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ABSTRACT

Rank aggregation has critical applications for developing AI agents, as well as for
evaluating them. However, different methods can give rise to significantly dif-
ferent aggregate rankings, impacting these applications. Indeed, work in social
choice and statistics has produced many rank aggregation methods, each with its
desirable properties, but also with its limitations. Given this trade-off, how do we
decide which aggregation rule to use, i.e., what is a good rule picking rule (RPR)?
In this paper, we design a data-driven RPR that identifies the best method for each
dataset without assuming a generative model. The principle behind our RPR is
to maximize consistency if the data collection process was repeated. We show
that our method satisfies several consistency-related axioms failed by a wide class
of natural RPRs. While we prove that the computational problem of maximizing
consistency is hard, we provide a sampling-based implementation that is efficient
in practice. We run this implementation on known statistical models to experi-
mentally demonstrate its desirable properties, as well as on real-world data where
our method provides important insights into how to improve consistency.

1 INTRODUCTION

Suppose you have a collection of items, and evaluators who individually rank them. Finding the
best method for aggregating such data is an age-old problem, with critical use cases in artificial
intelligence and machine learning. For example, the recent surge of large language models has
been driven in part by reinforcement learning from human feedback (RLHF) (Christiano et al., 2017;
Ziegler et al., 2020), where evaluators provide ordinal preference data over model outputs, which
must then be aggregated into a reward model. In other cases, human evaluators can be replaced
with high-level principles, each of which ranks outputs based on how compliant they are with that
principle, as is done in constitutional AI (Bai et al., 2022). Further, rank aggregation can be useful
not just for developing capable AI models, but also for evaluating their performance. For example,
interpreting incomparable benchmarks as separate evaluators, Lanctot et al. (2025a) aggregate these
rankings to compare the overall performance of competing models. Last but not least, peer review
is an essential tool for evaluating ML research, where asking reviewers to rank their assignments—
later to be aggregated for final decisions—can help mitigate several shortcomings of other evaluation
formats; cf., for example, an experiment by Liu et al. (2022) on ICLR 2017 conference data.

In each of these use cases, different methods can lead to vastly different aggregations, thereby af-
fecting the outcome. Failure to pick “good” methods can result in outcomes inconsistent with the
rankings of the evaluators or benchmarks, as has been observed in RLHF (Ge et al., 2024; Xu et al.,
2024) and agent evaluation (Lanctot et al., 2025b). But what makes an aggregation method good?

One common approach to this question is the axiomatic approach from the social choice litera-
ture (Plott, 1976): first select certain criteria (axioms) that the aggregation should satisfy, then de-
sign rules that meet these axioms. However, celebrated impossibility results (Arrow, 1963; Gibbard,
1973; Satterthwaite, 1975) prove some fundamental axioms are incompatible, eliminating all hope
for one “ideal” rule fulfilling every desideratum. On the other hand, even if the chosen axioms are
satisfiable at once, there may be many rules that do so, making the selection among them arbitrary.

Another approach for picking the aggregation method, which we refer to as the statistical approach,
is to treat the rankings as noisy estimates of an objective ground truth. By assuming a noise model
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(e.g., Plackett (1975)-Luce (1959) or Mallows (1957)) for the data generation, the aggregate ranking
can be chosen as the one maximizing the likelihood of the data under this model. A key challenge is
the accuracy of the assumed model, which is commonly addressed by considering multiple models
and choosing one via cross validation (Zucchini, 2000). However, irrespective of model selection,
assuming a ground truth may be fundamentally flawed, especially in settings with legitimate differ-
ences of opinion, such as AI alignment (Ge et al., 2024). Further, many natural voting rules with
desirable properties are not the maximum likelihood estimator (MLE) for any noise model (Conitzer
& Sandholm, 2005; Conitzer et al., 2009) and are thereby precluded by the statistical approach.

Given this vast array of (partly incompatible) tools from statistics and social choice, and no clear
way a priori of selecting from them, a natural question emerges: In a given setting, how do we pick
which rule to use? In other words, what makes a good rule picking rule (RPR)?

Our work addresses this question. Unlike previous literature that largely focuses on picking an
aggregate ranking, we want to explicitly pick a rule. Such an approach has several benefits: First,
employing an RPR naturally leads to better interpretability by providing a formal justification of
why other rules (under which the winners could be different) were not adopted. Second, different
(perfectly reasonable) rules may be appropriate for different settings with different requirements,
and RPRs offer a principled way of deciding which rule is the most appropriate for a given setting.
Lastly, as we will see, our novel framework allows designing natural RPRs that can choose from any
set of rules, making it easy to continually incorporate novel rules into the aggregation process.

Our contributions are as follows: (1) We introduce a novel framework for formally defining rule
picking rules (RPR) (Section 3). Our framework allows designing principled ways of adopting a rule
appropriate for the data, without committing to a set of axioms or a generative model a priori.

(2) Inspired by prior work emphasizing the link between consistency and quality in related settings,
we introduce our own RPR, Aggregation by Consistency (AbC), with the explicit goal of maximizing
the consistency in the output if the data collection process was repeated (Section 4).

(3) We define several natural axioms for RPRs, and prove AbC satisfies them, including those failed
by a wide class of RPRs. For two axioms that AbC fails, we prove impossibility results (Section 5).

(4) We prove that the computational problem of checking if “complete” consistency can be achieved
for a given input (i.e., picking a rule that produces the exact same output) is NP-complete (Section 6).

(5) Nevertheless, we provide an implementation of AbC that is efficient in practice and performs
well in experiments on known distributions (Section 7). Our implementation includes a learning
component that optimizes consistency over infinitely many positional scoring rules. We show that
AbC can be applied to both score- and rank-based evaluations across a large variety of empirical
settings, at times improving significantly upon the consistency given by rules used in practice.

Omitted proofs are in Appendix C. An implementation of AbC was awarded in a recent competition
at a top-tier AI conference,1 which scored rules via a hidden welfare function, demonstrating it per-
forms well in general settings. Taken together, our work lays a robust theoretical and computational
foundation for principled rule picking, paving the way for future work in this novel framework.

2 OVERVIEW OF THE PROPOSED APPROACH: WHY CONSISTENCY?

Before introducing our formal framework, we discuss the basic idea of our approach. Suppose
we have two sets of evaluators (e.g, benchmarks or human voters) who independently rank the
same items (e.g., AI models/outputs or academic papers). A popular measure of the “quality” of an
aggregation method is the consistency between its output on two independent sets of rankings. As
such, we seek to design an RPR that picks the rule that maximizes this consistency.2 This intuition is
inspired by a number of related settings where past work emphasizes the importance of consistency:

(1) Peer review is classical setting in which evaluations need to be aggregated, and much work has
been done to optimize this process; cf. Shah (2022) for an overview. Many experiments split review-
ers into two panels evaluating the same data (Jecmen et al., 2022), where interpanel disagreement

1The name/year of the competition/conference are redacted for preserving the anonymity of this submission.
2We will restrict our RPR to rules that satisfy basic axiomatic properties such as neutrality (all items being

ranked are treated equally), which avoids the pathological case of a constant function with maximal consistency.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

is interpreted as a shortcoming (Obrecht et al., 2007; Fogelholm et al., 2012; Pier et al., 2017; Bast,
2020). For example, in the NeurIPS 2014 and 2021 conferences, the two panels disagreed on over
half of accepted papers, taken as a sign of arbitrariness in the review process (Lawrence & Cortes,
2014; Cortes & Lawrence, 2021; Beygelzimer et al., 2023). Interpanel consistency is also used to
compare distributed peer review with an expert panel (Patat et al., 2019; Kerzendorf et al., 2020).
Overall, it is clear that the peer review community considers consistency an indicator for quality.

(2) Clustering: One can view the task of rule picking as learning a rule from rankings. Unlike
earlier work with a ground truth rule (Procaccia et al., 2009), our setting is unsupervised and thus
closely related to clustering. Indeed, Ailon et al. (2005) show clustering and rank aggregation can be
approached with near-identical algorithms. Similar to rule picking, an important challenge in clus-
tering is model selection (e.g., number of clusters). Prior work shows picking the model maximizing
stability—i.e., obtains similar results on several datasets from an underlying model—yields higher
accuracy (von Luxburg, 2010). Again, consistency and quality of the output are closely related.

(3) Minimum-variance unbiased estimator (MVUE): Among all unbiased estimators (expected
value equals the true value of the parameter being estimated), the one with the smallest mean squared
error has the lowest variance. Indeed, MVUEs are commonly studied in statistics (Chapman &
Robbins, 1951; Rao, 1949) and related bounds can be used for rank aggregation (Hajek et al., 2014;
Khetan & Oh, 2016). Consider applying an unbiased estimator to two i.i.d. datasets. As a variable’s
variance equals half the expected squared difference between its two i.i.d. copies, the estimator with
the smallest expected difference between the two datasets is again the one with the min. variance, i.e.,
the MVUE. This motivates the most consistent rule in our setting, where unbiasedness is interpreted
as basic constraints for any acceptable rule, which we achieve by restricting our RPR to pick from
neutral & anonymous rules (those that treat all items and evaluators the same, respectively).

(4) AI Alignment: There is nascent interest in applying tools from social choice to AI alignment
processes, such as reinforcement learning from human feedback (RLHF) (Conitzer et al., 2024; Dai
& Fleisig, 2024; Mishra, 2023), with particular emphasis on consistency. Much like peer review,
RLHF inevitably relies on a limited set of evaluators, despite aiming for broad societal alignment. As
such, aggregation methods that are robust to repetitions of the process can decrease the arbitrariness
of the final AI model due to the choice of evaluators. As noted by Conitzer et al. (2024), the focus
of social choice on producing consistent aggregations makes it an appropriate tool for this setting.

While these four settings (peer review, clustering, MVUEs, and RLHF) motivate a rule picking rule
that maximizes the consistency between two independent evaluations, it is not clear how one would
implement that. After all, in practice, we often have only one copy of the process. To explain how
we circumvent this, Algorithm 1 introduces our RPR, named Aggregation by Consistency (AbC).

Algorithm 1: Aggregation by Consistency (AbC), informal (see Section 4 for formal definition).
Input: A set of evaluations over items, a set of acceptable (“candidate”) rules
Output: A chosen rule, to be used for aggregating the evaluations
1. Split the evaluators uniformly at random into two groups, considering each group as a copy

of the process (in line with the peer review experiments above);
2. For each candidate rule, compute the rule’s outputs separately on the two groups, and

measure the disagreement between these two outputs; return the rule with min. disagreement

Importantly, Algorithm 1 is agnostic to the types of input/output of the rules it is picking among; it
only requires a measure of disagreement for their outputs (Step 2). It is therefore widely applicable in
settings with various evaluation formats—e.g. rankings, ratings/scores, approval sets—and desired
outputs—e.g., an aggregate ranking, a single winner, a reward function. In this paper, we focus on
rules that output an aggregate ranking, providing a concrete analysis and experiments.

As we will show, AbC has many advantages. First, it satisfies important axioms for RPRs, even those
failed by many natural RPRs. Second, AbC does not assume a ground truth; however, if a generative
model indeed approximates the data, as we show experimentally, its MLE yields high consistency
across random splits. AbC then chooses this MLE, obtaining the benefits of the statistical approach.
Third, many social choice axioms can be imposed on AbC by restricting the candidate rules to those
satisfying them, obtaining the benefits of the axiomatic approach. Lastly, any AbC implementation
is easy to continually extend by implementing new rules and adding them to our candidate rules.

3
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3 PRELIMINARIES AND RULE PICKING RULES

We consider a set of voters N = [n] and a set of alternatives A with |A| = m. For our axiomatic
analysis (Section 5), it will be helpful to assume each voter ranks all alternatives, although our
method easily extends to other evaluations formats, including partial rankings (Section 4) and ratings
(Section 7). A weak ranking is a complete and transitive binary relationship on A. A strict ranking
is a weak ranking that is also asymmetric. Intuitively, a weak ranking is a strict ranking where ties
are allowed. We denote the set of all strict (resp. weak) rankings of A by L(A) (resp. R(A)). For a
(strict/weak) ranking r, we write a ≻r b if r ranks a strictly above b, and b ⪰r a otherwise. Each
voter i ∈ N has a strict ranking σi ∈ L(A). A profile σ ∈ L(A)n contains the rankings of all voters.

Candidate rules A social welfare function (SWF) is a mapping f that, given a profile σ, outputs
a single weak ranking.3 To aggregate voters’ rankings, we are interested in picking an SWF to use
from a set of acceptable “candidate” rules (e.g., those that are the MLE of a noise model, or voting
rules that satisfy certain axioms). From a machine-learning perspective, the candidate rules can be
viewed as our hypothesis class. Importantly, our framework does not place any restrictions on the
candidate rule set. We next introduce one such class of SWFs we will sometimes pay attention to.

Definition 1. A (monotonic) positional scoring rule is an SWF fs associated to a vector s =
(si)i∈[m] with 1 = s1 ≥ . . . ≥ sm = 0. Given a profile σ, for each alternative a ∈ A and i ∈ [m],
say Mσ[a, i] is the number of voters ranking a in the ith position, and tsσ[a] =

∑m
i=1 siMσ[a, i].

Then, fs ranks a ≻fs(σ) b iff tsσ[a] > tsσ[b]. We denote the set of all positional scoring rules by FS .

Positional scoring rules are easy to represent/compute, and include well-known SWFs, e.g., plurality
(fp, for p = (1, 0, . . . , 0)), veto (fv , for v = (1, . . . , 1, 0)), and Borda count (fb, for bi = m−i

m−1 ).

Rule Picking Rules We now introduce a novel framework for picking rules.

Definition 2. A rule picking rule (RPR) is a function Z that given a set of SWFs F (called candidate
rules) and a profile σ, outputs a subset of rules Z(F,σ) ⊆ F .

Just as many natural SWFs (e.g., positional scoring rules) can lead to ties among alternatives, as we
will see, many natural RPRs may tie some SWFs for certain profiles, leading to |Z(F,σ)| > 1. In
such cases, a tie-breaking order over F can be used to pick the single rule to be adopted.

RPRs offer a principled way to pick an SWF for aggregating the rankings in σ. Ideally, an RPR will
capture the idea that different (perfectly reasonable) SWFs may be appropriate for different profiles,
e.g., because the profile resembles a specific distribution, or certain positions in the rankings are
more informative than others. Section 5 formalizes these cases by defining natural axioms for RPRs.

4 AGGREGATION BY CONSISTENCY (AbC)

Having introduced our framework of RPRs, we now formally present our method. As discussed in
Section 2, we want our RPR to maximize the consistency between two independent sets of rankings.
Our approach can be implemented with any measure of distance comparing the outputs of a rule.
For concreteness in our analysis and experiments, we turn to one such well-known measure.

Definition 3. For weak rankings r1, r2 ∈ R(A) and alternatives a, b ∈ A, let Da,b
r1,r2 be indicator

variable that r1 and r2 strictly disagree about how a and b should be ordered. Similarly, let T a,b
r1,r2 in-

dicate that a and b are tied by at least one of r1 or r2. More formally, Da,b
r1,r2 = I[(a ≻r1 b and b ≻r2

a) or (b ≻r1 a and a ≻r2 b)] and T a,b
r1,r2 = I[(a ⪰r1 b and b ⪰r1 a) or (a ⪰r2 b and b ⪰r2 a)]. The

Kendall tau distance with ties between r1& r2 is KT (r1, r2) =
∑

{a,b}∈A2:a ̸=b

(
Da,b

r1,r2 +
1
2T

a,b
r1,r2

)
.

KT is more traditionally defined for strict rankings, without the T a,b
r1,r2 term. We explicitly add the

term for ties in order to penalize indecisiveness (e.g., a rule that always returns all alternatives tied).
Weighing ties by 1

2 is inspired by Kendall’s Tau-b correlation coefficient (Kendall, 1945).

We are now ready to introduce our consistency-based RPR, which we formally define in Box 1.

3Outputting weak rankings allows returning a single ranking without violating neutrality or anonymity.
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Box 1: Aggregation by Consistency (AbC)

Given a profile σ, consider the following random process: Initialize two sets N1 = N2 = ∅.
For each voter i ∈ N , pick j ∈ {1, 2} uniformly at random and set Nj ← Nj ∪ {i}. Let
σ(j) = {σi}i∈Nj

(i.e., the restriction of profile σ to voters in Nj) for each j ∈ {1, 2}. Then,
given a set of candidate rules F , Agreement by Consistency (AbC) is an RPR defined as

AbC(F,σ) = argmin
f∈F

E
[
KT

(
f(σ(1)), f(σ(2))

)]
, (1)

where the expectation is over splitting σ into σ(1) and σ(2) by process described above.

In words, AbC returns the SWFs among F that minimize, in expectation,4 the disagreement when
applied separately to two sides of a random split of σ. The next example illustrates this.
Example 4. Fix some integer k ≥ 2 and consider the profile σ with alternatives A = {a, b, c} and
n = 3k voters. The voters comprise three groups of size k each, with the following preferences:
• Group 1 ranks a ≻ b ≻ c. • Group 2 ranks a ≻ c ≻ b. • Group 3 ranks b ≻ c ≻ a.
Consider the set of candidate rules F = {fp, fv} (i.e., plurality and veto). Say σ(1) and σ(2) are
the random variables resulting from splitting σ via the random process in Box 1. First, consider fp:
say r1p = fp(σ

(1)) and r2p = fp(σ
(2)). Since alternative c is not ranked top by any voter, both r1p

and r2p will rank a ≻ c (resp. b ≻ c) unless all of the 2k (resp. k) voters ranking a (resp. b) as their
top alternative end up on the same side of split, in which case we get a tie. Thus,

E
[
Da,c

r1p,r
2
p

]
= E

[
Db,c

r1p,r
2
p

]
= 0; E

[
T a,c
r1p,r

2
p

]
≤ 1

22k−1
; E

[
T b,c
r1p,r

2
p

]
≤ 1

2k−1
.

Using the linearity of expectation, this implies the expectation in (1) for fp is E
[
KT

(
r1p, r

2
p

)]
=

E
[
Da,b

r1p,r
2
p
+ T a,b

r1p,r
2
p
/2 +Da,c

r1p,r
2
p
+ T a,c

r1p,r
2
p
/2 +Db,c

r1p,r
2
p
+ T b,c

r1p,r
2
p
/2
]
≤ 1 +

1

22k
+

1

2k
≤ 1.32. (2)

Now, consider fv: say r1v = fv(σ
(1)) and r2v = fv(σ

(2)). Since the number of voters that rank a
and b bottom are tied, r1v and r2v will either disagree about a and b, or have them tied. Thus, we
cannot have Da,b

r1v,r
2
v
= T a,b

r1v,r
2
v
= 0. The same is true for any other pair of alternatives. This implies

E
[
KT

(
r1v, r

2
v

)]
= E

[
Da,b

r1v,r
2
v
+ T a,b

r1v,r
2
v
/2 +Da,c

r1v,r
2
v
+ T a,c

r1v,r
2
v
/2 +Db,c

r1v,r
2
v
+ T b,c

r1v,r
2
v
/2
]
≥ 1.5. (3)

Comparing (2) and (3), we see that AbC(F,σ) = {fp}. Choosing plurality over veto indeed makes
sense for σ, as the former clearly gives more information on how alternatives compare to each other.

We now discuss three extensions of AbC, which we later implement (Section 7). As computing the
expected disagreement in (1) for each SWF can be difficult for more complicated profiles and rules
than in Example 4, in practice AbC can be approximated for finite |F | via Monte Carlo sampling,
i.e., by splitting voters via the random process in Box 1, computing KT (f(σ(1)), f(σ(2))) for each
f ∈ F , and repeating for a desired number of splits, eventually returning the SWF with the minimum
average disagreement. Even for infinite |F |, optimization/learning algorithms can be used to find
the minimizer of (1). For example, if F = FS (Def. 1), one can run a constrained optimization with
the scoring vector (si)i∈[m] as variables. Indeed, our AbC implementation in Section 7 uses Monte
Carlo sampling and includes (among other rules) an optimization over all positional scoring rules.

A more general setting is that of partial rankings, where each voter i ∈ N ranks a subset Ai ⊆ A.
This setup is more appropriate for certain settings where we would like to utilize AbC, such as peer
review and RLHF. To extend AbC to partial rankings, we must take into account that each alternative
is no longer ranked by every voter. Thus, some alternatives may have more evaluations on one side
of a random split, while others’ evaluations will be more evenly split. Ideally, we should penalize
disagreements over the former alternatives less harshly, as one side of the split may lack sufficient
information about them. Indeed, in the extreme case where all evaluations of an alternative are on the
same side, it is unreasonable to expect any SWF to rank this alternative consistently across the split.
Thus in Section 7, we replace KT in (1) with the weighted KT function (Kumar & Vassilvitskii,
2010), setting the weight of an alternative according to how evenly it is represented across a split.

4In Box 1, there is a 2−(n−1) probability that Ni = ∅ for some i ∈ {1, 2}. In this case, we take f(σ(i)) to
be the empty ranking (all alternatives tied) for all f ∈ F . This effectively gives zero weight to all such splits.

5
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5 AXIOMATIC ANALYSIS OF AbC

We next investigate the behavior and properties of AbC by introducing natural axioms for RPRs.

5.1 CONSISTENCY AXIOMS

As RPRs intend to identify rules that are appropriate to a given profile, it is natural to seek RPRs
that behave consistently with changes to the profile. Below, we define axioms that formalize this.

Reversal symmetry: One basic change to a profile is to flip every voter’s ranking. In this case, we
would like the SWFs picked by a RPR to flip too. Formally, for a positional scoring rule fs ∈ FS , say
rev(fs) is the scoring rule fs′ associated with s′ = (1−sm, . . . , 1−s1), e.g., the reverse of plurality
is veto, whereas Borda count is its own reverse. For F ⊆ FS , we write rev(F ) = {rev(f) : f ∈ F}.
For any ranking r ∈ L(A) ∪ R(A), say rev(r) is the reversed ranking (e.g., a ≻ b ≻ c becomes
c ≻ b ≻ a). Last, say rev(σ) = {rev(σi)}i∈N for any profile σ. We now define reversal symmetry,
inspired by the homonymous property for single-winner elections by Saari (1994).
Definition 5. An RPR Z satisfies reversal symmetry if for any subset of positional scoring rules
F ⊆ FS such that rev(F ) = F and for all profiles σ, we have rev(Z(F,σ)) = Z(F, rev(σ)).

To see why this is a natural property, suppose the “signal” in the votes is concentrated at the top: for
each voter, only the choice of the top alternative is statistically informative. In that case, a reasonable
RPR should choose plurality. But if we flip all the votes, the signal is concentrated at the bottom,
and a reasonable RPR should choose veto. As shown in Theorem 1 below, AbC satisfies this axiom.

Shuffling consistency: As with the example above, in some profiles certain parts of the rankings
may be more informative than others. For example, if we uniformly “shuffle” an interval of positions
in every voter’s ranking, exactly where in this interval an alternative ends up reveals no information
on how it compares to other alternatives in the interval. Thus, for such a “shuffled profile,” we would
want our RPR to pick rules that treat these positions equivalently. We now formally define shuffling.
Definition 6. Given a profile σ and a subset S ⊆ {1, 2, . . . ,m}, the k-shuffling of σ with respect to
S (denoted πk(σ, S)) is a profile obtained as follows: For each voter i ∈ N , (1) Create k ·m! copies
of voter i’s ranking σi and separate them into |S|! groups of equal size; (2) Assign each group to a
unique permutation of S. Modify the votes in each group so that the candidates in the positions in
S are permuted according to the assigned permutation; (3) Add all copies to the final profile.

For instance, if σ consists of only a ≻ b ≻ c, then π1(σ, {1, 2}) has six rankings, three a ≻ b ≻ c
and three b ≻ a ≻ c. Our next axiom looks at the extreme case of shuffling all but a single position.
Definition 7. Say we are given a finite set of positional scoring rules F ⊆ FS containing plurality
(i.e., fp ∈ F ) and a profile σ such that fp(σ) has no ties. Then, an RPR Z satisfies plurality-shuffling
consistency (PSC) if for any such F and σ, there is a k ∈ Z+ so that Z(F, πk′

(σ, [2,m])) = {fp}
for all k′ ≥ k, i.e., Z picks only fp for the shuffling with respect to [2,m] = {2, 3, . . . ,m}.

Intuitively, for a (sufficiently large) profile where the top positions of the votes gives an unambiguous
ranking, but the remaining m− 1 positions are effectively indistinguishable, an RPR satisfying PSC
identifies the rule that treats these m − 1 positions equally (plurality) as the only appropriate rule.
Such a profile can approximate settings where the voters exclusively know/state their top alternative,
e.g., in certain types of RLHF queries (Xu et al., 2024). PSC is a natural property that respects the
symmetry in the profile and identifies where the “signal” in the votes is concentrated. Despite this,
a large class of RPRs, which we introduce next, all fail PSC, as we will show in Theorem 1.
Definition 8. An RPR Z is welfare-maximizing if there exists u : L(A) × R(A) → R such that
Z(F,σ) = argmaxf∈F u(σ, f(σ)) for all σ and F , where we write u(σ, r) =

∑n
i=1 u(σi, r).

Welfare-maximizing RPRs capture a common approach: interpreting the optimal voting rule as one
that maximizes social welfare with respect to some utility function (Caragiannis & Procaccia, 2011;
Gershkov et al., 2017). As Definition 8 puts no restrictions on the function u, welfare-maximizing
RPRs constitute a wide class. Nevertheless, we will show all welfare-maximizing RPRs fail PSC.

On the other hand, this is not the case for AbC. To see this, take a random split of the shuffled profile
πk(σ, [2,m]). Given the balanced nature of all positions except the first, any rule that treats a dis-
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tinction between alternatives in these positions as a signal will inevitably observe the reversed signal
on the other side of the split, leading to a higher disagreement. We formalize this in Theorem 1.

Union consistency: Next, we study the behavior of RPRs when we combine sets of voters, inspired
by an analogous axiom for voting rules, simply named consistency (Young, 1975). Informally, it
dictates that whenever an alternative is the winner of a voting rule applied to the rankings of two
distinct sets of voters, the same alternative should still win when we bring those sets of voters
together. We now define our version of the axiom, named union consistency, specifically for RPRs.

Definition 9. For two profiles σa and σb over the same alternatives but with two disjoint sets of
voters Na and Nb, say σa + σb is the profile with all voters Na ⊔ Nb. An RPR Z satisfies union
consistency (UC) if Z(F,σa) ∩ Z(F,σb) ̸= ∅ implies Z(F,σa + σb) = Z(F,σa) ∩ Z(F,σb).

Unlike previous axioms, AbC does not satisfy UC, but (as we show below) neither does any RPR
satisfying reversal symmetry and PSC, giving us our first impossibility result for RPRs. Further,
we argue that union consistency is less significant for an RPR than its counterpart for voting rules:
just because a rule is appropriate for two different sets of rankings does not necessarily mean it is
appropriate for their union, especially if they are differently distributed. Indeed, in the extreme case
of a single voter, any sensible aggregation rule (i.e. that returns the ranking itself) is appropriate. We
now present Theorem 1, which states our results regarding the axioms in this subsection.

Theorem 1. (I) AbC satisfies reversal symmetry. (II) Any welfare-maximizing RPR fails PSC; AbC
satisfies it. (III) No (anonymous) RPR can satisfy all three of reversal symmetry, PSC, and UC.

5.2 PRESERVED AXIOMS

While using an RPR has advantages beyond just outputting an aggregate ranking (see Section 1),
it is true that an RPR Z, when paired with a set of candidate rules F , induces an SWF: fF

Z (σ)
def
=

f(σ) where Z(F,σ) = {f}. In words, fF
Z is the SWF that first maps a profile to an SWF using Z,

and then applies that SWF to the profile. For fF
Z to be well defined, we must have |Z(F,σ)| = 1.

As we are interested in the properties of fF
AbC , for this subsection alone, we restrict our setting to

profiles for which |AbC(F,σ)| = 1, and to RPRs Z for which |Z(F,σ)| = 1 for these profiles.

Clearly, the axiomatic properties of fF
Z will depend on our choice of the candidate rules F . By

selecting F that all satisfy a certain property, can we ensure that so will fF
Z ? More formally, we say

an RPR Z preserves a property P if whenever P is true for all f ∈ F , then P is true for fF
Z . For

example, recall that an SWF is neutral (resp. anonymous) if permuting the alternatives A (resp. the
voters N ) in a profile results in the output ranking being permuted in the same way (resp. the output
ranking not changing). It is immediate from Box 1 that AbC preserves these two properties. On the
other hand, this is not true for all RPRs, e.g., for any a ∈ A, say Za maps each σ to the SWF f ∈ F
that ranks a highest in f(σ). Then, fF

Za
is clearly not neutral, even if all f ∈ F are. Still, as show in

Theorem 2 below, certain fundamental social choice axioms are preserved by all RPRs.

Not all axioms are as easily preserved. An SWF satisfies monotonicity if promoting an alterative in
a voter’s ranking while keeping all else constant does not hurt that alternative in the output ranking
(cf. Appendix C.2 for a formal definition). It turns out AbC does not preserve monotonicity. This is
because promoting an alternative may cause AbC to now pick a different rule ranking that alternative
further below, even if it does not hurt that alternative under any specific rule. Still, much like union
consistency, we show that preserving monotonicity is incompatible with an axiom that AbC satisfies.

Theorem 2. (I) AbC preserves anonymity & neutrality. (II) Any RPR preserves the Smith criterion,
Condorcet consistency, majority winner, pairwise majority consistency, and unanimity. (III) No
(anonymous) RPR can satisfy reversal symmetry and preserve monotonicity.

For readers unfamiliar with the axioms in (II), we provide the formal definitions in Appendix C.2.
(II) demonstrates a strength of not just AbC, but of our RPR framework, showing how one can still
reap the benefits of the axiomatic approach by restricting the candidate rule set to certain SWFs.

Overall, we have shown that AbC satisfies several natural axioms. For axioms it fails, we have given
impossibility results showing each is incompatible with axioms AbC satisfies.
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Figure 1: Log-log plots of KT between ground truth and the ranking generated by SWFs on the
complete profile vs. KT between rankings generated by SWFs on splits of the data on partial rank-
ings drawn from the Mallows & Plackett-Luce models. Each point shows average distance over 10
splits for a single profile. In both cases, the model’s MLE of the model outperforms other SWFs.

6 COMPUTATIONAL PROBLEM: PERFPOS

AbC picks the SWF(s) from F that minimizes the expected disagreement over a random split
(Box 1). In this section, we show that when F = FS (positional scoring rules), the algorithmic
problem of minimizing disagreement over even a given split is hard. Say we are given a ranking
σi ∈ L(A) for each voter i ∈ N , as well as an even split of voters N = N1 ⊔N2 with |N1| = |N2|.
Then, PERFPOS (Perfect Positional) asks: Is there a positional scoring rule fs ∈ FS that achieves
perfect consistency over this split, i.e., obtains KT (fs(σ

(1)), fs(σ
(2))) = 0?

Theorem 3. PERFPOS is NP-complete.

This shows that when F = FS , the problem of computing the minimal possible disagreement is not
only hard, but also hard to approximate to any multiplicative factor (since any algorithm with such
a guarantee must return a solution with disagreement 0 when possible). While technically distinct,
our result is aligned with other hardness results for optimizing over positional scoring rules, e.g., for
picking the rule most consistent with an underlying true ranking (Caragiannis et al., 2019).

7 EXPERIMENTS

Despite our complexity result, AbC can be efficiently implemented using Monte Carlo sampling,
even when all positional scoring rules are included in candidate rules. We now give experimen-
tal results evaluating AbC and discuss their implications. See Appendix D for additional details
regarding the experiments, including specific datasets, distributions, and parameter settings.

Ground truth distance vs. disagreement: While AbC does not assume a ground truth, if a gen-
erative model is a reasonable approximation of the data, it performs desirably: Figure 1 highlights a
clear positive relationship between distance to ground truth and disagreement between splits for sev-
eral SWFs under partial rankings drawn from two well-known distributions, confirming our intuition
from MVUEs (Section 2). The SWFs we test include an optimization for minimizing disagreement
over all positional scoring rules (“Best Positional Scores”, discussed further below). Importantly,
for both Mallows and Plackett-Luce, the model’s MLE (Kemeny and PL MLE, respectively) outper-
forms other SWFs in both axes. As each MLE has the lowest disagreement for its model, AbC would
pick it when given data from this model, hence obtaining the benefits of the statistical approach.

Score data: AbC can also be applied when evaluators submit ratings/scores rather than rankings;
we simply split the ratings received by each alternative via the random process in Box 1. Running
AbC then provides insights into functions from ratings to aggregate rankings. Table 1 shows the
mean disagreement of score aggregation functions on the astronomy peer review dataset provided
by Kerzendorf et al. (2020). While past work suggests items with a high maximum score are often
prioritized in peer review (Nierstrasz, 2000), AbC shows mean functions provide better consistency.

Aggregating contests: In some settings such as evaluating AI agents (Lanctot et al., 2025a), contes-
tants compete in several events (each of which acts as a voter), and how to best aggregate the results

8
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Table 1: Mean and St. Dev. of KT distance over 1000 splits from several metrics on review scores.

Arithmetic Mean Min Max Median Geometric Mean

0.364± 0.001 0.444± 0.001 0.409± 0.001 0.371± 0.001 0.369± 0.001

(a) Distance between splits of rankings in empirical
election data from cities using Instant Runoff Voting
(IRV). Details on data in this plot are found in Table 2.

(b) Distance between splits for SWFs aggregating
rankings of drivers in F1 races. F1 vectors are eval-
uated for only the years in which that rule was in use.

Figure 2: Split distance with several rules on data from political elections and Formula One races.

into an overall ranking is unclear. Indeed, Formula One (F1) has changed the positional scoring rule
used for aggregating races several times (Boehmer et al., 2022). With AbC, we measure the impact
of such changes on consistency (Fig. 2b); an analogous experiment on Olympics is in Appendix D.4.

Political elections: Figure 2a considers running AbC on several political elections with large num-
bers of voters; in each, the winner was determined using Instant Runoff Voting (IRV). However,
in some of these elections (e.g., elections 1,16,18), IRV is the rule that gives the worst disagree-
ment. Importantly, in 21 out of the 25 elections, there is some rule that achieves zero disagreement,
however this rule is different between elections, confirming our intuition that different rules are
appropriate for different settings (Section 1). As a result, AbC reliably selects a consistent ranking.

Figure 3: SGD and Simulated Anneal-
ing performance during optimization of
KT distance for Formula One race data.

Optimizing positional scoring rules: While deciding
whether a positional scoring rule leads to zero disagree-
ment is NP-complete, we can, in practice, learn positional
score vectors which approximately minimize the KT dis-
tance for sampled splits. Figure 3 shows the KT distance
of the best vector found by two optimization methods
on Formula One race data: Stochastic Gradient Descent
(SGD) and Simulated Annealing. While both methods
find score vectors which improve upon their initial state,
we use Simulated Annealing in the experiments above as
it typically finds a score vector with lower disagreement
and requires much less compute time than SGD.

Overall, our method provides a principled way in which users can evaluate the impact of modifica-
tions to existing methods by running AbC on their own data. In some cases, the answer is that it is
an improvement: both changes to F1 rules significantly reduced disagreement (Figure 2b). In others,
the proposed modification hurts consistency: Meyer et al. (2022) consider adding outlier rejection
to Borda (removing the min. & max. scores of each alternative) for peer review, but our experiment
suggests this method (Trimmed Borda) increases disagreement on their dataset (Appendix D.3).

8 CONCLUSION AND FUTURE WORK

Treating voters’ rankings as fixed, we addressed the problem of picking the most appropriate rule. It
is of interest to understand RPRs, and specifically AbC, more generally under strategic behavior of
voters. Such behavior makes it harder to study the impact of a proposed rule change on consistency
by running AbC on prior data. Another direction of future work is to investigate RPRs under other
axioms, either translated from axioms for rules or novel axioms for rule picking rules. Overall, RPRs
(and AbC) open the door to principled, data-driven rule selection for diverse real-world applications.

9
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REPRODUCIBILITY STATEMENT

The complete proofs of the theoretical claims made in the main body of the paper (in particular Sec-
tions 5 and 6) can be found in Appendix C. Additional details regarding the experiments in Section 7,
including specific datasets, distributions, and parameter settings, can be found in Appendix D. The
code for our experiments can be found in the Supplementary Material submitted separately, which
includes a README file with instructions on reproducing each figure in the paper.
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A LLM USAGE

LLMs were used for making minor edits to the writing of this paper and the associated code (e.g.,
for rephrasing certain sentences in the main body, checking for typos, or outputting/editing short
code for helper functions). Other than this, LLMs played no major role in producing this paper.

B ADDITIONAL RELATED WORK

In this section, we further elaborate on prior work conceptually related to our work.
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Rule selection The question of comparing different voting rules has been widely studied in the
social choice literature. For an overview of the axiomatic and computational properties of various
voting rules, see Brandt et al. (2016). There has been earlier empirical work on collecting vot-
ers’ preferences over voting rules themselves (Sertel & Kara, 2003; Giritligil Kara & Sertel, 2005;
Aldrich et al., 2014). However, it has been shown that (unsurprisingly) in many real-life cases voters
simply prefer the rules that benefit their preferred candidate (Blais et al., 2015; Weber, 2020). In
general, it is clear that even social choice theorists themselves cannot reach a consensus on what
is the best voting rule (Laslier, 2012). There has also been interest in using tools from automated
reasoning for instantiating and generating formal justifications for using a voting rule (Cailloux &
Endriss, 2016) or imposing an axiom (Boixel & Endriss, 2020). Similar tools were used for bypass-
ing voting rules altogether by picking a set of axioms that impose a certain outcome (Schmidtlein &
Endriss, 2023).

MLE approach The idea of treating votes as noisy estimates of a ground truth goes back to Con-
dorcet [1785], who designed a noise model where every voter has a fixed probability of ranking
each pair of alternatives correctly, and solved it for two and three alternatives. Young (1995) later
extended this model to an arbitrary number of alternatives, showing that its MLE is equivalent to
an earlier rule introduced by Kemeny (1959). Conitzer & Sandholm (2005) later studied the ques-
tion of which voting rules are MLEs for some noise model where votes are sampled independently,
in particular showing that any rule that violates consistency cannot be an MLE. Combined with
the result that a continuous and neutral social choice function (rules outputing a set of winners) is
consistent if and only if it is a scoring rule (Young, 1975), this shows that no other (neutral and
continuous) social choice function can be the MLE of any noise model. Conitzer et al. (2009) did
a similar analysis for social preference functions (rules outputting a set of rankings) providing an
exact characterization of MLE rules as simple ranking scoring functions. Similar analyses followed
for voting in multi-issue domains (Xia et al., 2010), with partial rankings (Xia & Conitzer, 2011),
and on social networks (where voters no longer vote independently) Conitzer (2013). In the oppo-
site direction, Azari Soufiani et al. (2014) study the MLE of two known noise models to identify
whether they satisfy certain axiomatic properties, and Xia (2016) extend their results. Tideman &
Plassmann (2014), on the other hand, construct a spatial noise model specifically to approximate
data from actual elections, and evaluate the performance of common voting rules under this model.
Lastly, a related but distinct approach to classify voting rules is distance-rationalizatability (DR)
(Meskanen & Nurmi, 2008; Elkind et al., 2009), which requires a rule to map each election to the
result of the closest consensus according to some metric. Elkind et al. (2010) combine the MLE and
DR approaches to better understand and compare rules, and in this framework declare Kemeny to
be the best rule, as it fits both frameworks with the same underlying function. It is worth noting,
however, that DR only applies to social choice functions.

Statistical model dependence in estimation from pairwise comparisons Another line of lit-
erature on model (in)dependence focuses on estimation from pairwise comparisons. Commonly
used statistical models in this setting include the Bradley–Terry–Luce (BTL) (Bradley & Terry,
1952; Plackett, 1975) and Thurstone models (Thurstone, 1927), which all fall under the class of
parameter-based models (also known as random utility models). However, recent studies (Shah
et al., 2017; Shah & Wainwright, 2018; Heckel et al., 2019) have demonstrated that estimators de-
rived from more general “permutation-based” models offer two notable advantages. First, when data
are generated from these broader permutation-based models, these estimators exhibit significantly
better performance. Second, even when data originate from parameter-based models such as BTL
or Thurstone, the guarantees provided by these general estimators are within logarithmic factors of
those achieved by estimators specifically tailored to parameter-based models.

C OMITTED PROOFS

In this section, we give the proofs that were omitted in the main body of the paper.

C.1 PROOF OF THEOREM 1

We first recall our main result from Section 5.1, regarding the consistency axioms for RPRs.
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Theorem 1. (I) AbC satisfies reversal symmetry. (II) Any welfare-maximizing RPR fails PSC; AbC
satisfies it. (III) No (anonymous) RPR can satisfy all three of reversal symmetry, PSC, and UC.

We prove each claim in the theorem as a seperate proposition.
Proposition 10. AbC satisfies reversal symmetry.

Proof. Given any positional scoring rule fs ∈ F and a profile σ, say fs′ is the reverse rule of fs,
i.e., s′ = (s′1, s

′
2, . . . , s

′
m) = (1 − sm, 1 − sm−1, . . . , 1 − s1). The total scores assigned to any

alternative a ∈ A by fs′ when run of rev(σ) (see Definition 1) is

ts
′

rev(σ)[a] =

m∑
j=1

s′jMrev(σ)[a, j] =

m∑
j=1

(1− sm+1−j)Mσ[a,m+ 1− j] =

m∑
j=1

(1− sj)Mσ[a, j] = n− tsσ[a],

implying that fs(σ) = rev(fs′(rev(σ))) = rev(rev(fs)(rev(σ))). Additionally, we note that the
Kendall-Tau distance (Definition 3) is symmetric with respect to reversals, i.e., KT (r1, r2) =
KT (rev(r1), rev(r2)). Thus,

KT (fs(σ
(1)), fs(σ

(2))) = KT (rev(rev(fs)(rev(σ(1)))), rev(rev(fs)(rev(σ(2)))))

= KT (rev(fs)(rev(σ(1))), rev(fs)(rev(σ(2)))).

This implies that if fs minimizes equation 1 in Box 1 over random splits of σ, then rev(fs) mini-
mizes it over random splits of rev(σ), and therefore AbC(F,σ) = rev(AbC(F, rev(σ))).

Proposition 11. Any welfare-maximizing RPR Z fails plurality-shuffling consistency.

Proof. Take any fs ∈ FS . We will show that for any k ∈ Z+, we have fs(π
k(σ, [2,m])) = fp(σ),

where fp is plurality. Recall from Definition 1 we have s1 = 1 and sm = 0 WLOG. By Definitions 1
and 6, the total score assigned to a given alternative a ∈ A by fs on input πk(σ, [2,m]) (say tk[a])
is

tk[a] = Mσ[a, 1] · k ·m!s1 +

m∑
i=2

Mσ[a, i] ·
m∑
j=2

k ·m!

(m− 1)
sj

= Mσ[a, 1] · k ·m! +
k ·m!

(m− 1)

m−1∑
j=2

sj

 (n−Mσ[a, 1])

=
k ·m!

(m− 1)

m−1∑
j=2

sj

n+Mσ[a, 1] · k ·m!

(
1−

∑m−1
j=2 sj

m− 1

)
≡ C +D ·Mσ[a, 1],

where C and D does not depend on a. Since 1 = s1 ≥ s2 ≥ . . . ≥ sm = 0, we have
∑m−1

j=2 sj <
m− 1 and therefore D > 0. This implies that for any a, b ∈ A we have

a ≻fs(πk(σ,[m−1])) b⇔ tk[a] > tk[b]

⇔Mσ[a, 1] > Mσ[b, 1]

⇔ a ≻fp(σ) b.

Since fs was arbitrarily chosen, this implies all rules in FS return the same output on πk(σ, [m−1]).
Hence, for any welfare-maximizing RPR Z and any F ⊆ FS , we have Z(F, πk(σ, [m− 1])) = F ,
showing that the rule fails Definition 7.

Since all fs ∈ FS produce the same output on πk(σ, [m− 1]), one might wonder whether it matters
which rule an RPR returns. However, in practice an RPR might be employed to “lock in” a rule for
future use, allowing us to use it in future profiles coming from the same source without re-running
the RPR at each round, potentially increasing interpretability. Hence, with a plurality-shuffling-
consistent rule, we would be able to keep on using fp in future profiles that are approximately
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(but not exactly) shuffled, as future repetitions of the same process are likely to once again have
their signal concentrated in the top position. Moreover, identifying that no fs ∈ FS provides any
information beyond fp has a computational advantage: while the output of fp can be computed in
O(n+m) time, an arbitrary fs ∈ FS might require O(mn) time.
Proposition 12. AbC satisfies plurality-shuffling consistency.

Proof. Fix some finite F ⊂ FS . If |F | = 1 we are done. Otherwise, given any profile σ (that
satisfies the condition in Definition 7, i.e., fp(σ) contains no ties) with n = n voters an m = m ≥ 3
alternatives,5 define σk = πk(σ, [2,m]) for all k. Let M be the matrix such that for each alternative
a ∈ A and index i ∈ [m], M [a, i] indicates the number of voters in σ that rank a in the ith position,
and let Mk be the analogous matrix for σk.

For any f ∈ F and any two candidates a, b ∈ A, say Df,k
a,b is the indicator random variable that the

two output rankings resulting from applying f to the two sides of a random split of σk into σ
(1)
k and

σ
(2)
k (where each voter is independently and uniformly placed in one of the two sets, as defined in

Box 1) disagree about a and b’s position; i.e.,

Df,k
a,b = I[(a ≻

f(σ
(1)
k )

b and b ≻
f(σ

(2)
k )

a) or (b ≻
f(σ

(1)
k )

a and a ≻
f(σ

(2)
k )

b)].

Similarly, say T f,k
a,b is the indicator random variable that f ties a and b on one of the two profiles;

i.e.,
T a,b
r1,r2 = I[(a ⪰

f(σ
(1)
k )

b and b ⪰
f(σ

(1)
k )

a) or (a ⪰
f(σ

(2)
k )

b and b ⪰
f(σ

(2)
k )

a)].

Then, using linearity of expectation and the fundamental bridge, we get

E
[
KT (f(σ

(1)
k ), f(σ

(2)
k ))

]
= E

 ∑
a,b∈A

Df,k
a,b +

1

2
T f,k
a,b

 =
∑

a,b∈A

Pr
[
Df,k

a,b = 1
]
+

1

2
Pr
[
T f,k
a,b = 1

]
.

(4)

The rest of the proof will follow from the next lemma.

Lemma 13. For any f ∈ F \ {fp} there exists a kf ∈ Z+ such that

1. for all k ≥ kf we have Pr
[
Df,k

a,b = 1
]
+ 1

2 Pr
[
T f,k
a,b = 1

]
> Pr

[
D

fp,k
a,b = 1

]
+

1
2 Pr

[
T

fp,k
a,b = 1

]
for all a, b ∈ A such that M [a, 1] > 0 and M [b, 1] > 0;

2. If there exists c ∈ A such that M [c, 1] = 0, then Pr
[
Df,k

a,c = 1
]
+ 1

2 Pr
[
T f,k
a,c = 1

]
≥

Pr
[
D

fp,k
a,c = 1

]
+ 1

2 Pr
[
T

fp,k
a,c = 1

]
for all a ∈ A and k ∈ Z+.

Since fp(σ) contains no ties, there can be at most one c ∈ A with M [c, 1] = 0. Since m ≥ 3,

the lemma implies that
∑

a,b∈A Pr
[
Df,k

a,b = 1
]
+ 1

2 Pr
[
T f,k
a,b = 1

]
>
∑

a,b∈A Pr
[
D

fp,k
a,b = 1

]
+

1
2 Pr

[
T

fp,k
a,b = 1

]
for all k ≥ kf . By definition of AbC, this implies that for all k ≥ kf we have

f /∈ AbC(F, πk(σ, [m−1])), since (4) is strictly greater for f than for fp. Since |F | is finite, picking
k = maxf∈F\{fp} kf will ensure AbC(F, πk′

(σ, [m − 1]) = {fp} for all k′ ≥ k, as desired. We
will now prove the lemma.

Proof of Lemma 13. For any f ∈ F , say {sfi }i∈[m] is the scoring vector associated with f . Fix
any two candidates a, b ∈ A. Say M [a, 1] = pa and M [b, 1] = pb, with pa > pb WLOG.6 By
Definition 6, we have Mk[a, 1] = kpam! and Mk[b, 1] = kpbm!, whereas Mk[a, i] =

k(n−pa)m!
m−1

5If m = 2, there is a single (monotonic) positional scoring rule satisfying Definition 1: the one with score
vector (1, 0), which is also equivalent to fp.

6We cannot have pa = pb as by assumption fp(σ) contains no ties.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

and Mk[b, i] =
k(n−pb)m!

m−1 for all 1 < i ≤ m. Similarly, let Mk[(a, i); (b, j)] be the number of voters
in σk that rank a in the ith position and b in the jth position (with i ̸= j). Then

Mk[(a, i); (b, j)] =


kpaC1 if i = 1

kpbC1 if j = 1

kC2 otherwise
,

where C1 ≡ m!
m−1 and C2 ≡ (n−pa−pb)m!

(m−1)(m−2) . Given a random split of σk into σ
(1)
k and σ

(2)
k , say Xf,k

i

is the random variable indicating the total score of a minus the total score of b in σ
(i)
k according to

f for each i ∈ {1, 2}. Naturally, regardless of the split, Xf,k
1 +Xf,k

2 must add up to the total score
of a minus the total score of b in σk according to f , so

Xf,k
1 +Xf,k

2 =

m∑
i=1

sfi Mk[a, i]−
m∑
i=1

sfi Mk[b, i]

= kpam!− kpbm! +

(
k(n− pa)m!

m− 1
− k(n− pb)m!

m− 1

) m∑
i=2

sfi

=
λfk(pa − pb)m!

m− 1

where λf = (m − 1) −
∑m

i=2 s
f
i > 0, as sfm = 0. Then, using symmetry of the two sides and the

fact that pa > pb, we get

Pr
[
Df,k

a,b = 1
]
= Pr

[
Xf,k

1 ·Xf,k
2 < 0

]
= Pr

[
Xf,k

1 ·
(
λfk(pa − pb)m!

m− 1
−Xf,k

1

)
< 0

]
= Pr

[
Xf,k

1 < 0
]
+ Pr

[
Xf,k

1 >
λf (pa − pb)m!

m− 1

]
= 2Pr

[
Xf,k

1 < 0
]
.

A similar analysis gives Pr
[
T f,k
a,b = 1

]
= 2Pr

[
Xf,k

1 = 0
]
. Now, if a and b are ranked ith and jth

in a ranking, respectively, the score assigned to a minus that assigned to b by f for that ranking is
sfi − sfj . Say Bin(z) is the fair binomial distribution where z is the number of experiments and the
probability of success for each experiment is 1/2. Then,

Xf,k
1 ∼

∑
i ̸=j∈[m]

(sfi − sfj )Bin (Mk[(a, i); (b, j)])

=
∑

i<j∈[m]

(sfi − sfj ) (Bin (Mk[(a, i); (b, j)])− Bin (Mk[(a, j); (b, i)]))

=
∑

i<j∈[m]

(sfi − sfj ) (Bin (Mk[(a, i); (b, j)]) + Bin (Mk[(a, j); (b, i)])−Mk[(a, j); (b, i)])

=
∑

i<j∈[m]

(sfi − sfj ) (Bin (Mk[(a, i); (b, j)] +Mk[(a, j); (b, i)])−Mk[(a, j); (b, i)])

=
∑

i<j∈[2,m]

(sfi − sfj ) (Bin (2kC2)− kC2) +

m∑
i=2

(1− sfi ) (Bin (k(pa + pb)C1)− kpbC1) (5)

In particular, for plurality, equation 5 gives us:

X
fp,k
1 ∼

m∑
i=2

(Bin (k(pa + pb)C1)− kpbC1) = Bin (k(pa + pb)m!)− kpbm! (6)

Now, fixing some f ∈ F \ {fp}, using equation 5, we write Xf,k
1 = Y +

∑m
i=2(1− sfi )Zi, where

Y ∼
∑

i<j∈[2,m]

(sfi − sfj ) (Bin (2kC2)− kC2) , and
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Zi ∼ (Bin (k(pa + pb)C1)− kpbC1) for all i ∈ [2,m],

each sampled independently. It is easy to check that E[Y ] = 0 and that Y is a symmetric distribution.
We will treat two cases separately.

Case 1: pb = 0. In this case, we cannot have X
fp,k
1 < 0, as seen by (6). Therefore,

Pr
[
D

fp,k
a,b = 1

]
+

1

2
Pr
[
T

fp,k
a,b = 1

]
= 0 + Pr

[
X

fp,k
1 = 0

]
= 2−kpam!. (7)

For f , on the other hand, we have

Pr
[
Xf,k

1 = 0
]
≥ Pr[Y = 0;Zi = 0 for all i ∈ [2,m]] =

Pr[Y = 0]

(2kpaC1)
m−1 = Pr[Y = 0] · 2−kpam!,

and Pr
[
Xf,k

1 < 0
]
≥ Pr[Y < 0;Zi = 0 for all i ∈ [2,m]] =

1− Pr[Y = 0]

2
· 2−kpam!,

⇒ Pr
[
D

fp,k
a,b = 1

]
+

1

2
Pr
[
T

fp,k
a,b = 1

]
= 2Pr

[
Xf,k

1 < 0
]
+ Pr

[
Xf,k

1 = 0
]
≥ 2−kpam!.

(8)

Since a ∈ A and k ∈ Z+ were arbitrarily chosen, combining (7) and (8) gives us statement 2 from
the lemma.

Case 2: pb > 0. Say ϕ(N, r) is Pr[A ≤ rN ] for A ∼ Bin (N), given that 0 < r < 1
2 and rN is an

integer. By Ash (1990, Lemma 4.7.2), we know that

2−N(1−h(r))√
8Nr(1− r)

≤ ϕ(N, r) ≤ 2−N(1−h(r)), (9)

where h(r) = −r log r − (1 − r) log(1− r) is the binary entropy function. We will use equa-
tion 9 to upper bound the error probability for fp and lower bound the error probability for f . For
convenience, define

rp
def
=

pb
pa + pb

, hp
def
= h(rp), Np

def
= (pa + pb)C1.

First we start with fp. By (6) and (9), we have

Pr
[
D

fp,k
a,b = 1

]
+

1

2
Pr
[
T

fp,k
a,b = 1

]
= 2Pr

[
X

fp,k
1 < 0

]
+ Pr

[
X

fp,k
1 = 0

]
≤ 2Pr

[
X

fp,k
1 ≤ 0

]
= 2ϕ(k(pa + pb)m!, rp)

≤ 21−kNp(m−1)(1−hp) ≡ U(k),

where we will use U(k) as an upper bound that depends on k. Now consider f . Since f ̸= fp
and since 1 = sf1 ≥ sf2 ≥ . . . sfm = 0, we must have sf2 > 0. Fix some ε > 0 such that

ε < min
(

pa−pb

2(pa+pb)
, pb

(pa+pb)(1−sf2 )

)
(if sf2 = 1, then ensuring ε < pa−pb

2(pa+pb)
is sufficient). Recalling

that Xf,k
1 = Y +

∑m
i=2(1− sfi )Zi and that sfm = 0, we have

Pr
[
Xf,k

1 ≤ 0
]
≥ Pr[Y ≤ 0] · Pr[Z2 ≤ εkNp] · Pr

[
Zm ≤ −εkNp(1− sf2 )

]
·
m−1∏
i=3

Pr[Zi ≤ 0],

Pr
[
Xf,k

1 < 0
]
≥ Pr[Y < 0] · Pr[Z2 ≤ εkNp] · Pr

[
Zm ≤ −εkNp(1− sf2 )

]
·
m−1∏
i=3

Pr[Zi ≤ 0]

= Pr[Y > 0] · Pr[Z2 ≤ εkNp] · Pr
[
Zm ≤ −εkNp(1− sf2 )

]
·
m−1∏
i=3

Pr[Zi ≤ 0];
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therefore,

Pr
[
Df,k

a,b = 1
]
+

1

2
Pr
[
T f,k
a,b = 1

]
= 2Pr

[
Xf,k

1 < 0
]
+ Pr

[
Xf,k

1 = 0
]

= Pr
[
Xf,k

1 < 0
]
+ Pr

[
Xf,k

1 ≤ 0
]

≥ Pr[Z2 ≤ εkNp] · Pr
[
Zm ≤ −εkNp(1− sf2 )

]
·
m−1∏
i=3

Pr[Zi ≤ 0]

≥ Pr[Z2 ≤ ⌊εkNp⌋] · Pr
[
Zm ≤ −⌈εkNp(1− sf2 )⌉

]
·
m−1∏
i=3

Pr[Zi ≤ 0]

≥ ϕ(kNp, r2(k)) · ϕ(kNp, rm(k)) · (ϕ(kNp, rp))
m−3

where r2(k) = rp +
⌊εkNp⌋
kNp

and rm(k) = rp − ⌈εkNp(1−sf2 )⌉
kNp

. As k → ∞, we have r2(k) →
rp + ε ∈

(
0, 1

2

)
and rm(k)→ rp − ε(1− sf2 ) ∈

(
0, 1

2

)
; hence, we can choose k large enough such

that 0 < ri < 1/2 for both i ∈ {2,m}. Further, by construction, kNp · ri(k) is an integer for all

k ≥ 0 and i ∈ {2,m}. Define hi(k)
def
= hi(ri(k)) for i ∈ {2,m}. By equation 9, we then have

Pr
[
Df,k

a,b = 1
]
+

1

2
Pr
[
T f,k
a,b = 1

]
≥ ϕ(kNp, r2(k)) · ϕ(kNp, rm(k)) · (ϕ(kNp, rp))

m−3

≥ 2−kNp(1−h2(k))√
8kNpr2(k)(1− r2(k))

· 2−kNp(1−hm(k))√
8kNprm(k)(1− rm(k))

·

(
2−kNp(1−hp)√
8kNprp(1− rp)

)m−3

=
2−kNp(m−1−h2(k)−hm(k)−(m−3)hp)√

(8kNp)m−1r2(k)(1− r2(k))rm(k)(1− rm(k))(rp(1− rp))m−3
≡ L(k),

where we will use L(k) as a lower bound that depends on k. Now, we would like to show that there
exists ka,bf such that L(k) > U(k) for all k ≥ ka,bf . We have

L(k)

U(k)
=

2kNpP (k)−1√
(8kNp)m−1r2(k)(1− r2(k))rm(k)(1− rm(k))(rp(1− rp))m−3

, (10)

where P (k) = (m−1)(1−hp)− (m−1−h2(k)−hm(k)− (m−3)hp) = h2(k)+hm(k)−2hp.
We would like to show limk→∞

L(k)
U(k) = ∞, giving us our desired relationship. We recall that

r2(k)→ rp + ε and r2(k)→ rp − ε(1− sf2 ) as k →∞, so the denominator of equation 10 scales
as Θ(k

m−1
2 ) for large k. As for the nominator, we have limk→∞ P (k) = h(rp + ε) + h(rp − ε(1−

sf2 ))− 2h(rp) ≡ H(ε). We have H(0) = 0 and H ′(0) = h′(rp)− (1− sf2 )h
′(rp) = sf2h

′(rp) > 0

since sf2 > 0 and

h′(rp) = − log rp − 1 + log(1− rp) + 1 = log

(
1

rp
− 1

)
> log(2− 1) = 0,

as rp = pb

pa+pb
< 1

2 . We can therefore set ε > 0 small enough such that H(ε) > 0. Then the
nominator of equation 10 scales as Θ(2kNpH(ε)) for large k, dominating the denominator. Hence,
limk→∞

L(k)
U(k) = ∞, as desired. Therefore, we can choose a large enough ka,bf such that for all

k ≥ ka,bf we have

Pr
[
Df,k

a,b = 1
]
+

1

2
Pr
[
T f,k
a,b = 1

]
≥ L(k) > U(k) ≥ Pr

[
D

fp,k
a,b = 1

]
+

1

2
Pr
[
T

fp,k
a,b = 1

]
.

Since there are finitely many candidates A, picking kf = max(a,b)∈A2 ka,bf is sufficient for proving
statement 1 from the lemma.
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Proposition 14. No (anonymous) RPR can satisfy all three of reversal symmetry, plurality-shuffling
consistency (PSC), and union consistency (UC).

Proof. Assume an RPR Z satisfies PSC and reversal symmetry. We will show that Z necessarily
fails UC. Fix A = {a, b, c} and F = {fp, fv}. Say σa consists of two voters ranking a ≻ b ≻ c and
one voter ranking b ≻ a ≻ c. Similarly, say σb consists of two voters ranking c ≻ b ≻ a and one
voter ranking b ≻ c ≻ a. We have fp(σa) = a ≻ b ≻ c and fp(σb) = c ≻ b ≻ a, so both profiles
satisfy the preconditions of Definition 7. By PSC, there exist ka, kb such that for all k′a ≥ ka and
k′b ≥ kb we have Z(F, πk′

a(σa, [2,m])) = Z(F, πk′
b(σb, [2,m])) = {fp}. Pick k = max{ka, kb}

and let σ = πk(σa, [2,m]) + πk(σb, [2,m]). It is straightforward to check that σ = rev(σ) up
to a permutation of voters, with each r ∈ L(A) appearing 6k times. By anonymity and reversal
symmetry, this implies Z(F,σ) = rev(Z(F,σ)), which is only possible if Z(F,σ) = {fv, fp},
proving UC is violated.

C.2 PROOF OF THEOREM 2

Theorem 2. (I) AbC preserves anonymity & neutrality. (II) Any RPR preserves the Smith criterion,
Condorcet consistency, majority winner, pairwise majority consistency, and unanimity. (III) No
(anonymous) RPR can satisfy reversal symmetry and preserve monotonicity.

We prove each claim as a separate proposition.
Proposition 15. AbC preserves anonymity & neutrality.

Proof. The proof follows definitionally from the anonymity and neutrality of the Kendall-Tau dis-
tance (Definition 3), and therefore of the AbC function (Box 1).

Next, we formally define the social choice axioms given in part (2) of Theorem 2. Given a profile σ
and a, b ∈ A, we say a pairwise defeats b if |{i ∈ N : a ≻σi

b}| > |{i ∈ N : b ≻σi
a}|. Then, we

say an SWF f ∈ F satisfies. . .

• . . . the Smith Criterion (SC) if the alternative(s) ranked highest in f(σ) belongs to the Smith
set of σ, i.e., the smallest set S ⊆ A such that every a ∈ S pairwise defeats every b ∈ A\S.

• . . . Condorcet Consistency (CC) if it satisfies the SC for all profiles σ that have a Smith set
containing a single alternative (called the Condorcet winner).

• . . . Majority Winner (MW) if is satisfies CC whenever the Condorcet winner is the top-
ranked candidate of a majority (> m) of voters.

• . . . Pairwise Majority Consistency (PMC) if whenever there exists r ∈ R(A) such that
a ≻r b if and only if a pairwise defeats b in σ, then f(σ) = r. (Ge et al., 2024)

• . . . unanimity if whenever σi = r for all i ∈ N , then f(σ) = r.

Proposition 16. Any RPR Z preserves the Smith criterion, Condorcet consistency, majority winner,
pairwise majority consistency, and unanimity.

Proof. Like Proposition 16, the proof follows from the definitions of the axioms. Each of them are
of the form “if σ satisfies conditions X , then f(σ) must satisfy conditions Y .” Since for each σ
we have fF

Z (σ) = f(σ) for some f ∈ F , restricting F to rules that satisfy this axiom will ensure
fF
Z (σ) will satisfy Y whenever σ satisfies X .

Next, we formally define monotonicity.
Definition 17. Given a weak ranking r ∈ R(A) and an alternative a ∈ A, say rankr(a) = 1 +
|{b ∈ A : b ≻r a}| is the rank of a in r. We say an SWF f satisfies monotonicity if for any
profile σ and alternative a ∈ A, if σ′ is the same as σ except some voters now rank a higher, then
rankf(σ)(a) ≥ rankf(σ′)(a).

Before proving the general impossibility result in part (3) of Theorem 2, we will show that AbC
does not preserve monotonicity.
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Example 18. Say F = {fp, fv} (plurality and veto). Both of these rules are monotonic, as all
positional scoring rules are. Fix k ∈ Z+ and consider the following profile σ:

• Group 1: k voters rank a ≻ b ≻ c ≻ d.

• Group 2: k people voted d ≻ c ≻ a ≻ b.

• Group 3: k people voted d ≻ c ≻ a ≻ b.

• Group 4: k voters rank b ≻ a ≻ c ≻ d.

• Group 5: 3k voters rank c ≻ a ≻ b ≻ d.

• Group 6: 3k voters rank d ≻ b ≻ a ≻ c.

The veto scores (the number of voters that rank them bottom) of a, b, c, d are
0, 2k, 3k, 5k, respectively. By an analogous argument to that in Example 4,
Pr
[
fv(σ

(1)) = fv(σ
(2)) = (a ≻ b ≻ c ≻ d)

]
→ 1 as k → ∞, where the probabilities are

taken over the random process in Box 1. Hence, the expectation in Equation (1) of Box 1
approaches 0 for fv as k grows. However, the plurality scores (the number of voters that rank them
top) of a and b are tied, implying the the probability that fp(σ(1)) and fp(σ

(2)) will disagree about
a and b converges to 1 as k → ∞. This implies the expectation in (1) approaches at least 1 for fp
as k grows. Therefore, there exists a k1 such that AbC(F,σ) = {fv} for all k ≥ k1, and therefore
fF
AbC(σ) = (a ≻ b ≻ c ≻ d). Now say the voters in group 1 and 2 promote b by a single spot, to

get the profile σ′:

• Group 1: k voters rank b ≻ a ≻ c ≻ d.

• Group 2: k people voted d ≻ c ≻ b ≻ a.

• Group 3: k people voted d ≻ c ≻ a ≻ b.

• Group 4: k voters rank b ≻ a ≻ c ≻ d.

• Group 5: 3k voters rank c ≻ a ≻ b ≻ d.

• Group 6: 3k voters rank d ≻ b ≻ a ≻ c.

Importantly, we have σ′ = rev(σ) up to permuting Groups 1 with 2, 3 with 4, and 5 with 6. By
anonymity and reversal symmetry, this implies AbC(F,σ′) = {fp}, so fF

AbC(σ
′) = (d ≻ c ≻

b ≻ a). Thus, by promoting b, we have gotten rankfF
AbC(σ)(b) = 2 < 3 = rankfF

AbC(σ′)(b), which
violates monotonicity.

We now show how the same example can be used for other (anonymous) RPRs satisfying reversal
symmetry, in order to prove part (3) of Theorem 2.

Proposition 19. No (anonymous) RPR can satisfy reversal symmetry and preserve monotonicity.

Proof. Say RPR Z satisfies reversal symmetry and is anonymous. Take σ,σ′ and F from Exam-
ple 18. We consider two cases.
Case 1: Z(F,σ) = {fv}. Then, by the same reasoning as in the proof of Example 18, we must
have Z(F,σ′) = {fp} (as that example only uses anonymity and reversal symmetry to show this),
and monotonicity is violated by fF

Z .
Case 2: Z(F,σ) = {fp}. In that case, fF

Z (σ) = (d ≻ c ≻ a = b), i.e., a and b are tied in the bot-
tom. By reversal symmetry, we have Z(F,σ′) = {fv} and therefore fF

Z (σ′) = (a = b ≻ c ≻ d).
However, one can go from σ′ to σ by simply promoting a by a spot in the rankings of groups 1 and
2. This implies that rankfF

Z (σ′)(a) = 1 < 3 = rankfF
Z (σ)(a), so promoting a results in increasing

its rank, therefore fF
Z is not monotonic.

In either case, we see that fF
Z violates monotonicity. Since fp and fv are both monotonic, this proves

that Z does not preserve monotonicity.
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C.3 PROOF OF THEOREM 3

We recall the complexity result from Section 6.

Theorem 3. PERFPOS is NP-complete.

We first introduce a generalization of the computational problem PERFPOS, which we will call
kPERFPOS: For each voter i ∈ N , we are given a strict ranking σi ∈ L(Ai) over a subset of
alternatives Ai ⊆ A, with |Ai| = k. We are also given a split of voters N = N1 ⊔ N2 with
|N1| = |N2|. For each j ∈ {1, 2}, a ∈ A, and i ∈ [k], Mj [a, i] indicates the number of voters
in Nj that rank a in their ith position. Then, PERFPOS asks: is there a positional scoring rule
fs ∈ FS that achieves zero disagreement over this split, i.e., is there a vector s = (si)i∈[k] with
1 = s1 ≥ s2 ≥ . . . ≥ sk = 0 such that for all a, b ∈ A

(T1[a]− T1[b])(T2[a]− T2[b]) > 0,

where Tj [a] =
∑k

i=1 Mj [a, i]si for any a ∈ A and j ∈ {1, 2}.
Clearly kPERFPOS contains PERFPOS (for k = m). However, as we show next, it is not harder:
Given an instance of kPERFPOS (with input profile σ), complete the ranking of each voter i ∈ N
to a strict ranking over all alternatives by placing the remaining m− k alternatives in A \ Ai at the
bottom of σi, giving rise to a new (complete) profile σ′. Then define σ′′ = π1(σ′, [k,m]), i.e.,
the 1−shuffling of σ′ with respect to positions [k,m] = {k, k + 1, . . . ,m} (Definition 6). Then,
we claim the answer to the original kPERFPOS instance with profile σ is a yes if and only if the
answer to the PERFPOS instance using σ′′ (and the same split as σ) is a yes. Indeed, if there exists
a positional scoring rule fs with 1 = s1 ≥ s2 ≥ . . . ≥ sk = 0 that achieves zero disagreement with

σ, then fs′′ with s′′ = (si)i∈[m] defined as s′′i =

{
si if i ≤ k

0 otherwise
achieves zero disagreement with

σ′′. On the other hand, given a positional scoring rule fs′′ with 1 = s′′1 ≥ s′′2 ≥ . . . ≥ s′′m = 0 that

achieves zero disagreement with σ′′, define x =
s′′k+s′′k+1+...+s′′m

m−k+1 and define vector s = (si)i∈[k] as
si = (s′′i − x)/(1− x) for all i ∈ [k − 1] and sk = 0 (We have x < 1 since s′′m = 0). We will show
fs achieves zero disagreement with σ. Given any a ∈ A and j ∈ {1, 2}, the total score assigned by
fs′′ to a on input σ′′(j) (restriction of σ′′ to voters in Nj) is

T ′′
j [a] =

k−1∑
i=1

k!Mj [a, i]s
′′
i +

m∑
i=k

k!
|Nj | −

∑k−1
i′=1 Mj [a, i

′]

m− k + 1
s′′i = k!

(
x|Nj |+

k−1∑
i=1

Mj [a, i](s
′′
i − x)

)

by Definition 6. The score assigned by fs to a on input σ(j) (restriction of σ to voters in Nj), on
the other hand, is

Tj [a] =

k∑
i=1

Mj [a, i]si =

k−1∑
i=1

Mj [a, i]
s′′i − x

1− x
=

T ′′
j [a]− k!x|Nj |
k!(1− x)

.

Since the total score of every alternative is just shifted by a constant and then rescaled by another
constant, for any a, b ∈ A we have T ′′

j [a] > T ′′
j [b] if and only if Tj [a] > Tj [b]. As fs′′ achieves

zero disagreement with σ′′, this proves fs achieves zero disagreement with σ. Thus, in the proof of
Proposition 20 below, we reduce 3SAT to kPERFPOS, which proves the NP-hardness for PERFPOS
too (membership follows from the fact that positional scoring rules are easy to compute).

Proposition 20. kPERFPOS is NP-hard.

Proof. We will be reducing from 3SAT. Say ϕ is a 3CNF formula with clauses C1, C2, . . . , Cℓ and
binary variables x1, x2, . . . , xt. For each β ∈ {1, 2}, we will construct and instance of PERFPOS
by first specifying Mβ [a, i] for alternative a ∈ A and position i ∈ [k], and then explicitly designing
rankings that is consistent with that Mβ . We start with setting k = t+ 2 and ε = 1

7(k+2) .
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For each i ∈ [t], add two candidates ai and bi, with

M1[ai, j] =


1 + (k + 3)(i− 1) if j = 1

k + 2 if j = i+ 1

0 otherwise

M1[bi, j] =


(k + 3)(i− 1) if j = 1 and i ̸= 1

k + 2 if j = i

1 if j = k

0 otherwise

and

M2[ai, j] =


1 + (1/ε+ 1)(i− 1) if j = 1

1/ε if j = i+ 1

0 otherwise

M2[bi, j] =


(1/ε+ 1)(i− 1) if j = 1 and i ̸= 1

1/ε if j = i

1 if j = k

0 otherwise

.

For each i ∈ [ℓ], say the clause Ci in ϕ consist of variables {xj}j∈Vi
for Vi ⊆ [t], with 1 ≤ |Vi| ≤ 3.

For this clause Ci, add two candidates cj , dj , with

M1[ci, j] =

{
t(k + 3) + 2i if j = 1

0 otherwise
M1[di, j] =


t(k + 3) + 2i− 1 if j = 1

1 if j = k

0 otherwise
.

For constructing M2[ci, j] and M2[di, j], say z ∈ {0, 1, 2, 3} is the number of negated literals in Ci.
To build M2[ci, j] and M2[di, j] for each j ∈ [k], start from the following:

M ′
2[ci, j] =


2z + t(1/ε+ 1) + 6(k + 3)(i− 1) if j = 1

1 if j = k

0 otherwise

M ′
2[di, j] =


1 + t(1/ε+ 1) + 6(k + 3)(i− 1) if j = 1

2z if j = k

0 otherwise
.

Now for each j ∈ Vi, do the following:

• If xj appears non-negated in Ci, then add 2(k+2) to M ′
2[ci, j] and 2(k+2) to M ′

2[di, j+1].

• If xj appears negated in Ci, then add 2(k + 2) to M ′
2[ci, j + 1] and 2(k + 2) to M ′

2[di, j].

Finally, set M2[ci, j] and M2[di, j] to the resulting M ′
2[ci, j] and M ′

2[di, j] for each j ∈ [k].

Say A = {ai}i∈[t], B = {bi}i∈[t], C = {ci}i∈[ℓ], and D = {di}i∈[ℓ]. We now construct a profile
that corresponds to the above Mβ . First, add k more candidates E = {ei}i∈[k]. Now for each
β ∈ {1, 2}, each f ∈ A ⊔ B ⊔ C ⊔D and each i ∈ [k], add Mβ [f, i] voters to the set Nβ that rank
f in the ith position, and ranks ej in the jth position for all j ∈ [k] \ {i}. Say we have added n1 and
n2 voters to N1 and N2 so far respectively and that β′ = argmaxβ∈{1,2} nβ (If it’s a tie, pick β′ it
arbitrarily). Add (14k+28)nβ′ and (14k+29)nβ′ − n3−β′ voters to Nβ′ and N3−β′ , respectively,
all of whom rank ei in the ith position for all i ∈ [k]. This also ensures that |N1| = |N2|. For each
β ∈ {1, 2} say σ(β) is the final vector of rankings of Nβ , as specified.

By construction, for each β ∈ {1, 2}, f ∈ A ⊔ B ⊔ C ⊔ D, and i ∈ [k], σ(β) indeed
has Mβ [f, i] voters that rank f in their ith position. Further, we have a total of |A ⊔ B ⊔
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C ⊔ D ⊔ E| = 2(t + ℓ) + k = 3t + 2ℓ + 2 candidates (which polynomial in t, ℓ), and
|N1| = |N2| = (14k + 29)maxβ∈{1,2}

∑
f∈A∪B∪C∪D

∑k
i=1 Mβ [f, i] ≤ (14k + 29)2(t + ℓ)k ·

maxf∈A∪B∪C∪D,i∈[k] Mβ [f, i] (which is also polynomial in t, ℓ since all entries of Mβ [f, i] are).

We now claim that ϕ is satisfiable if and only if there exists a positional scoring rule that gives full
agreement between σ(1) and σ(2).

(⇐) : Assume there is a positional scoring rule fs with s = (si)i∈k that gives full agreement for
M1 and M2. Say Tβ [a] =

∑k
i=1 Mβ [a, i]si for all a ∈ A and β ∈ {1, 2}. In particular, we must

have agreement between ai and bi for each i ∈ [t]. We have

T1[ai] = (1 + (k + 3)(i− 1))s1 + (k + 2)si+1, T1[bi] = ((k + 3)(i− 1))s1 + (k + 2)si + sk,

T2[ai] = (1 + (1/ε+ 1)(i− 1))s1 + si+1/ε, T2[bi] = ((1/ε+ 1)(i− 1))s1 + si/ε+ sk.

Since s1 = 1 and sm = 0, perfect agreement implies that we must have

(T1[ai]− T1[bi])(T2[ai]− T2[bi]) = (1− (k + 2)(si − si+1))(1− (si − si+1)/ε) > 0.

This implies we must either have si − si+1 < ε or si − si+1 > 1
k+2 . Set the binary variable xi to

False if si − si+1 < ε and to True if si − si+1 > 1
k+2 . We now argue that the resulting {xi}i∈[t]

satisfies ϕ, i.e., satisfies all of its clauses. Fix any i ∈ [ℓ]. We will show that Ci is satisfied. By
assumption of full agreement,

(T1[ci]− T1[di])(T2[ci]− T2[di]) > 0.

Since T1[ci] − T1[di] = (t(k + 3) + 2i)s1 − (t(k + 3) + 2i − 1)s1 − sk = 1 > 0, this implies
that (T2[ci]− T2[di]) > 0. Say {xj}j∈Vi

are the variables that appear in Ci (for Vi ⊆ [t]), and that
Z = {j ∈ Vi : xj is negated in Ci} with |Z| = z. This implies we have

T2[ci] = (2z + t(1/ε+ 1) + 6(k + 3)(i− 1))s1 + sk + 2(k + 2)

 ∑
g∈Vi\Z

sg +
∑
g∈Z

sg+1

 ,

T2[di] = (1 + t(1/ε+ 1) + 6(k + 3)(i− 1))s1 + 2zsk + 2(k + 2)

 ∑
g∈Vi\Z

sg+1 +
∑
g∈Z

sg

 ,

T2[ci]− T2[di] = 2z − 1 + 2(k + 2)

 ∑
g∈Vi\Z

(sg − sg+1)−
∑
g∈Z

(sg − sg+1)

 .

The only way for Ci to be not satisfied is if xg is assigned to True (i.e., sg − sg+1 > 1
k+2 ) for all

g ∈ Z and xh is assigned to False (i.e.,s sh − sh+1 < ε) for all h ∈ Vi \ Z. This would imply,
however T2[ci]−T2[di] < 2z−1+2(k+2)

(∑
g∈Vi\Z ε−

∑
g∈Z

1
k+2

)
= 2z−1+ 2(|Vi|−z)

7 −2z <

−1 + 6
7 < 0, which gives a contradiction.

As assuming Ci is not satisfied gives a contradiction to the assumption that s gives agreement be-
tween σ(1) and σ(2) for ci and di, Ci must be satisfied. Since this is true for all i ∈ [ℓ], this implies
that ϕ is satisfiable.

(⇒) : Assume ϕ is satisfiable for truth assignments {x∗
i }i∈[t]. For any i ∈ [t], define

δi =

{
1

k+1 if x∗
i is True

ε
2 otherwise.

. Define the positional scoring rule s = (si)i∈[k] as si =
1 if i = 1

1−
(∑i−1

j=1 δj

)
if k > i > 1

0 if i = k

. Since sk−1 = 1 −
(∑k−2

j=1 δj

)
=≥ 1 − k−2

k+1 > 0 = sk, mono-

tonicity is satisfied, and s is a valid scoring rule. We will show that s gives perfect agreement
between σ(1) and σ(2). As always, say Tβ [f ] =

∑k
i=1 Mβ [f, j]si for all β ∈ {1, 2} and f ∈ A.

Since 1 = s1 ≥ s2 ≥ . . . ≥ sk = 0 and since si > 0 for each i ∈ [k − 1], the total scores for each
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i ∈ [t] and j ∈ [ℓ] are

T1[ai] = (1 + (k + 3)(i− 1))s1 + (k + 2)si+1 ⇒ (k + 3)i ≥ T1[ai] > (k + 3)(i− 1) (A1)
T2[ai] = (1 + (1/ε+ 1)(i− 1))s1 + (1/ε)si+1 ⇒ (1/ε+ 1)i ≥ T2[ai] > (1/ε+ 1)(i− 1)

(A2)
T1[bi] = (k + 3)(i− 1)s1 + (k + 2)si + sk ⇒ (k + 3)i > T1[bi] > (k + 3)(i− 1) (B1)
T2[bi] = (1/ε+ 1)(i− 1)s1 + (1/ε)si + sk ⇒ (1/ε+ 1)i > T2[bi] > (1/ε+ 1)(i− 1) (B2)
T1[cj ] = (t(k + 3) + 2j)s1 ⇒ t(k + 3) + 2j = T1[cj ] > t(k + 3) + 2(j − 1) (C1)

T2[cj ] = (2|Zj |+ t(1/ε+ 1) + 6(k + 3)(j − 1))s1 + sk + 2(k + 2)

 ∑
g∈Vj\Zj

sg +
∑
g∈Zj

sg+1


⇒ t(1/ε+ 1) + 6(k + 3)j ≥ T2[cj ] > t(1/ε+ 1) + 6(k + 3)(j − 1)

(C2)
T1[dj ] = (t(k + 3) + 2j − 1)s1 + sk ⇒ t(k + 3) + 2j > T1[dj ] > t(k + 3) + 2(j − 1) (D1)

T2[dj ] = (1 + t(1/ε+ 1) + 6(k + 3)(j − 1))s1 + 2|Zj |sk + 2(k + 2)

 ∑
g∈Vj\Zj

sg+1 +
∑
g∈Zj

sg


⇒ t(1/ε+ 1) + 6(k + 3)j > T2[dj ] > t(1/ε+ 1) + 6(k + 3)(j − 1)

(D2)

where Vj ⊆ [t] and Zj ⊆ Vj indicate the indices of the variables that appear in and that appear
negated in the clause Cj , respectively. We now show that s gives perfect agreement between σ(1)

and σ(2), i.e., (T1[g]−T1[h])(T2[g]−T2[h]) > 0 for all distinct pairs of g, h ∈ A⊔B⊔C ⊔D⊔E.
We will proceed by a case by case analysis:

• Case 1: g ∈ A ⊔ B, h ∈ C ⊔ D. By eqs. (A1) and (B1), we have T1[g] ≤ t(k + 3),
since i ≤ t. By eqs. (C1) and (D1), we have T1[h] > t(k + 3), as j ≥ 1. This implies
T1[g] < T1[h]. Similarly, by eqs. (A2) and (B2) we have T2[g] ≤ t(1/ε + 1), and by
eqs. (C2) and (D2) we have T2[h] > t(1/ε + 1), as j ≥ 1. This implies T2[g] < T2[h].
Hence, (T1[g]− T1[h])(T2[g]− T2[h]) > 0, as desired.

• Case 2: g ∈ {ai, bi}, h ∈ {aj , bj} for some t ≥ i > j ≥ 1. By eqs. (A1) and (B1), we
have T1[g] > (k+3)(i−1) ≥ (k+3)j and T1[h] ≤ (k+3)j. This implies T1[g] > T1[h].
Similarly, by eqs. (A2) and (B2) we have T2[g] > (1/ε + 1)(i − 1) ≥ (1/ε + 1)j and
T2[h] ≤ (1/ε+1)j. This implies T2[g] > T2[h]. Hence, (T1[g]−T1[h])(T2[g]−T2[h]) > 0,
as desired.

• Case 3: g = ai, h = bi for some i ∈ [t]. In this case T1[g]−T1[h] = 1−(k+2)(si−si+1) =
1 − (k + 2)δi and T2[g] − T2[h] = 1 − (1/ε)(si − si+1) = 1 − δi/ε. If δi = ε

2 (i.e. x∗
i

is False), (T1[g] − T1[h])(T2[g] − T2[h]) = (1 − 1
14 )(1 −

1
2 ) > 0. If δi = 1

k+1 (i.e. x∗
i is

True), (T1[g]− T1[h])(T2[g]− T2[h]) = (1− k+2
k+1 )(1−

7(k+2)
k+1 ) = ( −1

k+1 )(
−6k−13

k+1 ) > 0.

• Case 4: g ∈ {ci, di}, h ∈ {cj , dj} for some t ≥ i > j ≥ 1. By eqs. (C1) and (D1), we
have T1[g] > t(k+3)+2(i− 1) ≥ t(k+3)+2j and T1[h] ≤ t(k+3)+2j. This implies
T1[g] > T1[h]. Similarly, by eqs. (C2) and (D2) we have T2[g] > t(1/ε + 1) + 6(k +
3)(i − 1) ≥ t(1/ε + 1) + 6(k + 3)j and T2[h] ≤ t(1/ε + 1) + 6(k + 3)j. This implies
T2[g] > T2[h]. Hence, (T1[g]− T1[h])(T2[g]− T2[h]) > 0, as desired.

• Case 5: g = ci, h = di for some i ∈ [ℓ]. In this case T1[g]− T1[h] = 1 and

T2[g]− T2[h] = 2|Zi| − 1 + 2(k + 2)

 ∑
g∈Vi\Zi

(sg − sg+1)−
∑
h∈Zi

(sh − sh+1)


= 2|Zi| − 1 + 2(k + 2)

 ∑
g∈Vi\Zi

δg −
∑
h∈Zi

δh

 ,
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where Vi ⊆ [t] and Zi ⊆ Vi indicate the indices of the variables that appear in and that
appear negated in the clause Ci, respectively. Since {x∗

i }i∈t is a satisfying assignment by
assumption, we must either have δg′ = 1

k+1 (i.e. x∗
g′ is True) for some g′ ∈ Vi \ Zi or

δh′ = ε
2 (i.e. x∗

h′ is False) for some h′ ∈ Zi. If the former is true (δg′ = 1
k+1 for some

g′ ∈ Vi \ Zi):

T2[g]− T2[h] = 2|Zi| − 1 + 2(k + 2)

 1

k + 1
+

∑
g∈Vi\(Zi∪{g′})

δg −
∑
h∈Zi

δh


≥ 2|Zi| − 1 + 2(k + 2)

(
1

k + 1
+

(|Vi| − |Zi| − 1)ε

2
− |Zi|

k + 1

)
≥ 2|Zi| − 1 + 2(k + 2)

(
1− |Zi|
k + 1

− ε

2

)
= − 2|Zi|

k + 1
+

k + 3

k + 1
− 1

7
=
−2|Zi|+ 6

7k + 20
7

k + 1
.

Similarly, if the latter is true (δh′ = ε
2 for some h′ ∈ Zi):

T2[g]− T2[h] = 2|Zi| − 1 + 2(k + 2)

 ∑
g∈Vi\Zi

δg −
ε

2
−

∑
h∈Zi\{h′}

δh


≥ 2|Zi| − 1 + 2(k + 2)

(
−ε

2
− |Zi| − 1

k + 1

)
= − 2|Zi|

k + 1
+

k + 3

k + 1
− 1

7

=
−2|Zi|+ 6

7k + 20
7

k + 1
,

which gives the same inequality. Consider two cases: if t ≥ 2 (i.e., k = t+ 2 ≥ 4), we get

T2[g]− T2[h] ≥
−2|Zi|+ 6

7k + 20
7

k + 1
≥
−6 + 24

7 + 20
7

k + 1
=

2
7

k + 1
> 0,

since |Zi| ≤ 3. If t = 1 (i.e., k = 3), then |Zi| ≤ 1, since t is the number of variables in ϕ.
Then,

T2[g]− T2[h] ≥
−2|Zi|+ 6

7k + 20
7

k + 1
≥
−2 + 18

7 + 20
7

k + 1
=

24
7

k + 1
> 0.

In both cases, we have T2[g] − T2[h] > 0 and hence (T1[g] − T1[h])(T2[g] − T2[h]) > 0,
as desired.

• Case 6: g ∈ E \ {ek}, h /∈ E. Say g = ei for some 1 ≤ i < k and nβ =∑
f∈A⊔B⊔C⊔D

∑k
j=1 Mβ [f, j] for β ∈ {1, 2}. Due to the last set of voters that we added

while constructing σ(1) and σ(2) (those that rank only elements of E), we have

Mβ [ei, i] ≥ 14(k + 2) max
γ∈{1,2}

nγ ≥ 14(k + 2)

k∑
j=1

Mβ [h, j]

≥ 14(k + 2)

k∑
j=1

Mβ [h, j]sj = 14(k + 2)Tβ [h]

Moreover, since si ≥ sk−1 ≥ 1 − k−2
k+1 = 3

k+1 > 1
k+1 , we have Tβ [g] = Mβ [g, i]si >

Mβ [ei,i]
k+1 > Tβ [h] for each β ∈ {1, 2}. This gives (T1[g] − T1[h])(T2[g] − T2[h]) > 0, as

desired.

• Case 7: g = ek. By construction Mβ [ek, j] > 0 ⇒ j = k, and hence Tβ [g] = Tβ [ek] =
Mβ [ek, k]sk = 0 for each β ∈ {1, 2}. If h ∈ A ⊔ B ⊔ C ⊔ D, we have Tβ [h] > 0
for both β ∈ {1, 2} by eqs. (A1) to (D2). If h = ei for some i ∈ [k − 1], on the other
hand, Mβ [h, i] > 0 by the last set of voters added to σ(1) and σ(2) (those that only rank
the elements of E), so once again we have Tβ [h] = Mβ [h, i]si > 0. Hence, we have
(T1[g]− T1[h])(T2[g]− T2[h]) > 0, as desired.
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• Case 8: g = ei, h = ej for some i < j < k. Fix some β ∈ {1, 2}. By construction, σ(β)

contains two types of rankings: (a) those that contain one elements in A⊔B⊔C⊔D and all
remaining elements are those in E, of which there nβ =

∑
f∈A⊔B⊔C⊔D

∑k
j=1 Mβ [f, j]

many and (b) those that rank only and all elements in E, of which there are say yβ many,
with yβ ≥ maxγ∈{1,2} 14(k + 2)nγ ≥ 14(k + 2)nβ . Hence, for any j′ ∈ [k − 1], we have
nβ+yβ > M [ej′ , j

′] ≥ yβ , where the first inequality is strict since Mβ [f, j
′] > 0 for some

f ∈ A⊔B⊔C ⊔D for all j′ ∈ [k−1] (see, for example, the definitions for Mβ [aj′ , j
′+1]

and Mβ [bj′ , j
′] for each j′ ∈ [t]), so there is at least some voters in the group of nβ that do

not rank ej′ . This implies

Tβ [g]− Tβ [h] = Tβ [ei]− Tβ [ej ] = Mβ [ei, i]si −Mβ [ej , j]sj

> yβsi − (nβ + yβ)sj = yβ(si − sj)− nβsj

≥ yβ(si − si+1)− nβ = yβδi − nβ

≥ 14(k + 2)nβ ·
ε

2
− nβ = nβ − nβ = 0

Hence, we have (T1[g]− T1[h])(T2[g]− T2[h]) > 0, as desired.

We have shown that (T1[g]−T1[h])(T2[g]−T2[h]) > 0 for all g, h ∈ A, proving that s indeed gives
full agreement between σ(1) and σ(2).

D EXPERIMENT DETAILS

This appendix provides additional details on experiments discussed in Section 7.

Several components of our experiments are held constant across all settings. Below we describe
these components and provide some general information about our experimental setting. In subse-
quent subsections we provide additional detail and discussion around each of our experiments and
definitions of each voting rule used throughout this paper.

• Number of Splits: With two exceptions, all experiments report the average disagreement
resulting from each rule over 10 random splits of voters. The exceptions are: When eval-
uating axioms (Appendix D.6, Figure 7) we report the average over 50 splits, and when
evaluating score data (Section 7, Table 1) we report the average over 1000 splits. These
values were decided based on computational and time constraints.

• Splitting Procedure: When creating two groups of voters we assign each voter to one group
or the other uniformly at random, as detailed in Box 1. In the case that no voters are
assigned to one group, we assign that group a single weak ranking in which all alternatives
are tied (this effectively gives a weight of zero to all such splits).

• Weighting Partial Rankings: In settings where voters submit partial rankings, we weigh
each alternative based on the number of times it appears on each side of a split, as discussed
in Section 4. This serves to correct for mismatches in the amount of information known
about each alternative (i.e., the number of times each alternative is ranked) between the
two sides of the split. Consider a split of a fixed profile σ into (σ(1),σ(2)) via the process
in Box 1. For any alternative a ∈ A, let ma denote the minimum number of times a
is included in rankings in σ(1) or σ(2), and let ta refer to the total number of times a is
included in a ranking across the entire profile σ. Then the weight of a is wa = γma−1

γta/2−1
.

This ensures that the largest weights are assigned to alternatives that are evenly split across
the split (ma = ta/2), whereas any alternative that does not appear on one side of the split
(ma = 0) gets zero weight, as it is unreasonable to expect this alternative to be placed
consistently across the split by any SWF. All our experiments use a constant factor of
γ = 2. Weights are used as a scaling factor in computing the Kendall-Tau distance (as in
Kumar & Vassilvitskii 2010); when alternatives a and b are in opposite positions across
two rankings then they contribute wawb to the weighted Kendall-Tau distance (as opposed
to the unweighted setting where any misordered pair adds 1 to the distance).
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• Computational Power: All experiments are performed locally on a 2022 M2 Macbook Air
with 16 GB of memory. Each individual experiment shown in the paper took between 0.5
and 3 hours to complete.

D.1 GROUND TRUTH AND DISAGREEMENT

In our first experiment, we evaluate the relationship between the rankings produced by SWFs and
the ground truth ranking of a preference distribution.

Both Mallows and Plackett-Luce (PL) preference models naturally correspond to an “ideal” ranking.
These distributions also have known maximum likelihood estimators: Mallow’s MLE is the Kemeny
function while we estimate the MLE of PL preferences using the choix Python library7.

In our experiment, for each distribution we generate 50 elections with 100 voters and 100 alterna-
tives. We set ϕ = 0.4 for Mallow’s preferences and αi = e0.5(m−i) for Plackett-Luce. Each voter
provides a ranking over 10 alternatives, sampled from the relevant distribution, such that each alter-
native is ranked by 10 voters. This type of partial ranking aligns with a paper reviewing framework
where conference organizers may wish to ensure that each paper is reviewed by a certain number of
reviewers while each reviewer receives a certain number of assignments.

For each generated election, we do the following for several SWFs: Assign each voter into one of
two groups, chosen uniformly at random for each voter. Each of these groups is then used as a
complete profile to generate a weak ranking according to the SWF. We measure the KT distance
between these two rankings. We report the mean over these 10 splits as the “split distance.” We
also calculate the KT distance from the ranking generated by the SWF applied to all voters to the
ground truth ranking (the “ground truth distance”).

We plot each pair of distances for each SWF. In Figure 1 the MLE of each noise model tends to
minimize each distance. In general, there is a very strong relationship between the two distances.
As the split distance increases, so too does the ground truth distance.

In this experiment the SWFs we evaluated were Kemeny, Plackett-Luce MLE (as implemented by
the choix library), Borda Min-Max, and Optimized Positional Scores (see subsection D.8) in ad-
dition to positional scoring rules with the following vectors:

• Plurality (1, 0, 0, . . . , 0)

• Plurality + Veto (1, 0.5, 0.5, . . . , 0.5, 0)

• Veto (1, 1, . . . , 1, 0)

• Two-Approval (1, 1, 0, . . . , 0)

• Borda (m−1
m−1 ,

m−2
m−1 , . . . ,

m−m
m−1 )

D.2 FORMULA ONE DATA

The F1 portion of Figure 2 is generated using data about races found on Preflib Mattei & Walsh
(2013); specifically, we use the complete form of dataset ID 00053. This contains one profile for
each Formula One season with a preference order corresponding to each individual race in the sea-
son. Each preference order lists the drivers that competed in every race in that season, ordered by
the position in which they finished that race.

We show in Figure 4 the KT distance for all rules divided by racing period. While the rules with
highest distance (Two-Approval, Plurality + Veto, Plurality, Veto) stay quite consistent, all other
rules provider lower KT distances on more recent race periods. Notably, the F1 rules themselves
become much more consistent over time.

D.3 ATACAMA LARGE MILLIMETER ARRAY PROJECT RANKING DATA

While in Table 1 we consider score data generated in a peer review process, peer review data can
also take the form of rankings. Here we consider anonymized rankings provided by evaluators of

7https://choix.lum.li/en/latest/index.html
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Figure 4: Distance between splits for SWFs aggregating rankings of drivers in F1 races. Each rule
is evaluated on each period of races. Newer F1 rules provide lower distance on all race periods.

(a) Distance between splits of partial rankings for each
SWF on reviews of ALMA Cycle 10 project proposals.

(b) Distance between splits of partial rankings for each
SWF on reviews of ALMA Cycle 11 project proposals.

Figure 5: Split distance and standard error of several rules on partial rankings over project proposals
for the Atacama Large Millimeter Array (ALMA).

projects proposed for the Atacama Large Millimeter Array (ALMA) (Meyer et al., 2022), which is
the largest ground-based radio telescope on earth.

We conduct our experiments on two sets of proposals, from Cycle 10 and Cycle 11. In this review
process, each proposer is asked to review. Cycle 10 contains 1635 proposals and 1635 review-
ers, while Cycle 11 contains 1729 proposals and 1729 reviewers. In each cycle, every reviewer is
assigned 10 proposals to review, and every proposal is assigned to 10 reviewers. Each reviewer
provides a strict ranking of the 10 proposals assigned to them.

We run AbC on the rankings provided by the reviewers. The mean Kendall-Tau distances over 10
splits for several SWFs are displayed in Figure 5. We see a pattern consistent with the results of Fig-
ure 1: PL MLE, Borda, and optimized positional scores result in very similar distances, suggesting
a natural lower bound on the Kendall-Tau distance based on the data and the noise induced by gen-
erating splits. Kemeny rule,8 on the other hand, performs notably worse than this lower bound. Our
experiment also finds that better consistency is achieved by positional scoring rules which provide
more information about the profile (i.e., Two Approval and Plurality + Veto provide two “bits” of in-
formation, compared to one bit from Plurality and Veto, whereas Borda and the optimized positional
scores provide significantly more information).

Importantly, our method can be used to evaluate proposed changes to current practices. For example,
Meyer et al. (2022) consider removing the minimum & maximum score of each alternative before
computing the Borda score, termed ‘Trimmed Borda’, but our experiment suggests this method

8Note that, due to computational limits, in this setting we use the best ranking found by the Kemeny function
(Appendix D.8.1) within a time limit of 15 minutes per split.
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Figure 6: Average distance and standard error between splits for SWFs over rankings induced by
Olympic medals. Optimization of positional scores is only occasionally able to improve upon the
ranking generated by giving one point to each country for each medal they win, regardless of medal
type.

increases disagreement on their dataset compared to Borda count, significantly more than it did on
data generated from known noise models (Figure 1).

D.4 OLYMPIC MEDAL DATA

To evaluate rules on Olympic medal wins we use a Kaggle dataset providing details of all Olympic
results (Summer and Winter) between 1896 and 2016 (Griffin, 2018). From this we extract the
winning countries of each medal for each event. We convert each event into a partial ranking by
assigning to first place all countries receiving gold medals, to second place all countries receiving
silver medals, and to third place all countries receiving bronze medals. Countries that did not win
medals or did not compete in an event are not included in a ranking.

In the large majority of cases this results in a partial order consisting of exactly three countries, each
in a different rank. In rare cases a position might be empty or have multiple winners (e.g. in 1992
Canada and USA won Gold in women’s solo synchronized swimming, no Silver was awarded, and
Bronze was won by Japan), or a country might occur multiple times (e.g. in 2008 Jamaica won Gold
and two Silver medals in the women’s 100 metre; no Bronze was awarded). In these exceptional
cases we do nothing different and award that country points for each of the positions that it occupies.

This results in one “election” for each year in which the Olympics occurred where preference or-
ders correspond to partial rankings induced by medal wins. To these rankings we apply the AbC
framework as we have in all other experiments: We generate splits by randomly placing the profile
induced by each event into one split or the other, then find the distance between splits and report the
average over many sets of splits. Here we add two new rules:

• Medal Count: Each medal is treated equivalently. Each country receives a point each time
it appears in a preference order, regardless of rank.

• Leximax: Rank countries by the number of Gold medals they receive, breaking ties by
counting Silver medals, breaking remaining ties by counting Bronze medals. In practice
we implement this as the score vector (1000000, 1000, 1).

Results of this analysis are displayed in Figure 6. We see that simply counting the total number of
medals each country receives results in much lower disagreement than standard voting rules, only
very rarely do optimized scores improve upon the Medal Count rule.

D.5 CITY ELECTION DATA

In Figure 2a we show results of several rules on Preflib data from several real-world political elec-
tions. Each of these elections used Instant Runoff Voting (IRV) to compute the empirical winner.
Given a profile, IRV iteratively eliminates the alternative with the least plurality score (i.e., with the
least number of voters ranking them top) by removing them from the profile, until a single alterna-
tive remains. As an SWF, we interpret IRV as the rule outputing the alternatives in the reverse of this
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Figure 7: Violation rate of axioms across several preference distributions and real-world election
data (rightmost). Axiom violations generally decrease as the number of alternatives increases.

elimination order (the alternative eliminated first is ranked bottom, and so on). We provide details
on each election shown in Table 2. The data from Preflib can be freely distributed and used under
the GPL-3.0 license.

Initially we collected all elections included in Preflib Elections 5, 16, 17 ,18, 19, 20, 21, and 22.
However, in Figure 2a we have filtered out two types of election from our starting data data in order
to make the plot more readable:

• Any elections where all rules had a split distance of 0. While this is a random event, we
found that this consistently included a set of 10 elections.

• Any election with more than 100 candidates. This excluded two specific elections that
occurred in 2009 in the city of Minneapolis with 379 and 477 alternatives. These two
elections have exceptionally high split distances and were removed as outliers due to their
split distance and unusual number of candidates.

D.6 AXIOM VIOLATIONS

To further explore the theoretical results of Section 5 we analyze experimentally how often certain
axioms are violated across several distinct preference distributions. Results of this experiment are
found in Figure 7. We measure the axiom violation rate, as defined by Caiata et al. (2025); an
experimental measure of how often axioms are violated in practice on given preference distributions
and voting rules. For this experiment we sample, for each distribution, 500 profiles with 100 voters
that each provide a full ranking over m ∈ 5, 10, 15, 20 alternatives from the Impartial Culture,
Urn (with α sampled from a Gamma distribution with shape k = 0.8 and scale θ = 1 Boehmer
et al. (2021)), Mallows (ϕ = 0.4), Plackett-Luce (αi = e0.5(m−i)), and Single-Peaked preference
distributions Brandt et al. (2016). Additionally, we consider all elections with complete preferences
from PrefLib with up to 1000 voters and m alternatives for 5 ≤ m ≤ 20 (a total of 1392 elections)
Mattei & Walsh (2013). This real-world election data is compiled from a wide variety of sources
with varying underlying preference distributions.

On each election we take 50 random splits and calculate the fraction of splits on which each axiom
is violated by a Rule Picking Rule using several positional scoring rules.

As we evaluate the Reversal Symmetry axiom we are constrained to using positional scoring rules
in our Rule Picking Rule. For all axioms, our RPR uses the following rules: Plurality, Plurality +
Veto, Veto, Two-Approval, and Borda count. The scoring vector associated with each of these rules
is given in Appendix D.1.

We provide an example to illustrate how we measure axiom violations.

Example. Consider the monotonicity axiom. In a profile σ and a modification σa where some voters
increase the rank they give to alternative a. Monotonicity is violated if the rank of a under the RPR
is lower in σa than in σ.

We test for a violation of monotonicity in a profile σ by selecting the alternative a ranked first in σ
by the RPR, selecting some uniform random fraction of voters in (0.2, 0.8) to increase their ranking
of a. If the RPR on σa assigns a different rank to a we say that the axiom has been violated. We
report the fraction of instances tested in which the axiom is violated.
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Plot Index Preflib
Election
ID

Election Name # Voters # Candidates

0 5 City (2009 Burlington Mayoral
Election)

8980 6

1 16 City (Aspen City Council 2009) 2477 11
2 16 City (Aspen Mayor 2009) 2527 5
3 17 City (2010 Berkeley City Council -

District 7)
4173 4

4 18 City (2009 Minneapolis Board of
Estimate and Taxation Election -
No Write In)

32086 7

5 18 City (2009 Minneapolis Park and
Recreation Commissioner At-Large
Election - No Write In)

36655 9

6 19 City (2010 Oakland Mayor) 119256 11
7 19 City (2010 Oakland City Council -

District 4)
20981 8

8 19 City (2012 Oakland City Council -
District 3)

22079 7

9 19 City (M2012 Oakland City Council
- District 1)

28660 8

10 20 City (2008 Pierce County Assessor
- Treasurer)

262312 7

11 21 City (2011 San Francisco Mayor) 194530 25
12 21 City (2011 San Francisco Sheriff) 183192 5
13 21 City (2012 San Francisco Board of

Supervisors - District 5)
35183 9

14 21 City (San Francisco Board of Su-
pervisors - District 7)

31437 10

15 21 City (2010 San Francisco Board of
Supervisors - District 2)

24109 7

16 21 City (2008 San Francisco Board of
Supervisors - District 9)

26634 8

17 21 City (2008 San Francisco - Board of
Supervisors District 3)

27310 10

18 21 City (2008 San Francisco Board of
Supervisors - District 1)

28777 10

19 21 City (2010 San Francisco Board of
Supervisors - District 10)

18001 22

20 21 City (2008 San Francisco Board of
Supervisors - District 11)

24717 10

21 21 City (2010 San Francisco Board of
Supervisors - District 6)

21188 15

22 22 City (2010 San Leandro Mayor) 22407 7
23 22 City (2012 San Leandro City Coun-

cil - District 4)
23236 5

24 22 City (2012 San Leandro City Coun-
cil - District 2)

25355 4

Table 2: Details on the election represented at each index in Figure 2a.

As shown in Proposition 10 (which easily extends to our implementation using Monte Carlo sam-
pling), reversal symmetry is never violated and only checked as a test. Moreover, under all but one
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(a) Jaccard dissimilarity between sets of winners for
splits of partial rankings of ALMA Cycle 10 project
proposals.

(b) Jaccard dissimilarity between sets of winners for
splits of partial rankings of ALMA Cycle 11 project
proposals.

Figure 8: Jaccard dissimilarity and standard error of several rules on sets of winners using partial
rankings over project proposals for the Atacama Large Millimeter Array (ALMA). Winners of a rule
are the first 240 proposals in the ranking output by that rule.

distribution, violations of union consistency and monotonicity are rare (< 0.05 of the time for ≥ 10
alternatives) and generally decrease as the number of alternatives increases.9

D.7 ALTERNATIVE DISTANCE FUNCTIONS

As mentioned in Section 4, the AbC framework can also be used in conjunction with distance
functions other than the (weighted) Kendall-Tau distance. This can be especially for settings such
as peer review of poroposals for the Atacama Large Millimeter Array (ALMA) (Meyer et al., 2022).
Here, the goal is not necessarily to rank all proposals, but to pick k proposals to be funded, for some
k < m. It may thus be more useful to study the consistency the top k proposals picked by each rule.
Indeed, we explore this possibility by using the Jaccard dissimilarity (Jaccard, 1901) to measure the
similarity of winning proposals on ALMA data.

Jaccard dissimilarity measures the overlap of two sets; it is defined as the ratio of the symmetric
difference to the size of the union of two sets. For each voting rule that we evaluate, we select the
240 highest ranked proposals as the winning proposals (chosen to match the number of winning
proposals chosen in ALMA Cycle 10).

In Figure 8 we see the Jaccard dissimilarity for several rules on proposal rankings from Cycle 10
and 11 of ALMA. The differences between rules have a similar relative order to the Kendall-Tau
distance of the rules applied to the same data (Figure 5).

D.8 ADDITIONAL DEFINITIONS OF VOTING RULES

Through our experiments we use several rules which are not fully described. In this section we
describe each rule found throughout our paper.

D.8.1 KEMENY

Kemeny’s rule is defined as the ranking which minimizes the sum of Kendall-Tau distances between
the output ranking and each voter’s individual ranking Kemeny (1959). We implement the Kemeny
method code provided by Baharev et al. (2021) and the Gurobi optimization library (Baharev et al.,
2021; Gurobi Optimization, LLC, 2024).

D.8.2 TRIMMED BORDA

Calculate the number of voters ranking each alternative at each rank. For each alternative ai, remove
one of the highest rankings which ai has received and remove one of the lowest rankings which ai
has received. After all removals are complete, calculate Borda scores as normal (Meyer et al., 2022).

9The one exception to this trend is monotonicity in the Impartial Culture (IC) distribution, which is not
centered around a ground truth. One possible explanation for this is IC maximizing the probability of majority
cycles (Tsetlin et al., 2003), under which monotonicity violations are more likely to occur.
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D.8.3 BEST POSITIONAL SCORES (SIMULATED ANNEALING)

This method uses the optimal-voting package generate a positional scoring vector which min-
imizes KT distance between splits on a given profile (Armstrong, 2025). This package uses sim-
ulated annealing to generate novel positional scoring rules which optimize a target function. In
each of our experiments, we run optimization multiple times; starting once from the initial score
vector of each other positional scoring rule used in the experiment. For instance, if we were com-
paring with Borda’s rule and Plurality we run optimization twice, starting from (m−1,m−2, ..., 0)
(Borda), and (1, 0, ..., 0) (Plurality). In all cases, we run annealing for 500 steps. At each step,
optimal-voting updates one index in the state vector (i.e., the positional score vector) by some
amount sampled uniformly at random from (0.05, 1). We restrict updates to those that result in the
state vector being weakly monotonically decreasing (the value at each index is not higher than the
previous value). Using the updated state vector as a positional scoring vector we calculate the mean
KT split distance over each split of voters. We use the same set of splits in annealing as we do
when evaluating each other voting rule. The new state is accepted with a probability related to the
magnitude of difference between the current and previous mean split distances, and the number of
steps that have already occurred. A small magnitude of difference is more likely to be accepted
earlier than later. States with lower mean split distance are always accepted.

D.8.4 STOCHASTIC GRADIENT DESCENT ON POSITIONAL SCORES

In Figure 3 we use Stochastic Gradient Descent (SGD) to find a positional score vector which min-
imizes KT distance between sampled splits on a given profile. This method is included largely
for comparison with the above approach which uses Simulated Annealing to optimize score vectors
for the same metric. While both methods are effective at finding optimized positional scoring vec-
tors, we find Simulated Annealing achieves results of slightly better quality with significantly less
compute time.

In this method we apply the standard SGD approach, summing the KT distance over all pairs of
profile splits to generate the loss of a profile. Recall that tsρ[a] is the total score of alternative a under
score vector s for profile ρ (Definition 1).

We approximate the KT distance between two rankings r1, r2 using the sigmoid function. Note
that here σ refers to the sigmoid function rather than a profile and q is some constant scaling used to
scale the sigmoid function:

KTSGD(r1, r2) =
∑
i∈A

∑
j∈A,j>i

wiwjσ(q(tr1(i)− tr1(j))(sr2(i)− sr2(j)))

As q →∞, the sigmoid approaches the step functions, and KTSGD approaches KT (Definition 3).
Rankings r1 and r2 are calculated from the score vector for each pair of splits, and KTSGD is
calculated for each pair of rankings. This is then normalized by the sum over each product of
weights wiwj , which is the maximum value of KTSGD achievable for that given split. The total
loss is the normalized sum of KTSGD over all splits in a profile.

We use the SGD Optimizer provided by Pytorch (Paszke et al., 2019) to perform gradient calcu-
lations. We initialize the scaling factor q = 1000000 and the learning rate to 0.1. Learning rate is
divided by 2 if the loss from one step to the next increases by more than 0.1 and has a minimum
value of 10−6.

D.8.5 LEXIMAX

This rule is used exclusively in evaluating Olympic data. For a given profile, alternatives are ranked
according to the number of gold medals they have received. To break ties, tied alternatives are
ordered according to the number of silver medals they have received. To break subsequent ties,
tied alternatives are ordered according to the number of bronze medals they have received. Note
that we can instantiate Leximax as a positional scoring rule where each position is much larger
than the subsequent position. In our Olympic experiments we use the (pre-normalization) vector
(1000000, 1000, 1). As there are never more than 1000 opportunities for a single country to receive
a medal of one type this is equivalent to Leximax.
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D.8.6 MEDAL COUNT

This rule is used exclusively in evaluating Olympic data. For a given profile, alternatives are ranked
purely based on the number of medals they received with no regard for the type of medals.

Our Olympics data uses as input the partial rankings containing only countries winning medals in an
event. In this case, the Medal Count rule is equivalent to the positional scoring rule with the vector
(1, 1, 1).
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