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Abstract

We present an equivariant neural network for predicting the phonon modes of
the periodic crystals and molecules by evaluating the second derivative Hessian
matrices of the energy model, which are first trained with the energy and force
data. Such efficient Hessian prediction enables us to predict the phonon dispersion
and the density of states for inorganic crystal material and can be fine-tuned with
additional dataset. For molecules, we also derive the symmetry constraints for
infrared/Raman active modes by analyzing the phonon mode irreducible repre-
sentations. Our training paradigm further shows using Hessian as a new type of
higher-order training data to improve the energy models beyond the lower-order
energy and force data.

1 Introduction

The vibration phonon modes of the atoms in a structure play a crucial role in determining the material
properties such as the thermal, and transport characteristics in various applications [20, 24, 23, 37,
25, 17, 29]. The symmetry characteristics of these modes determine their behavior when they are
studied using infrared/Raman spectroscopy [1]. In solids, the unstable phonon modes at negative (or
imaginary) energy also provide intuition for the potential symmetry breaking of the crystal structure,
as in the perovskite structures [34]. In high-throughput material search and AI-guided design, it is
therefore crucial to have an efficient tool to predict the phonon properties given an atomic structure.
The advances in machine learning and deep neural networks have inspired significant progress in
parametrizing atomic potentials using physics-informed equivariant neural network models [26, 3, 4].
In this work, we utilize such symmetry-aware E(3)-equivariant graph neural network models [14, 13]
to achieve efficient and accurate phonon predictions by direct computations of the Hessian matrices.
Our training paradigm further generalizes the training data types by including the Hessian data as a
higher-order extension beyond the energy and force data at the zeroth and first order respectively.

*Equal Contribution. Order is random.
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1.1 Main contributions

• We applied a second derivative method to determine the phonon dynamical matrices in
periodic crystals. For these calculations, we utilize energy models pre-trained on the
Universal-IAP dataset [8]. As energy models, we employ the architectures of NequIP [4]
and MACE [3]. To ensure precise evaluations of the dynamical matrices in periodic crystals,
we also devised an extended graph construction technique.

• Besides the phonon Hessian predictions, we also demonstrated using the Hessian data
(evaluated from DFT/DFPT [16]) as additional second-order training data beyond energy
and forces to further improve the energy models.

• For molecular cases, we implement tools to extract the phonon mode symmetry irreducible
representations [7] and the active modes for infrared/Raman experimental probes under
symmetry selection rules [1].

1.2 Related work

Previously, phonon predictions were shown to be derived from atomic potential models by evalu-
ating the forces for the slightly displaced atomic patterns near their equilibrium positions [8, 28].
These methods require choices of supercell geometries and the enumerations of the independent
displacement pattern subject to the crystallographic symmetry constraints, and the finite-difference
approximation for getting numerical Hessians (frozen phonon method). Due to the supercell geome-
tries adopted, the phonon bands are folded and one has to apply band structure unfolding to get the
conventional phonon spectrum [38, 40, 39]. On the other hand, the virtual node method VGNN [27]
targets the dynamical matrix prediction directly without generating an energy model from the training
process.

2 Phonax: equivariant neural networks for phonon predictions

2.1 Formulation for vibrational phonon modes

The equation of motion for the atoms vibrating around their equilibrium locations in the crystal
structure is governed by the dynamical matrix [20, 24]

Dαβ(ij, q⃗) =
1

√
mimj

∑
a

∂2E

∂(x⃗0i)α∂(x⃗aj)β
eiq⃗·(x⃗aj−x⃗0i) (1)

at crystal momentum q⃗ with unit cell index a, atomic basis indices i, j, and α, β = x, y, z. The
phonon eigenvalue equation is given by∑

jβ

Dαβ(ij, q⃗)e
n
β(j, q⃗) = [ωn(q⃗)]2enα(i, q⃗) (2)

for the n-th phonon modes with energy ωn(q⃗) and normal mode wavefunction enβ(j, q⃗). The molecular
case is simplified with q⃗ = 0 without crystal momentum. For the periodic crystal case at momentum
q⃗, the symmetry little group dictates the types of symmetry irreducible representations of the phonon
modes and energy level degeneracy, which leads to the symmetry selection rules for experimental
infrared/Raman spectroscopy [1]. For the polar crystals, the atomic vibrations further induce electric
dipole moments that can interact via long-range dipole-dipole interactions [16]. A rigorous treatment
requires additional inputs for the Born effective charges and the dielectric constant tensor, and the
Ewald sum for the long-range interaction is shown to give rise to singular contributions near q⃗ → 0.
This non-analytical term correction and the resulting phonon band discontinuity near Γ are also
known as the LO-TO splitting [33]. In our work here, we neglect such corrections and leave these
dipole-dipole corrections to future work.

2.2 Model Architecture

The equivariant neural network atomic potential models are symmetry-aware and efficient in pre-
dicting accurate atomic energy and force interactions. In our work, we have used NequIP [4] and
MACE [3] models as our energy foundation models. To evaluate the phonon dynamical matrix, one
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needs to evaluate the second derivatives with respect to the pairs of atomic coordinates in the structure
as appear in the dynamical matrix. For the computational graph, however, one has to generalize
the conventional periodic crystal graph which retains only the coordinates within the center unit
cell (which leads to the single unit cell periodicity and q⃗ = 0 constraint). In a message-passing
neural network architecture as shown in Fig. 1b, rc sets the cutoff for the information flow in one
iteration of the message-passing (spacing for one unit cell in this 1D chain example). With nm

steps of message-passing convolutions (nm = 2), one has an enlarged cutoff radius nmrc for the
information flow. We constructed the extended graph to capture these by including all the atomic sites
from the surrounding unit cells within such receptive fields of the center unit cell, see Fig. 1b for the
illustration. We implemented these within JAX framework [6], using e3nn-jax [12, 13], jraph [15],
Haiku [18], JAX-MD [36] and MACE-JAX [2, 3] libraries. In the following results, we focus on
training using the NequIP model.

3 Results

1st message-
passing step

2nd message-
passing step
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Figure 1: Phonon prediction and training: (a) Si crystal phonon predictions (mp-149) in blue
using the NequIP models trained with 1×1×1, 2×2×2 and 3×3×3 supercell energy/force data,
which has 2, 16, 54 atoms respectively. The ground truth DFT phonon bands are shown in black.
(b) The illustration for the information flow with a 1D chain. Within each iteration step of the
message-passing graph neural network, ci site gathers messages from ci±1 sites. With a total nm = 2
iterations, the center unit c0 incorporates features from ci with −2 ≤ i ≤ 2. These sites constitute
the extended graph for Hessian evaluation. Within this model, ∂2E/∂r0∂rj = 0 for |j| > 2. (c) The
energy model is trained with 1×1×1 and the Hessian data. The phonon prediction is significantly
better than using only 1×1×1 data shown in a. (d) The error analysis in the momentum space for
phonon predictions in a and c. At each q⃗, these errors are computed from the matrix norm for the
errors in the predicted dynamical matrix. The model trained with additional Hessian data (black)
achieves the lowest error overall.

3.1 Phonon Predictions for Crystals with a Periodic Lattice

In Fig. 1, we first show the predicted phonon spectrum for the silicon atom in the diamond structure
(mp-149). We have trained the energy model using energy / force data from various sizes of supercells
in Fig. 1a, and the phonon predictions are more accurate for larger supercells to allow independent
degrees of freedom. Next, we augmented the smallest 1× 1× 1 force data with Hessian data.
Interestingly, these predictions outperformed those from the model trained on the largest 3×3×3
supercell. Please see Figs. 1c and 1d for the predicted spectrum and error analysis. It is worth
noting here that there are three E = 0 modes at Γ point. These zero modes appear due to the crystal
energy invariance under a uniform translation of atomic positions. In our modeling framework, those
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zero modes are built-in as the inductive bias. Without strictly enforcing this symmetry numerically,
correction terms would be needed to restore these zero modes, as per the acoustic phonon sum rule.

a

b

c

d

Figure 2: Phonon prediction for the periodic crystals and the error analysis (a) The distribution
for the phonon predictions error metric of the periodic crystals with the PBESol model evaluated
for the train and valid datasets. The crystals are grouped into three tertiles depending on the error
metric (shaded areas for the valid dataset). Crystal examples are drawn randomly from the (b) first
tertile (c) second tertile (d) third tertile groups in the prediction accuracy. The predicted phonon
bands are colored green, yellow, and red respectively with the ground truth DFT results in black for
the comparison.
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Having verified our phonon prediction method above, we used the universal-IAP dataset [8] to train
the general-purpose energy model based on NequIP architecture, with energy / force data from the
Materials Project [19]. To remove the data with extremely large atomic forces and limit our training
near the equilibrium configurations, we impose a force cutoff 5 eV/Å to filter the dataset. We allocated
3% of the crystal structures as the validation dataset, using the remaining 97% for training. While
the universalIAP calculations were done with the PBE approximation for the exchange-correlation
functional [30], the phonon database [32] with the Materials Project was computed with PBEsol
functional [31]. To correct the model due to the exchange-correlation functional, we carried out
additional VASP DFT calculations [22, 21, 5] with PBEsol to get the energy and force data for the
supercell structures with atomic positions randomly perturbed (Gaussian noise ≈ 0.1Å, see SI for
more details). With this dataset, we train our energy model and the predicted phonon results show
better agreement. In Fig. 2, we show the phonon predictions and error analysis for crystals in the
phonon database.

3.2 Training and data augmentation with molecular Hessians

As in the periodic crystal cases, the molecular Hessians can be used to derive the vibrational modes
in the molecules. One can further derive the symmetry properties of these normal modes, and the
associated IR/Raman active mode selection rules, which have implications on the experimental
identifications (see SI for more details.). Here we use the molecular Hessian data as the additional
training data to improve the energy model. To generate the training dataset, we used the ethanol
molecular configurations in the CCSD dataset [10] (drawn from MD simulations, see SI for the
dataset construction) and computed the energy, atomic forces, and the full hessian with VASP DFT.
In Fig. 3a, we showed how the force generalization errors are affected by a single configuration
training, using only the force data, compared with the training using force and Hessian data. The
force validation datasets are constructed by adding positional Gaussian noise at various strength to
the training ethanol configuration. The training curve shows how the generalization errors are much
reduced with Hessian training data. It remains an interesting open question to see if such an energy
model would be more stable under MD simulations [11], as the local stability is controlled by the
second derivative Hessians.

Next in Fig. 3b, we show the training curve comparisons with and without using the hessian data for
the force MAE in the valid dataset, with varying number of molecular configurations used. Although
the force MAE improves when hessian data is included, it does not yet lead to a stronger scaling from
the slope. The shifted curve suggests an effective 5 times the number of force configurations in
this training case with ethanol. Physically, the hessian provides a more complete prescription of the
energy landscape around a given atomic structure compared to the force-only training, and therefore
effectively augments the training configurations.

a b

Figure 3: Molecules and Hessians: (a) The evaluation for energy model trained with a single ethanol
configuration, using only the force data, or force+Hessian. The force MAE is computed with slightly
perturbed molecular configurations with positional Gaussian noise σ from 0.001Å to 0.07Å from
the trained configuration. 100 trainings (seeds + random samples) were used at each σ with the std
for force MAE represented by the shaded area. With Hessian data training, force MAE is strongly
suppressed around the molecular configuration. (b) The training curve for the scaling of the prediction
error with the number of training configurations.
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4 Conclusions

In this work, we predict the phonon dynamical matrices by deriving the second-derivative Hessians
of the energy model parametrized by E(3)-equivariant graph neural networks. We have accurately
forecasted the vibrational characteristics of both periodic crystals and molecules. Additionally, we
have shown that incorporating Hessian data into our dataset enhances the training of our energy
model. Beyond the models we have pre-trained, one can further fine-tune the model with additional
energy/force data for a specific family of materials, or more refined ab initio calculations to achieve
more accurate predictions.

5 Broader Impact

We consider here the two aspects of our work. The first one is the efficient prediction of the phonon
modes and their properties. In the high-throughput search for the materials, this is a crucial step
to screen or evaluate the material candidates in the applications. Our pre-trained general-purpose
models enable such predictions for general element types in the periodic table and crystal structures.
On the other hand, the vibrational phonon modes also inform the energetic and mechanical properties
of the materials. Despite being second-derivative data, phonon properties connect more directly to
the realistic observations compared to the first-order force data. Our phonon prediction model would
allow the training to use experimental or simulated phonon data to further improve the underlying
energy model.
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7 Supplementary Information

7.1 Dataset generated: Phonon predictions with PBEsol energy/force training data

The universal-IAP data we used to pre-train the energy model was computed with DFT calculations
using the PBE exchange-correlational functional [30]. However, the phonon database [32] (used
in the Materials Project) was derived from DFPT calculations based on DFT calculations with
PBEsol exchange-correlational functional [31]. The differences between the exchange-correlational
functionals used lead to different DFT predictions given an atomic structure. The main differences
include the following: the equilibrium stable structure, and the energy/force predictions for a structure.
The equilibrium structure implies the lattice constants of the cell vectors and the atomic positions in a
unit. Mixing the two different DFT data would reduce the prediction accuracy. Therefore, we train
another energy model based on these PBEsol energy / force data besides the general-purpose energy
model trained with PBE data. [One can further explore the ideas to fine-tune the pre-trained PBE
model with this additional dataset.]

To generate such PBEsol fine-tuning data, we focus on the ∼ 1.5k periodic crystals used in the phonon
database [32]. The data generated includes several types and we have adopted the same train-test data
split in phonon DOS prediction work [9]. First, we consider the unperturbed crystal structure and
employed DFT to compute the energy and force data of these structures with PBEsol [31]. Note that
while the original phonon database was computed with Abinit DFT code, VASP DFT calculations
were carried out here. The results are consistent in that these structures are near equilibrium with
small residual forces and stress within the crystals. Besides the equilibrium structures, we also
augment the data generation with perturbed periodic crystal structures. We retain the same 1×1×1
unit cell periodicity, and generate perturbed structures with Gaussian noise added to the atomic site
positions Two types of perturbations are generated which depend on whether Gaussian noises were
also added to the unit cell vectors or not.

6



Cell noise Positional noise Train Valid

Equilibrium structures N N 1 -
1× 1× 1 structures N Y 2 1
1× 1× 1 structures’ Y Y 2 1
2× 2× 2 structures N Y 2 1
2× 2× 2 structures’ Y Y 2 1

Table 1: PBEsol augmentation energy and force data types. The values in the train/valid indicate
the number of randomly perturbed samples given a structure. (equilibrium structures are without the
Gaussian noise perturbations.)

As shown in the main text Fig 1, the phonon predictions can be improved by using the energy / force
data from enlarged supercell structures which can unfold the atomic pair interactions. To derive such
data augmentation, we repeat the calculations with enlarged 2×2×2 unit cell periodicity and add
perturbations. The Gaussian noise added to the atomic positions has a σ = 0.1Å, while the Gaussian
noise added to the cell vectors (supercell) has a σ = 0.05Å.

In Table 1, we summarize the types of data generated for PBEsol model fine-tuning. We used this
dataset to train a NequIP energy model and derive the phonon predictions for the crsytals in the valid
dataset (about 330 crystals). In Fig. 2 a, we plot the Hessian error metric, which is defined by the
ratio between the matrix norms for the errors in the dynamical matrix prediction and the ground truth
dynamical matrix, averaged over the BZ k point sampling. Based on this error analysis, we group
the crystals from the valid dataset into three tertiles, and draw random examples for deriving their
phonon spectrum shown in Fig. 2 b-d.

7.2 Molecular Hessian data generation and training procedure

In this section, we describe the molecular Hessian database generation with DFT calculations.
Intuitively, the Hessian matrices describe the force constants of an atomic structure, a 3× 3 force
constant matrix for each atomic pair (or within a single atomic site). To generate this molecular
Hessian database, we adopted the molecular configurations from the CCSD database [10] which
includes five types of molecules, ethanol, malonaldehyde, benzene, toluene, and aspirin. [In the
original work to generate this CCSD database [10], the goal was to build a molecular energy/force
database beyond the DFT-level approximations and achieve more accurate quantum-chemistry
level predictions. Despite being more advanced and accurate compared to the conventional DFT
calculations, the molecular configurations were derived from MD simulations at the DFT level,
with the CCSD corrections calculated on top of molecular configurations sampled from the MD
trajectories.] In our Hessian database generation, we took the molecular geometric configurations in
this CCSD database, and recalculated the energy and force data using the VASP DFT code [22, 21],
using the same train-test data split. The electronic ground states were converged with an energy cutoff
500 eV, and PBE exchange-correlation functional with PAW formalism, for these molecules enclosed
within a 10!×!10!×!10 (in Å) large supercell to reduce interactions between periodic structure images.
On top of the converged ground state calculations, the Hessian matrices were then derived with the
density functional perturbation theory (DFPT) approach that computes the second-derivatives of
the total molecular energy with respect to the atomic positions within the molecule (rather than the
finite-difference method). The calculation results were then post-processed by the Phonopy python
library [38, 40, 39], to extract the Hessian matrices. To be consistent with the Hessian data derived,
we also extract the molecular energy and atomic force data from the DFT calculations, such that
they all describe the same energy landscape of the molecular configuration with the data as different
orders of derivatives.

For the data generated given a molecule with N atoms, the force data can be stored in a N × 3 matrix,
while the Hessian data requires a N ×N × 3× 3 tensor for the storage. The geometric symmetries
of the atomic structure would further simplify the Hessian matrices by imposing further constraints
which reduce the independent coupling parameters. For example, the translational invariance of
the molecular energy leads to the acoustic sum rule and zero energy modes in the spectrum. In our
Hessian database construction, we do not impose the acoustic sum rule of the numerical Hessian
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matrices. Instead, this symmetry constraint is baked into our equivariant neural network as an
inductive bias.

The training data is then generated by selecting the Hessian matrix element from randomly chosen
pairs of atomic coordinates, projected in randomized directions to retain rotational equivariance. In
the training, second derivative Hessians were only evaluated with the selected atomic site pairs and
associated projected directions, without evaluating the full molecular Hessian which could be time
consuming. Besides the training signal (gradient) from Hessian data, we also mix it with the weighted
training signal from comparing force data.

7.3 Molecular Hessians: symmetry analysis for infrared/Raman-active modes

a b

c d
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Figure 4: CH4 molecule vibrational modes and the symmetry analysis (a) We have derived
the vibrational spectrum of the CH4 molecule which has a Td point group symmetry. First, we
identify and remove the zero energy modes from the pure (b) translational modes (with T2 symmetry
representation) and (c) rotational modes (with T1 symmetry representation). The rest of the predicted
modes are at (d) 1342 cm−1 T2 mode (e) 3280 cm−1 T2 mode (f) 1245 cm−1 E mode (g) 3309 cm−1

A1 mode

In this section, we provide further discussions on the symmetry analysis for the molecular vibrational
modes and conditions for the infrared / Raman-active modes from the molecular point group sym-
metry [1]. Given a molecular structure at equilibrium, the energy is invariant under the real space
translations and the rotations with respect to the molecule center of mass point. This energy invariance
leads to 6 zero modes in the vibrational spectrum: three translational modes and three rotational
modes. In our construction, we use uniform translations in x, y, z directions respectively to define
the translational modes. For the rotational modes, we define them as the infinitesimal rotations with
respect to the x, y, z axes for the coordinate frame defined at the molecular center of mass (therefore
the vector cross-product of the atomic positional vector and the rotation axis). In terms of symmetry
content, the three translation modes contain the vector-like irreducible representation(s) under the
point group symmetry of the molecule (i.e. as x, y, z basis functions in the point group character
table). On the other hand, the three rotational modes transform as the anti-symmetric tensors or the
Rx,Ry,Rz objects in the point group character table.

To filter out these modes, we define the projectors based on the translational and rotational modes
described above. Once such a projector is constructed, one can evaluate the projected eigenstate
norm for the vibrational modes, and remove the 6 states with the largest projections (numerically
near the zero energies from the translational and rotational symmetries). We are then left with the
non-trivial vibrational phonon modes of the molecules generally at non-zero energies. To extract
specific symbols of these symmetry irreducible representation (irrep) for the molecular point group
symmetry and the associated vibrational normal modes, we utilize the functions in the posym Python
library [7] to analyze the molecular structure point group and the normal mode symmetries.
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From the point group theories, it has been shown that the infrared and Raman activities in the
experimental probes are related to the symmetry selection rules involving these irreducible symmetry
representations of the vibrational modes [1]. For the infrared probes, the coupling Hamiltonian to the
optical excitations involves terms that transform as vectors (specifically, the electric dipole moments).
To have a non-zero matrix element in the infrared optical excitations, the phonon modes have to
contain the vector symmetry representations as well. Therefore, the infrared-active phonon modes
are the same as those identified in the translational modes above.

For the Raman-active modes, the symmetry analysis is slightly more involved. In the point group
symmetry analysis [1], the Raman transition process involves perturbations that transform as symmet-
ric rank-2 tensors. To derive the Raman-active mode irreps, we first evaluate the rank-2 tensor irreps
and then remove the anti-symmetric components. The full rank-2 tensor part can be obtained from
the product of two vector irrep(s) as derived from the translational modes above, while the rotational
modes derived above contain the same symmetry content as the anti-symmetric. With these, we can
derive the symmetry content of the Raman-active mode by subtracting anti-symmetric irrep(s) from
the vector product irrep(s), within the posym library framework [7].

As a concrete example, we consider a CH4 molecule here and its vibrational modes as shown in
Fig. 4. A CH4 molecule has a Td point group symmetry. We first pre-trained an energy model
using NequIP by using only the training data containing H/C/N/O/F elements from the universal IAP
dataset [8], then derived the molecular Hessians to obtain the vibrational spectrum and normal modes.
With the symmetry selection rules described above, IR active modes are with the T2 symmetry irreps,
while the Raman active modes can be of A1, E, or T2 symmetry irreps.
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