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Abstract
Text-to-audio generation synthesizes realistic
sounds or music given a natural language prompt.
Diffusion-based frameworks, including the Tango
and the AudioLDM series, represent the state-of-
the-art in text-to-audio generation. Despite achiev-
ing high audio fidelity, they incur significant infer-
ence latency due to the slow diffusion sampling
process. MAGNET, a mask-based model operat-
ing on discrete tokens, addresses slow inference
through iterative mask-based parallel decoding.
However, its audio quality still lags behind that
of diffusion-based models. In this work, we intro-
duce IMPACT, a text-to-audio generation frame-
work that achieves high performance in audio
quality and fidelity while ensuring fast inference.
IMPACT utilizes iterative mask-based parallel de-
coding in a continuous latent space powered by
diffusion modeling. This approach eliminates the
fidelity constraints of discrete tokens while main-
taining competitive inference speed. Results on
AudioCaps demonstrate that IMPACT achieves
state-of-the-art performance on key metrics in-
cluding Fréchet Distance (FD) and Fréchet Audio
Distance (FAD) while significantly reducing la-
tency compared to prior models. The project web-
site is available at https://audio-impact.github.io/.

1. Introduction
The text-to-audio generation task aims to synthesize high-
quality and high-fidelity audio that aligns semantically with
a given textual prompt. This task holds immense potential
for applications ranging from audio content creation and
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video gaming to marketing and advertising. The current
state-of-the-art in text-to-audio generation is represented
by the Tango (Ghosal et al., 2023; Kong et al., 2024; Ma-
jumder et al., 2024) and AudioLDM (Liu et al., 2023; 2024)
series, which leverage diffusion-based models to achieve
high-quality audio synthesis. All these models employ com-
putationally heavy network architectures with attention lay-
ers as the backbone for their diffusion models. However, this
design results in high latency due to slow inference speed,
as the iterative denoising steps of the diffusion sampling
process combined with the model’s complexity significantly
increase the time required for generating outputs.

To address the issue of slow inference speed, MAGNET
(Ziv et al., 2024), a masked-based generative model (MGM),
utilizes iterative mask-based parallel decoding to achieve
efficient audio generation. During inference, the model pro-
gressively predicts and refines discrete audio tokens across
multiple decoding iterations, leveraging parallelism to pre-
dict multiple tokens simultaneously at each step. This paral-
lel decoding strategy not only delivers significantly faster
inference compared to traditional autoregressive models like
MusicGen (Copet et al., 2024) and AudioGen (Kreuk et al.,
2023), but also surpasses the inference speed of diffusion-
based models by eliminating the need for time-consuming
diffusion sampling.

While MAGNET leverages discrete tokens for efficient
and structured audio generation, its performance on text-
to-audio generation tasks remains inferior to current state-
of-the-art models. Given the observed superiority of con-
tinuous representations over discrete tokens in tasks such
as text-to-image generation (Fan et al., 2024), speech large
language models (Yuan et al., 2024), and automatic speech
recognition (Xu et al., 2024), one intuitive way to enhance
the generation performance of MAGNET is to replace its
discrete tokens with continuous representations. However,
based on our preliminary experiments, this intuitive modifi-
cation resulted in significantly worse performance compared
to the original MAGNET model.

Knowing that latent diffusion models (LDMs) are good at
modeling continuous representations (Ghosal et al., 2023;
Huang et al., 2023; Kong et al., 2024; Majumder et al., 2024;
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Liu et al., 2023; 2024; Hai et al., 2024), we propose to inte-
grate iterative mask-based parallel decoding with LDMs to
better model continuous representations for the text-to-audio
generation task. LDMs require a multi-step diffusion sam-
pling process, which inherently imposes high computational
costs and slows inference if used independently. However,
by integrating iterative mask-based parallel decoding, we
can replace the heavy attention-based layers typically used
in LDMs with a lightweight MLP-based diffusion head, sub-
stantially reducing sampling time while maintaining audio
quality and fidelity. In addition, we introduce an uncondi-
tional pre-training phase before text-conditional training on
paired text-audio data, a step shown to be indispensable for
this task. Our experimental results confirm that this design
enables low-latency inference while preserving high audio
fidelity, quality, and text relevance.

In summary, we state our contributions as follows:

• We pioneer the use of iterative mask-based parallel de-
coding on continuous latent representations, powered
by LDMs, for text-to-audio generation.

• We propose an unconditional pre-training phase pre-
ceding conditional training during the MGM training
process and demonstrate its effectiveness.

• Our model achieves state-of-the-art performance on
objective metrics FD and FAD, and subjective eval-
uations REL and OVL, while remaining competitive
with the fastest existing text-to-audio generation model,
MAGNET-S, in terms of inference speed.

2. Related Work
2.1. Mask-based Generative Models (MGM)

Mask-based generative modeling (MGM) has emerged as a
powerful technique in discrete-token-based sequence mod-
eling to deal with tasks such as audio (Soundstorm (Borsos
et al., 2024), MAGNET (Ziv et al., 2024)), music (Vamp-
Net (Garcia et al., 2023), MAGNET (Ziv et al., 2024)), and
image generation (MaskGIT (Chang et al., 2022), MUSE
(Chang et al., 2023), MAGE (Li et al., 2023)). This ap-
proach, which involves masking portions of the input token
sequence and training a model to reconstruct the missing
information, offers advantages in terms of efficiency and
parallelization by employing iterative mask-based parallel
decoding. During inference, unlike traditional autoregres-
sive models, such as AudioGen (Kreuk et al., 2023), which
generate tokens one at a time, the iterative mask-based par-
allel decoding process starts with a fully empty sequence
and unravels a set of tokens at each decoding iteration to
progressively build up a sequence of tokens. The rationale
behind this approach is that the generation process starts
without prior content. In early iterations, the model has

limited context to inform token predictions. As decoding
progresses and more tokens are generated, the model gains
additional context, enhancing its predictive capabilities in
subsequent iterations.

2.2. Latent Diffusion Models for Generation

Latent Diffusion Models (LDMs) are widely employed in
text-to-audio tasks due to their ability to operate within a
continuous latent space (Liu et al., 2023; 2024; Ghosal et al.,
2023; Kong et al., 2024; Majumder et al., 2024; Hai et al.,
2024). By encoding audio signals with variational autoen-
coders (VAEs) (Liu et al., 2023), LDMs surpass discrete-
token-based approaches such as MAGNET (Ziv et al., 2024)
in both quality and fidelity. However, due to the iterative na-
ture of diffusion sampling, large LDMs can incur substantial
inference overhead.

In the field of computer vision, MAR (Li et al., 2024), an
MGM-based model, achieved state-of-the-art performance
in class-conditional image generation. Unlike earlier MGM-
based models such as MaskGIT (Chang et al., 2022), MAGE
(Li et al., 2023) and MUSE (Chang et al., 2023) that predict
discrete tokens, MAR introduces iterative mask-based par-
allel decoding directly on continuous representations using
LDMs. This choice not only improves image quality and
fidelity but also speeds up the diffusion sampling process
by replacing heavy attention layers with a lightweight MLP
diffusion head.

Inspired by MAR, we present a text-to-audio generation ap-
proach that likewise leverages iterative mask-based parallel
decoding over continuous latent representations driven by
LDMs. We further introduce an unconditional pre-training
phase before text-conditional training on paired text-audio
data, which is shown to be critical for this task. The results
demonstrate that our approach achieves low-latency infer-
ence while preserving high audio quality, fidelity, and text
relevancy.

3. IMPACT
IMPACT employs the MGM approach with a conditional
LDM. During training, the method first undergoes uncon-
ditional pre-training, where no text is used. This phase
teaches the model to reconstruct audio latents from partially
masked inputs, leveraging large unlabeled datasets to learn
the basics of audio generation, which is essential for this
task. Next, the model is trained with text conditions by
concatenating audio latents with a text condition vector se-
quence and further encoded by a Transformer-based latent
encoder. Here, a small diffusion head predicts the noise used
to corrupt masked audio latents, thereby learning to generate
audio consistent with text prompts. During inference, the
method applies iterative mask-based parallel decoding, start-
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Figure 1. Diagram of our IMPACT framework for the training phase and inference phase.

ing with a fully empty sequence and gradually generating
latents at each iteration with the small diffusion head, saving
much time since the diffusion sampling loop operates on a
lightweight model.

3.1. Training Phase

3.1.1. TEXT-CONDITIONAL TRAINING WITH MGM

Figure 1(a) illustrates the MGM training procedure com-
bined with LDMs. Given an audio input, we extract its
representation using an audio VAE and arrange it into a se-
quence of audio latents z = [z1, z2, · · · , zN ]. To train with
MGM, a number of q · N latents are masked by a binary
mask M ∈ {0, 1}N , where q is the masking percentage
factor and M [i] = 1 indicates that the i-th audio latent is
masked. The text condition vector sequence c is concate-
nated with the remaining unmasked latents and forwarded
to a Transformer-based latent encoder Encϕ to produce the
hidden representation h, as described by Eq. (1):

h = Encϕ(concat(c, z⊙ M̄)),h ∈ R(L+N)×D (1)

where M̄ is the complement of M , L denotes the sequence
length of c, and D is the encoder embedding dimension. The
goal of our framework is to have a diffusion head to predict
these masked audio latents based on input h. To train such
a framework, the latents that were masked are corrupted
with noise forming zt̂i =

√
ᾱt̂zi +

√
1− ᾱt̂ϵ based on

the closed-form solution of the forward diffusing process
(Ho et al., 2020; Nichol & Dhariwal, 2021), where ϵ ∈
RD denotes a noise vector sampled from the multivariate
normal distribution N (0, I), ᾱt̂ is the noise schedule, and t̂
represents the time step of the noise schedule, also known
as the diffusion step. A diffusion head ϵθ, parameterized
by θ, takes hi as a condition to predict the noise ϵ used to

corrupt the latents. Eq. (2) shows the training objective,

arg min
{ϕ,θ}

∑
{i|M [i]=1}

∥∥∥ϵ− ϵθ(z
t̂
i | t̂, hi)

∥∥∥2 (2)

where {i | M [i] = 1} is the set of indices i of M such that
M [i] = 1, representing the positions of z that are masked.
t̂ denotes the integer-valued diffusion step, sampled from
the interval [0, T̂max]. {ϕ, θ} denotes the set of parameters
of the Transformer-based latent encoder and the diffusion
head. Both modules are jointly optimized with the objective
shown in Eq. (2).

3.1.2. UNCONDITIONAL PRE-TRAINING

Unconditional pre-training is performed in a similar manner
mentioned in Section 3.1.1 but without text conditions. It
performs mask-based generative modeling without the text
condition vector sequence c. This process serves as a prelim-
inary training phase before we have the model to learn how
to follow text descriptions during audio generation. The
benefits of this come in twofold: (1) it allows the model
to first gain generative abilities for audio generation and
relieves the burden of having to learn both generation and
text relevancy in the same phase, (2) it allows us to utilize
unpaired data since some audio datasets like AudioSet do
not have text descriptions for all audio samples.

3.2. Inference Phase

Figure 1(b) illustrates the iterative mask-based parallel de-
coding method performed during the inference phase. The
decoding process starts from a fully empty sequence z(0)

and a full mask M (0) = [1, 1, · · · , 1] ∈ {0, 1}N . The de-
coding process is composed of three main stages: random
position selection, mask scheduling, and diffusion sampling.

3



IMPACT: Iterative Mask-based Parallel Decoding for Text-to-Audio Generation with Diffusion Modeling

We elaborate on them in the following sections.

3.2.1. RANDOM POSITION SELECTION

Previous mask-based generative models for audio, such as
Soundstorm, VampNet, and MAGNET, rely on discrete to-
ken representations and selectively predict token positions
with low confidence scores at each decoding iteration. In
contrast, our approach operates on continuous representa-
tions, making it infeasible to compute confidence scores.
Therefore, at each decoding iteration t, we randomly select
a subset of unpredicted positions in z(t). We denote the set
of indices of the positions to be predicted at each decoding
iteration t as M (t)

pred. These selected positions are generated
in parallel rather than sequentially to reduce inference time.

3.2.2. MASK SCHEDULING

At each decoding iteration t, a masking scheduler deter-
mines the number of latents to remain masked, denoted
as µ(t), based on a fraction γ(t) of the N latents: µ(t) =⌊
γ(t) ·N

⌋
. The fraction γ(t) decreases over iterations fol-

lowing a predefined masking schedule, commonly defined
as γ(t) = cos

(
π
2 · t

T

)
, where T is the total number of de-

coding iterations. This cosine masking schedule ensures
that the number of masked latents decreases with each iter-
ation, progressively increasing the amount of information
available to the model for the next decoding iteration. The
details of masking implementation are listed in Appendix
D.1 and D.2.

3.2.3. DIFFUSION SAMPLING

At each decoding iteration t, the model generates latents
for the positions specified by M

(t)
pred. Given the hidden rep-

resentation h(t) produced by the Transformer-based latent
encoder, latents zi = z0i are sampled by following the re-
verse process (Ho et al., 2020; Nichol & Dhariwal, 2021)
shown in Eq. (3),

zt̂−1
i =

1
√
αt̂

(
zt̂i −

1− αt̂√
1− αt̂

ϵθ(z
t̂
i | t̂, h

(t)
i )

)
+σt̂δ, (3)

where σt̂ denotes the noise level at diffusion sampling step
t̂ and δ denotes a vector drawn from N (0, I). Note that
the diffusion sampling step t̂ is distinct from the decoding
iteration t.

During the iterative decoding process, classifier free guid-
ance (cfg) (Ho & Salimans, 2021) is adopted to balance the
text relevancy and audio fidelity. More details of cfg are
elaborated in Appendix A.

4. Experimental Setup
4.1. Dataset Configurations

Multiple audio datasets are involved in this work. Specif-
ically, we employ the AudioCaps (AC) (Kim et al., 2019)
training split, which contains 145 hours of audio, and a
combined dataset of AudioCaps (AC) and WavCaps (WC)
(Mei et al., 2024), totaling 1200 hours of audio. Although
AudioSet (AS) (Gemmeke et al., 2017) is currently the
largest audio dataset which has about 5500 hours of audio
data, since most of the audio samples in AS do not have
text descriptions, this dataset is only used for unconditional
pre-training. For evaluation, we evaluate our text-to-audio
generation model on the AC evaluation set. There are 5 text
descriptions for each sample in AC, and we follow Audi-
oLDM by randomly selecting one text description as the text
condition. For data preprocessing, we follow AudioLDM’s
recipe by segmenting each audio sample into 10 seconds
and extracting the Mel spectrogram.

4.2. Implementation Details and Model Configurations

Our IMPACT model is composed of three main components,
the VAE module, the Transformer-based latent encoder,
and the diffusion head. For the VAE module, we directly
adopt the VAE of AudioLDM to extract raw audio latents
z′ ∈ RH×W×ch from Mel spectrograms, where H = 256,
W = 16 and ch = 8. A patching operation with factor
p = 4 is performed to reduce the height and width dimen-
sion of z′ into z′′ ∈ R

H
p ×W

p ×ch∗p2

. The patched latents z′′

are then flattened and projected to an embedding dimension
of D resulting in z ∈ RN×D, where N = H

p × W
p = 256.

The patching operation reduces the sequence length to N
and hence reduces computation during the generation pro-
cess. For the text condition, concatenating CLAP (Wu et al.,
2023) and Flan-T5 (Chung et al., 2024) embeddings on the
time dimension results in a length of L = 78. The embed-
ding dimension of the text conditioning vector sequence is
also projected to D resulting in c ∈ RL×D. In this work,
we develop two configurations of the IMPACT model, dif-
fering in the size of the Transformer-based latent encoder
Enc: a base configuration and a large configuration. The
base configuration uses an embedding dimension D of 768
and incorporates 24 transformer layers in the latent encoder.
In contrast, the large configuration increases the embedding
dimension to D = 1024 and employs 32 transformer lay-
ers in the encoder. For the diffusion head, we employ a
multi-layer perceptron (MLP) adopted from MAR (Li et al.,
2024) to effectively incorporate conditioning information
from both diffusion steps and conditioning vectors hi. No
heavy parameterized attention-based layers are used in the
diffusion head to avoid high computational costs during
the diffusion loop of the diffusion sampling process at the
inference phase. In both the base and large configurations,
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the diffusion head remains identical, as scaling it up would
substantially degrade inference speed. During training, the
maximum number of diffusion steps T̂max is set to 1000.
During inference, the total number of diffusion sampling
steps T̂ is set to 100 unless specified explicitly. Additional
information on the Transformer-based latent encoder and
diffusion head can be found in Appendix D.3 and D.4.

During text-conditional training, we set the masking per-
centage factor q = 0.7. For all model training, we adopt the
AdamW optimizer and set the learning rate to 5e−5. For
inference, by default, the total number of decoding iterations
T is set to 64 unless otherwise specified. For classifier free
guidance, we list the details in Appendix A.

4.3. Evaluation Metrics

In this work, generated audios are evaluated on five objec-
tive metrics: Fréchet Distance (FD) (Heusel et al., 2017),
Fréchet Audio Distance (FAD) (Kilgour et al., 2019), Kull-
back–Leibler divergence (KL), Inception Score (IS) (Sali-
mans et al., 2016), and Contrastive Language-Audio Pre-
training (CLAP). The meanings and implementation details
of these metrics are elaborated in Appendix F.

For subjective evaluation, following a similar approach to
Tango (Ghosal et al., 2023), we assessed 30 generated audio
samples based on text relevance (REL) and overall quality
(OVL) but used a 1-to-5 rating scale instead of a 1-to-100
scale. Each sample was rated by at least 10 participants. See
Appendix G for more details on the rating platform.

To evaluate inference speed, we measure the latency, also
referred to as inference time, reported in seconds for gener-
ating a batch of audio samples on a single Tesla V100 GPU
with 32GB VRAM.

5. Results
We evaluate our proposed text-to-audio framework across
three key aspects. First, Table 1 presents its performance
on the AudioCaps evaluation set, assessed using both objec-
tive and subjective metrics described in Section 4.3. Second,
Figure 2 and Table 3 analyze the trade-off between objective
performance and latency, focusing on the two primary pa-
rameters affecting inference time: the number of decoding
iterations and diffusion steps. Finally, Figure 3 compares
its latency and throughput with MAGNET-S, the fastest
existing text-to-audio model.

5.1. Overall System-level Performance

Table 1 shows the system-level performance of text-to-audio
generation on the AudioCaps evaluation set measured in
both objective and subjective metrics. We compare our
proposed models with current state-of-the-art models Au-

dioGen (Kreuk et al., 2023), Tango (Ghosal et al., 2023),
Tango-full-ft (Ghosal et al., 2023), Tango-AF&AC-FT-AC
(Kong et al., 2024), Tango 2 (Majumder et al., 2024), EzAu-
dio (Hai et al., 2024), MAGNET (Ziv et al., 2024), Make-an-
Audio 2 (Huang et al., 2023), and AudioLDM2 (Liu et al.,
2024). As shown in Table 1, our proposed IMPACT model
outperforms current state-of-the-art models on the FD and
FAD metrics. Specifically, while EzAudio-XL achieves the
lowest FD score of 14.98 among existing baselines, Tango
attains an FAD score of 1.73, our proposed models (c) and
(f) surpass these results on the respective metrics. For the KL
metric, Tango-full-ft and Tango 2 both achieve a KL score
of 1.12. In contrast, our proposed models (b), (c), and (f)
attain better KL scores, falling only slightly behind the non-
public model AudioLDM2-AC-large. Regarding the CLAP
metric, our model (f) achieves a score of 0.364, slightly
lower than Tango 2’s 0.375, which may be attributed to
Tango 2’s use of the Direct Preference Optimization (DPO)
(Rafailov et al., 2023) method for training. Note that EzAu-
dio poses a huge gap in CLAP score compared to all other
text-to-audio models. This is likely due to applying a data
filtering method derived from CapFilt (Li et al., 2022) to
discard audio-text pairs with CLAP scores lower than a cer-
tain threshold. Nonetheless, subjective evaluations indicate
that our IMPACT models (c) and (f) surpass Tango 2 and
EzAudio-XL in text relevancy (REL), demonstrating their
competitiveness in ensuring the generated audio closely
corresponds to the provided text descriptions from human
perspectives.

The last column of Table 1 compares the inference speed,
also known as latency, of IMPACT with that of all other
baseline models, each configured using hyperparameters
that yield their overall optimal performance on objective
metrics. While IMPACT model (b’) achieves the second-
lowest latency, just behind MAGNET-S, it significantly out-
performs MAGNET-S across multiple objective metrics.
Ablation studies on the two key factors influencing latency,
the number of decoding iterations and diffusion steps, are
presented in Section 5.3.

5.2. Training Configurations

5.2.1. UNCONDITIONAL PRE-TRAINING

We investigate the benefits of unconditional pre-training by
comparing three IMPACT models in Table 1: (a) trained
exclusively with text-conditional training, and (b) and (c)
additionally pre-trained unconditionally using different data
scales. Compared to model (a), model (c) exhibits consis-
tent gains across objective metrics. This improvement can
be attributed to the unconditional pre-training phase, which
enables the model to ensure the audio quality and fidelity for
generation. The subsequent text-conditional training then
aligns the model to follow text descriptions more effectively
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Table 1. System level comparison of various text-to-audio generation models and their performance on objective and subjective metrics.
Models publicly available were inferenced by us with parameters adjusted to achieve the best possible performance. Results for models
that are not publicly available (marked with ⋆) are directly reported from their original papers or from other existing works that have
documented them. The notations “pt. data” and “tc. data” represent the training data durations, measured in hours, for pre-training
and text-conditional training, respectively. For IMPACT, “pt. data” specifically refers to the duration of training data for unconditional
pre-training. Detailed information on the training data is listed in Appendix E. The † notation specifies that model (c’) is trained
with text-conditional training twice. The abbreviation “diff.” denotes the number of diffusion sampling steps used for inference. The
abbreviation “Lat.” represents the latency of generating a batch of 8 audios measured in seconds. Best performance values are marked in
bold. Second-best performance values are underscored. Detailed latency values of baseline models and IMPACT are listed in Appendix B.

AudioCaps pt. data tc. data # para FD ↓ FAD ↓ KL ↓ IS ↑ CLAP ↑ REL ↑ OVL ↑ diff. Lat. ↓
Ground Truth - - - - - - - 0.373 4.43 3.57 - -

AudioGen⋆ - ≈ 4000 1B - 1.82 1.69 - - - - - -
AudioGen v2 - ≈ 4000 1.5B 16.51 2.11 1.54 9.64 0.315 - - - 37.2
Tango - 145 866M 24.42 1.73 1.27 7.70 0.313 - - 200 182.6
Tango-full-ft ≈ 3333 145 866M 18.93 2.19 1.12 8.80 0.340 - - 200 181.6
Tango-AF&AC-FT-AC ≈ 400 145 866M 21.84 2.35 1.32 9.59 0.343 - - 200 182.6
Tango 2 ≈ 3333 ≈ 80 866M 20.66 2.63 1.12 9.09 0.375 4.13 3.37 200 182.3
EzAudio-L (24kHz) > 5500 145 596M 15.59 2.25 1.38 11.35 0.391 4.05 3.44 50 29.1
EzAudio-XL (24kHz) > 5500 145 874M 14.98 3.01 1.29 11.38 0.387 4.00 3.35 50 40.2
MAGNET-S - ≈ 4000 300M 23.02 3.22 1.42 9.72 0.287 3.83 2.84 - 6.9
MAGNET-L - ≈ 4000 1.5B 26.19 2.36 1.64 9.10 0.253 - - - 24.8
Make-an-Audio 2 - 3700 160M 16.23 2.03 1.29 9.95 0.345 - - 100 15.9
AudioLDM2-AC-large⋆ - 145 712M - 1.42 0.98 - - - - - -
AudioLDM2-full - 29510 346M 32.14 2.17 1.62 6.92 0.273 3.74 3.19 200 96.1
AudioLDM2-full-large - 1150k 712M 33.18 2.12 1.54 8.29 0.281 - - 200 195.7

(a) IMPACT base, dec iter 64 - 1200 193M 14.86 1.35 1.17 9.75 0.346 - - 100 22.2
(b) IMPACT base, dec iter 64 1200 1200 193M 15.36 1.13 1.04 10.37 0.361 4.15 3.45 100 22.2
(b’) IMPACT base, dec iter 32 1200 1200 193M 14.90 1.07 1.05 10.06 0.364 - - 100 11.2
(c) IMPACT base, dec iter 64 5500 1200 193M 14.72 1.13 1.09 10.03 0.353 4.31 3.51 100 22.2
(c’) IMPACT base, dec iter 64 5500 1200† 193M 13.86 1.12 1.11 9.41 0.347 - - 100 22.2
(d) IMPACT base, dec iter 64 5500 145 193M 15.18 1.38 1.16 9.19 0.340 - - 100 22.2

(e) IMPACT large, dec iter 64 5500 145 427M 14.50 1.50 1.13 9.53 0.343 - - 100 28.4
(f) IMPACT large, dec iter 64 5500 1200 427M 14.72 1.17 1.07 10.53 0.364 4.39 3.47 100 28.4

while further enhancing audio quality and fidelity. Further-
more, although increasing the pre-training data from model
(b) to model (c) slightly degrades KL, IS, and CLAP, subjec-
tive evaluations consistently favor model (c), underscoring
the value of larger-scale data for unconditional pre-training.
These findings demonstrate the importance of the uncon-
ditional pre-training phase and how it contributes to the
performance of IMPACT models.

5.2.2. TEXT-CONDITIONAL TRAINING DATA

By comparing models (c) and (d) in the IMPACT base
configuration, we observe notable improvements in key
metrics as the amount of text-conditioning training data is
increased. Both models were unconditionally pre-trained
with 5500 hours of data; however, model (d) was condi-
tionally trained on 145 hours of data, while model (c) was
conditionally trained on 1200 hours of data. This increase
in text-conditioning training data led to substantial perfor-
mance gains across several metrics. Model (c) achieved a
lower FAD of 1.13 compared to 1.38 for model (d). Addi-
tionally, model (c) demonstrated a reduced KL divergence,
scoring 1.09 versus 1.16 for model (d). Model (c) also
surpassed model (d) in CLAP score, achieving 0.353 com-

pared to 0.340. These findings confirm that increasing text-
conditional training data enhances the performance of gen-
erated audio on objective metrics.

To replicate the training dataset configuration of Tango-full-
ft (Ghosal et al., 2023), which was initially pre-trained on a
large-scale dataset and subsequently fine-tuned on AC, we
derive model (c’) by performing text-conditional training on
model (c) again using the AC training set. This additional
training improves the performance on FD and FAD metrics,
reflecting improved audio fidelity, but modestly degrades IS
and CLAP scores, suggesting a potential trade-off between
audio fidelity and quality, and also semantic consistency
between the generated audio and the provided text prompt.

Table 2. Performance of IMPACT with single-pass decoding and
32-iteration decoding. Masking percentage factor q is set to 1.0 for
training to yield the best performance for the single-pass model.

FAD ↓ KL ↓ IS ↑ CLAP ↑
single-pass 12.26 2.57 2.84 0.125
dec iter 32 1.07 1.05 10.06 0.364
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Figure 2. Performance of the baseline models and our proposed IMPACT model (b) with varying decoding iterations (dec iter), visualized
by plotting objective metrics (FAD, IS, KL, and CLAP) against latency. Data points of the IMPACT model are plotted in red curves.

5.3. Inference Configurations

5.3.1. DECODING ITERATIONS

Table 2 studies the effectiveness of iterative decoding. The
single-pass model, trained to generate audio latents in a
single-pass, performs much worse than the model with 32
steps of iterative decoding. This showcases the importance
of gradually generating the audio latents in an iterative man-
ner since further iterations can leverage the previously gen-
erated latents as the condition for generation. Figure 2

Table 3. Performance of IMPACT model (b) using different diffu-
sion steps T̂ for inference. Total decoding iterations set to 64.

T̂ FAD ↓ KL ↓ IS ↑ CLAP ↑ Lat. ↓
50 1.57 1.15 10.02 0.342 12.1
100 1.13 1.04 10.37 0.361 22.2
150 1.30 1.06 10.31 0.363 31.6
200 1.19 1.06 10.36 0.364 41.9

shows the objective performance versus latency (inference

time) of the baseline models and IMPACT model (b) us-
ing different decoding iterations during the inference phase.
With 16 decoding iterations, IMPACT surpasses all publicly
available baselines on the FAD metric, while only 8 itera-
tions are sufficient to exceed these baselines in terms of the
KL score. For IS scores, we observe an upward trend as the
number of decoding iterations increases. For KL and CLAP
scores, the gain of performance with 16 decoding iterations
or more is little. When using up to 16 decoding iterations,
we observe a strong correlation between performance and
decoding iterations across all four objective metrics, indicat-
ing a trade-off between audio quality, fidelity, and inference
speed, as more decoding iterations require more inference
time. Notably, with 16 iterations, IMPACT not only sur-
passes all baselines on FAD and KL but also outperforms
most of them on IS, all within a latency of just 5.7 seconds,
which is significantly lower than any of the baseline models.
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Figure 3. Batch latency and throughput comparisons between MAGNET-S and our IMPACT base model (b) with 4 decoding iterations.

5.3.2. DIFFUSION STEPS

Table 3 analyzes the effect of using different numbers of
diffusion steps for inference. For diffusion steps 100, 150,
and 200, the KL, IS, and CLAP scores are similar. For FAD,
KL and IS scores, the best performance happens when using
100 steps. Given the fact that more diffusion steps result in
higher latency, we conclude that using 100 diffusion steps
is the most suitable parameter to achieve high performance
on the objective metrics and to have low latency.

Figure 4. Heatmap visualizing latency measurements for IMPACT
model (b) under varying decoding iterations and diffusion steps at a
batch size of 8. Latency is depicted by color intensity, with brighter
colors indicating higher values. Detailed objective performance
values are provided in Appendix C.

5.3.3. OPTIMAL PARAMETERS

Figure 4 analyzes how decoding iterations and diffusion
steps together affect the latency of IMPACT. It is observed
that the impact of increasing diffusion steps on latency be-
comes more severe at higher decoding iterations. The la-
tency increase due to decoding iterations is more tolerable
at lower diffusion steps. Based on the results of Sections
5.3.1 and 5.3.2, we conclude that using 100 diffusion steps
along with 16 to 64 decoding iterations is the optimal range
of parameters for our IMPACT models.

Table 4. Comparison between MAGNET-S and IMPACT. The
number of diffusion steps is set to 100 for IMPACT model (b).

dec iter FAD ↓ KL ↓ CLAP ↑
MAGNET-S 50 3.22 1.42 0.287
IMPACT model (b) 4 2.85 1.17 0.321

5.4. Latency and Throughput Compared to MAGNET

IMPACT can flexibly adjust the number of decoding itera-
tions to balance objective performance metrics and inference
efficiency. To analyze this trade-off against the fastest exist-
ing baseline, Figure 3 presents the latency and throughput of
MAGNET-S and our IMPACT base model with 4 decoding
iterations across various batch sizes. Here, we define latency
as the time in seconds to generate each batch of audio, and
throughput as the number of audio samples generated per
second. As reported in Table 4, even with just 4 decod-
ing iterations, IMPACT already surpasses MAGNET-S in
FAD, KL, and CLAP. IMPACT achieves faster inference
than MAGNET-S, even with looping through the diffusion
sampling process, due to its efficiency in reaching high
objective performance with fewer decoding iterations. In
contrast, MAGNET requires decoding across four levels
of codebooks, which needs 50 iterations in total. Further-
more, when examining performance on batch sizes ranging
from 1 to 64, IMPACT demonstrates consistently lower
inference time and higher throughput, indicating that it
scales better with larger batch sizes. For example, at a batch
size of 64, IMPACT completes inference in 7.75 seconds
with a throughput of 8.26 samples per second, compared
to MAGNET-S’s 52.04 seconds and 1.23 samples per sec-
ond, respectively. This improvement highlights IMPACT’s
scalability and speed, making it a compelling option for ap-
plications that demand both high throughput and low latency
on single-GPU systems, while also offering competitive or
superior output quality.
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6. Conclusions
In this paper, we introduce IMPACT for text-to-audio gen-
eration, which combines the advantages of iterative mask-
based parallel decoding and continuous latent representa-
tions through LDMs. By leveraging continuous latents
with LDMs, IMPACT overcomes the limitations of discrete-
token-based methods, offering superior audio fidelity and
semantic alignment. Moreover, its mask-based decoding
mechanism and adoption of a small diffusion head for gen-
eration ensure efficient inference, achieving faster inference
speed than multiple baseline models and competitive latency
compared to the fastest text-to-audio model, MAGNET-S.
Apart from these methods, we propose unconditional pre-
training and demonstrate the importance of it to achieve
state-of-the-art performance on objective metrics such as
FD and FAD. Our extensive experiments on the AudioCaps
evaluation set highlight IMPACT’s ability to balance audio
quality, fidelity, text relevancy, and inference speed, address-
ing the trade-offs present in prior approaches. Additionally,
human evaluations reaffirm its effectiveness in generating
high-quality and contextually accurate audio content. These
advancements position IMPACT as a robust solution for
applications requiring both high fidelity and low latency.

Impact Statement
This paper presents an approach to enhance text-to-audio
generation. The key contributions include improving au-
dio fidelity, quality, and inference speed through iterative
mask-based parallel decoding applied to continuous latents
within LDMs. Additionally, the method incorporates an
unconditional pre-training phase, enabling the utilization
of unlabeled audio data, which significantly enhances the
fidelity, quality, and text relevancy of the generated audio.
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A., Copet, J., Parikh, D., Taigman, Y., and Adi, Y. Audio-
gen: Textually guided audio generation. In The Eleventh
International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=CYK7RfcOzQ4.

Li, J., Li, D., Xiong, C., and Hoi, S. Blip: Bootstrapping
language-image pre-training for unified vision-language

understanding and generation. In International confer-
ence on machine learning, pp. 12888–12900. PMLR,
2022.

Li, T., Chang, H., Mishra, S., Zhang, H., Katabi, D., and
Krishnan, D. Mage: Masked generative encoder to unify
representation learning and image synthesis. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 2142–2152, 2023.

Li, T., Tian, Y., Li, H., Deng, M., and He, K. Autoregres-
sive image generation without vector quantization. arXiv
preprint arXiv:2406.11838, 2024.

Liu, H., Chen, Z., Yuan, Y., Mei, X., Liu, X., Mandic,
D., Wang, W., and Plumbley, M. D. AudioLDM:
Text-to-audio generation with latent diffusion models.
In Krause, A., Brunskill, E., Cho, K., Engelhardt,
B., Sabato, S., and Scarlett, J. (eds.), Proceedings of
the 40th International Conference on Machine Learn-
ing, volume 202 of Proceedings of Machine Learn-
ing Research, pp. 21450–21474. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/liu23f.html.

Liu, H., Yuan, Y., Liu, X., Mei, X., Kong, Q., Tian, Q.,
Wang, Y., Wang, W., Wang, Y., and Plumbley, M. D.
Audioldm 2: Learning holistic audio generation with
self-supervised pretraining. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 2024.

Majumder, N., Hung, C.-Y., Ghosal, D., Hsu, W.-N., Mi-
halcea, R., and Poria, S. Tango 2: Aligning diffusion-
based text-to-audio generative models through direct
preference optimization. In ACM Multimedia 2024,
2024. URL https://openreview.net/forum?
id=7lqptq5dLG.
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A. Classifier Free Guidance (cfg)
Cfg is achieved by pushing away the latents scond generated with the text condition from the ones suncond generated without
the text condition, as shown in Eq. (4).

s = suncond + αcfg · (scond − suncond) (4)

The cfg scaler α(t)
cfg at decoding iteration t controls how far to push away the generated latents from the unconditional ones.

This scaler can be controlled by a cfg scheduler ζ(t) during the iterative decoding process shown in Eq. (5).

α
(t)
cfg = 1 + ζ(t) · (αcfg max − 1) (5)

The cfg scheduler used in this work is ζ(t) = cos
(
π
2 · t

T

)
. The max cfg scaler αcfg max is set to 5.0 by default unless

specified. The relationship between the cfg scaler α(t)
cfg and decoding iteration t is visualized in Figure 5. Using a higher max

cfg scaler indicates that the generated latents are more forced to follow the text condition during generation.

Figure 5. The cfg scaler α(t)
cfg at each decoding iteration during a 64-step iterative mask-based parallel decoding process.

Table 5 reports the performance of using different max cfg scalers for IMPACT model (c) trained with AS (5500 h) for
unconditional pre-training and AC+WC (1200 h) for text-conditional training. The results demonstrate that there is a high
correlation between the max cfg scaler and the CLAP score.

Table 5. Performance of IMPACT with different max cfg scalers αcfg max.

αcfg max FAD ↓ KL ↓ IS ↑ CLAP ↑
1.0 3.36 1.36 6.74 0.261
2.0 1.51 1.08 9.07 0.328
3.0 1.39 1.05 9.85 0.346
4.0 1.25 1.07 10.19 0.355
5.0 1.13 1.09 10.03 0.353
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B. System Level Latency

Table 6. Latency values of baseline models and IMPACT base with different batch sizes measured in seconds on a single Tesla V100
GPU with 32 GB VRAM. “diff steps” indicates the number of diffusion sampling steps t̂ used for diffusion-based models. “coom” is the
abbreviation of cuda-out-of-memory, indicating that the GPU is unable to process the forwarding of the model with the corresponding
batch size.

Batch Size diff steps t̂ 1 2 4 8 16 32 64

AudioGen v2 - 36.9 37.0 37.1 37.2 37.6 46.8 77.4
Tango 2 200 36.0 68.2 107.8 182.3 coom coom coom
EzAudio-L 50 12.6 14.2 15.8 29.1 55.3 108.9 coom
EzAudio-XL 50 14.4 14.5 21.4 40.2 78.4 155.4 coom
MAGNET-S - 1.6 2.1 3.7 6.9 13.3 26.2 52.0
MAGNET-L - 3.9 7.0 13.0 24.8 49.3 97.4 195.9
Make-an-Audio 2 100 3.5 11.1 12.6 15.9 34.1 41.3 81.7
AudioLDM2-full 200 46.7 48.8 57.8 96.1 148.2 275.4 coom
AudioLDM2-full-large 200 77.9 78.2 153.7 195.7 328.1 643.7 coom

IMPACT base, dec iter 64 100 19.8 19.9 20.6 22.2 24.0 27.9 37.3
IMPACT base, dec iter 32 100 10.1 10.4 10.5 11.2 12.6 15.3 20.5
IMPACT base, dec iter 16 100 5.0 5.2 5.4 5.7 6.6 8.5 13.1
IMPACT base, dec iter 8 100 2.5 2.6 2.8 3.2 4.1 5.7 9.5
IMPACT base, dec iter 4 100 1.3 1.4 1.5 1.8 2.7 4.4 7.8

Table 6 compares the latency values of baseline models and IMPACT base across various batch sizes (1, 2, 4, 8, 16, 32,
64) on a Tesla V100 GPU with 32 GB VRAM. Baseline models are configured using hyperparameters that yield their
optimal performance on objective metrics. AudioGen v21 is the public version of AudioGen but is slightly different from
the original AudioGen model published in (Kreuk et al., 2023). AudioGen v2 generates audio in 10 seconds, adopts discrete
representations from a retrained EnCodec model, and no audio mixing augmentations are used during training.

The results highlight the efficiency and scalability of IMPACT compared to existing baseline models. Notably, IMPACT
demonstrates significantly lower latency across all batch sizes when using fewer decoding iterations.

C. Combinations of Decoding Iterations and Diffusion Steps of IMPACT base
C.1. FAD

Figure 6. Heatmap visualizing FAD scores for IMPACT model (b) under varying decoding iterations and diffusion steps at a batch size of
8. FAD score is depicted by color intensity, with brighter colors indicating higher values.

1https://github.com/facebookresearch/audiocraft/blob/main/model cards/AUDIOGEN MODEL CARD.md
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C.2. KL

Figure 7. Heatmap visualizing KL scores for IMPACT model (b) under varying decoding iterations and diffusion steps at a batch size of 8.
KL score is depicted by color intensity, with brighter colors indicating higher values.

C.3. IS

Figure 8. Heatmap visualizing IS scores for IMPACT model (b) under varying decoding iterations and diffusion steps at a batch size of 8.
IS score is depicted by color intensity, with brighter colors indicating higher values.

C.4. CLAP

Figure 9. Heatmap visualizing CLAP scores for IMPACT model (b) under varying decoding iterations and diffusion steps at a batch size
of 8. CLAP score is depicted by color intensity, with brighter colors indicating higher values.
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D. Implementation Details
D.1. Random Position Selection

Throughout the mask-based decoding process, the mask M (t) at each decoding iteration t follows a subset property
M (t+1) ⊂ M (t) where ⊂ indicates a strict subset in element-wise terms:

∀ i ∈ {1, . . . , N}, M (t+1)[i] ≤ M (t)[i]. (6)

This means a position i that is unmasked (M [i] = 0) at decoding iteration t must also have been unmasked at the rest of
the decoding iterations. At each decoding iteration, the model predicts the positions that are different between M (t+1)

and M (t), i.e., the positions where M (t)[i] = 1 and M (t+1)[i] = 0. We denote the set of indices of the positions to be
predicted at each decoding iteration as M (t)

pred. The behavior of this design at each decoding iteration t + 1 will result in
randomly selecting a subset of unpredicted positions of z(t) to be generated. This is different from previous mask-based
generative models Soundstorm, VampNet, and MAGNET that operate on discrete audio tokens, since they are able to select
positions that have low confidence scores to predict at each decoding iteration.

D.2. Mask Scheduling

Another purpose of applying the cosine function is that it is a concave function within [0, π
2 ]. This causes the number of

positions to be predicted at decoding iteration t, denoted as |M (t)
pred|, increasing throughout the iterative decoding process.

This ensures that more latents are generated when more previous content is available.

D.3. Transformer-based Latent Encoder

The Transformer-based latent encoder Encϕ consists of two subencoders, Encϕ1
and Encϕ2

, which follows the scheme of a
masked autoencoder (MAE) (He et al., 2022)2. As shown in Eq. (7), the masked positions of the audio latents z are dropped
before forwarding it to the first encoder Encϕ1 along with the concatenated text condition vector sequence c. We denote the
audio latent sequence with masked positions dropped as zdrop. The reason for dropping the masked audio latents at this stage
is to reduce both computational and memory requirements since a large portion of positions in z are masked.

g = Encϕ1(concat(c, zdrop)),g ∈ R(L+(1−q)·N)×D (7)

At this point, we reinsert mask latent embeddings (placeholder) to the masked positions in g, resulting in g′ ∈ R(L+N)×D.
g′ is then forwarded to Encϕ2 to produce the final hidden representation h mentioned in Eq. (1). The forwarding process of
Encϕ2 is shown in Eq. (8).

h = Encϕ2
(g′),h ∈ R(L+N)×D (8)

The Transformer blocks of the Transformer-based latent encoder are initialized using pre-trained MAR checkpoints3, as
failing to do so results in poor performance.

D.4. Diffusion Head

In our work, we directly adopted the diffusion head of MAR’s (Li et al., 2024). The diffusion head processes the input latents
via a linear projection and then infuses time-dependent information through a timestep embedder. Condition vectors hi are
likewise projected before being added to the time embedding, forming a combined representation that is passed through a
series of ResBlock layers (He et al., 2016). Each ResBlock leverages adaptive layer normalization (AdaLN) (Peebles &
Xie, 2023), where the conditioning vectors modulate the normalized hidden states via learned shifts and scales. Following
these residual transformations, a final linear layer produces the output (e.g., mean and variance for diffusion). Unlike the
Transformer-based latent encoder, this module is able to be trained from scratch.

2The original MAE paper treats this as an encoder-decoder framework. However, in this work, we refer to both the encoder and the
decoder as encoders and name the whole module as “transformer-based latent encoder” since the role of this module is to encode the
audio latents into a hidden representation h to serve as the condition for the diffusion head.

3Checkpoints can be accessed from the official third-party MAR github repository https://github.com/LTH14/mar?tab=readme-ov-
file#preparation
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E. Dataset Information
Table 7 lists the pre-training data and text-conditional training data for each model. The pre-training data for IMPACT refers
to the training data used for unconditional pre-training.

AS:AudioSet (Gemmeke et al., 2017) , AC:AudioCaps (Kim et al., 2019), WC:WavCaps (Mei et al., 2024), BBC:BBC sound
effects, Cv2:Clotho v2 (Drossos et al., 2020), VGG:VGG-Sound, FSD50K:Freesound Dataset 50k4, FS:Freesound Dataset,
FTUS:Free To Use Sounds, SGE:Sonniss Game Effects, WSE:WeSoundEffects, PM:Paramount Motion, US:Urban Sound
(Salamon et al., 2014), MI:Musical Instrument, MC:MusicCaps, GMG:Gtzan Music Genre, ESC50:Environmental Sound
Classification (Piczak, 2015), AA:Audio-alpaca5, AFAS:AF-AudioSet, AACD:Auto-ACD (Sun et al., 2024), ASQC:AS-
Qwen-Caps, ASSLGC:AS-SL-GPT4-Caps, AASE:Adobe Audition Sound Effects6, ASTK:Audiostock7, MACS (Martı́n-
Morató & Mesaros, 2021), ES:Epidemic Sound8, WT:WavText5Ks (Deshmukh et al., 2022), TUT:TUT acoustic scene
(Mesaros et al., 2016), FMA:Free Music Archive (Defferrard et al., 2016), MSD: Million Song Dataset (Bertin-Mahieux
et al., 2011), LJS:LJSpeech9, GGS:GigaSpeech (Chen et al., 2021).

Table 7. Training data configurations for each model.

pre-train data fine-tune data

AudioGen - AS+BBC+AC+Cv2+VGG+FSD50K+FTUS+SGE+WSE+PM
Tango - AC
Tango-full-ft AS+AC+FS+BBC+US+MI+MC+GMG+ESC50 AC
Tango-AF&AC-FT-AC AFAS, AC AC
Tango 2 AS+AC+FS+BBC+US+MI+MC+GMG+ESC50 AA
EzAudio-L (24kHz) AS+AACD+ASQC+ASSLGC AC
EzAudio-XL (24kHz) AS+AACD+ASQC+ASSLGC AC
MAGNET-S - AS+BBC+AC+Cv2+VGG+FSD50K+FTUS+SGE+WSE+PM
MAGNET-L - AS+BBC+AC+Cv2+VGG+FSD50K+FTUS+SGE+WSE+PM
Make-an-Audio 2 - AS+AC+WC+AASE+ASTK+ESC50+FSD50K+MACS+ES+US+WT+TUT
AudioLDM2-AC-large⋆ - AC
AudioLDM2-full - AS+AC+WC+VGG+FMA+MSD+LJS+GGS

(a) IMPACT base - AC+WC
(b) IMPACT base AS AC
(c) IMPACT base AS AC+WC
(c’) IMPACT base AS AC+WC & AC
(d) IMPACT base AC+WC AC+WC
(d’) IMPACT base AC+WC AC+WC

(e) IMPACT large AS AC
(f) IMPACT large AS AC+WC

4https://annotator.freesound.org/fsd
5https://huggingface.co/datasets/declare-lab/audio-alpaca
6https://www.adobe.com/products/audition/offers/adobeauditiondlcsfx.html
7https://audiostock.net/
8https://www.epidemicsound.com/
9https://keithito.com/LJ-Speech-Dataset/
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F. Objective Evaluation
F.1. FD and FAD

FD and FAD are metrics specifically designed to assess the fidelity of generated audio by measuring the distance between the
distributions of embeddings from real and generated audio samples. A lower FD or FAD score indicates that the generated
audio closely resembles real audio in terms of these perceptual features, reflecting higher fidelity and realism.

F.2. KL

KL divergence quantifies how the probability distribution of sound events in the generated audio differs from that of the real
audio, with smaller values indicating that the generative model effectively captures the underlying distribution of the real
audio data.

F.3. IS

IS measures both the quality and diversity of generated audio samples by computing the KL divergence between the
conditional class distribution and the marginal class distribution over all samples using a pre-trained classifier. A higher IS
suggests that the generated audio is high-quality and diverse.

For metrics FD, FAD, KL, and IS, we follow the implementation of the commonly used audioldm eval10 package.

F.4. CLAP

CLAP evaluates the semantic consistency between the input text and the generated audio by computing the cosine similarity
between embeddings of input text prompts and generated audio in a shared embedding space learned by models trained
to align textual descriptions with corresponding audio representations. A higher CLAP score signifies better alignment
and that the generated audio accurately reflects the intended textual content. The CLAP model used for evaluation is
clap-htsat-fused11, which is different from the one12 used for the text condition to avoid gaining advantage on the CLAP
metric.

10https://github.com/haoheliu/audioldm eval
11https://huggingface.co/laion/clap-htsat-fused
12https://huggingface.co/lukewys/laion clap/blob/main/630k-audioset-fusion-best.pt
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G. Subjective Evaluation Platform

Figure 10. REL rating platform.

Figure 11. OVL rating platform.
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