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Abstract

With the widespread use of LLMs, preserving001
privacy in user prompts has become crucial,002
as prompts risk exposing privacy and sensitive003
data to the cloud LLMs. Traditional techniques004
like homomorphic encryption, secure multi-005
party computation, and federated learning face006
challenges due to heavy computational costs007
and user participation requirements, limiting008
their applicability in LLM scenarios. In this pa-009
per, we propose PromptObfus, a novel method010
for desensitizing LLM prompts. The core idea011
of PromptObfus is "anti-adversarial" learning,012
which perturbs privacy words in the prompt to013
obscure sensitive information while retaining014
the stability of model predictions. Specifically,015
PromptObfus frames prompt desensitization as016
a masked language modeling task, replacing017
privacy-sensitive terms with a [MASK] token.018
A desensitization model is trained to generate019
candidate replacements for each masked po-020
sition. These candidates are subsequently se-021
lected based on gradient feedback from a surro-022
gate model, ensuring minimal disruption to the023
task output. We demonstrate the effectiveness024
of our approach on three NLP tasks. Results025
show that PromptObfus effectively prevents pri-026
vacy inference from remote LLMs while pre-027
serving task performance.028

1 Introduction029

The widespread adoption of large language models030

(LLMs) such as ChatGPT in various NLP tasks031

(Hong et al., 2024; Carlini et al., 2019) has raised032

significant concerns regarding their inherent pri-033

vacy risks. Due to the substantial computational034

resources required for local deployment, users of-035

ten rely on cloud APIs provided by model vendors,036

which introduces potential vulnerabilities. Specifi-037

cally, user-submitted prompts, the primary medium038

of interaction with LLMs, may inadvertently ex-039

pose sensitive information, posing serious privacy040

threats.041

This person feels happy.
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analysis on the following 
statement:
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from Susan about his 
meeting at the park.

Desensitized Prompt

Desensitization

Figure 1: Illustration of prompt desensitization.

Prompts frequently contain personally identifi- 042

able information (PII), such as names, gender, oc- 043

cupation, and addresses, as illustrated in Figure 1. 044

Without adequate safeguards during model process- 045

ing, such data risks being exploited by malicious 046

actors, potentially resulting in severe privacy vio- 047

lations (Hong et al., 2024). Consequently, ensur- 048

ing robust privacy protection for user prompts has 049

emerged as a critical and pressing challenge in the 050

deployment of LLMs. 051

Traditional privacy-preserving techniques, such 052

as Homomorphic Encryption (HE) (Gentry, 2009), 053

Secure Multi-Party Computation (MPC) (Yao, 054

1982), and Federated Learning (FL) (McMahan 055

et al., 2017), exhibit significant limitations when 056

applied to prompts for LLMs, particularly in black- 057

box settings where access to the model’s internal 058

architecture or training data is restricted. These 059

methods often fail to simultaneously address the 060

competing requirements of real-time performance, 061

computational efficiency, and robust privacy pro- 062

tection. 063

Text obfuscation has emerged as a prevalent ap- 064

proach to safeguarding sensitive information in 065

prompts (Miranda et al., 2025). For instance, tech- 066

niques include injecting noise into word embed- 067

dings based on differential privacy to perturb sensi- 068

tive data (Yue et al., 2021; Gao et al., 2024), cluster- 069

ing word vectors to render representations of sensi- 070

tive terms indistinguishable (Zhou et al., 2023), and 071

training models for data anonymization by detect- 072

ing and removing PII entities (Chen et al., 2023). 073
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However, these methods often struggle to achieve074

an optimal trade-off between privacy preservation075

and task utility (Zhang et al., 2024). Furthermore,076

approaches that rely on model training typically077

necessitate expert-annotated datasets, which are078

challenging to procure in practical applications.079

In this paper, we propose PromptObfus, a080

portable and task-flexible method for the desen-081

sitization of LLM prompts. Inspired by the082

work on generating adversarial examples (Alzan-083

tot et al., 2018), we introduce the concept of anti-084

adversariality, which aims to obscure sensitive085

words in prompts while preserving the integrity of086

model predictions. PromptObfus achieves desensi-087

tization by replacing words with semantically dis-088

tinct yet task-neutral alternatives, thereby ensuring089

robust privacy protection without compromising090

the original functionality of the prompts. Promp-091

tObfus operates through the deployment of two092

small local models: a desensitization model, which093

replaces sensitive words with privacy-preserving al-094

ternatives, and a surrogate model, which emulates095

the task execution of the remote LLM to guide096

prompt selection. The pipeline consists of three097

critical steps: generating desensitized alternatives098

for privacy-sensitive words, assessing the task util-099

ity of the LLM, and selecting replacements that100

minimize performance degradation.101

We evaluate PromptObfus across three NLP102

tasks: sentiment analysis, topic classification, and103

question answering. Results demonstrate that104

PromptObfus achieves accuracy rates of 84.8%,105

84.25%, and 96.4%, respectively, surpassing ex-106

isting baselines. In terms of privacy protection,107

PromptObfus reduces the success rate of implicit108

privacy inference attacks by 24.86% and entirely109

mitigates explicit inference attacks.110

Our contribution can be summarized as follows:111

• We introduce the novel concept of anti-112

adversariality, a pioneering approach for de-113

sensitizing LLM prompts that ensures robust114

privacy protection without compromising task115

performance.116

• We propose a new privacy-preserving word117

replacement algorithm, which integrates118

masked word prediction with LLM gradient119

surrogation to achieve optimal desensitization.120

• We conduct extensive evaluations of Promp-121

tObfus across multiple NLP tasks, demon-122

strating its effectiveness in preserving privacy123

while maintaining task performance.124

2 Related Work 125

Privacy Protection for LLMs. While LLMs 126

have demonstrated significant utility across diverse 127

domains, they have also introduced notable pri- 128

vacy and security challenges (Mireshghallah et al., 129

2024). To mitigate these concerns, research has 130

concentrated on safeguarding both the model and 131

user data. Techniques such as federated learning 132

(Hu et al., 2024) and homomorphic encryption 133

(Hao et al., 2022) are widely employed to secure 134

model training and inference. For prompt privacy, 135

methods including prompt encryption (Lin et al., 136

2024) and noise-based obfuscation (Zhou et al., 137

2023; Gao et al., 2024) have been proposed. Addi- 138

tionally, training models for data anonymization by 139

detecting and removing personally identifiable in- 140

formation (PII) (Chen et al., 2023; Sun et al., 2024) 141

has been explored. Users can also employ strate- 142

gies such as mixing real and synthetic inputs to 143

construct privacy-preserving prompts, thereby pre- 144

venting servers from identifying the original input 145

(Utpala et al., 2023). 146

Automatic Prompt Engineering. Automatic 147

prompt generation represents a promising approach 148

for creating desensitized prompts, utilizing AI tech- 149

niques to generate prompts that effectively guide 150

models in producing meaningful responses. These 151

methods leverage large-scale datasets for train- 152

ing, enabling broader linguistic knowledge and 153

contextual understanding, often surpassing man- 154

ually crafted prompts (Zhou et al., 2022). Notable 155

frameworks for automatic prompt generation in- 156

clude APE (Yang et al., 2024), which iteratively 157

refines prompts by selecting and resampling can- 158

didate prompts; APO (Zhou et al., 2022), which 159

adjusts prompts through feedback in a gradient 160

descent-like manner; and OPRO (Pryzant et al., 161

2023), which treats the LLM as an optimizer to 162

iteratively enhance prompts. 163

Text Adversary Generation. Adversarial training 164

is a technique aimed at improving model robust- 165

ness against malicious or deceptive inputs, widely 166

applied in domains such as computer vision, NLP, 167

and speech recognition. In this approach, models 168

are systematically exposed to adversarial examples 169

(Goodfellow et al., 2014), which are inputs subtly 170

modified to induce significant changes in model 171

outputs. Genetic algorithms are employed to gen- 172

erate semantically equivalent adversarial samples 173

(Alzantot et al., 2018), selecting synonyms that 174

maximize the likelihood of the target label. More 175
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Figure 2: Overview of PromptObfus.

recently, LLMs are utilized to produce adversarial176

samples (Wang et al., 2023).177

In contrast to existing approaches, we propose178

an anti-adversarial method for the desensitization179

of LLM prompts, which ensures that model outputs180

remain consistent while rendering sensitive content181

imperceptible to human interpretation.182

3 Approach183

Inspired by the principles of adversarial example184

generation (Alzantot et al., 2018), we conceptual-185

ize our approach as an anti-adversarial framework,186

wherein the objective is to obfuscate sensitive in-187

formation while preserving the original behavior188

and predictive performance of the model.189

3.1 Problem Statement190

Given an LLM Φ(y|x), parameterized by Φ, and a191

downstream task (e.g., question answering) repre-192

sented by a parallel dataset T = {(x(i), y(i))}Ni=1,193

where x and y denote the input prompt and tar-194

get output sequence, respectively, we aim to ad-195

dress the following problem. For a predefined196

set of privacy attributes P = [p1, p2, . . . , pm] and197

an input prompt x = {x1, . . . , xn}, our objec-198

tive is to transform x into a desensitized version199

x′ = {x′1, . . . , x′n} that excludes all privacy at-200

tributes while preserving the task’s utility. For-201

mally, this is expressed as:202

min
x′=M(x|λ,k)

∥s(Φ(x′), y)− s(Φ(x), y)∥

s.t. x′i /∈ P ∀x′i ∈ x′
(1)203

where M(x|λ, k) represents a desensitization func-204

tion that maps sensitive words in the input prompt205

to their desensitized counterparts; λ denotes the206

size of the candidate set of desensitized words gen- 207

erated for each sensitive word during the replace- 208

ment process; k represents the confusion ratio; and 209

s : Y × Y → R is an evaluation metric specific 210

to the task, such as the BLEU score for question 211

answering tasks. 212

3.2 Overview 213

Our approach is designed to identify the optimal de- 214

sensitization function M(x|λ, k) for input prompts, 215

minimizing its impact on the LLM’s output. Figure 216

2 illustrates the overall architecture of PromptOb- 217

fus. The pipeline consists of three steps: (i) mask- 218

ing privacy-sensitive words of the original prompt, 219

and generating candidate desensitized alternatives 220

using a dedicated desensitization model; (ii) assess- 221

ing the task utility of various desensitized candi- 222

dates through a surrogate model, with comparisons 223

made against the original prompt; and (iii) com- 224

puting the gradient with respect to the task output, 225

selecting the most suitable desensitized words from 226

candidates, and generating the final desensitized 227

prompt. 228

3.3 Predicting Candidate Desensitive Words 229

For each privacy-sensitive word in a prompt, 230

PromptObfus predicts a set of candidate desensi- 231

tive words for potential replacement. This process 232

can be formalized as a Masked Language Model 233

(MLM) task, where the privacy-sensitive words are 234

substituted with a mask token. A desensitization 235

model is trained to predict λ candidate desensitized 236

words for each masked position. By leveraging pre- 237

trained linguistic knowledge, the desensitization 238

model ensures that the replacement candidates are 239

semantically aligned with the surrounding context. 240
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and wanted to share it with his mom in LA.
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Figure 3: Illustration of predicting candidate desensitive
words

This guarantees textual coherence, maintains the241

original functionality of the prompt, and effectively242

obscures sensitive information.243

To identify privacy attributes, we employ244

spaCy’s named entity recognition (NER) model1,245

which efficiently detects and labels entities like246

person names, locations, and organizations within247

the text. The identified privacy-sensitive words are248

uniformly replaced with a MASK token. Besides249

the explicit privacy words, implicit privacy risks250

may exist. To mitigate the potential inference of251

private information from contextual cues, we fur-252

ther randomly mask k of the remaining words in253

the prompt.254

Next, a pre-trained language model, referred255

to as the desensitization model, is fine-tuned to256

generate candidate replacement words for each257

masked token. The desensitization model can be258

any pre-trained language model capable of perform-259

ing masked language modeling (MLM).260

To mitigate the risk of privacy leakage through261

synonyms or near-synonyms, the predicted set of262

desensitized words is further refined based on their263

semantic similarity to the original word. For each264

candidate desensitized word wi, we calculate its265

Euclidean distance to the original words xoriginal266

using their respective word embeddings:267

d(xoriginal, wi) = ∥ ⃗xoriginal − w⃗i∥ (2)268

where ⃗xoriginal and w⃗i represent the word vector rep-269

resentations of the original and desensitized words,270

respectively, and ∥ · ∥ denotes the Euclidean norm.271

A distance threshold θdist is introduced to further272

refine the desensitized word set. If the Euclidean273

1https://spacy.io/models/en/#en_core_web_trf

distance d(xoriginal, wi) is below this threshold, the 274

desensitized word is deemed semantically similar 275

to the original word and is consequently excluded 276

from the candidate set. This process is formalized 277

as: 278

Wfiltered = {wi ∈W | d(xoriginal, wi) > θdist}
(3) 279

where Wfiltered represents the filtered set of desen- 280

sitized words. By eliminating words that are too 281

close in semantic space to the original term, this 282

step significantly reduces the risk of privacy leak- 283

age. 284

3.4 Assessing Task Utility 285

To ensure that the chosen desensitized words mini- 286

mally impact the task output, we design a gradient- 287

based selection mechanism. The underlying ratio- 288

nale is that gradients quantify the sensitivity of the 289

input with respect to the model’s output. Specifi- 290

cally, large gradient magnitudes suggest that a de- 291

sensitized word could significantly alter the task’s 292

semantic meaning, whereas smaller gradients in- 293

dicate that the replacement preserves the original 294

semantics and minimizes disruptions to the text. 295

Directly acquiring gradients from remote LLMs 296

is impractical; therefore, PromptObfus utilizes a 297

surrogate modelMsurrogate to simulate the behav- 298

ior of the remote LLM. The surrogate model is a 299

smaller, white-box LLM capable of evaluating task 300

performance while providing gradient feedback. 301

PromptObfus supports two types of surrogate mod- 302

els: 303

1) Task-specific model: When a sufficient task- 304

related dataset D = {(x, y)} is available, the sur- 305

rogate model can be fine-tuned to improve its per- 306

formance on the specific task. This task-specific 307

model provides accurate gradient information for 308

the desensitized prompt. 309

2) General model: In scenarios where task- 310

related data is limited, the surrogate model can 311

be a larger language model pre-trained on a diverse 312

corpus, offering a broad understanding of language. 313

Although the general model is typically larger than 314

a task-specific model, the gradient information it 315

generates may be less task-sensitive, providing a 316

more generalized approximation. 317

3.5 Gradient Filtering 318

PromptObfus leverages the gradient information 319

provided by the surrogate model Msurrogate to 320

evaluate the filtered set of desensitized candidate 321
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words Wfiltered and select the word associated322

with the smallest gradient magnitude.323

For each desensitized word w ∈ Wfiltered,324

PromptObfus constructs a filled prompt x′, calcu-325

lates the gradient with respect to the task output.326

Formally, this process is expressed as:327

∆i(w) =

∥∥∥∥∂L(y,Msurrogate(x
′[i← w]))

∂x′

∥∥∥∥ (4)328

where i denotes the position of the current privacy329

word, ∆i(w) represents the current gradient magni-330

tude, and L denotes the task-specific loss function.331

By iteratively updating the minimum gradient and332

its corresponding word, the optimal desensitized333

word w∗ is selected as:334

w∗ = arg min
w∈Wfiltered

∆i(w) (5)335

Finally, PromptObfus replaces the privacy-336

sensitive word at position i with w∗ and iterates this337

process for all masked positions. This incremen-338

tal filling strategy ensures that each replacement339

word is chosen based on both the local context of340

the masked position and the global context of pre-341

viously filled words, thereby optimizing semantic342

coherence and preserving task performance.343

4 Experiments344

4.1 Experiment Design345

We evaluate the effectiveness of PromptObfus346

across two critical dimensions, emphasizing its347

ability to balance robust privacy protection with348

the preservation of task performance. To demon-349

strate its practical utility, we apply PromptObfus to350

three NLP tasks: sentiment analysis, topic classi-351

fication, and question answering. These tasks are352

representative of real-world applications and pro-353

vide a comprehensive assessment of the method’s354

applicability.355

To measure PromptObfus’s efficacy in privacy356

protection, we simulate external attacks to deter-357

mine whether sensitive information can be inferred358

from the desensitized prompts. We employ three359

distinct privacy attackers, including two text re-360

construction methods and one privacy inference361

method:362

KNN-Attack (Qu et al., 2021) computes the dis-363

tance between each word representation and a pub-364

licly available word embedding matrix, selecting365

the k-nearest words as the inferred result.366

Mask Token Inference Attack (Yue et al., 2021)367

applies a masking strategy to the desensitized368

prompts, sequentially obscuring words and testing 369

the attacker’s ability to accurately infer the hidden 370

content. 371

PII Inference Attack (Plant et al., 2021) analyzes 372

the text to infer sensitive information about users. 373

We quantify the extent to which privacy infor- 374

mation can be inferred by third-party attackers. 375

Specifically, we employ two metrics to evaluate 376

the effectiveness of privacy protection: 377

TopK (Zhou et al., 2023) is a token-level metric 378

that computes the proportion of correctly inferred 379

words among the top k predictions generated by 380

the attacker. 381

Success rate (Plant et al., 2021) measures the per- 382

centage of PII entities that are successfully leaked 383

relative to the total PII present, in response to the 384

PII inference attack. 385

For evaluating PromptObfus’s effectiveness in 386

preserving task performance, we directly compute 387

the accuracy of the target tasks when instructed 388

using our desensitized prompts. Specifically, we 389

adopt two widely adopted metrics for evaluation: 390

Accuracy quantifies the proportion of correct pre- 391

dictions generated by the model relative to the total 392

number of test samples. This metric is applied to 393

both classification and QA tasks. 394

Answer quality score assesses the overall quality 395

of generated answers, considering factors such as 396

accuracy, relevance, completeness, and readability. 397

Gpt-4o-mini is utilized as an automated evaluator 398

to assign scores for answer quality, with the specific 399

evaluation prompt detailed in Appendix A.2. 400

4.2 Datasets 401

We utilize two widely used benchmark datasets, 402

SST-2 (Socher et al., 2013) for sentiment analysis 403

and AG News (Zhang et al., 2015) for topic classi- 404

fication, to evaluate our approach. Additionally, we 405

introduce a specialized dataset, PersonalPortrait, 406

designed for privacy-centric question answering 407

tasks. The statistical details of these datasets are 408

summarized in Table 1. 409

Existing QA datasets are typically anonymized 410

or lack sensitive information, making them inade- 411

quate for privacy evaluation. To address this, we 412

develop PersonalPortrait, a psychological counsel- 413

ing QA dataset containing sensitive data for pri- 414

vacy testing. It includes 400 patient self-reports, 415

generated using GPT-4 and manually reviewed to 416

ensure quality and authenticity. Additional details 417

on dataset construction are provided in Appendix 418

A.1. 419
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Dataset Split Number of Samples

SST-2
Train 67,349

Validation 872
Test 1,821

AG News
Train 120,000

Validation 7,600
Test 7,600

PersonalPortrait Test 400

Table 1: Statistics of the datasets.

4.3 Baselines420

We evaluate PromptObfus against six state-of-the-421

art privacy-preserving methods and the original422

text. 1) Random Perturbation, which randomly423

substitutes a subset of tokens in the text with arbi-424

trary words. 2) Presidio2, a tool designed to auto-425

matically detect and redact sensitive information,426

such as names, locations, and other PII. 3) SAN-427

TEXT (Yue et al., 2021), a differential privacy-428

based approach that utilizes Euclidean distance in429

word embedding space to determine replacement430

probabilities. 4) SANTEXT+ (Yue et al., 2021),431

an enhanced version of SANTEXT that incorpo-432

rates word frequency to adjust replacement prob-433

abilities. 5) DP Prompt (Utpala et al., 2023), a434

method that leverages a prompt-based framework435

to paraphrase the original prompt using an LLM.436

6) PromptCrypt (Lin et al., 2024), which employs437

a large model to encrypt the original prompt into438

emoji sequences.439

4.4 Implementation Details440

We implement PromptObfus using three open-441

source models: RoBERTa-base3 serves as the442

desensitization model, BART-large4 functions as443

the task-specific surrogate model for classification444

tasks, and GPT-Neo-1.3B5 is employed as the gen-445

eral surrogate model for QA tasks, chosen due to446

the smaller dataset size. Additional details regard-447

ing hyperparameter configurations can be found in448

Appendix A.3.449

4.5 Overall Performance450

To ensure a fair comparison, we maintain a consis-451

tent obfuscation ratio across all word-level protec-452

tion baselines and PromptObfus. Since DP Prompt453

2https://microsoft.github.io/presidio/
3https://huggingface.co/FacebookAI/roberta-base
4https://huggingface.co/facebook/bart-large
5https://huggingface.co/EleutherAI/gpt-neo-1.3B

and PromptCrypt are not word-level protection 454

methods, they cannot be evaluated using MTI At- 455

tack or KNN Attack. Consequently, we exclusively 456

employ PI Attack for privacy protection evaluation. 457

The experiments are conducted using the original 458

parameters specified in their respective papers, with 459

GPT-4o-mini serving as the base model. 460

Table 2 presents the results on the SST dataset6. 461

First, PromptObfus exhibits exceptional privacy 462

protection capabilities. When using desensitized 463

prompts generated by PromptObfus, the success 464

rate of the PI attack remains consistently at 0.00%. 465

In contrast, baseline methods such as SANTEXT+, 466

DP Prompt, and PromptCrypt do not specifically 467

safeguard PII; instead, they disrupt linguistic struc- 468

tures, resulting in relatively higher PI Attack suc- 469

cess rates. PromptObfus (k = 0.3) also achieves 470

a 30.42% success rate in the MTI Attack, signifi- 471

cantly lower than all methods except SANTEXT 472

and SANTEXT+. 473

Furthermore, PromptObfus maintains the per- 474

formance of the target tasks without significant 475

degradation. At k = 0.1, PromptObfus achieves 476

a classification accuracy of 84.8%, representing 477

only a 2.75% decrease compared to the original 478

text. This performance is comparable to Presidio 479

and surpasses other word-level baselines, such as 480

random replacement (69.87%) and SANTEXT+ 481

(58.93%). 482

In summary, the results demonstrate that Promp- 483

tObfus effectively protects privacy against remote 484

LLMs while preserving the original LLM’s task 485

performance, achieving an optimal privacy-utility 486

trade-off among all baseline methods. 487

4.6 Ablation Study 488

Impact of Surrogate Model. We investigate 489

the impact of architectures and scales of the sur- 490

rogate model. The experiments are conducted 491

on three distinct model architectures: Encoder- 492

only models (RoBERTa), Decoder-only models 493

(GPT2), and Encoder-decoder models (BART), 494

across three groups of sizes, including base (around 495

130M parameters, e.g, RoBERTa-base), medium 496

(around 350M, e.g, RoBERTa-large, BART-large, 497

and GPT2-medium), and large (LLaMA-2-7B and 498

ChatGLM3-6B). Due to computational constraints, 499

small and medium models are fine-tuned with full 500

parameters, while the large models are fine-tuned 501

using Low-Rank Adaptation (LoRA). The experi- 502

6Results for other datasets are provided in Appendix A.4.
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Approach MTI Top1↓ KNN Top1↓ PI Success Rate↓ Acc.↑

Origin 48.86 – – 87.20

Random 35.91 90.47 83.47 69.87
Presidio 44.63 90.45 0.00 84.80
SANTEXT 20.15 73.67 92.53 49.25
SANTEXT+ 23.40 76.93 75.47 58.93
DP-Prompt – – 72.53 86.30
PromptCrypt – – 54.67 89.86

PromptObfus (k=0.1) 40.99 83.44 0.00 84.80
PromptObfus (k=0.2) 35.12 74.37 0.00 82.70
PromptObfus (k=0.3) 30.42 66.27 0.00 81.60

Table 2: Performance of privacy protection and task utility on the SST-2 sentiment analysis task. In the PI Attack,
the SST-2 dataset does not explicitly label privacy attributes. Therefore, the attack assumes that named entities (e.g.,
person names, locations) represent explicit privacy attributes and targets these for evaluation.

Approach MTI Top1↓ KNN Top1↓ Acc.↑

Original Data 48.86 – 87.2

Roberta-base 44.11 83.39 81.6
BART-base 44.67 83.44 82.1
GPT2-base 44.26 84.48 84.5
GPT2-medium 44.22 83.44 84.5
Roberta-large 44.36 83.39 84.3
BART-large 44.31 83.39 84.8
llama-2-7B 44.37 83.44 83.8
ChatGLM3-6B 44.27 83.39 83.6

Table 3: Influence of surrogate model variations on
obfuscation effectiveness in sentiment analysis.

mental results for the sentiment analysis task are503

presented in Table 3.504

We observe that privacy protection effectiveness505

is independent of the surrogate model’s architecture506

and size. Medium-sized models outperform larger507

models due to the task’s simplicity, where increased508

model complexity provides no added benefit, and509

LoRA may not fully leverage fine-tuning advan-510

tages. Encoder-Decoder models excel by combin-511

ing the encoder’s classification suitability with the512

decoder’s alignment to remote models. Similar513

results for the QA task are detailed in Appendix514

A.5.515

Impact of Hyperparameters. We perform abla-516

tion studies on the hyperparameters k and λ, using517

BART-large as the surrogate model on the SST518

dataset. The parameter k is varied from 0.1 to 0.5519

in increments of 0.1, while λ ranges from 5 to 20520

in increments of 5. The results are illustrated in521

Figure 4.522

For privacy protection, as k increases, Attack523

Top1 decreases, indicating enhanced privacy pro-524

tection. For MTI Attack, increasing λ reduces525

(a) Classification accuracy.

(b) MTI attack. (c) KNN attack.

Figure 4: Impact of hyperparameters k and λ.

Top1, with the most notable improvement occur- 526

ring when λ rises from 5 to 10, as diversified con- 527

texts yield more varied MTI predictions. For KNN 528

Attack, Top1 depends solely on k, as it focuses on 529

perturbed words independently of context. 530

For performance preservation, classification ac- 531

curacy declines as k increases, with the most sig- 532

nificant drop observed between 0.4 and 0.5. When 533

k exceeds 0.3, λ becomes sensitive, and higher val- 534

ues degrade performance due to excessive word 535

replacements disrupting semantics and reducing 536

contextual coherence. 537

Overall, increasing k and λ enhances privacy 538

protection but compromises performance. The 539

optimal balance is achieved when k ≤ 0.4 and 540

λ ∈ [10, 20). We set λ to 10 as default. 541
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Original Text: I’m a 39 -year-old driver in Toronto , and I often feel like my emotions are all over the place...

Random: abuser a 39 -year-old driver in Toronto , moha palmery often feel like my emotions are all over
shady place...

Presidio: I’m a <DATE> driver in <GPE>, and I often feel like my emotions are all over the place...
SANTEXT: jagger rehashed a hardy - year - old driver in women , and obscure often feel like my emotions

are all over the place...
SANTEXT+: jagger rehashed a fidel 15 year 3 old driver in motion , and esoteric seldom feel like my emotions

are all putting the however...
DP-Prompt: I’m a 39 -year-old driver in Toronto , and my emotions can be unpredictable...

PromptCrypt: 39 ...

PromptObfus (k=0.1): I’m a commercial driver of two and I often feel like my emotions are all over the place...
PromptObfus (k=0.2): I’m a commercial assistant in LA and I often feel like my emotions flow all over the world...
PromptObfus (k=0.3): I’m one professional assistant in general and I often feel like my emotions are hovering throughout...

Table 4: A case of desensitized prompts generated by various methods for question answering.

4.7 Case Study542

Table 4 illustrates an example of desensitized543

prompts generated by different methods for the544

question-answering task. In the original text, terms545

such as "39-year-old," "driver," and "Toronto" are546

identified as sensitive information. PromptObfus547

effectively replaces explicit privacy details (e.g.,548

age and location) with de-identified terms, ensuring549

robust privacy protection. At k = 0.2 and k = 0.3,550

the obfuscation intensity increases, and implicit551

privacy details, such as occupation ("driver"), are552

substituted with more ambiguous terms like "as-553

sistant" while preserving semantic coherence and554

readability.555

In contrast, the Random method fails to accu-556

rately identify and modify sensitive information,557

leading to the leakage of all privacy-related terms558

and a lack of textual coherence. Presidio is limited559

to handling predefined temporal and address infor-560

mation, offering insufficient flexibility and failing561

to protect occupation-related privacy. Meanwhile,562

SANTEXT and SANTEXT+ introduce excessive563

noise, rendering the sentences overly disordered564

and degrading task performance. DP-Prompt re-565

sults in privacy leakage, while PromptCrypt, de-566

spite protecting privacy, employs overly simplistic567

and abstract symbols, causing significant perfor-568

mance degradation.569

4.8 Transferability570

We further explore the transferability of the trained571

surrogate model. We experiment on different com-572

binations of local and remote models from three573

vendors: OpenAI, Meta, and Zhipu. Experimental574

results, presented in Table 5, indicate that the com-575

bination of local and remote models from differ-576

Model GPT-4o-mini GLM-4-plus Meta AI

GPT2 84.5 91.2 91
ChatGLM3-6B 83.6 90.5 89

llama2-7B 83.8 90.3 90

BART 84.8 91.4 91

Table 5: Classification accuracy of local-remote model
combinations on the sentiment analysis (SST) task.
Columns denote remote models, while rows denote lo-
cal models.

ent vendors has minimal influence on obfuscation 577

effectiveness. Models demonstrating strong trans- 578

ferability across various combinations. To further 579

validate this finding, we include BART-large, the 580

top-performing model from prior experiments and 581

independent of the three vendors, for testing with 582

three remote models. Results confirm that BART- 583

large consistently outperforms in all combinations. 584

5 Conclusion 585

In this paper, we propose PromptObfus, a novel 586

desensitization method for LLM prompts. Its core 587

idea is anti-adversarial learning, which ensures 588

that model outputs remain consistent while obscur- 589

ing sensitive content from human interpretation. 590

PromptObfus achieves this by replacing sensitive 591

words in user prompts with semantically distant 592

yet task-neutral alternatives, minimizing impact on 593

task performance. Evaluations across three NLP 594

tasks demonstrate that PromptObfus effectively 595

protects privacy against cloud LLMs while preserv- 596

ing the original model’s performance, achieving 597

an optimal privacy-utility trade-off compared to 598

baseline methods. 599

Our replication package is available at: 600

https://anonymous.4open.science/r/PromptObfus- 601

83F7/. 602
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Limitations603

We have identified two limitations of PromptObfus:604

1) Incomplete identification of implicit privacy605

words: Our approach randomly masks words in606

the prompt as implicit privacy attributes, which607

reduces privacy leakage but does not comprehen-608

sively cover all privacy attributes, leading to incom-609

plete desensitization. Future work should focus on610

refining privacy word localization strategies.611

2) Applicability of general models: Fine-tuning612

large models for text-based QA is challenging due613

to the scarcity of high-quality annotated data. Con-614

sequently, general models are employed, but they615

lack the precision of task-specific models. Fur-616

ther research is needed to explore model adaptation617

techniques under data constraints, such as few-shot618

learning methods (Brown et al., 2020).619

References620

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,621
Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.622
2018. Generating natural language adversarial ex-623
amples. In Proceedings of the 2018 Conference on624
Empirical Methods in Natural Language Processing,625
pages 2890–2896, Brussels, Belgium. Association626
for Computational Linguistics.627

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie628
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind629
Neelakantan, Pranav Shyam, Girish Sastry, Amanda630
Askell, Sandhini Agarwal, Ariel Herbert-Voss,631
Gretchen Krueger, Tom Henighan, Rewon Child,632
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,633
Clemens Winter, Christopher Hesse, Mark Chen, Eric634
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,635
Jack Clark, Christopher Berner, Sam McCandlish,636
Alec Radford, Ilya Sutskever, and Dario Amodei.637
2020. Language models are few-shot learners. In638
Proceedings of the 34th International Conference on639
Neural Information Processing Systems, NIPS ’20,640
Red Hook, NY, USA. Curran Associates Inc.641

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej642
Kos, and Dawn Song. 2019. The secret sharer: eval-643
uating and testing unintended memorization in neu-644
ral networks. In Proceedings of the 28th USENIX645
Conference on Security Symposium, SEC’19, page646
267–284, USA. USENIX Association.647

Yu Chen, Tingxin Li, Huiming Liu, and Yang Yu.648
2023. Hide and seek (has): A lightweight frame-649
work for prompt privacy protection. Preprint,650
arXiv:2309.03057.651

Fengyu Gao, Ruida Zhou, Tianhao Wang, Cong Shen,652
and Jing Yang. 2024. Data-adaptive differentially653
private prompt synthesis for in-context learning.654
Preprint, arXiv:2410.12085.655

Craig Gentry. 2009. A fully homomorphic encryp- 656
tion scheme. Ph.D. thesis, Stanford, CA, USA. 657
AAI3382729. 658

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, 659
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron 660
Courville, and Yoshua Bengio. 2014. Generative 661
adversarial nets. In Proceedings of the 27th Interna- 662
tional Conference on Neural Information Processing 663
Systems - Volume 2, NIPS’14, page 2672–2680, Cam- 664
bridge, MA, USA. MIT Press. 665

Meng Hao, Hongwei Li, Hanxiao Chen, Pengzhi Xing, 666
Guowen Xu, and Tianwei Zhang. 2022. Iron: Private 667
inference on transformers. In Advances in Neural 668
Information Processing Systems, volume 35, pages 669
15718–15731. Curran Associates, Inc. 670

Junyuan Hong, Jiachen T. Wang, Chenhui Zhang, 671
Zhangheng LI, Bo Li, and Zhangyang Wang. 2024. 672
DP-OPT: Make large language model your privacy- 673
preserving prompt engineer. In The Twelfth Interna- 674
tional Conference on Learning Representations. 675

Jiahui Hu, Dan Wang, Zhibo Wang, Xiaoyi Pang, Huiyu 676
Xu, Ju Ren, and Kui Ren. 2024. Federated large 677
language model: Solutions, challenges and future 678
directions. IEEE Wireless Communications, pages 679
1–8. 680

Guo Lin, Wenyue Hua, and Yongfeng Zhang. 2024. 681
Emojicrypt: Prompt encryption for secure com- 682
munication with large language models. Preprint, 683
arXiv:2402.05868. 684

Brendan McMahan, Eider Moore, Daniel Ramage, 685
Seth Hampson, and Blaise Aguera y Arcas. 2017. 686
Communication-Efficient Learning of Deep Net- 687
works from Decentralized Data. In Proceedings of 688
the 20th International Conference on Artificial In- 689
telligence and Statistics, volume 54 of Proceedings 690
of Machine Learning Research, pages 1273–1282. 691
PMLR. 692

Michele Miranda, Elena Sofia Ruzzetti, Andrea Santilli, 693
Fabio Massimo Zanzotto, Sébastien Bratières, and 694
Emanuele Rodolà. 2025. Preserving privacy in large 695
language models: A survey on current threats and 696
solutions. Preprint, arXiv:2408.05212. 697

Niloofar Mireshghallah, Hyunwoo Kim, Xuhui Zhou, 698
Yulia Tsvetkov, Maarten Sap, Reza Shokri, and Yejin 699
Choi. 2024. Can llms keep a secret? testing pri- 700
vacy implications of language models via contextual 701
integrity theory. Preprint, arXiv:2310.17884. 702

Richard Plant, Dimitra Gkatzia, and Valerio Giuffrida. 703
2021. CAPE: Context-aware private embeddings 704
for private language learning. In Proceedings of the 705
2021 Conference on Empirical Methods in Natural 706
Language Processing, pages 7970–7978, Online and 707
Punta Cana, Dominican Republic. Association for 708
Computational Linguistics. 709

9

https://aclanthology.org/D18-1316
https://aclanthology.org/D18-1316
https://aclanthology.org/D18-1316
https://arxiv.org/abs/2309.03057
https://arxiv.org/abs/2309.03057
https://arxiv.org/abs/2309.03057
https://arxiv.org/abs/2410.12085
https://arxiv.org/abs/2410.12085
https://arxiv.org/abs/2410.12085
https://proceedings.neurips.cc/paper_files/paper/2022/file/64e2449d74f84e5b1a5c96ba7b3d308e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/64e2449d74f84e5b1a5c96ba7b3d308e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/64e2449d74f84e5b1a5c96ba7b3d308e-Paper-Conference.pdf
https://openreview.net/forum?id=Ifz3IgsEPX
https://openreview.net/forum?id=Ifz3IgsEPX
https://openreview.net/forum?id=Ifz3IgsEPX
https://doi.org/10.1109/MWC.009.2400244
https://doi.org/10.1109/MWC.009.2400244
https://doi.org/10.1109/MWC.009.2400244
https://doi.org/10.1109/MWC.009.2400244
https://doi.org/10.1109/MWC.009.2400244
https://arxiv.org/abs/2402.05868
https://arxiv.org/abs/2402.05868
https://arxiv.org/abs/2402.05868
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://arxiv.org/abs/2408.05212
https://arxiv.org/abs/2408.05212
https://arxiv.org/abs/2408.05212
https://arxiv.org/abs/2408.05212
https://arxiv.org/abs/2408.05212
https://arxiv.org/abs/2310.17884
https://arxiv.org/abs/2310.17884
https://arxiv.org/abs/2310.17884
https://arxiv.org/abs/2310.17884
https://arxiv.org/abs/2310.17884
https://aclanthology.org/2021.emnlp-main.628
https://aclanthology.org/2021.emnlp-main.628
https://aclanthology.org/2021.emnlp-main.628


Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang710
Zhu, and Michael Zeng. 2023. Automatic prompt op-711
timization with “gradient descent” and beam search.712
In Proceedings of the 2023 Conference on Empiri-713
cal Methods in Natural Language Processing, pages714
7957–7968, Singapore. Association for Computa-715
tional Linguistics.716

Chen Qu, Weize Kong, Liu Yang, Mingyang Zhang,717
Michael Bendersky, and Marc Najork. 2021. Natural718
language understanding with privacy-preserving bert.719
In Proceedings of the 30th ACM International Con-720
ference on Information & Knowledge Management,721
CIKM ’21, page 1488–1497, New York, NY, USA.722
Association for Computing Machinery.723

Richard Socher, Alex Perelygin, Jean Wu, Jason724
Chuang, Christopher D. Manning, Andrew Ng, and725
Christopher Potts. 2013. Recursive deep models for726
semantic compositionality over a sentiment treebank.727
In Proceedings of the 2013 Conference on Empiri-728
cal Methods in Natural Language Processing, pages729
1631–1642, Seattle, Washington, USA. Association730
for Computational Linguistics.731

Robin Staab, Mark Vero, Mislav Balunovi’c, and Mar-732
tin T. Vechev. 2023. Beyond memorization: Violat-733
ing privacy via inference with large language models.734
ArXiv, abs/2310.07298.735

Xiongtao Sun, Gan Liu, Zhipeng He, Hui Li, and736
Xiaoguang Li. 2024. Deprompt: Desensitization737
and evaluation of personal identifiable informa-738
tion in large language model prompts. Preprint,739
arXiv:2408.08930.740

Saiteja Utpala, Sara Hooker, and Pin-Yu Chen. 2023.741
Locally differentially private document generation742
using zero shot prompting. In Findings of the As-743
sociation for Computational Linguistics: EMNLP744
2023, pages 8442–8457, Singapore. Association for745
Computational Linguistics.746

Zimu Wang, Wei Wang, Qi Chen, Qiufeng Wang, and747
Anh Nguyen. 2023. Generating valid and natural748
adversarial examples with large language models.749
Preprint, arXiv:2311.11861.750

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu,751
Quoc V. Le, Denny Zhou, and Xinyun Chen. 2024.752
Large language models as optimizers. Preprint,753
arXiv:2309.03409.754

Andrew C. Yao. 1982. Protocols for secure computa-755
tions. In 23rd Annual Symposium on Foundations of756
Computer Science (sfcs 1982), pages 160–164.757

Binwei Yao, Chao Shi, Likai Zou, Lingfeng Dai,758
Mengyue Wu, Lu Chen, Zhen Wang, and Kai Yu.759
2022. D4: a Chinese dialogue dataset for depression-760
diagnosis-oriented chat. In Proceedings of the 2022761
Conference on Empirical Methods in Natural Lan-762
guage Processing, pages 2438–2459, Abu Dhabi,763
United Arab Emirates. Association for Computa-764
tional Linguistics.765

Xiang Yue, Minxin Du, Tianhao Wang, Yaliang Li, 766
Huan Sun, and Sherman S. M. Chow. 2021. Dif- 767
ferential privacy for text analytics via natural text 768
sanitization. In Findings of the Association for Com- 769
putational Linguistics: ACL-IJCNLP 2021, pages 770
3853–3866, Online. Association for Computational 771
Linguistics. 772

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. 773
Character-level convolutional networks for text clas- 774
sification. In Proceedings of the 28th International 775
Conference on Neural Information Processing Sys- 776
tems - Volume 1, NIPS’15, page 649–657, Cambridge, 777
MA, USA. MIT Press. 778

Xiaojin Zhang, Yulin Fei, Yan Kang, Wei Chen, Lixin 779
Fan, Hai Jin, and Qiang Yang. 2024. No free 780
lunch theorem for privacy-preserving llm inference. 781
Preprint, arXiv:2405.20681. 782

Xin Zhou, Yi Lu, Ruotian Ma, Tao Gui, Yuran Wang, 783
Yong Ding, Yibo Zhang, Qi Zhang, and Xuanjing 784
Huang. 2023. TextObfuscator: Making pre-trained 785
language model a privacy protector via obfuscating 786
word representations. In Findings of the Associa- 787
tion for Computational Linguistics: ACL 2023, pages 788
5459–5473, Toronto, Canada. Association for Com- 789
putational Linguistics. 790

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, 791
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy 792
Ba. 2022. Large language models are human-level 793
prompt engineers. In NeurIPS 2022 Foundation Mod- 794
els for Decision Making Workshop. 795

10

https://aclanthology.org/2023.emnlp-main.494
https://aclanthology.org/2023.emnlp-main.494
https://aclanthology.org/2023.emnlp-main.494
https://doi.org/10.1145/3459637.3482281
https://doi.org/10.1145/3459637.3482281
https://doi.org/10.1145/3459637.3482281
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://api.semanticscholar.org/CorpusID:263834989
https://api.semanticscholar.org/CorpusID:263834989
https://api.semanticscholar.org/CorpusID:263834989
https://arxiv.org/abs/2408.08930
https://arxiv.org/abs/2408.08930
https://arxiv.org/abs/2408.08930
https://arxiv.org/abs/2408.08930
https://arxiv.org/abs/2408.08930
https://doi.org/10.18653/v1/2023.findings-emnlp.566
https://doi.org/10.18653/v1/2023.findings-emnlp.566
https://doi.org/10.18653/v1/2023.findings-emnlp.566
https://arxiv.org/abs/2311.11861
https://arxiv.org/abs/2311.11861
https://arxiv.org/abs/2311.11861
https://arxiv.org/abs/2309.03409
https://aclanthology.org/2022.emnlp-main.156
https://aclanthology.org/2022.emnlp-main.156
https://aclanthology.org/2022.emnlp-main.156
https://aclanthology.org/2021.findings-acl.337
https://aclanthology.org/2021.findings-acl.337
https://aclanthology.org/2021.findings-acl.337
https://aclanthology.org/2021.findings-acl.337
https://aclanthology.org/2021.findings-acl.337
https://arxiv.org/abs/2405.20681
https://arxiv.org/abs/2405.20681
https://arxiv.org/abs/2405.20681
https://aclanthology.org/2023.findings-acl.337
https://aclanthology.org/2023.findings-acl.337
https://aclanthology.org/2023.findings-acl.337
https://aclanthology.org/2023.findings-acl.337
https://aclanthology.org/2023.findings-acl.337
https://openreview.net/forum?id=YdqwNaCLCx
https://openreview.net/forum?id=YdqwNaCLCx
https://openreview.net/forum?id=YdqwNaCLCx


A Appendix796

A.1 PersonalPortrait Construction797

Inspired by the D4 dataset (Yao et al., 2022) and the798

PersonalReddit dataset (Staab et al., 2023), which799

generate text from personal profiles, we construct800

realistic patient personas based on attributes such801

as gender, occupation, location, and mental health802

conditions, simulating their interactions in psycho-803

logical counseling sessions. The primary objective804

of the QA task is to diagnose the patient’s mental805

health disorder. For example, the model identifies806

conditions like depression or anxiety by analyz-807

ing symptoms such as anxiety, insomnia, and low808

mood described in the text.809

The dataset synthesis process consists of the fol-810

lowing steps:811

1. Profile generation: Personal attributes, includ-812

ing age, location, gender, occupation, and813

mental health condition, are randomly se-814

lected from predefined categories to create815

diverse patient profiles.816

2. Text generation: Using GPT-4, we generate817

self-reported texts based on the profiles, re-818

flecting the patient’s history and symptoms.819

The prompt used for generation is provided in820

Appendix A.2.821

3. Manual review: The generated texts are manu-822

ally reviewed to ensure high quality, accuracy,823

and appropriateness of symptom descriptions.824

Each entry in the PersonalPortrait dataset com-825

prises the following fields:826

• Text: A self-reported narrative generated dur-827

ing a simulated psychological counseling ses-828

sion, detailing the patient’s mental health con-829

cerns and related experiences.830

• Age: A randomly assigned age ranging from831

18 to 65 years.832

• Location: A randomly selected geographic833

region from a pool of 20 common English-834

speaking areas.835

• Gender: A randomly assigned gender, either836

male or female.837

• Occupation: A randomly selected profession838

from a list of 20 common occupations.839

• Disorder: A randomly assigned mental health840

condition, chosen from a set of 10 prevalent841

disorders included in the dataset.842

A.2 Prompt Templates 843

The following outlines the primary prompt tem- 844

plates utilized in our study, where TEXT denotes 845

the desensitized prompt, ORIGINAL TEXT repre- 846

sents the original prompt, and ANSWER refers to 847

the response generated by the LLM. Attributes such 848

as AGE and GENDER are randomly selected from 849

predefined categories. 850

Prompt for Generating Samples for PersonalPortrait

System Prompt:
You are a patient and are seeing a
psychiatrist.

User Prompt:
Describe to a psychiatrist in the
typical voice of a <<<AGE>>>-year-old
<<<GENDER>>> <<<OCCUPATION>>>
with sympthons of <<<DISORDER>>>
in <<<LOCATION>>>. The self-report
MUST reflect the patient’s LOCATION and
OCCUPATION.100 words or less.

851

Prompt for Sentiment Analysis Task

System Prompt:
Classify the sentiment of each sentence
in <<<SENTENCE>>> as ’Positive’
or ’Negative’. Give the sentiment
classifications without any other preamble
text.

###EXAMPLE SENTENCE
Highly recommend this company for travel
plans involving rail.
EXAMPLE OUTPUT
Positive###

User Prompt:
<<<TEXT>>>

852

Prompt for Topic Classification Task

System Prompt:
Classify the topic of each news article
in <<<NEWS>>> as ’World’, ’Sports’,
’Business’, or ’Sci/Tech’. Give the topic
classification without any other preamble
text.

###EXAMPLE NEWS
Dollar Briefly Hits 4-Wk Low Vs Euro LONDON
(Reuters) - The dollar dipped to a four-week
low against the euro on Monday before rising
slightly on profit-taking, but steep oil
prices and weak U.S. data continued to fan
worries about the health of the world’s
largest economy.
EXAMPLE OUTPUT
Business###

User Prompt:
<<<TEXT>>>

853
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Prompt for Question Answering Task

System Prompt:
You are an experienced psychologist.
Your task is to listen to the patient’s
self-description and a most likely mental
health diagnosis based on their symptoms.

User Prompt:
<<<TEXT>>>
Diagnosis:

854

Prompt for Scoring Answer Quality

System Prompt:
You are an experienced psychologist with
expertise in mental health diagnoses.
Your task is to assess the accuracy
of a diagnosis based on the patient’s
self-description. You will evaluate the
diagnosis on a scale from 1 to 5, where
1 means the diagnosis is very inaccurate
and 5 means the diagnosis is completely
accurate. Please consider the alignment
between the patient’s symptoms and the
diagnosis, the clarity and specificity of
the diagnosis, and any relevant details
that may be missing or misinterpreted.

User Prompt:
The patient has provided the following
self-description. The diagnosis made by the
doctor is as follows: TEXT:<<<ORIGINAL
TEXT>>> Diagnosis:<<<ANSWER>>> Please
provide a score from 1 to 5 based on
how accurate you believe the diagnosis is,
considering the symptoms described and the
quality of the diagnosis. Use the following
scale to guide your evaluation:
1 - The diagnosis is very inaccurate and
does not align with the symptoms described.
2 - The diagnosis has major inaccuracies,
missing or misinterpreting key symptoms.
3 - The diagnosis is moderately accurate,
but some symptoms are either missed or
misinterpreted.
4 - The diagnosis is fairly accurate,
capturing most symptoms with only minor
errors or omissions.
5 - The diagnosis is completely accurate,
perfectly matching the patient’s symptoms
and addressing all key details.

855

A.3 Hyperparameter Setting856

The hyperparameters for model training in our ex-857

periments are detailed in Tables 6 and 7. Specif-858

ically, llama-2-7B and ChatGLM3-6B are fine-859

tuned using Low-Rank Adaptation (LoRA), while860

the remaining models undergo full fine-tuning. We861

employ the Adam optimizer with default settings,862

including β1 = 0.9, β2 = 0.999, and ϵ = 1×10−8.863

The use of all models complies with the license.864

The experiments are conducted on a server865

equipped with 2 Nvidia GeForce RTX 4090 GPUs,866

Dataset Model lr bs epoch

SST-2

Roberta-base 2e-5 32 4
Roberta-large 3e-5 32 4
BART-base 2e-5 32 4
BART-large 3e-5 32 4
GPT2-base 3e-5 32 4

GPT2-medium 3e-5 32 4
llama-2-7B 2e-4 16 2

ChatGLM3-6B 2e-4 16 2

AG News BART-large 3e-5 32 5

Table 6: Hyperparameters setting for model training.

Dataset Model alpha dropout r

SST-2 llama-2-7B 16 0.1 64
ChatGLM3-6B 16 0.1 64

Table 7: LoRA hyperparameters setting for model train-
ing.

running Ubuntu 23.10 and CUDA version 12.2. 867

A.4 Results on Other Datasets 868

Tables 8 and 9 show the results on the topic classi- 869

fication and question answering tasks, respectively. 870

We observe the same trend as in the sentiment anal- 871

ysis task. 872

Privacy Protection. Our PromptObfus demon- 873

strates a significant advantage across both tasks. 874

For instance, in the question-answering task, we 875

evaluate two experimental items: Location, which 876

is typically explicit and displayed in plain text, and 877

Occupation, which is often inferred from context 878

and considered implicit privacy. In the PI Infer- 879

ence of Location, PromptObfus achieves an at- 880

tack success rate below 1.50%, indicating nearly 881

complete privacy protection. In the PI Inference 882

of Occupation, PromptObfus achieves the second- 883

lowest attack success rate at 34.75%, trailing only 884

PromptCrypt (11.00%). 885

Performance Preservation. PromptObfus 886

achieves an accuracy of 84.25% at both k = 0.1 887

and k = 0.3 on the topic classification task, closely 888

aligning with the baseline methods (87.5%). The 889

task utility decreases by only 3.71%, ranking just 890

below DP-Prompt (85%) among the baselines. On 891

datasets with rich content and multiple classifi- 892

cation labels, the emoji encryption approach of 893

PromptCrypt shows limited effectiveness and no 894

longer outperforms other methods. On the other 895

hand, the PII anonymization method, Presidio, ex- 896
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Approach Acc.↑ MTI Top1↓ KNN Top1↓ PI Success Rate↓

Origin 87.50 31.37 – –

PromptObfus (k=0.1) 84.25 24.59 66.04 0.00
PromptObfus (k=0.2) 83.50 21.19 58.96 0.00
PromptObfus (k=0.3) 84.25 17.79 51.96 0.00

Random 83.75 17.10 83.78 97.50
Presidio 83.25 23.28 71.53 0.00
SANTEXT 61.50 21.43 62.10 41.75
SANTEXT+ 55.25 11.04 49.09 34.25
DP-Prompt 85.00 – – 96.25
PromptCrypt 72.00 – – 13.50

Table 8: Performance of privacy protection and task utility on the AG News topic classification task.

Approach Acc.↑ Quality Score↑ MTI Top1↓ KNN Top1↓ PI(Loc.)↓ PI(Occ.)↓

Origin 96.9 3.86 46.43 – 94.75 60.25

PromptObfus (k=0.1) 96.4 3.63 37.57 87.72 1.50 44.50
PromptObfus (k=0.2) 92.1 3.61 29.98 78.23 1.50 43.25
PromptObfus (k=0.3) 91.7 3.56 24.98 68.88 1.25 34.75

Random 90.0 3.34 32.67 90.00 81.50 46.25
Presidio 96.9 3.56 44.16 96.62 0.75 55.00
SANTEXT 91.0 3.27 55.75 78.56 0.00 47.00
SANTEXT+ 91.3 3.33 55.75 61.62 0.00 48.25
DP-Prompt 95.0 3.62 – – 89.25 55.25
PromptCrypt 49.5 2.89 – – 16.25 11.00

Table 9: Performance of privacy protection and task utility on the PersonalPortrait text QA task.

hibits performance degradation in the this task,897

where named entities are critical.898

For the question-answering task, PromptObfus899

achieves an accuracy of 96.4%, nearly matching900

the original text (96.9%) with a minimal loss of901

0.51%, second only to Presidio. Presidio performs902

well because this task relies more on inferring the903

patient’s emotional state from context rather than904

directly extracting PII. Additionally, in terms of905

answer quality score, PromptObfus achieves the906

highest score of 3.63, indicating that responses gen-907

erated using PromptObfus prompts excel in fluency,908

completeness, and accuracy.909

We observe that PromptCrypt underperforms in910

terms of performance preservation for the QA task.911

While its encryption method disrupts contextual912

structure, providing strong implicit privacy protec-913

tion, it sacrifices substantial semantic information,914

adversely affecting its performance in question an-915

swering that require nuanced text analysis.916

A.5 Impact of Surrogate Model on Other 917

Tasks 918

Table 10 presents the results for the question- 919

answering task. Given that privacy protection out- 920

comes have been shown to be independent of sur- 921

rogate model selection in sentiment analysis tasks, 922

this experiment focuses on performance preserva- 923

tion. General surrogate models are employed, in- 924

cluding three similarly sized models—RoBERTa- 925

large, BART-large, and GPT2-medium—as well as 926

three GPT series models of varying sizes: GPT2- 927

base, GPT2-medium, and GPT-Neo-1.3B. 928

GPT-Neo-1.3B achieves the best performance, 929

with a QA accuracy of 96.4% and the highest an- 930

swer quality score. In terms of model architecture, 931

GPT2 outperforms the other medium-sized mod- 932

els, highlighting the advantage of the Decoder-only 933

architecture in language generation tasks. Regard- 934

ing model scale, QA accuracy improves progres- 935

sively with increasing model size. This is attributed 936

to the fact that general models primarily rely on 937
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Model Accuracy Utility Score

GPT2-base 93.3 3.55
GPT2-medium 93.8 3.57
GPTNeo-1.3B 96.4 3.63

RoBERTa-large 93.0 3.53
BART-large 92.8 3.55

Table 10: Influence of surrogate model variations on
obfuscation effectiveness in question answering.

knowledge acquired during pretraining, and larger938

models inherently possess a more extensive knowl-939

edge base and superior task execution capabilities,940

particularly excelling in complex tasks such as text-941

based question answering.942
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