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We study the optimal pricing strategy for profit maximization in presence of network
externalities where a decision to buy a product depends on the price offered to the buyer
and also on the set of her friends who have already bought that product. We model the
network influences by a weighted graph where the utility of each buyer is the sum of
her initial value on the product, and the linearly additive influence from her friends. We
assume that the buyers arrive online and the seller should offer a price to each buyer when
she enters the market. We also take into account the manufacturing cost. In this paper, we
first assume that the monopolist defines a unique price for the product and commits to it
for all buyers. In this case, we present an FPTAS algorithm that approximates the optimal
price with a high probability. We also prove that finding the optimum price is NP-hard.
Second, we consider a market with positive network externalities and assume that the
monopolist could offer a private price to each customer. We prove that this problem is also
hard to approximate for linear influences. On the positive side, we present a polynomial
time algorithm for the problem when influences are symmetric. At last, we show that the
seller has more ability to extract influences with price discrimination.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Social networks play an important role in providing in-
formation and influencing choices. This is realized by the
rapid growth of online social networking such as Facebook,
MySpace and Twitter, which produce a huge and valuable
information for advertising and online businesses. How can
companies use this data to design comprehensive busi-
ness strategies, and use network influences to earn more
money?

Literature contains many papers that propose reason-
able business models for monetizing social networks for
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advertising purposes [1,2]. An alternative approach which
we follow in this paper, is to use networks influences and
to design clever pricing strategies [3–5].

In this paper, we focus on designing intelligent pricing
strategies for the seller when products exhibit network ef-
fect. That is, the valuation of a buyer is affected on her
friend’s reactions. In many cases, buyers have positive influ-
ences on others, i.e., the valuation of a buyer for a product
increases as more people use it. For example, many soft-
ware or electronics products evolve over time: operating
systems may have more bugs and security holes at the be-
ginning. But, as more people use it, more bugs will be fixed
and it becomes more reliable. Therefore the more people
use the product, the more inherent value it accrues. As
another example of positive effects, consider a cell-phone
service that offers extra discounts for calls among people
who use it most. The value of such service increases as
more friends buy it.
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In this paper, we study this problem in a stylized
model, in which a monopolistic seller wishes to design a
pricing strategy for a product with network externalities.
We also consider the cost of manufacturing the product
in our modeling, which has been ignored in the previous
works [3,5]. We assume that buyers arrive online. This
means that the seller should offer a buyer a price when
she enters the market. In this situation, the seller faces a
dilemma: A low price may attract the current buyer and
hence help the seller gain more from future buyers. On
the other hand, considering the production cost, it may not
worth to sell the product with too low a price.

Our results. Price discrimination, which is useful for rev-
enue maximization in some settings, may result in a nega-
tive reaction from buyers [6]. Also, allowing price discrim-
ination makes the implementation of such strategies hard.
So, in many markets the seller defines a public price for
the product and commits to this price [3].

In Section 3, we study the problem when the monop-
olist offers a single price for the product and commits to
it. In this case, we develop an FPTAS algorithm that ap-
proximates the optimal price with a high probability. We
then show that the problem of finding the optimum price
is indeed NP-hard.

In Section 4, we explore the problem with price dis-
crimination. In this setting, the seller could offer a private
price for each upcoming buyer. We show that it is impos-
sible to approximate the optimum price strategy. However,
if influences are symmetric, we present a polynomial time
algorithm which is based on network flow idea. At last,
in Section 5, we compare the seller’s profit for the cases of
single or multiple prices. We show that the seller has more
ability to extract influences with price discrimination.

Related work. Hartline et al. [5] study the problem of de-
signing a marketing strategy for a digital good with no
manufacturing cost over social networks. They model the
influence among the users as a submodular function, and
propose a constant-factor approximation algorithm for the
optimal marketing strategy. In their marketing strategy, the
seller visits all buyers in some order and offers each of
them a private price. A buyer accepts or rejects the offer.
The seller is the one who chooses the prices she offers
as well as the order in which the buyers are visited. The
main difference between this model and ours is the ability
of the seller to decide about the order of buyers. They as-
sume that the seller can visit the buyers in any order she
wishes. But, in many markets, the seller cannot set the or-
der in advance. We assume that the buyers arrive online
and the seller does not have the ability to set the arriving
order.

Another work which, in spirit, is close to ours is [3].
In particular, they consider an iterative posted price mar-
ket in which the seller posts a public price at each time
step which is visible to all buyers. Based on her valu-
ation for the product and the offered price, each buyer
may decide—in that time step—whether to buy the prod-
uct. They assume that each buyer acts myopically and buys
the product at the first time step in which the offered price
is less than her valuation. They study the optimal pricing
strategy in this setting and propose approximation algo-
rithms for different versions of the baseline model.

2. Model

Consider the case of selling multiple copies of a good
to a set V of n buyers. Each buyer is interested only in
a single copy of the item. The cost of manufacturing one
unit of the good is c and the seller has an unlimited sup-
ply of the good. We assume that the seller is a monopolist
and is interested in maximizing her profit. In the pres-
ence of network externality, the valuation of buyer i for
the good is a function of the buyers who already own that
item, vi : 2V → R

+ , i.e., vi(S) is the value of the good for
buyer i, if the buyers in S already own that item. Several
researchers have considered the same valuation function
in their studies [5,7,3,8]. They have assumed the value of
product depends on earlier buyers.

A common assumption studied in the context of net-
work externalities is the assumption of additive influence
functions which has been explored and justified in this
framework [9,10,8,11]. In this model, the influence of
buyer i on buyer j is represented by the weight of edge
from i to j (wi, j). That is, the value vi(S) for all i and S is
vi(S) = vi(∅) + ∑

j∈S w j,i , where vi(∅) is the initial value
of buyer i and w j,i is the weight of edge from buyer j to
buyer i in graph G . Note that if there is no edge from j to
i in the graph, we assume w j,i = 0. The additive symmetric
model is similar to the additive model with wi, j = w j,i .

We study optimal online pricing strategies when buyers
arrive online. In particular, at time t a buyer i enters the
market and the seller should offer a price pi to her. Then,
she decides to buy the product if and only if pi � vi(St),
where St is the set of buyers who already own the prod-
uct. Assume π = (π1,π2, . . . ,πn) is a permutation over
the buyers and indicates the order in which they enter
the market. In other words, buyer πt enters the market
at time t . We assume the seller has no information about
the order of the new customers and also has no prior
knowledge about it. In this case, the most rational or con-
servative assumption is to assume all permutations of later
buyers will happen with the same probability [12]. Now,
the seller wishes to find a pricing strategy in order to max-
imize her expected profit, where the expectation is over all
possible permutations of new customers.

We consider both cases of pricing strategies. In
UniquePrice problem, the seller wishes to find a unique
price p for the product in order to maximize her profit, i.e.
for any two buyers i �= i′ , we have pi = pi′ . On the other
hand, in DifferentPrices problem, the seller could offer dif-
ferent prices to different buyers. That is, when a buyer i
enters the market the seller will offer her a private price
pi . The prices offered are adaptive, i.e. they can be based
on the history of previous accepts and rejects.

A pricing strategy consists of a sequence of offers p =
(p1, p2, . . . , p|V |). The result of a pricing strategy is sets of
accepted and rejected offers. Let U (p) be the set of buyers
who have bought the product. Obviously, in UniquePrice,
p can be used for p. The profit of the seller with pricing
strategy p would be R(p) = ∑

i∈U (p) pi − c|U (p)|, which is
the sum of the payments from the accepted offers minus
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the cost of production. The goal is to design a pricing strat-
egy in order to maximize this profit.

Assume that the manufacturing cost is zero. In that
case, if the valuation of buyer i for the good was v ′

i(S) =
vi(S)−c and the seller offered the price p′

i = pi −c instead
of pi , the reaction of buyer i remains unchanged. Also, the
set of buyers who accept the offers remains unchanged.
With this assumption, the profit will be

∑
i∈U (p) p′

i , which
is exactly the same as

∑
i∈U (p) pi − c|U (p)|. Therefore,

there is a one-to-one correspondence between pricing
strategies in these scenarios. In the remaining part of the
paper, we thus assume that the production cost is zero
but the valuation function vi(.) could have negative values
instead.

3. Unique price

In this section, we study the UniquePrice problem for
which we first propose an FPTAS algorithm. We then prove
that finding the optimum price for UniquePrice problem is
NP-hard.

Let Loweri = minS{vi(S) | vi(S) > 0} be the minimum
positive price at which buyer i will buy the product. If we
set the price to p � pmin = mini{Loweri}, all buyers will
accept the offer and buy the item. On the other hand, if
customer j is the first customer who buys the product, the
price is no more than v j(∅). This means that no one will
buy the product with price more than pmax = maxi{vi(∅)}.
Therefore, the optimum price is between pmin and pmax.

In order to design an algorithm, we show that if we as-
sume the optimum price the form of p = pmin(1 + ε)i , we
do not lose too much. Let R p be a random variable for the
seller’s profit. Note that the exact value of R p depends on
the order of future buyers that the seller has no informa-
tion about it. The goal in UniquePrice problem is to find a
price p which maximizes E[R p], where expectation is over
all possible permutations of future buyers. It is clear that
R p = p × U p , which means E[R p] = p × E[U p]. So we can
find E[R p] by calculating E[U p]. Note that E[U p] cannot
be computed in polynomial time by calculating U p over
all possible permutations of new buyers. But, E[U p] and
therefore the expected profit of the price p can be esti-
mated with any small error using the sampling technique,
in which, for a price p, we calculate U p in a polynomial
number of trials. In each trial, first, we fix the order of fu-
ture buyers over all their possible permutations, and then
calculate the value of U p in polynomial time. At last, by
taking the average of calculated values of U p in all trials,
we can estimate E[U p]. Since 0 � U p � n, using Chernoff–
Hoeffding concentration inequality, we show that E[U p]
can be computed with high probability within an error
factor of ε (Lemma 1). We are now ready to propose Algo-
rithm 1 for UniquePrice problem.

Chernoff–Hoeffding bound. Let X1, . . . , Xn be i.i.d. (inde-
pendent and identically distributed) random variables over
a bounded domain [0,1] with expectation E[Xi] = μ (for
all i). Let X = 1

n

∑n
i=1 Xi . For all 0 < ε < 1, Pr(|X − μ| >

εμ) � 2e− ε2nμ
3 .
Algorithm 1 An FPTAS algorithm for UniquePrice
1: pmin ← mini{Loweri}
2: pmax ← maxi{vi(∅)}
3: for i = 0 to log1+ε pmax/pmin do
4: q ← pmin(1 + ε)i

5: Compute the estimated value of E[Uq] using sampling technique.
Name this value U e

q .
6: end for
7: return argmaxq qU e

q

Lemma 1. Given a price pmin � p � pmax , for every ε > 0, and
δ′ < 1, there is an algorithm with O ( n

ε2 log 1
δ′ ) trials which re-

turns value U p such that Pr(|U p − E[U p]| > εE[U p]) � δ′ .

Proof. Assume that k = argmaxi{vi(∅)}. If we set the price
p � pmax, the buyer k will buy the product. So the ran-
dom variable U p is at least 1 in all trials. Define E[U p] =
μp and Y p = U p

n . We compute Y p , m times. Let Y p

be equal to mean of these m values and U p = nY p .
By Chernoff–Hoeffding bound we have: Pr(|U p − μp| >

εμp) = Pr(|Y p − μp
n | > ε

μp
n ) � 2e− ε2mμp

3n . Therefore, by set-
ting m = 3n

ε2μp
log( 2

δ′ ), we conclude the lemma. Note that

μp � 1 which implies m ∈ O ( n
ε2 log 1

δ′ ). �
Theorem 2. For every ε > 0 and δ < 1, Algorithm 1 finds a price
pALG with O ( nk

ε2 log k
δ
) trials, where k = log1+ε (pmax/pmin),

such that E[R pALG ] � E[R pOPT ] 1−ε
(1+ε)2 with probability at least

1 − δ.

Proof. Let pOPT be the optimum price and pi = pmin(1 +
ε)i . Therefore there is an index j such that p j � pOPT <

p j(1 + ε). A buyer who has bought the product with price
pOPT will buy the product at price p j . So, for every random
sampling we have U p j � U pOPT which means E[U p j ] �
E[U pOPT ]. Note that pOPT � p j(1 + ε) and E[R p] = pE[U p].
We can thus conclude that E[R p j ] � 1

1+ε E[R pOPT ].
Let k = logpmax/pmin

1+ε and δ′ = δ
k . Let f i be the estimated

value for E[R pi ] = pi E[U pi ] using Lemma 1. For every i
the value of f i will be out of interval [(1 − ε)E[R pi ],
(1 + ε)E[R pi ]] with probability of at most δ′ . So, with
probability at least (1 − δ′)k � 1 − δ′k = 1 − δ, we have
(1 − ε)E[R pi ] � f i � (1 + ε)E[R pi ] for all i. Now, as-
sume that the algorithm returns pALG as the best price.

So, E[R pALG ] � fALG
1+ε � f j

1+ε � E[R p j ] 1−ε
1+ε with probability

of at least 1 − δ. Note that E[R p j ] � 1
1+ε E[R pOPT ], which

means E[R pALG ] � E[R pOPT ] 1−ε
(1+ε)2 with probability at least

1 − δ. �
Theorem 3. Finding the optimum price for UniquePrice prob-
lem is NP-hard.

Proof. Assume that, we are given a set of integers A =
{a1,a2, . . . ,an}, and we are asked whether we can partition
A into two disjoint subsets A1, A2 such that

∑
ai∈A1

ai =
∑

a j∈A2
a j . We call this problem Perfect Partition which is

known to be NP-complete [13]. We reduce this problem
to finding the optimum price in UniquePrice. Let SUM =
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∑
ai∈A ai . Without loss of generality, assume that SUM and

n are even numbers. Let q = 1
2 + ( n

2 )!2
(n+1)! and m be the real

number such that n
q < m < 2n. Note that m can be repre-

sented by O (poly(n)) bits.
We will build an instance of UniquePrice such that the

answer to the Perfect Partition instance is YES if and only
if the optimum price is m in this instance of UniquePrice.
Consider an instance of UniquePrice with 2n+1 buyers. Let
vi(∅) = m for 1 � i � n, vi(∅) = 2m + 1 for n + 1 � i � 2n,
and v2n+1(∅) = m − SUM

2 . Finally, define wi,2n+1 = ai , for
every 1 � i � n, and set the weight of other edges to 0.

We show that the optimum price p can only be m or
2m + 1. The optimum price will not be more than 2m + 1,
since none of the buyers would buy the product. Now,
consider the price m < p < 2m + 1. The initial value of
buyers 1 to n is m and there is no influence on them. So,
they don’t buy the product with price m < p < 2m + 1.
Therefore, buyer 2n + 1 does not receive any positive ef-
fect from buyers 1 to n and does not buy the product. It
means that only buyers n + 1 to 2n will buy the prod-
uct and R(p) = np. If the seller sets the price to 2m + 1,
then the buyers n + 1 to 2n will buy the product and
R(2m + 1) = n(2m + 1) > R(p).

Now, we prove that the optimum price is not less than
m. Assume that the optimum price is m − ε and the seller
offers it. Because the initial value of buyers 1 to 2n is
at least m, all buyers’ reaction to prices m − ε and m
are the same except for the buyer 2n + 1. In order to
have R(m − ε) > R(m), there should be a permutation
of arrivals in which the buyer 2n + 1 buys the product
at price m − ε and does not buy it at price m, which
means that m − ε < v2n+1(S) < m, where buyers in S own
the product when buyer 2n + 1 enters the market. Since,
v2n+1(S) = m − SUM

2 + ∑
i∈S ai and − SUM

2 + ∑
i∈S ai is an

integer value less than zero, then we can conclude ε � 1.
Now, we compare the profit when the seller offers prices
m−ε and 2m+1. We know R(m−ε) � (m−ε)(2n+1) and
R(2m + 1) = n(2m + 1). Therefore, according to the facts
that ε � 1 and m < 2n, we have R(2m + 1) = n(2m + 1) >

(m − ε)(2n + 1) � R(m − ε). So, the only candidates for op-
timum price are m and 2m + 1.

Finally, we prove that the answer to Perfect Partition is
NO if and only if optimum price is 2m + 1 i.e. R(2m + 1) >

R(m). Note that when the price is m, buyers 1 to 2n would
buy the product and buyer 2n + 1 may or may not buy.
Assume that buyer 2n + 1 enters the market after buy-
ers of set S . The buyer 2n + 1 will buy the product if∑

i∈S,i�n ai � SUM
2 .

If the answer to Perfect Partition is NO for any set S ,
exactly one of

∑
i∈S, i�n ai or

∑
i∈ S̄, i�n ai is greater than

SUM
2 , where S̄ is the complement set of S . Therefore,

∑
i∈S, i�n ai is greater than SUM

2 with the probability of 1
2 .

Thus, the buyer 2n +1 will buy the product with the prob-
ability of 1

2 and R(m) = 2nm+ m
2 . On the other hand, if the

seller proposes price 2m + 1, buyers n + 1 to 2n would buy
the product, so R(2m + 1) = n(2m + 1). Thus, since m < 2n,
then R(2m + 1) > R(m).

If the answer to Perfect Partition is YES, i.e. we can
partition set A into two disjoint subsets A1 and A2 such
that

∑
a ∈A ai = ∑

a ∈A a j . So
∑

i∈S,i�n ai is greater than

i 1 j 2
or equal to SUM
2 with the probability of at least q′ = 1

2 +
|A1|!×|A2|!

(n+1)! . Therefore, the buyer 2n + 1 will buy the product
with the probability of at least q′ . Thus, R(m) � 2nm + mq′
and according to the fact that q � q′ and m > n

q , we

have m > n
q′ . Therefore, in this case R(m) � 2nm + mq′ >

(2m + 1)n = R(2m + 1) i.e. the optimum price is m. �
4. Different prices

Let the optimal offline profit be the maximum profit
one could achieve if the order of buyers was already
known to her. In general, competitive analysis is a usual way
for analyzing online algorithms, where the performance of
the online algorithm is compared to the performance of
an optimal offline algorithm that can view the sequence of
input in advance [14].

In Example 4, we show the ratio of optimal online so-
lution over optimal offline solution could be zero. So any
approximation algorithm which approximate the online so-
lution, could not approximate the optimal offline solution.
Therefore, competitive analysis doesn’t work here. On the
positive side, in Section 4.1, we propose a polynomial-time
algorithm to find the optimal pricing strategy for the addi-
tive symmetric model.

Example 4. Assume a set of buyers V = {v1, v2, v3} such
that w1,2 = w2,3 = w3,1 = 5. The weight of other edges is
zero. Let the initial value of each buyer be −3. Suppose
the first buyer arrives and without loss of generality, let
the first buyer be v1. Consider the two cases. If the next
buyer is v2, then the maximum profit is 1 which is gained
by offering the price −3 to v1, 2 to v2 and again 2 to
v3. If the next buyer is v3, then the maximum profit is 0,
which is gained by offering the price 0 to all buyers. So
the maximum expected offline profit is 1

2 .
Now, consider the optimum online algorithm. When v1

arrives, we don’t know whether v2 is the next buyer or
not. If we offer a price greater than −3 to v1 then the
maximum profit will be 0. But if we offer the price −3 to
v1 then two cases might happen, each with probability 1

2 .
The next buyer might be v2. In this case, the maximum
profit is 1 which is gained by offering the price −3 to v1,
2 to v2 and again 2 to v3. The next buyer might be v3.
In this case, the maximum profit is −1 which is gained by
offering the price −3 to v1, 0 to v3 and 2 to v2. So, if
we offer the price −3 to v1, the maximum profit is 1 with
probability 1

2 , or −1, again with probability 1
2 . And if we

offer a price greater than −3 to v1, the maximum profit
will be 0. So the expected profit of the optimal online al-
gorithm is 0.

4.1. Additive symmetric model

Let p be the optimal pricing strategy and Si be the set
of buyers who already own the product when the buyer
i enters the market in the optimal pricing strategy. If the
seller decides to sell the product to the buyer i, she should
offer her a price less than or equal to vi(Si). Note the
seller wants to maximize her profit. Therefore, she will
offer the price vi(Si). So if we know U (p), the set of
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Fig. 1. Network flow for solving MWS.

buyers who have bought the product, we can define the
price strategy p. The profit of the pricing strategy p will
be R(p) = ∑

i∈U (p) pi = ∑
i∈U (p) vi(Si). Note vi(Si) could

be negative.
Note that in the additive model vi(Si) = vi(∅) +∑

j∈Si
w j,i . Therefore, the profit is R(p) = ∑

i∈U (p) vi(∅) +
∑

j,i∈U (p),π−1( j)<π−1(i) w j,i , where π−1(i) is the time when
buyer i enters the market. Note that wi, j = w j,i . So
we can rewrite the profit as R(p) = ∑

i∈U (p) vi(∅) +
1
2

∑
j,i∈U (p) w j,i . In the remaining part of this section, we

propose a polynomial algorithm to find the set U (p) which
maximizes R(p). First, we define the Maximum Weighted Set
problem. In the Maximum Weighted Set problem (MWS)
we want to find a subset S of nodes in a weighted directed
graph G which maximize

∑
i∈S Ii + α

∑
( j,i)∈S w j,i , where

α � 0, Ii is an initial value assigned to node i, and w j,i � 0
is the weight of edge ( j, i) in the graph G . We propose an
algorithm to solve MWS in Lemma 5. Note that if we set
Ii = vi(∅) and α = 1

2 , then the best set U (p) will be the
optimum solution to MWS. So we conclude Theorem 6 by
using Lemma 5.

Lemma 5. MWS is polynomial-time solvable.

Proof. We propose an algorithm for MWS based on a max-
imum flow algorithm. We define a network flow F based
on graph G and prove that there is a close relation be-
tween the minimum cut of the network flow F and the
maximum weighted set of graph G .

Define hi = Ii +α
∑

j wi, j . Let F be a network flow with
n + 2 vertices numbered from 0 to n + 1. For any 1 � i �
j � n, put an edge with capacity αwi, j from vertex i to
vertex j. For every 1 � i � n and hi � 0, put an edge with
capacity hi from vertex 0 to vertex i. For every 1 � i � n
and hi < 0, put an edge with capacity −hi from vertex i
to vertex n + 1. Let vertex s = 0 be the source and vertex
t = n + 1 be the sink of the network flow F . Network flow
F has been shown in Fig. 1.

Let C(S, S̄) be the weight of the (S, S̄) cut, which is
equal to

∑
i∈S, j /∈S αwi, j + ∑

i /∈S,hi�0 hi + ∑
i∈S,hi<0 −hi .

There is a polynomial time algorithm which finds a cut
S∗ which minimizes C(S, S̄). Define H = ∑

hi�0 hi . The

value of H is independent of the cut (S, S̄). So the cut
S∗ = argmaxS H − C(S, S̄) is the minimum cut of the net-
work flow F . We can express the value of H − C(S, S̄)
Fig. 2. The profits of seller in UniquePrice and DifferentPrices.

as
∑

i∈S,hi�0 hi − ∑
i∈S, j /∈S αwi, j + ∑

i∈S,hi<0 hi , which is
equal to

∑
i∈S hi − ∑

i∈S, j /∈S αwi, j . If we substitute hi by

Ii + α
∑

j wi, j , we can rewrite H − C(S, S̄) as
∑

i∈S(Ii +
∑

j αwi, j) − ∑
i∈S, j /∈S αwi, j which is equal to

∑
i∈S Ii +

α
∑

i, j∈S wi, j . So the minimum cut of network flow F is
the optimum set for MWS. �
Theorem 6. DifferentPrices problem can be solved in polyno-
mial time for the additive symmetric model.

5. UniquePrice vs. DifferentPrices

In this section we compare the profits for the optimal
solution of UniquePrice vs. DifferentPrices. First, we present
an example to show that the profit in DifferentPrices is
significantly more than UniquePrice. We come to similar
conclusion using random graphs. It seems that the seller
has more ability to increase her profit using the influences
in DifferentPrices.

Example 7. Consider an additive symmetric model with
n buyers. The initial value of each buyer is c � 0, where
c is the manufacturing cost. There are m edges between
buyers each with the weight of β � 0. The optimum
profit in UniquePrice is 0, and the optimum profit in
DifferentPrices is nc+mβ−nc = mβ . So, the optimum profit
in DifferentPrices is significantly more than UniquePrice.

Finally, we compare the profits using random graphs.
We build an undirected random graph with n = 200 nodes
and m = 0,100,200, . . . ,2000 random edges. We assume
that the manufacturing cost is 50. The initial value of
each node is assumed to be a random variable which is
drawn uniformly from [0,100] and the weight of each
edge is a random variable which is drawn uniformly form
[0, W ], where W is equal to 5 and 20 in our simula-
tions. First, we find a solution for UniquePrice using Al-
gorithm 1 with 2000 trials. Second, we solve the problem
for DifferentPrices using Theorem 6. The profit of seller
has been shown in Fig. 2 in both models. It has been
shown that the seller has more power in DifferentPrices.
Also, the figure shows that, in contrast with UniquePrice,
the profit of seller highly depends on amount of influences
in DifferentPrices.
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