(t+4κh)

,∀t ∈ [T ], following the similar steps in the proof of (41), we can finally get

F (xT+1)− F (x∗) ≤ O

(
µh(1 + κh)

2Dψ(x
∗, x1)

T (T + κh)
+

(M2 + σ2 log 1
δ ) log T

µh(T + κh)

)
.

If ηt =

{
1

µh(η+2κh)
t ≤ τ

2
µh(t−τ+4κh)

t ≥ τ + 1
,∀t ∈ [T ], following the similar steps in the proof of (45), we

can finally get

F (xT+1)− F (x∗) ≤ O

 µhDψ(x
∗, x1)

exp
(

T
2(1+η+2κh)

)
− 1

+

(
1 ∨ 1

η + 2κh

)
(M2 + σ2 log 1

δ ) log T

µh(T + κh)

 .
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