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Abstract

With the widespread use of LLMs, preserving
privacy in user prompts has become crucial,
as prompts risk exposing privacy and sensitive
data to the cloud LLMs. Traditional techniques
like homomorphic encryption, secure multi-
party computation, and federated learning face
challenges due to heavy computational costs
and user participation requirements, limiting
their applicability in LLM scenarios. In this pa-
per, we propose PromptObfus, a novel method
for desensitizing LLM prompts. The core idea
of PromptObfus is "anti-adversarial” learning,
which perturbs privacy words in the prompt to
obscure sensitive information while retaining
the stability of model predictions. Specifically,
PromptObfus frames prompt desensitization as
a masked language modeling task, replacing
privacy-sensitive terms with a [MASK] token.
A desensitization model is trained to generate
candidate replacements for each masked po-
sition. These candidates are subsequently se-
lected based on gradient feedback from a surro-
gate model, ensuring minimal disruption to the
task output. We demonstrate the effectiveness
of our approach on three NLP tasks. Results
show that PromptObfus effectively prevents pri-
vacy inference from remote LLMs while pre-
serving task performance.

1 Introduction

The widespread adoption of large language models
(LLMs) such as ChatGPT in various NLP tasks
(Hong et al., 2024; Carlini et al., 2019) has raised
significant concerns regarding their inherent pri-
vacy risks. Due to the substantial computational
resources required for local deployment, users of-
ten rely on cloud APIs provided by model vendors,
which introduces potential vulnerabilities. Specifi-
cally, user-submitted prompts, the primary medium
of interaction with LLMs, may inadvertently ex-
pose sensitive information, posing serious privacy
threats.
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Figure 1: Illustration of prompt desensitization.

Response

Prompts frequently contain personally identifi-
able information (PII), such as names, gender, oc-
cupation, and addresses, as illustrated in Figure 1.
Without adequate safeguards during model process-
ing, such data risks being exploited by malicious
actors, potentially resulting in severe privacy vio-
lations (Hong et al., 2024). Consequently, ensur-
ing robust privacy protection for user prompts has
emerged as a critical and pressing challenge in the
deployment of LLM:s.

Traditional privacy-preserving techniques, such
as Homomorphic Encryption (HE) (Gentry, 2009),
Secure Multi-Party Computation (MPC) (Yao,
1982), and Federated Learning (FL) (McMahan
et al., 2017), exhibit significant limitations when
applied to prompts for LLMs, particularly in black-
box settings where access to the model’s internal
architecture or training data is restricted. These
methods often fail to simultaneously address the
competing requirements of real-time performance,
computational efficiency, and robust privacy pro-
tection.

Text obfuscation has emerged as a prevalent ap-
proach to safeguarding sensitive information in
prompts (Miranda et al., 2025). For instance, tech-
niques include injecting noise into word embed-
dings based on differential privacy to perturb sensi-
tive data (Yue et al., 2021; Gao et al., 2024), cluster-
ing word vectors to render representations of sensi-
tive terms indistinguishable (Zhou et al., 2023), and
training models for data anonymization by detect-
ing and removing PII entities (Chen et al., 2023).



However, these methods often struggle to achieve
an optimal trade-off between privacy preservation
and task utility (Zhang et al., 2024). Furthermore,
approaches that rely on model training typically
necessitate expert-annotated datasets, which are
challenging to procure in practical applications.

In this paper, we propose PromptObfus, a
portable and task-flexible method for the desen-
sitization of LLM prompts. Inspired by the
work on generating adversarial examples (Alzan-
tot et al., 2018), we introduce the concept of anti-
adversariality, which aims to obscure sensitive
words in prompts while preserving the integrity of
model predictions. PromptObfus achieves desensi-
tization by replacing words with semantically dis-
tinct yet task-neutral alternatives, thereby ensuring
robust privacy protection without compromising
the original functionality of the prompts. Promp-
tObfus operates through the deployment of two
small local models: a desensitization model, which
replaces sensitive words with privacy-preserving al-
ternatives, and a surrogate model, which emulates
the task execution of the remote LLM to guide
prompt selection. The pipeline consists of three
critical steps: generating desensitized alternatives
for privacy-sensitive words, assessing the task util-
ity of the LLM, and selecting replacements that
minimize performance degradation.

We evaluate PromptObfus across three NLP
tasks: sentiment analysis, topic classification, and
question answering. Results demonstrate that
PromptObfus achieves accuracy rates of 84.8%,
84.25%, and 96.4%, respectively, surpassing ex-
isting baselines. In terms of privacy protection,
PromptObfus reduces the success rate of implicit
privacy inference attacks by 24.86% and entirely
mitigates explicit inference attacks.

Our contribution can be summarized as follows:

* We introduce the novel concept of anti-
adversariality, a pioneering approach for de-
sensitizing LLM prompts that ensures robust
privacy protection without compromising task
performance.

* We propose a new privacy-preserving word
replacement algorithm, which integrates
masked word prediction with LLM gradient
surrogation to achieve optimal desensitization.

* We conduct extensive evaluations of Promp-
tObfus across multiple NLP tasks, demon-
strating its effectiveness in preserving privacy
while maintaining task performance.

2 Related Work

Privacy Protection for LLMs. While LLMs
have demonstrated significant utility across diverse
domains, they have also introduced notable pri-
vacy and security challenges (Mireshghallah et al.,
2024). To mitigate these concerns, research has
concentrated on safeguarding both the model and
user data. Techniques such as federated learning
(Hu et al., 2024) and homomorphic encryption
(Hao et al., 2022) are widely employed to secure
model training and inference. For prompt privacy,
methods including prompt encryption (Lin et al.,
2024) and noise-based obfuscation (Zhou et al.,
2023; Gao et al., 2024) have been proposed. Addi-
tionally, training models for data anonymization by
detecting and removing personally identifiable in-
formation (PII) (Chen et al., 2023; Sun et al., 2024)
has been explored. Users can also employ strate-
gies such as mixing real and synthetic inputs to
construct privacy-preserving prompts, thereby pre-
venting servers from identifying the original input
(Utpala et al., 2023).

Automatic Prompt Engineering. Automatic
prompt generation represents a promising approach
for creating desensitized prompts, utilizing Al tech-
niques to generate prompts that effectively guide
models in producing meaningful responses. These
methods leverage large-scale datasets for train-
ing, enabling broader linguistic knowledge and
contextual understanding, often surpassing man-
ually crafted prompts (Zhou et al., 2022). Notable
frameworks for automatic prompt generation in-
clude APE (Yang et al., 2024), which iteratively
refines prompts by selecting and resampling can-
didate prompts; APO (Zhou et al., 2022), which
adjusts prompts through feedback in a gradient
descent-like manner; and OPRO (Pryzant et al.,
2023), which treats the LLM as an optimizer to
iteratively enhance prompts.

Text Adversary Generation. Adversarial training
is a technique aimed at improving model robust-
ness against malicious or deceptive inputs, widely
applied in domains such as computer vision, NLP,
and speech recognition. In this approach, models
are systematically exposed to adversarial examples
(Goodfellow et al., 2014), which are inputs subtly
modified to induce significant changes in model
outputs. Genetic algorithms are employed to gen-
erate semantically equivalent adversarial samples
(Alzantot et al., 2018), selecting synonyms that
maximize the likelihood of the target label. More
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Figure 2: Overview of PromptObfus.

recently, LLMs are utilized to produce adversarial
samples (Wang et al., 2023).

In contrast to existing approaches, we propose
an anti-adversarial method for the desensitization
of LLM prompts, which ensures that model outputs
remain consistent while rendering sensitive content
imperceptible to human interpretation.

3 Approach

Inspired by the principles of adversarial example
generation (Alzantot et al., 2018), we conceptual-
ize our approach as an anti-adversarial framework,
wherein the objective is to obfuscate sensitive in-
formation while preserving the original behavior
and predictive performance of the model.

3.1 Problem Statement

Given an LLM ®(y|x), parameterized by ®, and a
downstream task (e.g., question answering) repre-
sented by a parallel dataset 7 = {(2(®), y(@)} ¥ |
where x and y denote the input prompt and tar-
get output sequence, respectively, we aim to ad-
dress the following problem. For a predefined
set of privacy attributes P = [p1,pa, ..., Pm| and
an input prompt x = {x1,...,2,}, our objec-
tive is to transform z into a desensitized version
¥ = {z,...,2),} that excludes all privacy at-
tributes while preserving the task’s utility. For-
mally, this is expressed as:
min

L@, y) = s(@(@), )

st. x,¢ P Vi, ea

ey

where M (z|\, k) represents a desensitization func-
tion that maps sensitive words in the input prompt
to their desensitized counterparts; A denotes the

size of the candidate set of desensitized words gen-
erated for each sensitive word during the replace-
ment process; k represents the confusion ratio; and
5 :Y xY — Ris an evaluation metric specific
to the task, such as the BLEU score for question
answering tasks.

3.2 Overview

Our approach is designed to identify the optimal de-
sensitization function M (z|A, k) for input prompts,
minimizing its impact on the LLM’s output. Figure
2 illustrates the overall architecture of PromptOb-
fus. The pipeline consists of three steps: (i) mask-
ing privacy-sensitive words of the original prompt,
and generating candidate desensitized alternatives
using a dedicated desensitization model; (ii) assess-
ing the task utility of various desensitized candi-
dates through a surrogate model, with comparisons
made against the original prompt; and (iii) com-
puting the gradient with respect to the task output,
selecting the most suitable desensitized words from
candidates, and generating the final desensitized
prompt.

3.3 Predicting Candidate Desensitive Words

For each privacy-sensitive word in a prompt,
PromptObfus predicts a set of candidate desensi-
tive words for potential replacement. This process
can be formalized as a Masked Language Model
(MLM) task, where the privacy-sensitive words are
substituted with a mask token. A desensitization
model is trained to predict A candidate desensitized
words for each masked position. By leveraging pre-
trained linguistic knowledge, the desensitization
model ensures that the replacement candidates are
semantically aligned with the surrounding context.
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Figure 3: Illustration of predicting candidate desensitive
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This guarantees textual coherence, maintains the
original functionality of the prompt, and effectively
obscures sensitive information.

To identify privacy attributes, we employ
spaCy’s named entity recognition (NER) model',
which efficiently detects and labels entities like
person names, locations, and organizations within
the text. The identified privacy-sensitive words are
uniformly replaced with a MASK token. Besides
the explicit privacy words, implicit privacy risks
may exist. To mitigate the potential inference of
private information from contextual cues, we fur-
ther randomly mask & of the remaining words in
the prompt.

Next, a pre-trained language model, referred
to as the desensitization model, is fine-tuned to
generate candidate replacement words for each
masked token. The desensitization model can be
any pre-trained language model capable of perform-
ing masked language modeling (MLM).

To mitigate the risk of privacy leakage through
synonyms or near-synonyms, the predicted set of
desensitized words is further refined based on their
semantic similarity to the original word. For each
candidate desensitized word w;, we calculate its
Euclidean distance to the original words Zoriginal
using their respective word embeddings:

d(xoriginalv wi) = ‘|xor@inal - 'LUZH 2)

where Zoriginal and wj; represent the word vector rep-
resentations of the original and desensitized words,
respectively, and || - || denotes the Euclidean norm.

A distance threshold ;g is introduced to further
refine the desensitized word set. If the Euclidean

lhttps://spacy.io/models/en/#en_core_web_trf

distance d(Zoriginal, w;) is below this threshold, the
desensitized word is deemed semantically similar
to the original word and is consequently excluded
from the candidate set. This process is formalized
as:

Whitered = {wz ew | d(xoriginala wz) > Hdist}
3)
where Wiyyereq represents the filtered set of desen-
sitized words. By eliminating words that are too
close in semantic space to the original term, this
step significantly reduces the risk of privacy leak-
age.

3.4 Assessing Task Utility

To ensure that the chosen desensitized words mini-
mally impact the task output, we design a gradient-
based selection mechanism. The underlying ratio-
nale is that gradients quantify the sensitivity of the
input with respect to the model’s output. Specifi-
cally, large gradient magnitudes suggest that a de-
sensitized word could significantly alter the task’s
semantic meaning, whereas smaller gradients in-
dicate that the replacement preserves the original
semantics and minimizes disruptions to the text.

Directly acquiring gradients from remote LL.Ms
is impractical; therefore, PromptObfus utilizes a
surrogate model M gyrrogate to simulate the behav-
ior of the remote LLLM. The surrogate model is a
smaller, white-box LLM capable of evaluating task
performance while providing gradient feedback.
PromptObfus supports two types of surrogate mod-
els:

1) Task-specific model: When a sufficient task-
related dataset D = {(z,y)} is available, the sur-
rogate model can be fine-tuned to improve its per-
formance on the specific task. This task-specific
model provides accurate gradient information for
the desensitized prompt.

2) General model: In scenarios where task-
related data is limited, the surrogate model can
be a larger language model pre-trained on a diverse
corpus, offering a broad understanding of language.
Although the general model is typically larger than
a task-specific model, the gradient information it
generates may be less task-sensitive, providing a
more generalized approximation.

3.5 Gradient Filtering

PromptObfus leverages the gradient information
provided by the surrogate model M sy rogate 1O
evaluate the filtered set of desensitized candidate
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words Witereqa and select the word associated
with the smallest gradient magnitude.

For each desensitized word w € Wyiereds
PromptObfus constructs a filled prompt 2/, calcu-
lates the gradient with respect to the task output.
Formally, this process is expressed as:

oc Y, Msurrogate i —w
) = | P20 M )

H 4

where i denotes the position of the current privacy
word, A;(w) represents the current gradient magni-
tude, and £ denotes the task-specific loss function.
By iteratively updating the minimum gradient and
its corresponding word, the optimal desensitized
word w* is selected as:

min

w* = arg
wveilte'red

Aiw) ()
Finally, PromptObfus replaces the privacy-
sensitive word at position ¢ with w* and iterates this
process for all masked positions. This incremen-
tal filling strategy ensures that each replacement
word is chosen based on both the local context of
the masked position and the global context of pre-
viously filled words, thereby optimizing semantic
coherence and preserving task performance.

4 Experiments

4.1 Experiment Design

We evaluate the effectiveness of PromptObfus
across two critical dimensions, emphasizing its
ability to balance robust privacy protection with
the preservation of task performance. To demon-
strate its practical utility, we apply PromptObfus to
three NLP tasks: sentiment analysis, topic classi-
fication, and question answering. These tasks are
representative of real-world applications and pro-
vide a comprehensive assessment of the method’s
applicability.

To measure PromptObfus’s efficacy in privacy
protection, we simulate external attacks to deter-
mine whether sensitive information can be inferred
from the desensitized prompts. We employ three
distinct privacy attackers, including two text re-
construction methods and one privacy inference
method:

KNN-Attack (Qu et al., 2021) computes the dis-
tance between each word representation and a pub-
licly available word embedding matrix, selecting
the k-nearest words as the inferred result.

Mask Token Inference Attack (Yue et al., 2021)
applies a masking strategy to the desensitized

prompts, sequentially obscuring words and testing
the attacker’s ability to accurately infer the hidden
content.

PII Inference Attack (Plant et al., 2021) analyzes
the text to infer sensitive information about users.

We quantify the extent to which privacy infor-
mation can be inferred by third-party attackers.
Specifically, we employ two metrics to evaluate
the effectiveness of privacy protection:

TopK (Zhou et al., 2023) is a token-level metric
that computes the proportion of correctly inferred
words among the top k predictions generated by
the attacker.

Success rate (Plant et al., 2021) measures the per-
centage of PII entities that are successfully leaked
relative to the total PII present, in response to the
PII inference attack.

For evaluating PromptObfus’s effectiveness in

preserving task performance, we directly compute
the accuracy of the target tasks when instructed
using our desensitized prompts. Specifically, we
adopt two widely adopted metrics for evaluation:
Accuracy quantifies the proportion of correct pre-
dictions generated by the model relative to the total
number of test samples. This metric is applied to
both classification and QA tasks.
Answer quality score assesses the overall quality
of generated answers, considering factors such as
accuracy, relevance, completeness, and readability.
Gpt-4o0-mini is utilized as an automated evaluator
to assign scores for answer quality, with the specific
evaluation prompt detailed in Appendix A.2.

4.2 Datasets

We utilize two widely used benchmark datasets,
SST-2 (Socher et al., 2013) for sentiment analysis
and AG News (Zhang et al., 2015) for topic classi-
fication, to evaluate our approach. Additionally, we
introduce a specialized dataset, PersonalPortrait,
designed for privacy-centric question answering
tasks. The statistical details of these datasets are
summarized in Table 1.

Existing QA datasets are typically anonymized
or lack sensitive information, making them inade-
quate for privacy evaluation. To address this, we
develop PersonalPortrait, a psychological counsel-
ing QA dataset containing sensitive data for pri-
vacy testing. It includes 400 patient self-reports,
generated using GPT-4 and manually reviewed to
ensure quality and authenticity. Additional details
on dataset construction are provided in Appendix
Al



Dataset Split Number of Samples
Train 67,349

SST-2 Validation 872
Test 1,821
Train 120,000

AG News Validation 7,600
Test 7,600
PersonalPortrait ‘ Test 400

Table 1: Statistics of the datasets.

4.3 Baselines

We evaluate PromptObfus against six state-of-the-
art privacy-preserving methods and the original
text. 1) Random Perturbation, which randomly
substitutes a subset of tokens in the text with arbi-
trary words. 2) Presidio?, a tool designed to auto-
matically detect and redact sensitive information,
such as names, locations, and other PII. 3) SAN-
TEXT (Yue et al., 2021), a differential privacy-
based approach that utilizes Euclidean distance in
word embedding space to determine replacement
probabilities. 4) SANTEXT+ (Yue et al., 2021),
an enhanced version of SANTEXT that incorpo-
rates word frequency to adjust replacement prob-
abilities. 5) DP Prompt (Utpala et al., 2023), a
method that leverages a prompt-based framework
to paraphrase the original prompt using an LLM.
6) PromptCrypt (Lin et al., 2024), which employs
a large model to encrypt the original prompt into
emoji sequences.

4.4 Implementation Details

We implement PromptObfus using three open-
source models: RoBERTa-base® serves as the
desensitization model, BART-large* functions as
the task-specific surrogate model for classification
tasks, and GPT-Neo-1.3B? is employed as the gen-
eral surrogate model for QA tasks, chosen due to
the smaller dataset size. Additional details regard-
ing hyperparameter configurations can be found in
Appendix A.3.

4.5 Overall Performance

To ensure a fair comparison, we maintain a consis-
tent obfuscation ratio across all word-level protec-
tion baselines and PromptObfus. Since DP Prompt

Zhttps://microsoft.github.io/presidio/
*https://huggingface.co/FacebookAl/roberta-base
*https://huggingface.co/facebook/bart-large
>https://huggingface.co/EleutherAl/gpt-neo-1.3B

and PromptCrypt are not word-level protection
methods, they cannot be evaluated using MTI At-
tack or KNN Attack. Consequently, we exclusively
employ PI Attack for privacy protection evaluation.
The experiments are conducted using the original
parameters specified in their respective papers, with
GPT-40-mini serving as the base model.

Table 2 presents the results on the SST dataset®.
First, PromptObfus exhibits exceptional privacy
protection capabilities. When using desensitized
prompts generated by PromptObfus, the success
rate of the PI attack remains consistently at 0.00%.
In contrast, baseline methods such as SANTEXT+,
DP Prompt, and PromptCrypt do not specifically
safeguard PII; instead, they disrupt linguistic struc-
tures, resulting in relatively higher PI Attack suc-
cess rates. PromptObfus (k = 0.3) also achieves
a 30.42% success rate in the MTT Attack, signifi-
cantly lower than all methods except SANTEXT
and SANTEXT+.

Furthermore, PromptObfus maintains the per-
formance of the target tasks without significant
degradation. At k = 0.1, PromptObfus achieves
a classification accuracy of 84.8%, representing
only a 2.75% decrease compared to the original
text. This performance is comparable to Presidio
and surpasses other word-level baselines, such as
random replacement (69.87%) and SANTEXT+
(58.93%).

In summary, the results demonstrate that Promp-
tObfus effectively protects privacy against remote
LLMs while preserving the original LLM’s task
performance, achieving an optimal privacy-utility
trade-off among all baseline methods.

4.6 Ablation Study

Impact of Surrogate Model. We investigate
the impact of architectures and scales of the sur-
rogate model. The experiments are conducted
on three distinct model architectures: Encoder-
only models (RoBERTa), Decoder-only models
(GPT2), and Encoder-decoder models (BART),
across three groups of sizes, including base (around
130M parameters, e.g, RoBERTa-base), medium
(around 350M, e.g, RoBERTa-large, BART-large,
and GPT2-medium), and large (LLaMA-2-7B and
ChatGLM3-6B). Due to computational constraints,
small and medium models are fine-tuned with full
parameters, while the large models are fine-tuned
using Low-Rank Adaptation (LoRA). The experi-

®Results for other datasets are provided in Appendix A.4.



Approach MTI Topl, KNN Topl| PI Success Rate| Acc.t
Origin 48.86 - - 87.20
Random 3591 90.47 83.47 69.87
Presidio 44.63 90.45 0.00 84.80
SANTEXT 20.15 73.67 92.53 49.25
SANTEXT+ 23.40 76.93 75.47 58.93
DP-Prompt - - 72.53 86.30
PromptCrypt - - 54.67 89.86
PromptObfus (k=0.1) 40.99 83.44 0.00 84.80
PromptObfus (k=0.2) 35.12 74.37 0.00 82.70
PromptObfus (k=0.3) 30.42 66.27 0.00 81.60

Table 2: Performance of privacy protection and task utility on the SST-2 sentiment analysis task. In the PI Attack,
the SST-2 dataset does not explicitly label privacy attributes. Therefore, the attack assumes that named entities (e.g.,
person names, locations) represent explicit privacy attributes and targets these for evaluation.

Approach MTI Topl| KNN Topl| Acec.t
Original Data 48.86 - 87.2
Roberta-base 44.11 83.39 81.6
BART-base 44.67 83.44 82.1
GPT2-base 44.26 84.48 84.5
GPT2-medium 44.22 83.44 84.5
Roberta-large 44.36 83.39 84.3
BART-large 44.31 83.39 84.8
llama-2-7B 44.37 83.44 83.8
ChatGLM3-6B 44.27 83.39 83.6

Table 3: Influence of surrogate model variations on
obfuscation effectiveness in sentiment analysis.

mental results for the sentiment analysis task are
presented in Table 3.

We observe that privacy protection effectiveness

is independent of the surrogate model’s architecture
and size. Medium-sized models outperform larger
models due to the task’s simplicity, where increased
model complexity provides no added benefit, and
LoRA may not fully leverage fine-tuning advan-
tages. Encoder-Decoder models excel by combin-
ing the encoder’s classification suitability with the
decoder’s alignment to remote models. Similar
results for the QA task are detailed in Appendix
A.S.
Impact of Hyperparameters. We perform abla-
tion studies on the hyperparameters k£ and A, using
BART-large as the surrogate model on the SST
dataset. The parameter k is varied from 0.1 to 0.5
in increments of 0.1, while A ranges from 5 to 20
in increments of 5. The results are illustrated in
Figure 4.

For privacy protection, as k increases, Attack
Top1 decreases, indicating enhanced privacy pro-
tection. For MTI Attack, increasing A\ reduces

Classification Accuracy(%)

MTI-Attack Top1(%)
w
&

0.1 0.2 03 0.4 05 01 0.2 0.3 0.4 05
k k

(b) MTI attack. (c) KNN attack.

Figure 4: Impact of hyperparameters k and .

Top1, with the most notable improvement occur-
ring when A rises from 5 to 10, as diversified con-
texts yield more varied MTI predictions. For KNN
Attack, Top1 depends solely on k, as it focuses on
perturbed words independently of context.

For performance preservation, classification ac-
curacy declines as k increases, with the most sig-
nificant drop observed between 0.4 and 0.5. When
k exceeds 0.3, \ becomes sensitive, and higher val-
ues degrade performance due to excessive word
replacements disrupting semantics and reducing
contextual coherence.

Overall, increasing k£ and A enhances privacy
protection but compromises performance. The
optimal balance is achieved when k£ < 0.4 and
A € [10,20). We set A to 10 as default.



Original Text:

I'ma 39 -year-old driver in Toronto , and I often feel like my emotions are all over the place...

abuser a 39 -year-old driver in Toronto , moha palmery often feel like my emotions are all over

I’'m a <DATE> driver in <GPE>, and I often feel like my emotions are all over the place...
jagger rehashed a hardy - year - old driver in women , and obscure often feel like my emotions

jagger rehashed a fidel 15 year 3 old driver in motion , and esoteric seldom feel like my emotions

I'ma 39 -year-old driver in Toronto , and my emotions can be unpredictable...

Random:
shady place...
Presidio:
SANTEXT:
are all over the place...
SANTEXT+:
are all putting the however...
DP-Prompt:
PromptCrypt: e, @D -89 >0,

PromptObfus (k=0.1):
PromptObfus (k=0.2):
PromptObfus (k=0.3):

I’'m a commercial driver of two and I often feel like my emotions are all over the place...
I’m a commercial assistant in LA and I often feel like my emotions flow all over the world...
I’'m one professional assistant in general and I often feel like my emotions are hovering throughout...

Table 4: A case of desensitized prompts generated by various methods for question answering.

4.7 Case Study

Table 4 illustrates an example of desensitized
prompts generated by different methods for the
question-answering task. In the original text, terms
such as "39-year-old," "driver," and "Toronto" are
identified as sensitive information. PromptObfus
effectively replaces explicit privacy details (e.g.,
age and location) with de-identified terms, ensuring
robust privacy protection. At k = 0.2 and £ = 0.3,
the obfuscation intensity increases, and implicit
privacy details, such as occupation ("driver"), are
substituted with more ambiguous terms like "as-
sistant" while preserving semantic coherence and
readability.

In contrast, the Random method fails to accu-
rately identify and modify sensitive information,
leading to the leakage of all privacy-related terms
and a lack of textual coherence. Presidio is limited
to handling predefined temporal and address infor-
mation, offering insufficient flexibility and failing
to protect occupation-related privacy. Meanwhile,
SANTEXT and SANTEXT+ introduce excessive
noise, rendering the sentences overly disordered
and degrading task performance. DP-Prompt re-
sults in privacy leakage, while PromptCrypt, de-
spite protecting privacy, employs overly simplistic
and abstract symbols, causing significant perfor-
mance degradation.

4.8 Transferability

We further explore the transferability of the trained
surrogate model. We experiment on different com-
binations of local and remote models from three
vendors: OpenAl, Meta, and Zhipu. Experimental
results, presented in Table 5, indicate that the com-
bination of local and remote models from differ-

Model GPT-40-mini GLM-4-plus Meta Al
GPT2 84.5 91.2 91
ChatGLM3-6B 83.6 90.5 89
llama2-7B 83.8 90.3 90
BART 84.8 91.4 91

Table 5: Classification accuracy of local-remote model
combinations on the sentiment analysis (SST) task.
Columns denote remote models, while rows denote lo-
cal models.

ent vendors has minimal influence on obfuscation
effectiveness. Models demonstrating strong trans-
ferability across various combinations. To further
validate this finding, we include BART-large, the
top-performing model from prior experiments and
independent of the three vendors, for testing with
three remote models. Results confirm that BART-
large consistently outperforms in all combinations.

5 Conclusion

In this paper, we propose PromptObfus, a novel
desensitization method for LLM prompts. Its core
idea is anti-adversarial learning, which ensures
that model outputs remain consistent while obscur-
ing sensitive content from human interpretation.
PromptObfus achieves this by replacing sensitive
words in user prompts with semantically distant
yet task-neutral alternatives, minimizing impact on
task performance. Evaluations across three NLP
tasks demonstrate that PromptObfus effectively
protects privacy against cloud LLMs while preserv-
ing the original model’s performance, achieving
an optimal privacy-utility trade-off compared to
baseline methods.

Our replication package is available at:
https://anonymous.4open.science/r/PromptObfus-
83F7/.


https://anonymous.4open.science/r/PromptObfus-83F7/
https://anonymous.4open.science/r/PromptObfus-83F7/
https://anonymous.4open.science/r/PromptObfus-83F7/

Limitations

We have identified two limitations of PromptObfus:
1) Incomplete identification of implicit privacy
words: Our approach randomly masks words in
the prompt as implicit privacy attributes, which
reduces privacy leakage but does not comprehen-
sively cover all privacy attributes, leading to incom-
plete desensitization. Future work should focus on
refining privacy word localization strategies.

2) Applicability of general models: Fine-tuning
large models for text-based QA is challenging due
to the scarcity of high-quality annotated data. Con-
sequently, general models are employed, but they
lack the precision of task-specific models. Fur-
ther research is needed to explore model adaptation
techniques under data constraints, such as few-shot
learning methods (Brown et al., 2020).

References

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,
Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial ex-
amples. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2890-2896, Brussels, Belgium. Association
for Computational Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Proceedings of the 34th International Conference on
Neural Information Processing Systems, NIPS *20,
Red Hook, NY, USA. Curran Associates Inc.

Nicholas Carlini, Chang Liu, Ulfar Erlingsson, Jernej
Kos, and Dawn Song. 2019. The secret sharer: eval-
uating and testing unintended memorization in neu-
ral networks. In Proceedings of the 28th USENIX
Conference on Security Symposium, SEC’19, page
267284, USA. USENIX Association.

Yu Chen, Tingxin Li, Huiming Liu, and Yang Yu.
2023. Hide and seek (has): A lightweight frame-
work for prompt privacy protection. Preprint,
arXiv:2309.03057.

Fengyu Gao, Ruida Zhou, Tianhao Wang, Cong Shen,
and Jing Yang. 2024. Data-adaptive differentially
private prompt synthesis for in-context learning.
Preprint, arXiv:2410.12085.

Craig Gentry. 2009. A fully homomorphic encryp-
tion scheme. Ph.D. thesis, Stanford, CA, USA.
AAI3382729.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative
adversarial nets. In Proceedings of the 27th Interna-
tional Conference on Neural Information Processing
Systems - Volume 2, NIPS’ 14, page 2672-2680, Cam-
bridge, MA, USA. MIT Press.

Meng Hao, Hongwei Li, Hanxiao Chen, Pengzhi Xing,
Guowen Xu, and Tianwei Zhang. 2022. Iron: Private
inference on transformers. In Advances in Neural
Information Processing Systems, volume 35, pages
15718-15731. Curran Associates, Inc.

Junyuan Hong, Jiachen T. Wang, Chenhui Zhang,
Zhangheng LI, Bo Li, and Zhangyang Wang. 2024.
DP-OPT: Make large language model your privacy-
preserving prompt engineer. In The Twelfth Interna-
tional Conference on Learning Representations.

Jiahui Hu, Dan Wang, Zhibo Wang, Xiaoyi Pang, Huiyu
Xu, Ju Ren, and Kui Ren. 2024. Federated large
language model: Solutions, challenges and future
directions. IEEE Wireless Communications, pages
1-8.

Guo Lin, Wenyue Hua, and Yongfeng Zhang. 2024.
Emojicrypt: Prompt encryption for secure com-
munication with large language models. Preprint,
arXiv:2402.05868.

Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, and Blaise Aguera y Arcas. 2017.
Communication-Efficient Learning of Deep Net-
works from Decentralized Data. In Proceedings of
the 20th International Conference on Artificial In-
telligence and Statistics, volume 54 of Proceedings
of Machine Learning Research, pages 1273-1282.
PMLR.

Michele Miranda, Elena Sofia Ruzzetti, Andrea Santilli,
Fabio Massimo Zanzotto, Sébastien Bratieres, and
Emanuele Rodola. 2025. Preserving privacy in large
language models: A survey on current threats and
solutions. Preprint, arXiv:2408.05212.

Niloofar Mireshghallah, Hyunwoo Kim, Xuhui Zhou,
Yulia Tsvetkov, Maarten Sap, Reza Shokri, and Yejin
Choi. 2024. Can llms keep a secret? testing pri-
vacy implications of language models via contextual
integrity theory. Preprint, arXiv:2310.17884.

Richard Plant, Dimitra Gkatzia, and Valerio Giuffrida.
2021. CAPE: Context-aware private embeddings
for private language learning. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 7970-7978, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.


https://aclanthology.org/D18-1316
https://aclanthology.org/D18-1316
https://aclanthology.org/D18-1316
https://arxiv.org/abs/2309.03057
https://arxiv.org/abs/2309.03057
https://arxiv.org/abs/2309.03057
https://arxiv.org/abs/2410.12085
https://arxiv.org/abs/2410.12085
https://arxiv.org/abs/2410.12085
https://proceedings.neurips.cc/paper_files/paper/2022/file/64e2449d74f84e5b1a5c96ba7b3d308e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/64e2449d74f84e5b1a5c96ba7b3d308e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/64e2449d74f84e5b1a5c96ba7b3d308e-Paper-Conference.pdf
https://openreview.net/forum?id=Ifz3IgsEPX
https://openreview.net/forum?id=Ifz3IgsEPX
https://openreview.net/forum?id=Ifz3IgsEPX
https://doi.org/10.1109/MWC.009.2400244
https://doi.org/10.1109/MWC.009.2400244
https://doi.org/10.1109/MWC.009.2400244
https://doi.org/10.1109/MWC.009.2400244
https://doi.org/10.1109/MWC.009.2400244
https://arxiv.org/abs/2402.05868
https://arxiv.org/abs/2402.05868
https://arxiv.org/abs/2402.05868
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://arxiv.org/abs/2408.05212
https://arxiv.org/abs/2408.05212
https://arxiv.org/abs/2408.05212
https://arxiv.org/abs/2408.05212
https://arxiv.org/abs/2408.05212
https://arxiv.org/abs/2310.17884
https://arxiv.org/abs/2310.17884
https://arxiv.org/abs/2310.17884
https://arxiv.org/abs/2310.17884
https://arxiv.org/abs/2310.17884
https://aclanthology.org/2021.emnlp-main.628
https://aclanthology.org/2021.emnlp-main.628
https://aclanthology.org/2021.emnlp-main.628

Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang
Zhu, and Michael Zeng. 2023. Automatic prompt op-
timization with “gradient descent” and beam search.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
7957-7968, Singapore. Association for Computa-
tional Linguistics.

Chen Qu, Weize Kong, Liu Yang, Mingyang Zhang,
Michael Bendersky, and Marc Najork. 2021. Natural
language understanding with privacy-preserving bert.
In Proceedings of the 30th ACM International Con-
ference on Information & Knowledge Management,
CIKM °21, page 1488-1497, New York, NY, USA.
Association for Computing Machinery.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631-1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Robin Staab, Mark Vero, Mislav Balunovi’c, and Mar-
tin T. Vechev. 2023. Beyond memorization: Violat-
ing privacy via inference with large language models.
ArXiv, abs/2310.07298.

Xiongtao Sun, Gan Liu, Zhipeng He, Hui Li, and
Xiaoguang Li. 2024. Deprompt: Desensitization
and evaluation of personal identifiable informa-
tion in large language model prompts. Preprint,
arXiv:2408.08930.

Saiteja Utpala, Sara Hooker, and Pin-Yu Chen. 2023.
Locally differentially private document generation
using zero shot prompting. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2023, pages 8442-8457, Singapore. Association for
Computational Linguistics.

Zimu Wang, Wei Wang, Qi Chen, Qiufeng Wang, and
Anh Nguyen. 2023. Generating valid and natural
adversarial examples with large language models.
Preprint, arXiv:2311.11861.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu,
Quoc V. Le, Denny Zhou, and Xinyun Chen. 2024.
Large language models as optimizers. Preprint,
arXiv:2309.03409.

Andrew C. Yao. 1982. Protocols for secure computa-
tions. In 23rd Annual Symposium on Foundations of
Computer Science (sfcs 1982), pages 160-164.

Binwei Yao, Chao Shi, Likai Zou, Lingfeng Dai,
Mengyue Wu, Lu Chen, Zhen Wang, and Kai Yu.
2022. D4: a Chinese dialogue dataset for depression-
diagnosis-oriented chat. In Proceedings of the 2022
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2438-2459, Abu Dhabi,
United Arab Emirates. Association for Computa-
tional Linguistics.

10

Xiang Yue, Minxin Du, Tianhao Wang, Yaliang Li,
Huan Sun, and Sherman S. M. Chow. 2021. Dif-
ferential privacy for text analytics via natural text
sanitization. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
3853-3866, Online. Association for Computational
Linguistics.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Proceedings of the 28th International
Conference on Neural Information Processing Sys-
tems - Volume 1, NIPS’15, page 649-657, Cambridge,
MA, USA. MIT Press.

Xiaojin Zhang, Yulin Fei, Yan Kang, Wei Chen, Lixin
Fan, Hai Jin, and Qiang Yang. 2024. No free
lunch theorem for privacy-preserving 1lm inference.
Preprint, arXiv:2405.20681.

Xin Zhou, Yi Lu, Ruotian Ma, Tao Gui, Yuran Wang,
Yong Ding, Yibo Zhang, Qi Zhang, and Xuanjing
Huang. 2023. TextObfuscator: Making pre-trained
language model a privacy protector via obfuscating
word representations. In Findings of the Associa-
tion for Computational Linguistics: ACL 2023, pages
5459-5473, Toronto, Canada. Association for Com-
putational Linguistics.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2022. Large language models are human-level
prompt engineers. In NeurlPS 2022 Foundation Mod-
els for Decision Making Workshop.


https://aclanthology.org/2023.emnlp-main.494
https://aclanthology.org/2023.emnlp-main.494
https://aclanthology.org/2023.emnlp-main.494
https://doi.org/10.1145/3459637.3482281
https://doi.org/10.1145/3459637.3482281
https://doi.org/10.1145/3459637.3482281
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://api.semanticscholar.org/CorpusID:263834989
https://api.semanticscholar.org/CorpusID:263834989
https://api.semanticscholar.org/CorpusID:263834989
https://arxiv.org/abs/2408.08930
https://arxiv.org/abs/2408.08930
https://arxiv.org/abs/2408.08930
https://arxiv.org/abs/2408.08930
https://arxiv.org/abs/2408.08930
https://doi.org/10.18653/v1/2023.findings-emnlp.566
https://doi.org/10.18653/v1/2023.findings-emnlp.566
https://doi.org/10.18653/v1/2023.findings-emnlp.566
https://arxiv.org/abs/2311.11861
https://arxiv.org/abs/2311.11861
https://arxiv.org/abs/2311.11861
https://arxiv.org/abs/2309.03409
https://aclanthology.org/2022.emnlp-main.156
https://aclanthology.org/2022.emnlp-main.156
https://aclanthology.org/2022.emnlp-main.156
https://aclanthology.org/2021.findings-acl.337
https://aclanthology.org/2021.findings-acl.337
https://aclanthology.org/2021.findings-acl.337
https://aclanthology.org/2021.findings-acl.337
https://aclanthology.org/2021.findings-acl.337
https://arxiv.org/abs/2405.20681
https://arxiv.org/abs/2405.20681
https://arxiv.org/abs/2405.20681
https://aclanthology.org/2023.findings-acl.337
https://aclanthology.org/2023.findings-acl.337
https://aclanthology.org/2023.findings-acl.337
https://aclanthology.org/2023.findings-acl.337
https://aclanthology.org/2023.findings-acl.337
https://openreview.net/forum?id=YdqwNaCLCx
https://openreview.net/forum?id=YdqwNaCLCx
https://openreview.net/forum?id=YdqwNaCLCx

A Appendix

A.1 PersonalPortrait Construction

Inspired by the D4 dataset (Yao et al., 2022) and the
PersonalReddit dataset (Staab et al., 2023), which
generate text from personal profiles, we construct
realistic patient personas based on attributes such
as gender, occupation, location, and mental health
conditions, simulating their interactions in psycho-
logical counseling sessions. The primary objective
of the QA task is to diagnose the patient’s mental
health disorder. For example, the model identifies
conditions like depression or anxiety by analyz-
ing symptoms such as anxiety, insomnia, and low
mood described in the text.

The dataset synthesis process consists of the fol-
lowing steps:

1. Profile generation: Personal attributes, includ-
ing age, location, gender, occupation, and
mental health condition, are randomly se-
lected from predefined categories to create
diverse patient profiles.

Text generation: Using GPT-4, we generate
self-reported texts based on the profiles, re-
flecting the patient’s history and symptoms.
The prompt used for generation is provided in
Appendix A.2.

Manual review: The generated texts are manu-
ally reviewed to ensure high quality, accuracy,
and appropriateness of symptom descriptions.

Each entry in the PersonalPortrait dataset com-
prises the following fields:

e Text: A self-reported narrative generated dur-
ing a simulated psychological counseling ses-
sion, detailing the patient’s mental health con-
cerns and related experiences.

* Age: A randomly assigned age ranging from
18 to 65 years.

* Location: A randomly selected geographic
region from a pool of 20 common English-
speaking areas.

* Gender: A randomly assigned gender, either
male or female.

* Occupation: A randomly selected profession
from a list of 20 common occupations.

* Disorder: A randomly assigned mental health
condition, chosen from a set of 10 prevalent
disorders included in the dataset.
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A.2 Prompt Templates

The following outlines the primary prompt tem-
plates utilized in our study, where TEXT denotes
the desensitized prompt, ORIGINAL TEXT repre-
sents the original prompt, and ANSWER refers to
the response generated by the LLM. Attributes such
as AGE and GENDER are randomly selected from
predefined categories.

Prompt for Generating Samples for PersonalPortrait

System Prompt:

You are a patient and are seeing a
psychiatrist.

User Prompt:

Describe to a psychiatrist in the
typical voice of a <<<AGE>>>-year-old
< <<GENDER>>> << <OCCUPATION>>>
with  sympthons of  <<<DISORDER>>>
in <<<LOCATION>>>. The self-report

MUST reflect the patient’s LOCATION and
OCCUPATION. 100 words or less.

Prompt for Sentiment Analysis Task

System Prompt:
Classify the sentiment of each sentence

in < < <SENTENCE>>> as "Positive’
or ’Negative’. Give the sentiment
classifications without any other preamble
text.

###EXAMPLE SENTENCE

Highly recommend this company for travel
plans involving rail.

EXAMPLE OUTPUT

Positive#i##

User Prompt:
<K LTEXT>>>

Prompt for Topic Classification Task

System Prompt:

Classify the topic of each news article
in <<<NEWS>>> as ’World’, ’Sports’,
’Business’, or ’Sci/Tech’. Give the topic
classification without any other preamble
text.

#H#H#EXAMPLE NEWS

Dollar Briefly Hits 4-Wk Low Vs Euro LONDON
(Reuters) - The dollar dipped to a four-week
low against the euro on Monday before rising
slightly on profit-taking, but steep oil
prices and weak U.S. data continued to fan
worries about the health of the world’s
largest economy.

EXAMPLE OUTPUT

Business#i##

User Prompt:
<K LTEXT>>>




Prompt for Question Answering Task

System Prompt:

You are an experienced psychologist.
Your task is to listen to the patient’s
self-description and a most likely mental
health diagnosis based on their symptoms.

User Prompt:
<K LTEXT>>>
Diagnosis:

Prompt for Scoring Answer Quality

System Prompt:

You are an experienced psychologist with
expertise in mental health diagnoses.
Your task is to assess the accuracy
of a diagnosis based on the patient’s
self-description. You will evaluate the
diagnosis on a scale from 1 to 5, where
1 means the diagnosis is very inaccurate
and 5 means the diagnosis is completely
accurate. Please consider the alignment
between the patient’s symptoms and the
diagnosis, the clarity and specificity of
the diagnosis, and any relevant details
that may be missing or misinterpreted.

User Prompt:

The patient has provided the following
self-description. The diagnosis made by the
doctor is as follows: TEXT:<<<ORIGINAL
TEXT>>> Diagnosis: <<<ANSWER>>> Please
provide a score from 1 to 5 based on
how accurate you believe the diagnosis is,
considering the symptoms described and the
quality of the diagnosis. Use the following
scale to guide your evaluation:

1 - The diagnosis is very inaccurate and
does not align with the symptoms described.
2 - The diagnosis has major inaccuracies,
missing or misinterpreting key symptoms.

3 - The diagnosis is moderately accurate,
but some symptoms are either missed or
misinterpreted.

4 The diagnosis 1is fairly accurate,
capturing most symptoms with only minor
errors or omissions.

5 - The diagnosis is completely accurate,
perfectly matching the patient’s symptoms
and addressing all key details.

A.3 Hyperparameter Setting

The hyperparameters for model training in our ex-
periments are detailed in Tables 6 and 7. Specif-
ically, llama-2-7B and ChatGLM3-6B are fine-
tuned using Low-Rank Adaptation (LoRA), while
the remaining models undergo full fine-tuning. We
employ the Adam optimizer with default settings,
including 31 = 0.9, B2 = 0.999,and ¢ = 1 x 1078,
The use of all models complies with the license.
The experiments are conducted on a server
equipped with 2 Nvidia GeForce RTX 4090 GPUs,
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Dataset Model ‘ Ir ‘ bs ‘ epoch
Roberta-base | 2e-5 | 32 4
Roberta-large | 3e-5 | 32 4
BART-base 2e-5 | 32 4
BART-large | 3e-5 | 32 4

SST-2 GPT2-base | 3e-5 32| 4
GPT2-medium | 3e-5 | 32 4
llama-2-7B 2e-4 | 16 2
ChatGLM3-6B | 2e-4 | 16 2

AG News | BART-large |3e-5|32| 5

Table 6: Hyperparameters setting for model training.

Dataset ‘ Model ‘ alpha ‘ dropout ‘ r
| llama-2-7B | 16 | 0.1 |64
SST-2 | ChatGLM3-6B | 16 | 0.1 |64

Table 7: LoRA hyperparameters setting for model train-
ing.

running Ubuntu 23.10 and CUDA version 12.2.

A.4 Results on Other Datasets

Tables 8 and 9 show the results on the topic classi-
fication and question answering tasks, respectively.
We observe the same trend as in the sentiment anal-
ysis task.

Privacy Protection. Our PromptObfus demon-
strates a significant advantage across both tasks.
For instance, in the question-answering task, we
evaluate two experimental items: Location, which
is typically explicit and displayed in plain text, and
Occupation, which is often inferred from context
and considered implicit privacy. In the PI Infer-
ence of Location, PromptObfus achieves an at-
tack success rate below 1.50%, indicating nearly
complete privacy protection. In the PI Inference
of Occupation, PromptObfus achieves the second-
lowest attack success rate at 34.75%, trailing only
PromptCrypt (11.00%).

Performance Preservation. PromptObfus
achieves an accuracy of 84.25% at both k£ = 0.1
and k£ = 0.3 on the topic classification task, closely
aligning with the baseline methods (87.5%). The
task utility decreases by only 3.71%, ranking just
below DP-Prompt (85%) among the baselines. On
datasets with rich content and multiple classifi-
cation labels, the emoji encryption approach of
PromptCrypt shows limited effectiveness and no
longer outperforms other methods. On the other
hand, the PII anonymization method, Presidio, ex-



Approach

Acc.t MTI Topl|

KNN Topl| PI Success Rate|

Origin 87.50 31.37 - -

PromptObfus (k=0.1) 84.25 24.59 66.04 0.00
PromptObfus (k=0.2) 83.50 21.19 58.96 0.00
PromptObfus (k=0.3) 84.25 17.79 51.96 0.00
Random 83.75 17.10 83.78 97.50
Presidio 83.25 23.28 71.53 0.00
SANTEXT 61.50 21.43 62.10 41.75
SANTEXT+ 55.25 11.04 49.09 34.25
DP-Prompt 85.00 - - 96.25
PromptCrypt 72.00 - - 13.50

Table 8: Performance of privacy protection and task utility on the AG News topic classification task.

Approach Acc.t  Quality Scoret MTI Topl], KNN Topl| PI(Loc.)] PI(Occ.)|
Origin 96.9 3.86 46.43 - 94.75 60.25
PromptObfus (k=0.1) 96.4 3.63 37.57 87.72 1.50 44.50
PromptObfus (k=0.2) 92.1 3.61 29.98 78.23 1.50 43.25
PromptObfus (k=0.3) 91.7 3.56 24.98 68.88 1.25 34.75
Random 90.0 3.34 32.67 90.00 81.50 46.25
Presidio 96.9 3.56 44.16 96.62 0.75 55.00
SANTEXT 91.0 3.27 55.75 78.56 0.00 47.00
SANTEXT+ 91.3 3.33 55.75 61.62 0.00 48.25
DP-Prompt 95.0 3.62 - - 89.25 55.25
PromptCrypt 49.5 2.89 - - 16.25 11.00

Table 9: Performance of privacy protection and task utility on the PersonalPortrait text QA task.

hibits performance degradation in the this task,
where named entities are critical.

For the question-answering task, PromptObfus
achieves an accuracy of 96.4%, nearly matching
the original text (96.9%) with a minimal loss of
0.51%, second only to Presidio. Presidio performs
well because this task relies more on inferring the
patient’s emotional state from context rather than
directly extracting PII. Additionally, in terms of
answer quality score, PromptObfus achieves the
highest score of 3.63, indicating that responses gen-
erated using PromptObfus prompts excel in fluency,
completeness, and accuracy.

We observe that PromptCrypt underperforms in
terms of performance preservation for the QA task.
While its encryption method disrupts contextual
structure, providing strong implicit privacy protec-
tion, it sacrifices substantial semantic information,
adversely affecting its performance in question an-
swering that require nuanced text analysis.
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A.5 Impact of Surrogate Model on Other
Tasks

Table 10 presents the results for the question-
answering task. Given that privacy protection out-
comes have been shown to be independent of sur-
rogate model selection in sentiment analysis tasks,
this experiment focuses on performance preserva-
tion. General surrogate models are employed, in-
cluding three similarly sized models—RoBERTa-
large, BART-large, and GPT2-medium—as well as
three GPT series models of varying sizes: GPT2-
base, GPT2-medium, and GPT-Neo-1.3B.
GPT-Neo-1.3B achieves the best performance,
with a QA accuracy of 96.4% and the highest an-
swer quality score. In terms of model architecture,
GPT?2 outperforms the other medium-sized mod-
els, highlighting the advantage of the Decoder-only
architecture in language generation tasks. Regard-
ing model scale, QA accuracy improves progres-
sively with increasing model size. This is attributed
to the fact that general models primarily rely on



Model Accuracy Utility Score

GPT2-base 93.3 3.55
GPT2-medium 93.8 3.57
GPTNeo-1.3B 96.4 3.63

RoBERTa-large 93.0 3.53

BART-large 92.8 3.55

Table 10: Influence of surrogate model variations on
obfuscation effectiveness in question answering.

knowledge acquired during pretraining, and larger
models inherently possess a more extensive knowl-
edge base and superior task execution capabilities,
particularly excelling in complex tasks such as text-
based question answering.
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