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Abstract

Lateral inhibition models coupled with Hebbian plasticity have been shown to
learn factorised causal representations of input stimuli, for instance, oriented edges
are learned from natural images. Currently, these models require the recurrent
dynamics to settle into a stable state before weight changes can be applied, which
is not only biologically implausible, but also impractical for real-time learning
systems. Here, we propose a new Hebbian learning rule which is implemented
using plausible biological mechanisms that have been observed experimentally.
We find that this rule allows for efficient, time-continuous learning of factorised
representations, very similar to the classic noncontinuous Hebbian/anti-Hebbian
learning. Furthermore, we show that this rule naturally prevents catastrophic
forgetting when stimuli from different distributions are shown sequentially.

1 Introduction

Neural network models with inhibition and local Hebbian plasticity have been extensively analyzed
and shown to learn factorised representations of input data, which manifest in appropriate feedforward
weights or receptive fields [10, 28, 24, 8, 17]. Factorised receptive fields constitute an efficient
representation of sensory data that is hypothesized to be used in sensory systems [2, 26]. It is
useful from a computational perspective to represent high-dimensional sensory stimuli in terms
of constituent parts or factors (e.g., edges for natural images) [5] as these generalize well across
images and space and also support subsequent tasks such as object recognition [6]. A factorised
representation is also sparse [21] as only a few neurons are active at a certain time, which can reduce
the metabolic cost [1] and maximize the capacity of a subsequent associative memory [31, 3].

Most lateral inhibition models that learn factorised representations have an important caveat: recurrent
dynamics need to reach a stable state before a plasticity update can be applied [24, 17]. This
expectation maximization procedure is implausible from a biological perspective as neural dynamics
and plasticity evolve continuously, and do not necessarily evolve on very different time scales [18, 19].
Particularly in a continuous world one cannot separate (or discretize) a sequence of incoming stimuli,
and therefore it is unclear when the weights should actually be updated.

Networks that do not require recurrent dynamics have previously been proposed [18, 19], however,
either they do not learn factorised representations [19] or they cannot maintain weight stability
[18]. Other lines of work have applied ongoing plasticity with small learning rates and successfully
obtained factorised representations [7], however they still require holding the current stimuli long
enough for the recurrent dynamics to settle.
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Here we propose a Hebbian plasticity model in which post-synaptic neurons update their incoming
weights asynchronously. Each neuron performs an update when its activity reaches a certain threshold.
Importantly, we also introduce a refractory period which prevents multiple continuous updates of the
same post-synaptic neuron. Such refractoriness in LTP has been observed experimentally [16, 9], but
to our knowledge has not been incorporated into plasticity models. We show that our model yields
factorised representations which models with on-going Hebbian plasticity struggle to learn. We show
these representations are highly efficient, with sparse activations and low redundancy, similar to the
ones learned by classic Hebbian/anti-Hebbian networks [24]. Finally, we show that our learning
rule naturally prevents catastrophic forgetting when several input data sets drawn from different
distributions are presented to the network in succession.

2 Lateral inhibition models

Lateral inhibition was first proposed by Barlow in 1952 as a mechanism to encode sensory stimuli
efficiently, the so-called redundancy reduction hypothesis [2]. Initial implementations of such
mechanisms can be dated back to Grossberg (1976) [13] and Rumelhart (1985) [27] where they show
that constant lateral inhibition between neurons leads to a competitive learning scheme in which a
single neuron is active for a particular stimulus. Later Földiák (1990) pointed out that representations
arising from competition are limited both in capacity and generalisation [10]. He proposed the first
Hebbian/anti-Hebbian neural network model with plastic lateral inhibition. This was later shown to
learn independent components of natural images (edges) [8], very similar to the features encoded
by simple cells in the mammalian visual cortex [14]. More recently, models of the same flavor
were mathematically derived from non-negative matrix factorization [24] and similarity matching
objectives [25].

Figure 1A shows the general network model with feed-forward weights W ∈ Rn×m and recurrent
weights M ∈ Rn×n, where m is the size of input x and n in the number of neurons in the population
y. The dynamics of the activity is described by ẏ = [Wx −My]+ which we can simulate with
random weights (W and M ) by showing a sample x = |x1 · · · xn| for a number of Euler steps
f (which we call the hold period as the sample x is kept constant throughout this period). If M is a
positive definite matrix, the system will eventually reach a stable state which we denote by ŷ ([25]).
In the classical lateral inhibition model, once the network has reached the stable state, local Hebbian
updates ∆wi,j = xjyi − wi,j on W and ∆mi,j = yjyi −mi,j are applied on M . Note that due to
the symmetric nature of the update, and the fact that y is always positive, M will remain positive
definite throughout the simulation, always guaranteeing a stable state as long as the hold period f is
long enough (usually we set f = 500). Appendix A details other functional forms of local learning
rules that have been proposed and the resulting receptive fields (see Appendix figure A.1).

This model has been derived from the non-negative matrix factorization objective [24] and here, we
use it as a baseline, calling it the discrete model (details in Appendix A3). A standard task this model
can solve is pattern recognition in toy datasets. One can test this by training the model with a set of
stimuli and analyzing the learned receptive fields of each neuron. Figure 1I shows some receptive
fields this model learns when presented with Földiák’s bars (Fig. 1C, top row). Such stimuli consist
of crosses, which can be efficiently decomposed into stripes and bars. The discrete model learns
precisely such feed-forward receptive fields, reproducing the results obtained by Földiák [10].

Central to the discrete model is the assumption that the neural dynamics is very fast and settles into
an equilibrium point both before plasticity occurs and before the stimulus changes (i.e. x needs to be
static until a stable state is reached). This assumption however is biologically implausible as neural
plasticity is an ongoing process and stimulus changes may happen faster than neural dynamics. To
investigate the importance of these assumption, we compare our model to a model which we call the
continuous model (see Appendix B) where plasticity is applied on par with the dynamics. In contrast
to the discrete model, the continuous model does not learn decomposition into stripes and bars, but
develops receptive fields containing crosses (Fig. 1H). Note that stimuli are still kept constant for
a number of timesteps in the continuous model, however instead of a single plasticity update per
sample (discrete model), we have f plasticity updates per sample.

We quantify the sparsity of the representation and observe that on average more neurons are active
in the continuous model (Fig 1E). Activity sparseness can be quantified by the Gini coefficient (see
Appendix E2), which tells us how efficient the representation is. This also relates to whether the
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Figure 1: Representation learning in Hebbian/anti-Hebbian networks. (A) Diagram of the lateral
inhibition model. Example shown has 5 neurons, each receives excitatory input from 6 external
units (xi) and inihibitory feedback from 5 recurrent units (yi, including itself). (B) Schematic of the
refractory mechanism leading to the asynchronous learning in a post-synpatic neuron. (C) Examples
of three input stimulus sets shown to the model (top row: Földiák’s bars). (D) Average reconstruction
error for the three models during simulation with Földiák’s bars (error bars are standard deviation
over samples in each time bin). (E) Rank-ordered histogram of neural activity for the three models at
the end of the simulation. (F) Gini coefficients of the activity distributions in D. A higher coefficient
indicates higher lifetime sparseness. (G) Receptive fields of the 100 most active neurons of the
asynchronuos network model. (H) As G, for the continuous network model. (I) As G, for the discrete
network model.

model learned a suitable factorization or not ([21]). We observe a sparser representation in the
discrete model trend throughout the whole simulation (Fig 1F).

Furthermore, we compute the reconstruction error as a measure of encoding quality (for details see
Appendix E1) and observe that the continuous model is more unstable in terms of representation
quality (Fig. 1D). This may be due to a continuous drift of neuronal selectivity, which does not
appear to be a feature of the discrete model (see Appendix figures F.7 and F.8). We conclude that a
sufficiently long hold period and waiting for the stable state of the dynamics is important as recurrent
dynamics remove the statistical dependencies and redundancies in the neural activity. This, in turn,
allows learning factorised representations.

3 Asynchronous Hebbian learning

Here we introduce a new learning rule for lateral inhibition models. Instead of waiting for the
stable state to apply an update (discrete model) or applying updates on par with the dynamics
(continuous model), we propose to update neurons asynchronously: Each neuron updates its incoming
weights when its activity has surpassed a threshold, and is unable to perform further updates for a
refractory period (see diagram in Fig. 1B; for equations, see Appendix C). Importantly, all updates
in this asynchronous model run in continuous time alongside the neural dynamics. The two crucial
differences to the continuous model are: (1) only neurons whose receptive fields are sufficiently
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Figure 2: The discrete and asynchronous models learn very similar representations. (A) His-
togram of cosine similarities of the feed-forward weight between the discrete model and the continu-
ous (orange) and asynchronous (blue) model. (B) As A, for the recurrent weights. (C) Average cosine
similarity of feed-forward weights, compared to the discrete model, as the simulation evolves (colors
as in A). (D) Average cosine similarity of feed-forward (green) and recurrent (M) weights between
discrete and asynchronous models for different refractory period durations in the asynchronous model.
Dashed lines are similarities of the continuous model. (E) As D, for different bursting thresholds
in the asynchronous model. (F) As D, for different presentation durations in the asynchronous
model. (G) Short simulation window showing the number of synapses updated at each Euler step for
untrained networks. (H) Same as G but for trained networks. (I) Average number of synaptic updates
taken at uniform intervals throughout the whole simulation.

activated by an input will be updated, and (2) a selective neuron will not be drawn towards other
coinciding patterns because of the refractory period.

We find the model learns a factorised representation (Fig. 1G) and maintains a similar level of
sparseness compared to the discrete model (Fig. 1F). We also observe that both discrete and
asynchronous models have very similar learning trajectories (Fig. 1D), reaching the same error at
convergence. In contrast, the continuous model is more unstable and does not reach the same error.

To assess the similarity between learning dynamics, we compare the learning trajectories of both
asynchronous and continuous models with the discrete model. We initialize all models with the
same weights and present the same stimulus sequence, and measure the cosine similarity of each
neuron’s incoming weights (see Appendix E3). Figures 2A and 2B show that after learning most
neurons in the asynchronous model are practically identical (similarity 0.95-1.0) to the neurons in the
discrete model, while the neurons in the continuous model diverge significantly. The divergence of
the weights from the continuous model begins right at the start of training (Fig. 2C), demonstrating
that this network learns a qualitatively different representation.

A key mechanism of our model is the refractoriness of plasticity which prevents a continuous update of
the post-synaptic neuron’s incoming weights while it is bursting. Figure 2D shows that refrectoriness
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is quite important for the asynchronous model to approximate the learning trajectory of the discrete
model, as non-existent (1 step) or small (10 steps) refractoriness lead to poor average weight similarity.
Interestingly, this refractory period has also been observed in in vitro experiments [9]. Also note that
without a refractory period this model will learn to a non-factorised, winner-take-all representation
similar to the one learned by the continuous model (see Appendix figures C.5 and C.6). Varying
the threshold for bursting does not affect the learning much unless we set it to zero, in which case
the network seems to diverge from the discrete version (Fig. 2E). Varying the hold period (i.e. the
number of iterations the stimuli is held for the network to reach a stable state) does affect the learning
trajectory (Fig. 2F) which is interesting since the standard version of discrete network (which uses
the same learning rule as our model - Hebbian) stops learning as the hold period goes below 150 (see
Appendix figures A.1).

We further explore how learning differs on these models by counting the number of synapses that are
updated (i.e. have gradient entry different from 0). Figure 2G and 2H show the number of synapses
updated at each Euler step during a small simulation window. As expected, the discrete network
has a stair-case like shape since it only updates once every 500 steps (i.e. the hold period for this
simulation). It is interesting to note that the asynchronous network follows a very similar trajectory
to the discrete network for a random untrained network (Fig. 2G). However, as we train the networks,
the discrete model seems to increase the number of updates while the asynchronous model slightly
decreases them (Fig. 2I).
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Figure 3: The asynchronous model prevents catastrophic forgetting. Three differnt sets of stimuli
(see Fig. 1C) were shown in succession during ongoing plasticity (red bars indiacte when the stimulus
set changed). The reconstruction error was computed for all stimuli and is shown for the asynchronous
model (A) and the discrete model (B). Once a stimulus set has been learned by the asynchronous
model, the low error persists when the next set is introduced, while it increases again in the discrete
model. Insets show the same, randomly selected, feed-forward weights, throughout each simulation.

4 Continual learning

Biological neuronal networks have the ability to maintain task performance, and learn new tasks with-
out forgetting previous information. Artificial neural networks, in contrast, suffer from catastrophic
forgetting, where a task previously learned is forgotten when a new task is learned [11]. Here we find
that the asynchronous rule naturally prevents catastrophic forgetting as long as the network capacity
is sufficient to represent all relevant factors.

To show this, we present three different sets of stimuli (Fig. 1C) in sequence in three different phases,
and continuously test the ability of the model to reconstruct all three stimuli sets (Fig. 3, vertical red
dashed lines; insets show a selected subset of receptive fields at the points when stimuli distribution is
changed). We observe that the asynchronous model retains the receptive fields learned from previous
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phases, and therefore can maintain a low reconstruction error for all three stimuli at the end of the
simulation. In contrast, the discrete model constantly adapts all receptive fields to the new distribution,
hence forgetting previous patterns and generating high errors at the end of the simulation for both
stimuli 1 and 2 (Fig. 3B). In the asynchronous model, unstructured and redundant receptive fields are
primarily used to encode new data (see insets in Fig. 3A; see more examples in the Appendix figures
F.9 and F.10). Catastrophic forgetting is avoided in the asynchronous model because the plasticity
threshold prevents plasticity in weakly tuned neurons and, acting in concert with lateral inhibition,
reducing the likelihood of plasticity in weakly activated neurons that are tuned to previously learned
stimuli.

5 Discussion

In this work, we propose a biologically plausible mechanism to learn efficient factorised repre-
sentations of inputs in lateral inhibition models with time-continuous plasticity. We show that it
approximates the learning of classic Hebbian/anti-Hebbian networks derived from the non-negative
matrix factorization. We also show that the same mechanism effectively prevents catastrophic for-
getting. The emerging representations are causal models of the input ensemble, and they resemble
those of blind source separation algorithms such as ICA [4]. Interestingly, the predictive coding
literature contains a range of models based on expectation-maximization where dynamics are used to
reach a stable state before a plasticity update is applied. This includes biological implementations of
the back-propagation algorithm such as equilibrium propagation [29]. Applying our asynchronous
mechanism to learn energy-based models could be a promising avenue for future work.

In contrast to the group of "discrete" models which require settling of recurrent dynamics, the
asynchronous model is biologically more plausible in several ways: Plasticity events are more
likely during bursts of spikes [23, 12, 15], and refractoriness of plasticity has been reported in
experiments [16, 9]. Furthermore, the asynchronous model produces fewer plasticity events than a
continuous model while still learning at a similar rate. It has been suggested that plasticity events
are metabolically costly and it may be a biological objective to limit them in the brain [22]. The
asynchronous mechanism is a candidate model implementing this constraint.

One important question is whether the asynchronous model shows a similar behaviour in spiking
networks, as we propose it as a biological mechanism. Spiking networks with lateral inhibition
and Hebbian plasticity have been shown to approximate ICA-like representations in the presence
of a homeostatic mechanism which maintains an appropriate target activity level and enables stable
competitive learning [30, 28]. While in these studies the weights are updated continuously, sparse
spiking may restrict plasticity events in a similar way to refractoriness in our model. A systematic
comparison between spiking and rate-based models will therefore be of interest, and holds promise
as it can lead to a normative understanding of neural plasticity.
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A Local learning rules

Hebbian/anti-Hebbian networks have been extensively studied and analysed, multiple functional
forms have been proposed in the literature. Here we briefly review different functional forms of local
learning rules and show what they learn when presented with our set of stimuli. Following the classic
learning procedure of Hebbian/anti-Hebbian networks [10, 8, 24], we present a stimulus x ∈ Rm to
the network and let the dynamics in ?? settle into a stable state for a fixed number of Euler iterations
(see Appendix D). From this we obtain the stable state representation ŷ = |ŷ1 ŷ2 · · · ŷn| for
stimulus x = |x1 x2 · · · xm|. We tested also smaller presentation periods as shown in figure
A1 and A2. For each update we keep all weights positive in order to keep feed-forward weights
strictly excitatory and recurrent weights strictly inhibitory. In the following subsections we describe
the different functional forms that different works have proposed.
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Figure A.1: Receptive fields of the top 100 most active neurons for the continuous model and different
versions of the discrete model. Models were simulated with different presentation (holding) times,
quantified by Euler steps (rows)

A.1 Földiák network

The classic Földiák network [10] includes a bias in the dynamics, sometimes called the sensitivity,
however, we only consider the update rules of feed-forward and recurrent weights and neglect the
sensitivity term so as to compare identical network models. The feed-forward update is the following:

∆wi,j = η(ŷixj − ŷiwi,j) (1)

Here, wi,j is the entry i, j of the feed-forward matrix W and η is a learning rate (usually 0.01 for our
simulations). The recurrent weight update is:
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Figure A.2: Histogram of average neural activity for the continuous model and different versions of
the discrete model. Models were simulated with different presentation (holding) times, quantified by
Euler steps (rows). For each plot, x-axis is the sorted neuron index and the y axis in the normalized
average activity.

∆mi,j = η(ŷiŷj − p2) (2)

Again, η is a learning rate (usually 0.01 for our simulations), mi,j is the entry i, j of the recurrent
matrix M and p is a small positive constant (p << 1).

A.2 Falconbridge network

Falconbridge et al [8] proposed a very similar network to Földiák and suggested it learns the
independent components of natural images [5], following a similar learning trajectory to the sparse
coding network [21]. The only difference from Földiák’s model is the feed-forward weight update
which is the same as the one proposed by Oja [20]:

∆wi,j = η(ŷixj − ŷ2iwi,j) (3)

A.3 Pehlevan network

More recently, Pehlevan and Chklovskii derived the network updates from the non-negative matrix
factorization objective [24]. They obtained identical rules for both the feed-forward and recurrent
weights, with the addition of a dynamics learning rate:

∆wi,j = ηi(ŷixj − ŷ2iwi,j) (4)

∆mi,j = ηi(ŷiŷj − ŷ2imi,j) (5)

∆ηi = ŷ2i (6)

Note that post-synaptic neurons evolve their own distinct learning rates based on their activity, which
resembles the way in which we restrict updates on post-synaptic neurons for our asynchronous
model.
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A.4 Hebbian network

A simpler version of the Hebbian/anti-Hebbian network has been proposed to explain certain proper-
ties of receptive fields in the cortex such as representational drift [26]. Such version can be formulated
as follows:

∆wi,j = η(ŷixj − wi,j) (7)

∆mi,j = η(ŷiŷj −mi,j) (8)

B Continuous model

The implementation of the continuous model is straight-forward, instead of updating the weights with
the stable state activity ŷ, we apply an update every time we apply an Euler step in the simulation. We
present an input x to the network for f Euler steps and for each step t we compute the activity vector
yt == |ŷ1 ŷ2 · · · ŷn| which is then used to perform the weight updates of both feed-forward
and recurrent weights using Oja’s rule and a fixed learning rate of η = 0.001:

∆wi,j = η(yt,ixj − y2t,iwi,j) (9)

∆mi,j = η(yt,iyj − y2t,imi,j) (10)

Note that for each data point x we perform f updates in both the weight and the dynamics. This
is in contrast to the discrete model, where only a single weight update is performed for each data
stimulus.

C Asynchronous learning mechanism

In this paper we introduce a mechanism that allows each neuron in the network to learn independently
of each other without having to wait for the whole network to reach a stable state. This mechanism
consists of updating the weights of a single post-synaptic neuron only when the neuron has a burst of
activity. Following the burst and the update, this neuron cannot modify its weights for a small period
of time (refractory period).

Let yi be the activity of a post-synaptic neuron i and xj be the activity of the pre-synaptic neuron.
We introduce a new variable βi ∈ 0, 1 which gates the continuous plasticity update:

∆wi,j = βi(yixj − wi,j) (11)

The variable βi is updated as follows:

βi ←
{

1 if yi > rb and ci > rr
0 else

The constant rb is the activity threshold above which a neuron is considered bursting and plasticity
can occur. rr is the length of the refractory period defined here as the number of Euler steps that have
to elapse until the neuron can update again.

ci is updated as a simple counter:

ci ←
{

0 if yi > rb and ci > rr
ci + 1 else

10
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Figure C.3: Receptive fields of top 100 most active neurons for different bursting thresholds of the
asynchronous model. Models were simulated with different presentation (holding) times, quantified
by Euler steps (rows)

D Simulation details

For all models we set the number of neurons n = 500 and set the input size m = 14× 14 (gray-scale
pixels, s.t. xi ∈ [0, 1]). Learning rates for the discrete model (except for the Pehlevan network)
were η = 0.01 and for the continuous model we set η = 0.001. All three models had the same
dynamics which were simulated via Euler’s method with a step size of 0.01 and we tested three
different hold periods (i.e. number of Euler iterations were input was kept constant) - 50, 150 and 500.
We initialized the weights as random vectors were each entry was drawn from a Guassian distribution
with mean 0 and variance 1. All the weights were kept positive throughout the entire simulations.

Python was utilized to implement the models and evaluation metrics. The libraries utilized were
numpy, matplotlib and scipy. All simulations can be run on a regular desktop for a few hours and
the code to reproduce the experiments is open-source 1. Servers with many CPUs were also used to
accelerate experiments but are not necessary as 4GB RAM should be enough to run networks of this
size.

E Evaluation Methods

A straight-forward approach to verify whether a single-layer network has learned a good representation
is to visualise the receptive fields. From Földiák’s bars, one would expect a fully competitive network
to learn receptive fields that look like the input (i.e. crosses). If the network successfully learns a
factorised representation then we expect to see stripes and bars [10].

For a quantitative analysis of the behaviour, we obtain the reconstruction error and sparseness of the
average activity measured via the Gini coefficient. Below we describe both these methods and also
explain how we compared the learning trajectories of the models.

1https://github.com/henri-edinb/async_learning
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Figure C.4: Histogram of average neural activity for different bursting thresholds of the asynchronous
model. Models were simulated with different presentation (holding) times, quantified by Euler steps
(rows). For each plot, x-axis is the sorted neuron index and the y axis in the normalized average
activity.

E.1 Reconstruction error

To analyse whether the network has learned the patterns in the input, we reconstruct the input from the
latent representation at the stable state by utilizing the transpose of the feed-forward weights WT . In
all three models (asynchronous, continuous and discrete), we present a sequence of stimuli {xi}si=0,
hold the input xi for f Euler steps with size 0.01 and compute the reconstruction xi,t at every Euler
step t. We then measure the reconstruction error and average it over the the whole presentation:

s∑
i=0

f∑
t=0

1− sim(xi,xi,t)

s ∗ f
(12)

Throughout our simulations, we set s = 60 and f = 150 which allows for a fair comparison between
models. The similarity measure is the cosine similarity:

sim(a,b) =
aTb

∥a∥ ∗ ∥b∥
(13)

E.2 Gini coefficient

To measure the sparness of activity of the network we first take the average activity over a time
window similar to the reconstruction error. We present a sequence of stimuli {xi}si=0, hold the input
xi for f Euler steps with size 0.01 and obtain the firing rate at each Euler step yi,t. We then average
the activity over the test window obtaining a vector ỹ with the average activity:

ỹ =

s∑
i=0

f∑
t=0

yi,t (14)
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Figure C.5: Receptive fields of top 100 most active neurons for different refractory periods of the
asynchronous model. Models were simulated with different presentation (holding) times, quantified
by Euler steps (rows)

With this we can compute the Gini coefficient, which yields a quantitative measure of the sparseness
of the activity:

G(y) =

∑n
i=0

∑n
j=0 |yi − yj |

2 ∗ n ∗
∑n

i=0 yi
(15)

E.3 Weight comparison

Since all models have the same weight structure, we can compare their learning trajectory by
measuring the cosine similarity between the incoming weights of each neuron. Let a neuron i from
model A (resp. B) have feed-forward weights WA (resp. WB) and recurrent weights MA (resp.
MB). Also let the ith row of the feed-forward matrix WA (resp. WB) be denoted by the vector
wA,i (resp. wB,i) and the ith row of the recurrent matrix MA (resp. MB) be denoted by the vector
mA,i (resp. mB,i). Note these vectors we defined are the incoming weights of post-synaptic neuron
i. To compare the feed-forward (resp. recurrent) weights of model A and B we measure the cosine
similarity between wA,i and wB,i (resp. mA,i and mB,i) using equation 13. We do this over all
neurons in the models and bin the results to obtain the histograms plotted in Figures 2A and 2B. To
obtain the rest of the figures, we compute the mean and variance of the results.

F Receptive fields temporal evolution

The rest of the appendix show figures with the evolution of the receptive fields for different models.
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Figure C.6: Histogram of average neural activity for different refractory periods of the asynchronous
model. Models were simulated with different presentation (holding) times, quantified by Euler steps
(rows). For each plot, x-axis is the sorted neuron index and the y axis in the normalized average
activity.
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Figure F.7: Discrete model feed-forward receptive fields evolution for the crossbar simulation. Rows
are different neurons and columns are different points in time (shown at every 1 million Euler steps)
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Figure F.8: Continuous model feed-forward receptive fields evolution for the crossbar simulation.
Rows are different neurons and columns are different points in time (shown at every 1 million Euler
steps)
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Figure F.9: Asynchronous model feed-forward receptive fields evolution for the mixed stimuli
simulation. Rows are different neurons and columns are different points in time (shown at every 1
million Euler steps)
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Figure F.10: Discrete model feed-forward receptive fields evolution for the mixed stimuli simulation.
Rows are different neurons and columns are different points in time (shown at every 1 million Euler
steps)
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