
OPT2024: 16th Annual Workshop on Optimization for Machine Learning

DADA: Dual Averaging with Distance Adaptation

Mohammad Moshtaghifar M.MOSHTAGHI@SHARIF.EDU
Sharif University of Technology, Iran

Anton Rodomanov ANTON.RODOMANOV@CISPA.DE
CISPA, Germany

Daniil Vankov DVANKOV@ASU.EDU
Arizona State University, USA

Sebastian U. Stich STICH@CISPA.DE

CISPA, Germany

Abstract
We present a novel parameter-free universal gradient method for solving convex optimization prob-
lems. Our algorithm—Dual Averaging with Distance Adaptation (DADA)–is based on the classical
scheme of dual averaging and dynamically adjusts its coefficients based on the observed gradi-
ents and the distance between its iterates to the starting point, without the needing to know any
problem-specific parameters. DADA is a universal algorithm that simultaneously works for a wide
range of problem classes as long as one is able to bound the local growth of the objective around
its minimizer. Particular examples of such problem classes are nonsmooth Lipschitz functions,
Lipschitz-smooth functions, Hölder-smooth functions, functions with high-order Lipschitz deriva-
tive, quasi-self-concordant functions, and (L0, L1)-smooth functions. Furthermore, in contrast
to many existing methods, DADA is suitable not only for unconstrained problems, but also con-
strained ones, possibly with unbounded domain, and it does not require fixing neither the number
of iterations nor the accuracy in advance.
Keywords: Convex Optimization, Gradient Methods, Adaptive Algorithms, Parameter-Free Meth-
ods, Dual Averaging, Distance Adaption, Universal Methods, Worst-Case Complexity Guarantees

1. Introduction

We consider the following optimization problem:

f∗ := min
x∈Q

f(x), (1)

where Q ⊆ Rd is a simple and nonempty closed convex set, and f : Rd → R is a convex function
on Q. By simplicity, we mean that it is possible to compute the projection onto Q. We assume this
problem has a solution, which we denote by x∗.

Gradient methods are among the most popular and efficient optimization algorithms for solving
machine learning problems, as they are highly adaptable and scalable across various settings [3].
One of the key challenges in solving (1) using gradient methods is selecting appropriate hyperpa-
rameters, particularly stepsizes, which significantly impact performance. Hyperparameter tuning,
as one of the standard approaches to address this issue, is a time-consuming and resource-intensive
process, especially as models grow larger and more complex. Therefore, the cost of training these

© M. Moshtaghifar, A. Rodomanov, D. Vankov & S.U. Stich.

DADA: DUAL AVERAGING WITH DISTANCE ADAPTATION

models has become a significant concern [20, 23]. To address this, there has been a growing interest
in so-called parameter-free algorithms [4, 5, 10, 11, 13, 19], which aim to eliminate the need for
manual tuning.

Typically, line search techniques have been used to select step sizes in optimization, and they
work well for certain function classes, such as Hölder-smooth problems [16]. However, in recent
years, several parameter-free approaches have been developed which do not utilize line search. No-
tably, one strategy involves dynamically adjusting stepsizes based on estimates of the initial distance
to the optimal solution, D0 = ∥x0 − x∗∥ [4, 10, 11]. Another approach leverages lower bounds
for D0 combined with the dual averaging scheme [6, 13]. However, these methods primarily focus
on nonsmooth Lipschitz or, in some cases, Lipschitz-smooth functions. In contrast, our method
establishes a universal result that is not restricted to these classes but applies to a broader range of
convex function classes. Additionally, These methods sometimes have limitations, such as requiring
bounded domain assumptions [11], and lacking applicability to constrained optimization problems
[6, 13].

Contributions. In this paper, we introduce DADA—Dual Averaging with Distance Adaptation—
a novel parameter-free universal optimization algorithm for solving (1). DADA is based on the
classical scheme of weighted Dual Averaging (DA) [15], but uses a specially designed, dynamically
adjusted estimate of D0 = ∥x0 − x∗∥, based on the recent technique proposed in [4, 10] and also
used in [11], without requiring prior knowledge of problem-specific parameters. Furthermore, our
approach applies to both unconstrained problems and problems with simple constraints, whose do-
mains are not required to be bounded, making it a powerful tool across a wide range of applications.

This paper is organized as follows. In Section 2, we present our method and outline its founda-
tional structure based on the DA scheme [15]. We establish our main result in Theorem 1, showing
convergence guarantees that apply to a broad range of function classes.

To demonstrate the versatility and effectiveness of DADA, in Section 3, we provide complexity
estimates across several interesting function classes: Nonsmooth Lipschitz functions, Lipschitz-
smooth functions, Hölder-smooth functions, Quasi-Self-Concordant (QSC) functions, functions
with Lipschitz pth derivative, and (L0, L1)-smooth functions. This highlights the ability of DADA
to deliver competitive performance without requiring knowledge of class-specific parameters.

Notation. In this text, we work in the space Rd equipped with the standard inner product ⟨·, ·⟩ and
the general Euclidean (Mahalanobis) norm:

∥x∥ := ⟨Bx, x⟩1/2, x ∈ Rd,

where B is a fixed symmetric positive definite matrix. The corresponding dual norm is defined in
the standard way:

∥s∥∗ := max
∥x∥=1

⟨s, x⟩ = ⟨s,B−1s⟩1/2, s ∈ Rd.

Thus, for any s, x ∈ Rd, we have the Cauchy–Schwarz inequality |⟨s, x⟩| ≤ ∥s∥∗∥x∥. For a convex
function f : Rd → R, we denote its subdifferential at a point x ∈ Rd by ∂f(x).

2

DADA: DUAL AVERAGING WITH DISTANCE ADAPTATION

Algorithm 1: General Scheme of DA

Input: x0 ∈ Q, T ≥ 1, coefficients (ak)T−1
k=0 , (βk)Tk=1 with nondecreasing βk

for k = 1, . . . , T do
Compute arbitrary gk ∈ ∂f(xk);
xk = argminx∈Q

{
ψk(x) =

∑k−1
i=0 ai⟨gi, x− xi⟩+

βk
2 ∥x− x0∥

2
}

;
end
return x∗T = argminx∈{x0,...,xT } f(x);

2. DADA Method

Measuring the quality of solution. Rather than focusing on bounding the distance to the optimal
point x∗, this work focuses on bounding the distance from x∗ to the hyperplane {y : ⟨∇f(x), x −
y⟩ = 0},

v(x) :=
⟨∇f(x), x− x∗⟩
∥∇f(x)∥∗

(≥ 0) , where x ∈ Rd.

This goal is meaningful because minimizing v(x) also reduces the corresponding function residual,
f(x) − f∗. Indeed, there exists the following simple relationship between v(x) and the function
residual [17, Section 3.2.2] (see also Appendix A for the short proof).

f(x)− f∗ ≤ ω(v(x)), (2)

where

ω(t) := max
x
{f(x)− f∗ : ∥x− x∗∥ ≤ t} ,

measures the local growth of f around the solution x∗. By bounding the ω(t), we can derive con-
vergence rate estimates that simultaneously apply to a broad range of problem classes (we discuss
several examples in Section 3).

The method. Our proposed approach is based on the general scheme of DA [15] shown in Al-
gorithm 1. Using a standard (sub)gradient method with time-varying coefficients is also possible
but requires either short steps by fixing the number of iterations in advance, or paying an extra
logarithmic factor in the convergence rate [17, Section 3.2.3].

The classical DA method has two primary variants. The first, Simple DA, uses a constant
coefficient ai = D̂0. The second, Weighted DA, instead of using a constant sequence, adjusts
the coefficients using ai = D̂0

∥gi∥∗ . However, both variants pay a multiplicative cost of ρ2, where

ρ := max{ D̂0
D0
, D0

D̂0
}, due to the lack of prior knowledge about the parameter D0. This cost can

be significantly high. To address this issue, we propose DADA, which reduces the cost to a log-
arithmic term, log2 ρ, offering a substantial improvement. Specifically, our approach introduces a
dynamic sequence for (ai)∞i=0 and (βi)

∞
i=1, thereby eliminating the need for the parameter D0. In

our approach, we utilize the following time-varying coefficients:

ak =
r̄k
∥gk∥∗

, βk = 2
√
k + 1 , where r̄k = max{max

1≤t≤k
rt, r̄}, rt = ∥x0 − xt∥, (3)

3

DADA: DUAL AVERAGING WITH DISTANCE ADAPTATION

and r̄ > 0 is a certain user-specified parameter. In what follows, we assume w.l.o.g. that gk ̸= 0
for all 0 ≤ k ≤ T since otherwise the exact the solution has been found, and the method could be
successfully terminated before making T iterations.

Our method estimates the parameter D0 using r̄t, the distance between xt and the initial point
x0. This idea has been recently explored in recent works [4, 10], which similarly utilize r̄t in various
ways. Other methods also attempt to estimate this quantity using alternative strategies, based on
Dual Averaging and the similar principle of employing an increasing sequence of lower bounds for
D0 [6, 13].

As discussed earlier, our goal is to bound the function v(·) to establish the convergence of our
method. We present the following convergence result for our method (see Appendix C for the
proof).

Theorem 1 Consider Algorithm 1 for solving problem (1) using the coefficients from (3). Then, for
any T ≥ 1 and v∗T = min0≤t≤T v(xt), it holds that,

f(x∗T)− f∗ ≤ ω(v∗T),

where

v∗T ≤
9R√
T

(
8R

r̄

) 1
T

log
8eR

r̄
,

and R = max {∥x0 − x∗∥, r̄}. Further, for a given δ > 0, it holds that v∗T ≤ δ whenever T ≥
max{log 8R

r̄ ,
81e2R2

δ2
log2 8eR

r̄ }.

The detailed proof can be found in Appendix C. Let us provide a proof sketch for Theorem 1. We
begin by applying the standard result for DA (Theorem 4), which holds for any choice of coefficients
ak and βk.

k−1∑
i=0

aivi∥gi∥∗ +
βk
2
d2k ≤

βk
2
D2

0 +

k−1∑
i=0

a2i
2βi
∥gi∥2∗, (4)

where D0 = ∥x0 − x∗∥ and dk = ∥xk − x∗∥. Next, we introduce specific choices for ak and βk as
defined in (3). This gives us,

k−1∑
i=0

r̄ivi + d2k
√
k + 1 ≤ D2

0

√
k + 1 +

1

4

k−1∑
i=0

r̄2i√
i+ 1

≤ D2
0

√
k + 1 +

r̄2k−1

2

√
k. (5)

Using the fact that r̄ivi ≥ 0 for all 1 ≤ i ≤ k − 1, we can show by induction that r̄k is bounded up
to a constant factor by R = max{D0, r̄} (see Theorem 6):

r̄k−1 ≤ 8R.

This bound is crucial to our analysis, as we need to eliminate r̄k−1 from the right-hand side of (5).
Achieving this requires selecting the coefficients precisely as defined in (3), which is the primary

4

DADA: DUAL AVERAGING WITH DISTANCE ADAPTATION

difference compared to the standard DA method [15]. Next, using the following inequality ∥x0 −
x∗∥2 − ∥xk − x∗∥2 ≤ 2∥xk − x0∥D0, we derive the next result:

k−1∑
i=0

r̄ivi ≤ r̄k(2R+ 1
2 r̄k)
√
k + 1 ≤ 6r̄kR

√
k + 1.

After establishing this, the rest of the proof follows straightforwardly by dividing both sides with∑k−1
i=0 r̄i and then using the following inequality (valid for any nondecreasing sequence r̄t, see

Theorem 2):

min
0≤t≤T

r̄t∑t−1
i=0 r̄i

≤
(r̄Tr̄0)

1
T log er̄T

r̄0

T
.

At this point, we clarify the key differences between our method and approaches like DoG [10].
One obvious difference is that we use DA instead of the classical (sub)gradient method employed
by DoG. However, the most significant difference lies in how the sequence of gradients is handled.
DoG normalizes the current gradient gk by the accumulated norms of the previous gradients, an
idea inspired by AdaGrad [9]. In contrast, our method simply normalize gk by its own norm.
Additionally, this modification makes our method universal, enabling it to work with the growth
function ω, which is not known to be the case for DoG, even for deterministic problems.

2.1. Comparison with Recent Parameter-Free Methods

Let us briefly compare our method with several recently proposed parameter-free algorithms, namely,
DoG [10], DoWG [11], D-Adaptation [6] and Prodigy [13].

Comparison with DoG/DoWG. Both DoG and DoWG employ a similar approach to estimateD0

and achieve comparable convergence rates for Lipschitz-smooth and nonsmooth functions. How-
ever, neither of them extends to the important cases explored in this paper. Additionally, like our
approach, the DoWG method considers only the deterministic case, but with an additional assump-
tion on a bounded domain. They have a different definition of universality, considering only smooth
and nonsmooth settings. However, in this work by universality we mean that our method, without
any modifications, ensures a reasonable convergence rate on any problem class, as long as the corre-
sponding growth function is reasonably bounded, which is a very mild assumption as demonstrated
by the variety of examples we present later (see Section 3).

Finally, we note the main focus of DoG is providing guarantees in the stochastic setting, given
that stochastic gradients are bounded by a known constant. In this work, however, we focus exclu-
sively on the deterministic setting, but obtain stonger results which are valid for a large variety of
problem classes.

Comparison with D-Adaptation/Prodigy. D-Adaptation and Prodigy are similar to our method
in their use of Dual Averaging. However, their approaches cannot be extended to the constrained
optimization setting and are limited to Lipschitz functions. Nonetheless, their methods yielded
notable results in experiments, demonstrating strong empirical performance.

5

DADA: DUAL AVERAGING WITH DISTANCE ADAPTATION

3. Universality of DADA: Examples of Applications

Let us demonstrate that our method is universal in the sense that it simultaneously works for several
interesting problem classes without the need for choosing different parameters for each of these
function classes. For simplicity, we assume that ∇f(x∗) = 0 (this happens, in particular, when
our problem (1) is unconstrained). In what follows, the ϵ-accuracy is measured in terms of the
function residual and we also use log+ t := 1 + log t to simplify the notation. Recall that R =
max{∥x0 − x∗∥, r̄}, where r̄ is a parameter of our method.

Nonsmooth Lipschitz functions. This function class is defined by the inequality ∥∇f(x)∥∗ ≤ L0

for all x ∈ Q. For this problem class, DADA requires at most

O

(
L2
0R

2

ϵ2
log2+

R

r

)
oracle calls to reach ϵ-accuracy (see Appendix D.1), which coincides with the standard complexity
of (sub)gradient methods [15, 17], up to an extra logarithmic factor. This logarithmic factor is
common for all distance-adaptation methods [6, 10, 11, 13].

Lipschitz-smooth functions. Another important class of functions are those with Lipschitz gradi-
ent: ∥∇f(x)−∇f(y)∥∗ ≤ L1∥x−y∥ for all x, y ∈ Q. In this case, the complexity of our method is

O

(
L1R

2

ϵ
log2+

R

r̄

)
(see Appendix D.2), coincides with the standard complexity of the (nonaccelerated) gradient method
on Lipschitz-smooth functions [17, Section 3] up to the extra logarithmic factor, which arises due
to the parameter-free nature of the method.

Note that the complexity of DADA is slightly worse than that of the classical gradient method
with line search [16], which achieves a complexity bound of O

(L1D2
0

ϵ + log|L1

L̂1
|
)
, where L̂1 is our

initial guess for L1. The difference that they have an additive logarithmic factor in their rate instead
of multiplicative.

Hölder-smooth functions. The previous two functions classes are subclasses of the more general
class of Hölder-smooth functions. It is defined by the following inequality: ∥∇f(x)−∇f(y)∥∗ ≤
Hν∥x− y∥ν for all x, y ∈ Q, where ν ∈ [0, 1] and Hν ≥ 0. Therefore, for ν = 0, we get functions
with bounded variation of subgradients (which contains all Lipschitz functions) and for ν = 1 we
get L1-smooth functions.

The complexity of DADA on this problem class is

O

([
Hν

ϵ

] 2
1+ν

R2 log2+
R

r̄

)
,

This is similar to the O
([

Hν
ϵ

] 2
1+νD2

0 + log| H
2

1+ν
ν

L0ϵ
1−ν
1+ν
|
)

complexity of the universal (nonaccelerated)

gradient method [16]. Again, the complexity of the line-search method (GM-LS) is slightly better
since the logarithmic factor is additive (and not multiplicative). However, GM-LS is not guaranteed
to work (well) on other problem classes such as those we consider next.

6

DADA: DUAL AVERAGING WITH DISTANCE ADAPTATION

Functions with Lipschitz high-order derivative. Functions in this class have the property that
their pth derivative (p ≥ 2) is Lipschitz, i.e.,

∥∇pf(x)−∇pf(y)∥ ≤ Lp∥x− y∥,

where the ∥·∥ norm in the left-hand side is the usual operator norm of a symmetric multilinear
opeator: ∥A∥ = maxh∈Rd : ∥h∥=1∥Ah∥. For example, pth power of the Euclidean norm [21] is an
example of functions in this class. This class generalizes the Lipschitz-smooth class. The complex-
ity of DADA on this class is

O

(
max

{
max
2≤i≤p

[
p

i!

∥∇if(x∗)∥∗
ϵ

] 2
i

,

[
p

(p+ 1)!

Lp

ϵ

] 2
p+1
}
R2 log2+

R

r̄

)
,

Although line-search gradient methods might be better for Hölder-smooth problems, to our knowl-
edge, they are not known to attain comparable bounds on this function class.

Quasi-self-concordant (QSC) functions [2]. A convex function f is said to be QSC with param-
eter M ≥ 0, if for any x ∈ Rd and arbitrary directions u, v ∈ Rd it holds that

∇3f(x)[u, u, v] ≤M⟨∇2f(x)u, u⟩∥v∥. (6)

For example, the exponential functions, the logistic function f(x) =
∑n

i=1 log(1+ e⟨ai,x⟩), and the
soft-max f(x) = µ log(

∑n
i=1 e

[⟨ai,x⟩+bi]/µ) are QSC. For more details and other examples, see [7].
Our method guarantees convergence for QSC functions with the following complexity:

O

(
∥∇2f(x∗)∥R2

ϵ
log2+

R

r̄
+ (MR)2 log2+

R

r̄
+ log+

R

r̄

)
.

In terms of comparisons, second-order methods, such as those explored in [7], are more powerful
for minimizing QSC functions, as they leverage additional curvature information. Their complexity
bound is O(MD0 log

F0
ϵ + log D0g0

ϵF0
), where F0 = f(x0) − f∗, in terms of queries to the second-

order oracle [7, Corollary 3.4]. However, each iteration of these methods is significantly more
expensive.

To our knowledge, this class has not been studied before in the context of first-order methods.
The only other first-order methods for which one can prove similar bounds are nonadaptive variants
of our scheme, namely the normalized gradient method from [17, Section 5] and the recent variant
of this method for constrained problems [18].

(L0, L1)-smooth functions. As introduced in [25], a function f is said to be (L0, L1)-smooth if
for all x ∈ Rn, we have ∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥∗. The complexity of DADA on this class

O

(
L0R

2

ϵ
log2+

R

r̄
+ (L1R)

2 log2+
R

r̄
+ log+

R

r̄

)
.

Up to the extra logarithmic factors, this is exactly the same complexity as that of NGM from [24],
knowing the exact distance to the solution D0.

7

DADA: DUAL AVERAGING WITH DISTANCE ADAPTATION

0 20000 40000 60000 80000 100000
Number of Iterations

10 2

10 1

100

101

102

f(x
* k
)

f*
n = 1000, d = 2000, mu = 0.1

DA
Line-Search
DoG
Prodigy
DADA

0 20000 40000 60000 80000 100000
Number of Iterations

10 1

100

101

102

f(x
* k
)

f*

n = 1000, d = 2000, mu = 0.01
DA
Line-Search
DoG
Prodigy
DADA

0 20000 40000 60000 80000 100000
Number of Iterations

10 1

100

101

102

f(x
* k
)

f*

n = 1000, d = 2000, mu = 0.005
DA
Line-Search
DoG
Prodigy
DADA

Figure 1: Comparison of different methods on the Softmax function.

4. Experiments

To evaluate the performance of our proposed method, DADA, we conduct a series of experiments on
convex optimization problems. Our goal is to demonstrate the effectiveness of DADA in achieving
competitive convergence rates across various function classes without relying on hyperparameter
tuning. We compare DADA against several parameter-free optimization algorithms, such as DoG
[10] and Prodigy [13]. We also consider gradient descent with line search [1] and classical Dual
Averaging method [15]. The experiments also explore the relationship between method’s dynamic
distance-based step size to the true value of initial distance D0.

For each method, we plot the best function value among all the test points generated by the
algorithm after k gradient-oracle calls. Throughout these experiments, we set the initial point as
x0 = (1, · · · , 1). Additionally, we selected our initial guess for the true distance, denoted as r̄ 1, as
follows: r̄ = 10−6(1 + ∥x0∥). This choice is reasonable, primarily because, at the start, we have
no prior knowledge of how far x∗ might be from x0. By choosing r̄ in this way, which has a small
coefficient, we can be reasonably confident that it does not exceed the actual value of ∥x0 − x∗∥. It
is worth noting that this initial guess is also used by DoG.

Softmax function. We consider the softmax function:

min
x∈Rd

[
f(x) := µ log

(
n∑

i=1

exp

[
⟨ai, x⟩ − bi

µ

])]
,

where ai ∈ Rd, and bi ∈ R for all 1 ≤ i ≤ n, and µ > 0. This function can be seen as a smooth
approximation to max1≤i≤n[⟨ai, x⟩ − bi] [14]. To generate the data for our problem we proceed
as follows. First, we set x∗ = 0. Next, we generate i.i.d. vectors ai with components uniformly
distributed in the interval [−1, 1] for i = 1, . . . , n, and similarly for the scalar values bi. To ensure
that x∗ is a minimizer of f , we compute ∇f(0) and then, adjust ai by setting ai ← ai −∇f(0) to
ensure that∇f(0) = 0.

The results are shown in Fig. 1, where we fix n = 103, d = 102, and R = 1 with the starting
point x0 = 0. We plot the total number of gradient-oracle calls against the function residual for dif-
ferent values of µ ∈ {1, 0.1, 0.01}. As shown in Fig. 1, most methods exhibit similar performance
for µ = 0.1, with the exception of Prodigy, which performs slightly better in this case. However,
as µ decreases, Prodigy’s performance declines, whereas our method remains largely unaffected.

1. This value corresponds to rϵ in [10]

8

DADA: DUAL AVERAGING WITH DISTANCE ADAPTATION

0 20000 40000 60000 80000 100000
Number of Iterations

100

101

102

103

104

105

106

107

108
D

0 r
n = 1000, d = 2000, mu = 0.1

DoG
Prodigy
DADA

0 20000 40000 60000 80000 100000
Number of Iterations

101

102

103

104

105

106

107

108

D
0 r

n = 1000, d = 2000, mu = 0.01
DoG
Prodigy
DADA

0 20000 40000 60000 80000 100000
Number of Iterations

101

102

103

104

105

106

107

108

D
0 r

n = 1000, d = 2000, mu = 0.005
DoG
Prodigy
DADA

Figure 2: The ratio D
r̄t

for the Softmax function with different optimal points x∗.

This decline in performance is observed for DA, Gradient Descent with Line-Search. Notably, DoG
performs similarly to DADA, which we hypothesize is primarily due to the similarity in estimating
D0. Additionally, Fig. 2 illustrates the ratio between r̄ and D0, highlighting the estimation error
of Prodigy, DoG, and DADA at each iteration. For Prodigy, we used D0

dmax
to generate the plot.

The figure demonstrates that DADA and DoG exhibit similar behavior in estimating D0, despite
employing different update methods—Dual Averaging and Gradient Descent, respectively. How-
ever, Prodigy appears to encounter challenges in estimating D0. As shown in Fig. 2, its estimation
error converges to a relatively large value. Addressing this issue could be a promising direction
for improving Prodigy’s estimation accuracy and, consequently, its performance in optimizing the
objective function.

Hölder-Smooth Sample Function. In this section, we focus on solving the following test prob-
lem:

min
x∈Rd

f(x) :=
1

n

n∑
i=1

[⟨ai, x⟩ − bi]q+, (7)

where ai, bi ∈ Rd, q ∈ [1, 2], and [x]+ = max(0, x).
Note that f is a Hölder-smooth function with the parameter ν = q−1. This allows us to evaluate

the effectiveness of parameter-free algorithms for different values of ν in Hölder-smooth functions.
By varying q ∈ [1, 2], we demonstrate the robustness of DADA in achieving convergence over this
spectrum of convex functions.

The data for our problem is generated randomly, following the procedure in [22]. First, we
sample x∗ uniformly from the sphere of radius 0.95R centered at the origin. Next, we generate
i.i.d. vectors ai with components uniformly distributed in [−1, 1]. To ensure that ⟨an, x∗⟩ < 0, we
invert the sign of an if necessary. We then sample positive reals si uniformly from [0,−0.1cmin],
where cmin := mini⟨ai, x∗⟩ < 0, and set bi = ⟨ai, x∗⟩+ si. By construction, x∗ is a solution to the
problem with f∗ = 0. Moreover, the origin x0 = 0 lies outside the polyhedron, since there exists a
j (corresponding to cmin) such that bj = cmin + sj ≤ 0.9cmin < 0.

In this section, we fix n = 104, d = 103 and R = 106. As shown in Fig. 3, as q increases
and approaches 2, the performance of DoG declines and fails to converge as effectively as it does
for smaller values of q. The figure also illustrates that classical methods, DA and GD-LS, perform
poorly on this class of functions for q < 2. However, DADA and Prodigy demonstrate similar
performance regardless of the choice of q.

9

DADA: DUAL AVERAGING WITH DISTANCE ADAPTATION

0 1000 2000 3000 4000 5000
Number of Iterations

10 12

10 9

10 6

10 3

100

103

106
f(x

* k
)

f*
q = 1.0, n = 10000, d = 1000

DA
Line-Search
DoG
Prodigy
DADA

0 1000 2000 3000 4000 5000
Number of Iterations

10 13

10 10

10 7

10 4

10 1

102

105

108

f(x
* k
)

f*

q = 1.5, n = 10000, d = 1000

DA
Line-Search
DoG
Prodigy
DADA

0 1000 2000 3000 4000 5000
Number of Iterations

10 12

10 8

10 4

100

104

108

1012

f(x
* k
)

f*

q = 2.0, n = 10000, d = 1000

DA
Line-Search
DoG
Prodigy
DADA

Figure 3: Comparison of different methods on the polyhedron feasibility problem.

0 1000 2000 3000 4000 5000
Number of Iterations

101

103

105

107

109

1011

D
0 r

q = 1.0, n = 10000, d = 1000
DoG
Prodigy
DADA

0 1000 2000 3000 4000 5000
Number of Iterations

101

103

105

107

109

1011

D
0 r

q = 1.5, n = 10000, d = 1000
DoG
Prodigy
DADA

0 1000 2000 3000 4000 5000
Number of Iterations

101

103

105

107

109

1011

D
0 r

q = 2.0, n = 10000, d = 1000
DoG
Prodigy
DADA

Figure 4: The ratio D
r̄t

for the polyhedron feasibility problem.

Worst-case Function. As an example of functions with Lipschitz high-order derivative, we con-
sider worst-case function from [8]:

min
x∈Rd

f(x) :=
1

q

d−1∑
i=1

|x(i) − x(i+1)|q + 1

q
|x(d)|q, (8)

where q ≥ 2.
As shown in Fig. 5 and Fig. 6, both the performance and the estimation of D0 in DoG and

Prodigy deteriorate as q increases. A similar trend is observed for GD-LS, which performs com-
parably to DoG and slightly better than DADA when q = 2. However, for q = 6, GD-LS exhibits
significantly worse performance compared to when it applied to smaller values of q.

0 20000 40000 60000 80000 100000
Number of Iterations

10 3

10 2

10 1

f(x
* k
)

f*

q = 2.0, d = 2000

DA
Line-Search
DoG
Prodigy
DADA

0 20000 40000 60000 80000 100000
Number of Iterations

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

f(x
* k
)

f*

q = 4.0, d = 2000
DA
Line-Search
DoG
Prodigy
DADA

0 20000 40000 60000 80000 100000
Number of Iterations

10 11

10 9

10 7

10 5

10 3

10 1

f(x
* k
)

f*

q = 6.0, d = 2000
DA
Line-Search
DoG
Prodigy
DADA

Figure 5: Comparison of different methods on the worst-case function.

10

DADA: DUAL AVERAGING WITH DISTANCE ADAPTATION

0 20000 40000 60000 80000 100000
Number of Iterations

101

102

103

104

105

106

107

108
D

0 r
q = 2.0, d = 2000

DoG
Prodigy
DADA

0 20000 40000 60000 80000 100000
Number of Iterations

101

102

103

104

105

106

107

D
0 r

q = 4.0, d = 2000
DoG
Prodigy
DADA

0 20000 40000 60000 80000 100000
Number of Iterations

101

102

103

104

105

106

107

D
0 r

q = 6.0, d = 2000
DoG
Prodigy
DADA

Figure 6: The ratio D
r̄t

for the worst-case function with different optimal points x∗.

References

[1] Larry Armijo. Minimization of functions having lipschitz continuous first partial derivatives.
Pacific Journal of mathematics, 16(1):1–3, 1966.

[2] Francis Bach. Self-concordant analysis for logistic regression. Electronic Journal of Statistics,
4(none):384 – 414, 2010. doi: 10.1214/09-EJS521. URL https://doi.org/10.1214/
09-EJS521.

[3] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale ma-
chine learning. SIAM Review, 60(2):223–311, 2018. URL https://doi.org/10.1137/
16M1080173.

[4] Yair Carmon and Oliver Hinder. Making sgd parameter-free. In Proceedings of Thirty Fifth
Conference on Learning Theory, volume 178, pages 2360–2389, 2022. URL https://
proceedings.mlr.press/v178/carmon22a.html.

[5] Ashok Cutkosky and Francesco Orabona. Black-box reductions for parameter-free online
learning in banach spaces. In Annual Conference Computational Learning Theory, 2018.
URL https://api.semanticscholar.org/CorpusID:3346292.

[6] Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation. In
Proceedings of the 40th International Conference on Machine Learning, volume 202, pages
7449–7479, 2023. URL https://proceedings.mlr.press/v202/defazio23a.
html.

[7] Nikita Doikov. Minimizing quasi-self-concordant functions by gradient regularization of new-
ton method, 2023. URL https://arxiv.org/abs/2308.14742.

[8] Nikita Doikov, Konstantin Mishchenko, and Yurii Nesterov. Super-universal regularized new-
ton method. SIAM Journal on Optimization, 34(1):27–56, 2024. doi: 10.1137/22M1519444.
URL https://doi.org/10.1137/22M1519444.

[9] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011.
URL http://jmlr.org/papers/v12/duchi11a.html.

11

https://doi.org/10.1214/09-EJS521
https://doi.org/10.1214/09-EJS521
https://doi.org/10.1137/16M1080173
https://doi.org/10.1137/16M1080173
https://proceedings.mlr.press/v178/carmon22a.html
https://proceedings.mlr.press/v178/carmon22a.html
https://api.semanticscholar.org/CorpusID:3346292
https://proceedings.mlr.press/v202/defazio23a.html
https://proceedings.mlr.press/v202/defazio23a.html
https://arxiv.org/abs/2308.14742
https://doi.org/10.1137/22M1519444
http://jmlr.org/papers/v12/duchi11a.html

DADA: DUAL AVERAGING WITH DISTANCE ADAPTATION

[10] Maor Ivgi, Oliver Hinder, and Yair Carmon. DoG is SGD’s best friend: A parameter-
free dynamic step size schedule. In Proceedings of the 40th International Conference on
Machine Learning, pages 14465–14499, 2023. URL https://proceedings.mlr.
press/v202/ivgi23a.html.

[11] Ahmed Khaled, Konstantin Mishchenko, and Chi Jin. DoWG unleashed: An ef-
ficient universal parameter-free gradient descent method. In Advances in Neu-
ral Information Processing Systems, volume 36, pages 6748–6769, 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
15ce36d35622f126f38e90167de1a350-Paper-Conference.pdf.

[12] Zijian Liu and Zhengyuan Zhou. Stochastic nonsmooth convex optimization with heavy-tailed
noises. ArXiv, abs/2303.12277, 2023. URL https://api.semanticscholar.org/
CorpusID:257663403.

[13] Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-
free learner. In Proceedings of the 41st International Conference on Machine Learning,
volume 235, pages 35779–35804, 2024. URL https://proceedings.mlr.press/
v235/mishchenko24a.html.

[14] Yu Nesterov. Smooth minimization of non-smooth functions. Mathematical programming,
103:127–152, 2005.

[15] Yurii Nesterov. Primal-dual subgradient methods for convex problems. Mathematical
Programming, 120:221–259, 2005. URL https://api.semanticscholar.org/
CorpusID:14935076.

[16] Yurii Nesterov. Universal gradient methods for convex optimization problems. Mathemati-
cal Programming, 152:381–404, 2015. URL https://api.semanticscholar.org/
CorpusID:18062781.

[17] Yurii Nesterov. Lectures on Convex Optimization. Springer Publishing Company, Incorpo-
rated, 2nd edition, 2018. ISBN 3319915770. URL https://api.semanticscholar.
org/CorpusID:14935076.

[18] Yurii Nesterov. Primal subgradient methods with predefined step sizes. Journal of Opti-
mization Theory and Applications, 2024. doi: 10.1007/s10957-024-02456-9. URL https:
//arxiv.org/abs/2308.14742.

[19] Francesco Orabona and Tatiana Tommasi. Training deep networks without learning rates
through coin betting. In Neural Information Processing Systems, 2017. URL https:
//api.semanticscholar.org/CorpusID:6762437.

[20] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel
Rothchild, David So, Maud Texier, and Jeff Dean. Carbon emissions and large neural net-
work training, 2021. URL https://arxiv.org/abs/2104.10350.

[21] Anton Rodomanov and Yurii Nesterov. Smoothness parameter of power of euclidean norm.
Journal of Optimization Theory and Applications, 185:303–326, 2019. URL https:
//api.semanticscholar.org/CorpusID:198968030.

12

https://proceedings.mlr.press/v202/ivgi23a.html
https://proceedings.mlr.press/v202/ivgi23a.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/15ce36d35622f126f38e90167de1a350-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/15ce36d35622f126f38e90167de1a350-Paper-Conference.pdf
https://api.semanticscholar.org/CorpusID:257663403
https://api.semanticscholar.org/CorpusID:257663403
https://proceedings.mlr.press/v235/mishchenko24a.html
https://proceedings.mlr.press/v235/mishchenko24a.html
https://api.semanticscholar.org/CorpusID:14935076
https://api.semanticscholar.org/CorpusID:14935076
https://api.semanticscholar.org/CorpusID:18062781
https://api.semanticscholar.org/CorpusID:18062781
https://api.semanticscholar.org/CorpusID:14935076
https://api.semanticscholar.org/CorpusID:14935076
https://arxiv.org/abs/2308.14742
https://arxiv.org/abs/2308.14742
https://api.semanticscholar.org/CorpusID:6762437
https://api.semanticscholar.org/CorpusID:6762437
https://arxiv.org/abs/2104.10350
https://api.semanticscholar.org/CorpusID:198968030
https://api.semanticscholar.org/CorpusID:198968030

DADA: DUAL AVERAGING WITH DISTANCE ADAPTATION

[22] Anton Rodomanov, Xiaowen Jiang, and Sebastian U. Stich. Universality of adagrad stepsizes
for stochastic optimization: Inexact oracle, acceleration and variance reduction. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=rniiAVjHi5.

[23] Or Sharir, Barak Peleg, and Yoav Shoham. The cost of training nlp models: A concise
overview, 2020. URL https://arxiv.org/abs/2004.08900.

[24] Daniil Vankov, Anton Rodomanov, Angelia Nedich, Lalitha Sankar, and Sebastian U. Stich.
Optimizing (l0, l1)-smooth functions by gradient methods, 2024. URL https://arxiv.
org/abs/2410.10800.

[25] Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping ac-
celerates training: A theoretical justification for adaptivity. In International Conference
on Learning Representations, 2020. URL https://openreview.net/forum?id=
BJgnXpVYwS.

13

https://openreview.net/forum?id=rniiAVjHi5
https://openreview.net/forum?id=rniiAVjHi5
https://arxiv.org/abs/2004.08900
https://arxiv.org/abs/2410.10800
https://arxiv.org/abs/2410.10800
https://openreview.net/forum?id=BJgnXpVYwS
https://openreview.net/forum?id=BJgnXpVYwS

DADA: DUAL AVERAGING WITH DISTANCE ADAPTATION

Appendix A. Auxiliary Results

The following result has been proved in prior works such as [12, Lemma 30]. We include the proof
here for the reader’s convenience.

Lemma 2 Let (di)∞i=0 be a positive nondecreasing sequence. Then for any T ≥ 1,

min
0≤t≤T

dt∑t−1
i=0 di

≤

(
dT
d0

) 1
T
log edT

d0

T
.

Proof Let At :=
∑t−1

i=0
di
dt

for all t ∈ N+ where A0 = 0. Then we know

dtAt − dt−1At−1 = dt−1,

which implies that

dt−1

dt
= At −

dt−1

dt
At−1 = At −At−1 +

(
1− dt−1

dt
At−1

)
.

By summing up for all 1 ≤ t ≤ T we get

AT +

T−1∑
t=0

(
1− dt

dt+1

)
At =

T−1∑
t=0

dt
dt+1

.

Denote ST =
∑T−1

t=0
dt

dt+1
and A∗

T = max0≤t≤T At. Since (di)
∞
i=0 is a non-decreasing sequence,

we have

A∗
T (1 + T − ST) ≥ ST .

Using AM-GM inequality we have ST ≥ TγT , where γT =
(

d0
dT

) 1
T . Therefore,

A∗
T ≥

TγT
1 + T (1− γT)

,

and

min
0≤t≤T

dt∑t−1
i=0 di

=
1

A∗
T

≤
1
γT

(1 + T (1− γT))
T

. (9)

Using the inequality 1 − 1
x ≤ log x (for any x ≤ 1), we have 1 − 1

γT
≤ log γT . Substituting this

into (9) completes the proof.

This Lemma has been established in [17, Lemma 3.2.1] and the proof included here for the
reader’s convenience.

Lemma 3 For any x ∈ Rd we have f(x)− f∗ ≤ ω(v(x)).

14

DADA: DUAL AVERAGING WITH DISTANCE ADAPTATION

Proof Note that ⟨∇f(x), x− x∗⟩ ≥ 0 becuase x∗ is the minimizer of f . Now, consider the point ȳ
as follows

ȳ = x∗ + v(x)
g(x)

∥g(x)∥∗
.

Thus, we have ⟨g(x), ȳ − x⟩ = 0, and ∥ȳ − x∗∥ = v(x). Therefore, f(x) ≤ f(y), and hence

f(x)− f∗ ≤ f(ȳ)− f∗ ≤ ω(∥ȳ − x∗∥) = ω(v(x)).

Appendix B. Analysis of Dual Averaging

Theorem 4 In Algorithm Algorithm 1, for any 0 ≤ k ≤ T , it holds that

k−1∑
i=0

ai⟨gi, xi − x∗⟩+
βk
2
∥xk − x∗∥2 ≤

βk
2
∥x0 − x∗∥2 +

k−1∑
i=0

a2i
2βi
∥gi∥2∗,

Proof
First, define ψ0(x) =

β0

2 ∥x− x0∥
2. Note that ψk is a βk-strongly convex function and xk is its

minimizer. Hence, for any x ∈ Q, we have

ψk(x) ≥ ψk(xk) +
βk
2
∥x− xk∥2 (10)

Indeed,

ψk+1(xk+1) = ψk(xk+1) + ak⟨gk, xk+1 − xk⟩+
βk+1 − βk

2
∥xk+1 − x0∥2

≥ ψk(xk) +
βk
2
∥xk+1 − xk∥2 + ak⟨gk, xk+1 − xk⟩+

βk+1 − βk
2

∥xk+1 − x0∥2,

where the last inequality follows from (10). Hence,

ψk+1(xk+1) ≥ ψk(xk) +
βk
2
∥xk+1 − xk∥2 + ak⟨gk, xk+1 − xk⟩

≥ ψk(xk)−
a2k
2βk
∥gk∥2∗,

Telescoping these inequalities and using the fact that ψ0(x0) = 0, we obtain

ψk(xk) ≥ −
k−1∑
i=0

a2i
2βi
∥gi∥2∗.

Finally, using (10), we complete our proof:

k−1∑
i=0

ai⟨gi, x∗ − xi⟩+
βk
2
D2

0 = ψk(x
∗) ≥ ψk(xk) +

βk
2
∥xk − x∗∥2

≥ −
k−1∑
i=0

a2i
2βi
∥gi∥2∗ +

βk
2
∥xk − x∗∥2,

15

DADA: DUAL AVERAGING WITH DISTANCE ADAPTATION

Rearranging, we get

k−1∑
i=0

ai⟨gi, xi − x∗⟩+
βk
2
∥xk − x∗∥2 ≤

βk
2
D2

0 +

k−1∑
i=0

a2i
2βi
∥gi∥2∗.

Substituting vi =
⟨gi,xi−x∗⟩

∥gi∥∗ , we get the claim.

Appendix C. Proof of Theorem 1

Lemma 5 Consider Algorithm 1 using the coefficients defined in (3). Then we have the following
inequality for all 1 ≤ k ≤ T ,

rk ≤ 2D0 +
1√
2
r̄k−1,

where D0 = ∥x0 − x∗∥.

Proof Applying Theorem 4, dropping the nonnegative ⟨gi, xi − x∗⟩ from the left-hand side and
rearranging, we obtain

d2k ≤ D2
0 +

1

βk

k−1∑
i=0

a2i
βi
∥gi∥2∗.

Substituting our choice of the coefficients given by (3), we get

d2k ≤ D2
0 +

1

4
√
k + 1

k−1∑
i=0

r̄2i√
i+ 1

≤ D2
0 +

r̄2k−1

2
, (11)

where we have used the fact that r̄k is nondecreasing and,
∑k−1

i=0
1√
i+1
≤ 2
√
k. Extracting the

square root from both sides of the above inequality we get,

dk ≤ D0 +
1√
2
r̄k−1.

Therefore,

rk = ∥xk − x0∥ ≤ ∥xk − x∗∥+ ∥x0 − x∗∥ ≤ 2∥x0 − x∗∥+
1√
2
r̄k−1.

Lemma 6 Consider Algorithm 1 using the coefficients defined in (3). Then, for all 1 ≤ k ≤ T ,

r̄k ≤ 8R,

where R = max{D0, r̄}.

16

DADA: DUAL AVERAGING WITH DISTANCE ADAPTATION

Proof Hence,

r̄k ≡ max{rk, r̄} ≤ 2R+
1√
2
r̄k−1

As we need an upper bound for r̄k and not rk, we use induction here to prove that r̄k ≤ 8R. Suppose
that we know r̄k−1 ≤ 8R and we prove this inequality holds for r̄k:

r̄k ≤ 2R+
1√
2
r̄k−1 ≤ 2R+

8√
2
R ≤ 8R.

Proof [proof of Theorem 1] Using Theorem 3, we get

f(x̄∗T)− f∗ = min
0≤i≤T

(f(xi)− f∗) ≤ min
0≤i≤T

ω(vi) = ω(v∗T) (12)

According to Theorem 4, for all 1 ≤ k ≤ T ,

k−1∑
i=0

aivi∥gi∥∗ ≤
βk
2
∥x0 − x∗∥2 −

βk
2
∥xk − x∗∥2 +

k−1∑
i=0

a2i
2βi
∥gi∥2∗

≤ βkrkD0 +
k−1∑
i=0

a2i
2βi
∥gi∥2∗.

where we have used the fact that

∥x0 − x∗∥2 − ∥xk − x∗∥2 = (∥x0 − x∗∥ − ∥xk − x∗∥) (∥x0 − x∗∥+ ∥xk − x∗∥)
≤ 2∥xk − x0∥∥x0 − x∗∥ = 2rkD0.

Now let us define k as follows:

k = argmin
1≤k≤T

r̄k∑k−1
i=0 r̄i

.

Using (3) we get the following inequality:

k−1∑
i=0

r̄ivi ≤ 2∥xk − x0∥R
√
k + 1 +

√
k

2
r̄2k

≤ 2r̄kR
√
k + 1 + 4r̄kR

√
k,

where we have used (11) and Theorem 6. Applying Theorem 2 we obtain

v∗T ≤
∑k−1

i=0 r̄ivi∑k−1
i=0 r̄i

≤ r̄k∑k−1
i=0 r̄i

(
2R
√
k + 1 + 4R

√
k
)

≤ 6R
√
k + 1

T

(r̄T
r̄

) 1
T
log

er̄T
r̄
,

17

DADA: DUAL AVERAGING WITH DISTANCE ADAPTATION

therefore, using Theorem 6 we have

v∗T ≤
6R
√
k + 1

T

(r̄T
r̄

) 1
T
log

er̄T
r̄
≤

6R
√

T+1
T√

T

(
8R

r̄

) 1
T

log
8eR

r̄
(13)

≤ 9R√
T

(
8R

r̄

) 1
T

log
8eR

r̄
, (14)

where we have used
√

T+1
T ≤ 3

2 . To make the right-hand side ≤ δ, it suffices to ensure that the
following two inequalities are satisfied:

T ≥ log
8R

r̄
, T ≥ 81e2R2

δ2
log2

8eR

r̄
.

To prove this claim, note that (
8R

r̄

) 1
T

= exp(
log 8R

r̄

T
) ≤ e (15)

whenever T ≥ log 8R
r̄ . Finally, using T ≥ 81e2R2

δ2
log2 8eR

r̄ along with (15), we obtain

v∗T ≤
9R√
T

(
8R

r̄

) 1
T

log
8eR

r̄
≤ δ. (16)

Together, (12) and (16) establish the proof.

Appendix D. Convergence of DADA on Various Problem Classes

D.1. Nonsmooth Lipschitz Functions

In this section, we assume that the function f in problem (1) is Lipschitz: for all x, y ∈ Rd, it holds
that

|f(x)− f(y)| ≤ L0∥x− y∥,

where L0 > 0 is a fixed constant.

Lemma 7 Assume that f is an L0-Lipschitz function. Then, ω(t) ≤ ϵ for any given ϵ > 0 whenever

t ≤ ϵ

L0
.

Proof Indeed,

f(x)− f∗ ≤ L0∥x− x∗∥,

Therefore, for any t ≥ 0, we have

ω(t) ≤ L0t.

Making the right-hand side ≤ ϵ, we get the claim.

18

DADA: DUAL AVERAGING WITH DISTANCE ADAPTATION

Theorem 8 Consider problem 1 under the assumption that f is an L0-Lipschitz function. Let Al-
gorithm 1 with coefficients (3) be applied for solving this problem. Then, f(x∗T) − f∗ ≤ ϵ for any
given ϵ > 0 whenever

Tϵ ≥ max

{
log

8R

r̄
,
81e2R2L2

0

ϵ2
log2

8eR

r̄

}
.

Proof Using Theorem 1 for δ = ϵ
L0

, we obtain vTϵ ≤ ϵ
L0

. Therefore,

f(x∗Tϵ
)− f∗ ≤ ω(v∗Tϵ

) ≤ ϵ,

where we have used (2) and Theorem 7.

D.2. Lipschitz-Smooth Functions

Let us now consider the case when f is Lipschitz-smooth, meaning that for any x, y ∈ Rd, the
following inequality holds:

f(y)− f(x) ≤ ⟨∇f(x), y − x⟩+ L1

2
∥y − x∥2,

where L1 > 0 is a fixed constant.

Lemma 9 Assume that f is Lipschitz-smooth with constant L1. Then, ω(t) ≤ ϵ for any given ϵ > 0
whenever

t ≤ min

{√
ϵ

L1
,

ϵ

2∥∇f(x∗)∥∗

}
.

Proof Indeed,

f(x)− f(x∗) ≤ ⟨∇f(x∗), x− x∗⟩+ L1

2
∥x− x∗∥2

≤ ∥∇f(x∗)∥∗∥x− x∗∥+
L1

2
∥x− x∗∥2.

Hence, for any t ≥ 0,

ω(t) ≤ L1

2
t2 + ∥∇f(x∗)∥∗t.

To make the right-hand side ≤ ϵ, it suffices to ensure that each of the two terms is ≤ ϵ
2 :

L1t
2 ≤ ϵ

2
, ∥∇f(x∗)∥∗t ≤

ϵ

2
.

Solving this system of inequalities, we get the claim.

19

DADA: DUAL AVERAGING WITH DISTANCE ADAPTATION

Theorem 10 Consider problem 1 under the assumption that f is Lipschitz-smooth with constant
L1. Let Algorithm 1 with coefficients (3) be applied for solving this problem. Then, f(x∗T)− f∗ ≤ ϵ
for any given ϵ > 0 whenever

Tϵ ≥ max

{
log

8R

r̄
,
81e2R2

h2ϵ
log2

8eR

r̄

}
,

where hϵ = min{
√

ϵ
L1
, ϵ
2∥∇f(x∗)∥∗ }.

Proof Using Theorem 1 for δ = hϵ, we obtain vTϵ ≤ hϵ. Therefore,

f(x∗Tϵ
)− f∗ ≤ ω(v∗Tϵ

) ≤ ϵ,

where we have used (2) and Theorem 9.

D.3. Hölder-Smooth Functions

Let us now consider a more general case, when f is Hölder-smooth, meaning that for any x, y ∈ Rd,
it holds that

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ Hν

1 + ν
∥y − x∥1+ν ,

where ν ∈ [0, 1] and Hν > 0.

Lemma 11 Assume that f is a Hölder-smooth function with constants ν and Hν . Then, ω(t) ≤ ϵ
for any given ϵ > 0 whenever

t ≤ min

{[
(1 + ν)ϵ

2Hν

] 1
1+ν

,
ϵ

2∥∇f(x∗)∥∗

}
.

Proof Indeed,

f(x)− f(x∗) ≤ ⟨∇f(x∗), x− x∗⟩+ Hν

1 + ν
∥x− x∗∥1+ν

≤ ∥∇f(x∗)∥∗∥x− x∗∥+
Hν

1 + ν
∥x− x∗∥1+ν .

Hence, for any t ≥ 0,

ω(t) ≤ ∥∇f(x∗)∥∗t+
Hν

1 + ν
t1+ν

To make the right-hand side of the last inequality≤ ϵ, it suffices to ensure that each of the two terms
is ≤ ϵ

2 :

∥∇f(x∗)∥∗t ≤
ϵ

2
,

Hν

1 + ν
t1+ν ≤ ϵ

2
.

Solving this system of inequalities, we get the claim.

20

DADA: DUAL AVERAGING WITH DISTANCE ADAPTATION

Theorem 12 Consider problem 1 under the assumption that f is a Hölder-smooth function with
constants ν and Hν . Let Algorithm 1 with coefficients (3) be applied for solving this problem. Then,
f(x∗T)− f∗ ≤ ϵ for any given ϵ > 0 whenever

Tϵ ≥ max

{
log

8R

r̄
,
81e2R2

h2ϵ
log2

8eR

r̄

}
,

where hϵ = min{
[
(1+ν)ϵ
2Hν

] 1
1+ν

, ϵ
2∥∇f(x∗)∥∗ }.

Proof Using Theorem 1 for δ = hϵ, we obtain vTϵ ≤ hϵ. Therefore,

f(x∗Tϵ
)− f∗ ≤ ω(v∗Tϵ

) ≤ ϵ,

where we have used (2) and Theorem 11.

D.4. Functions with Lipschitz High-Order Derivative

In this section, we assume that function f in problem (1) has Lp-Lipschitz pth derivative. It means
that for any x, y ∈ Rd, the following inequality holds:

∥∇pf(x)−∇pf(y)∥ ≤ Lp∥x− y∥.

This implies the following global upper bound on the function value:

f(y) ≤ f(x) +
p∑

i=1

1

i!
∇if(x) [y − x]i + Lp

(p+ 1)!
∥y − x∥p+1.

Lemma 13 Assume that f has Lp-Lipschitz pth derivative. Then, ω(t) ≤ ϵ for any given ϵ > 0
whenever

t ≤ min

{
min
1≤i≤p

[
i! ϵ

(p+ 1)∥∇if(x∗)∥

] 1
i

,

[
p! ϵ

Lp

] 1
p+1

}
.

Proof Indeed,

f(x)− f∗ ≤
p∑

i=1

1

i!
∇if(x∗) [x− x∗]i + Lp

(p+ 1)!
∥x− x∗∥p+1

≤
p∑

i=1

1

i!
∥∇if(x∗)∥∥x− x∗∥i + Lp

(p+ 1)!
∥x− x∗∥p+1.

Therefore, for any t ≥ 0, we have

ω(t) ≤
p∑

i=1

1

i!
∥∇if(x∗)∥ti + Lp

(p+ 1)!
tp+1

≤
p∑

i=1

ϵ

p+ 1
+

ϵ

p+ 1
= ϵ

21

DADA: DUAL AVERAGING WITH DISTANCE ADAPTATION

To make the right-hand side ≤ ϵ, it suffices to ensure that each of the following inequalities holds:

∀1≤i≤p :
1

i!
∥∇if(x∗)∥ti ≤ ϵ

p+ 1
,

Lp

(p+ 1)!
tp+1 ≤ ϵ

p+ 1

Solving this system of inequalities, we get the claim.

Theorem 14 Consider problem 1 under the assumption that f has Lp-Lipschitz pth derivative. Let
Algorithm 1 with coefficients (3) be applied for solving this problem. Then, f(x∗T)− f∗ ≤ ϵ for any
given ϵ > 0 whenever

Tϵ ≥ max

{
log

8R

r̄
,
81e2R2

h2ϵ
log2

8eR

r̄

}
,

where

hϵ = min

{
min
1≤i≤p

[
i! ϵ

(p+ 1)∥∇if(x∗)∥

] 1
i

,

[
p! ϵ

Lp

] 1
p+1

}
.

Proof Using Theorem 1 for δ = hϵ, we obtain vTϵ ≤ hϵ. Therefore,

f(x∗Tϵ
)− f∗ ≤ ω(v∗Tϵ

) ≤ ϵ,

where we have used (2) and Theorem 13.

D.5. Quasi-Self-Concordant Functions

In this section, we assume that the function f in problem (1) is Quasi-Self-Concordant (QSC),
meaning that it is three times continuously differentiable and for any x ∈ Rd and arbitrary directions
u, v ∈ Rd it holds that

∇3f(x)[u, u, v] ≤M⟨∇2f(x)u, u⟩∥v∥,

with parameter M ≥ 0.
The following lemma provides an important global upper bound on the function value.

Lemma 15 [7, Lemma 2.7] Let f be QSC with the parameter M . Then for any x, y the following
inequality holds

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ ⟨∇2f(x)(y − x), y − x⟩φ(M∥y − x∥),

where φ(t) := et−t−1
t2

.

Lemma 16 Assume that f is a QSC function with constant M . Then, ω(t) ≤ ϵ for any given ϵ > 0
whenever

t ≤ min

{
ϵ

2∥f(x∗)∥∗
,

√
ϵ

2∥∇2f(x∗)∥
,
1

M

}
.

22

DADA: DUAL AVERAGING WITH DISTANCE ADAPTATION

Proof Since φ is an increasing function, if M∥x− x∗∥ ≤ 1, we can estimate

φ(M∥y − x∥) ≤ φ(1) = e− 2 ≤ 1.

Therefore, according to Theorem 15

f(x)− f∗ ≤ ⟨∇f(x∗), x− x∗⟩+ ⟨∇2f(x∗)(x− x∗), x− x∗⟩φ(M∥x− x∗∥)
≤ ⟨∇f(x∗), x− x∗⟩+ (e− 2)⟨∇2f(x∗)(x− x∗), x− x∗⟩
≤ ∥∇f(x∗)∥∗∥x− x∗∥+ ∥∇2f(x∗)∥∥x− x∗∥2,

Hence, for any 0 ≤ t ≤ 1
M ,

ω(t) ≤ ∥∇f(x∗)∥∗∥x− x∗∥+ ∥∇2f(x∗)∥∥x− x∗∥2

≤ ∥∇f(x∗)∥∗t+ ∥∇2f(x∗)∥t2

To make the right-hand side ≤ ϵ, it suffices to ensure that each of the two terms is ≤ ϵ
2 :

∥∇f(x∗)∥∗t ≤
ϵ

2
, ∥∇2f(x∗)∥t2 ≤ ϵ

2
.

Solving this system of inequalities, we get the claim.

Theorem 17 Consider problem 1 under the assumption that f is QSC with constant M . Let Algo-
rithm 1 with coefficients (3) be applied for solving this problem. Then, f(x∗T) − f∗ ≤ ϵ for any
given ϵ > 0 whenever

Tϵ ≥ max

{
log

8R

r̄
,
81e2R2

h2ϵ
log2

8eR

r̄

}
,

where hϵ = min{ ϵ
2∥f(x∗)∥∗ ,

√
ϵ

2∥∇2f(x∗)∥ ,
1
M }.

Proof Using Theorem 1 for δ = hϵ, we obtain vTϵ ≤ hϵ. Therefore,

f(x∗Tϵ
)− f∗ ≤ ω(v∗Tϵ

) ≤ ϵ,

where we have used (2) and Theorem 16.

D.6. (L0, L1)-Smooth Functions

Definition 18 Let us now consider the case when f is (L0, L1)-smooth, meaning that for any x ∈
Rd,

∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥∗,

where L0, L1 ≥ 0 are fixed constants.

23

DADA: DUAL AVERAGING WITH DISTANCE ADAPTATION

Lemma 19 [24, Lemma 2.2] Let f be a (L0, L1)-smooth and x, y be arbitrary points, then the
following inequality holds

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L0 + L1∥∇f(x)∥∗
L2
1

φ(L1∥y − x∥),

where φ(t) = et − t− 1.

Lemma 20 Assume that f is a (L0, L1)-smooth function. Then, ω(t) ≤ ϵ for any given ϵ > 0
whenever

t ≤ min

{
ϵ

2∥f(x∗)∥∗
,

√
2ϵ

3(L0 + L1∥∇f(x∗)∥∗)
,
1

L1

}
.

Proof Since φ is an increasing function, if L1∥x− x∗∥ ≤ 1, we can estimate

φ(L1∥y − x∥) ≤
3

4
L2
1∥y − x∥2.

Therefore, according to Theorem 19

f(x)− f∗ ≤ ⟨∇f(x∗), x− x∗⟩+ 3(L0 + L1∥∇f(x∗)∥∗)
4

∥x− x∗∥2

≤ ∥∇f(x∗)∥∗∥x− x∗∥+
3(L0 + L1∥∇f(x∗)∥∗)

4
∥x− x∗∥2,

Hence, for any 0 ≤ t ≤ 1
L1

,

ω(t) ≤ ∥∇f(x∗)∥∗∥x− x∗∥+
3(L0 + L1∥∇f(x∗)∥∗)

4
∥x− x∗∥2

≤ ∥∇f(x∗)∥∗t+
3(L0 + L1∥∇f(x∗)∥∗)

4
t2

To make the right-hand side of the last inequality≤ ϵ, it suffices to ensure that each of the two terms
is ≤ ϵ

2 :

∥∇f(x∗)∥∗t ≤
ϵ

2
,

3(L0 + L1∥∇f(x∗)∥∗)
4

≤ ϵ

2
.

Solving this system of inequalities, we get the claim.

Theorem 21 Consider problem 1 under the assumption that f is an (L0, L1)-smooth function. Let
Algorithm 1 with coefficients (3) be applied for solving this problem. Then, f(x∗T)− f∗ ≤ ϵ for any
given ϵ > 0 whenever

Tϵ ≥ max

{
log

8R

r̄
,
81e2R2

h2ϵ
log2

8eR

r̄

}
,

where hϵ = min{ ϵ
2∥f(x∗)∥∗ ,

√
2ϵ

3(L0+L1∥∇f(x∗)∥∗) ,
1
L1
}.

Proof Using Theorem 1 for δ = hϵ, we obtain vTϵ ≤ hϵ. Therefore,

f(x∗Tϵ
)− f∗ ≤ ω(v∗Tϵ

) ≤ ϵ,

where we have used (2) and Theorem 20.

24

	Introduction
	DADA Method
	Comparison with Recent Parameter-Free Methods

	Universality of DADA: Examples of Applications
	Experiments
	Auxiliary Results
	Analysis of Dual Averaging
	Proof of Theorem 1
	Convergence of DADA on Various Problem Classes
	Nonsmooth Lipschitz Functions
	Lipschitz-Smooth Functions
	Hölder-Smooth Functions
	Functions with Lipschitz High-Order Derivative
	Quasi-Self-Concordant Functions
	(L0, L1)-Smooth Functions

