
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEARNING DYNAMIC 3D GAUSSIANS FROM MONOCU-
LAR VIDEOS WITHOUT CAMERA POSES

Anonymous authors
Paper under double-blind review

Ours

RoDynRF

Figure 1: Mono-DyGS achieves high-quality reconstruction even under a challenging monocular video without
known camera poses. In contrast, RoDynRF (Liu et al., 2023) fails to generate fine details of the given scene.

ABSTRACT

Dynamic scene reconstruction aims to recover the time-varying geometry and
appearance of a dynamic scene. Existing methods, however, heavily rely on the
existence of multiple-view captures or the accurate camera poses estimated by
Structure from Motion (SfM) algorithms. To relax this constraint, we introduce
a method capable of reconstructing generic dynamic scenes, from casually cap-
tured monocular videos without known camera poses. Unlike recent works that
treat static and dynamic content separately, we propose a unified Hexplane-based
Gaussian field to capture the complex effects of scene deformation and camera mo-
tion. The Hexplane decomposition enables feasible disentanglement for effective
optimization. Combined with an efficient camera pose initialization strategy, our
approach significantly improves view synthesis quality and camera pose estimation
accuracy over previous methods, while enhancing computational efficiency.

1 INTRODUCTION

Reconstructing the dynamic scene from a causal video plays a crucial role in understanding and
interacting with the real world. Recent studies have made significant strides in modeling complex
static 3D scenes (Fu et al., 2024; Kerbl et al., 2023; Chen et al., 2022; Yu et al., 2024b) and dynamic
3D scenes (Liu et al., 2023; Wu et al., 2024; Cao & Johnson, 2023; Gao et al., 2021; Lei et al.,
2024; Wang et al., 2024). Most existing methods rely on multiple simultaneous captures with the
known camera poses, typically estimated via SfM systems such as COLMAP, as input. However, the
multiple-view setting limits their use to causal monocular videos and the SfM systems are not always
robust when dealing with dynamic video data due to camera motion blur and the presence of dynamic

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

objects. Consequently, recovering persistent geometry, radiance, and motion from a monocular video
without known camera poses – the most common scenario for in-the-wild data – remains an open and
challenging problem.

Recent monocular approaches have demonstrated the ability to operate on casual dynamic videos
without known camera poses (Liu et al., 2023; Lei et al., 2024). However, these methods typically
rely on disentangling static and dynamic regions using two separate representations. For instance,
Liu et al. (2023) employs two distinct TensorRFs (Chen et al., 2022) to model the static and dynamic
regions independently where the dynamic TensorRF is trained from scratch using camera poses
estimated via the static TensorRF, with no information sharing between the two representations. Since
deformation and camera movement occur simultaneously during video captures, modeling them with
two separate representations could lead to suboptimal reconstruction results. Furthermore, these
methods often suffer from prolonged optimization times due to the random or heuristic initializations
for camera poses. For example, RoDynRF requires approximately 20 hours for optimization, while
DGMarbles (Stearns et al., 2024) necessitates 5 hours.

Motivated by the above observations, we introduce Mono-DynGS, an algorithm for efficient dynamic
scene reconstruction from casual monocular vides. Inspired by the recent success of 3D Gaussians
Splatting(3DGS), we represent the dynamic scene as a set of 3D Gaussians for its desired deformable
and compositional capability. Instead of using random initialization, we first introduce an efficient
camera initialization module by estimating the relative camera pose of every image pair. Concretely,
the relative camera pose can be represented by the SE(3) transformation of a set of 3D Gaussians
from the first camera view to the second one. Concurrently, we utilize a deformation field to model
the motion of deformable objects from the canonical space to different timesteps. To model complex
interactions between scene elements and camera motions, we propose a unified representation
shared by both static and dynamic regions. This representation exhibits dual properties: it is unified
during rendering for high-quality dynamic reconstruction, yet allows for feasible disentanglement
to facilitate effective optimization. In particular, we employ a Hexplane-based encoder for six
planes: {(x, y), (x, z), (y, z), (x, t), (y, t), (z, t)}. During optimization, the first three planes contain
information enabling the reconstruction of static backgrounds and camera motion. , the remaining
three planes model the underlying deformation and, together with the first three spatial planes, recover
the dynamic regions. During inference, all six planes are utilized collectively to obtain high-quality
rendering results at different timesteps from arbitrary viewpoints. Furthermore, we incorporate depth
and optical flow estimations to regularize the optimization of the proposed Mono-DynGS, thereby
enhancing geometric consistency.

We conducted comprehensive experiments across three diverse datasets: DyCheck (Gao et al.,
2022), NVIDIA DynamicNeRF (Gao et al., 2021), and MPI Sintel (Butler et al., 2012). Our
evaluation focused on two key tasks: dynamic novel-view synthesis and camera pose estimation.
We compared our results with previous work, including approaches both with and without known
camera poses. Our method consistently outperformed existing techniques in both tasks across all
three datasets, demonstrating its robustness and effectiveness in handling a wide range of dynamic
scene reconstructions and camera motion estimations.

2 RELATED WORK

Dynamic Novel-view Synthesis The modeling of dynamic view synthesis can be generally divided
into 2 categories based on how the temporal modeling is handled. The first category generally models
dynamic scenes as a 6D-input radiance field which views location, time, and view direction as inputs.
For instance, To utilize flow priors, NSFF (Li et al., 2021) adds flow prediction as an auxiliary task
and constrains the predicted volume density based on the flow provided. Also, some works are built
based on previous static novel synthesis works. For instance, K-Planes (Sara Fridovich-Keil and
Giacomo Meanti et al., 2023) and HexPlane (Cao & Johnson, 2023) extend TensoRF (Chen et al.,
2022) to dynamic scenes. DyNeRF(Li & Li, 2022) conditions the radiance field on a per-time-instant
feature vector which is jointly optimized with the radiance field. However, this category will be
incompatible with dealing with dynamic scenes with large deformation due to the lack of explicit
representation of object motion.

The second set of models deploys a deformable field to connect the real world with canonical
representation. D-NeRF (Pumarola et al., 2021) simply uses a pure MLP combined with sinusoidal

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

embeddings to represent deformation fields, while TiNeuVox (Fang et al., 2022) imposes multi-
resolution grids for interpolation to incorporate deformation in different scales. SWAGS (Shaw et al.,
2023) builds on 3DGS (Kerbl et al., 2023) and uses a simple MLP for the deformation field, and
CoGS (Yu et al., 2024a) mainly focuses on controllable 3D Gaussian Splatting based on learning
dynamic scenes. 4DGS (Wu et al., 2024) incorporates Hexplane as its deformable field. Mosca (Lei
et al., 2024) uses DQB interpolation on some key points as its deformable field, while Shape-of-
motion (Wang et al., 2024) imposes Fourier transformation to fit the trajectory of dynamic Gaussians.
However, most of them fail on casual videos since they require camera poses.

Camera Pose Estimation under Monocular Video The second line of related work, mostly
consisting of SLAM and SfM systems, aims to reconstruct the scene directly from RGB images
by jointly estimating camera parameters and 3D geometries. For example, MonoSLAM (Davison
et al., 2007) and ORB-SLAM (Campos et al., 2021) reconstruct point clouds and camera poses with
sole images by associating feature correspondences. For SfM systems, Bundler (Snavely, 2008) and
COLMAP (Schonberger & Frahm, 2016) provide a method to estimate camera parameters for large
image sets. Several methods like (Yen-Chen et al., 2021; Meng et al., 2021; Lin et al., 2021), have
developed ideas on estimating camera poses using a NeRF model. (Fu et al., 2024; Fan et al., 2024)
shows how to incorporate the rising 3D Gaussian Splatting model with camera pose estimation. For
camera pose estimation in dynamic scenes, Lei et al. (2024) uses a cluster-based deformable field
to deal with dynamic foregrounds while jointly optimizing camera poses. (Liu et al., 2023) uses a
simple MLP as its deformable field and introduces numerous regularizations to enforce geometry
consistency. However, most of them use separate representations for static backgrounds and dynamic
foregrounds. In contrast, We propose to jointly optimize camera poses and a concise representation
of dynamic scenes in an end-to-end manner.

3 METHOD

Given a sequence of input images {Ii | 1 ≤ i ≤ N} representing a monocular dynamic video, along
with the camera intrinsics, our goal is to recover the corresponding camera poses {Pi | 1 ≤ i ≤ N}
for each frame and generate photo-realistic images for arbitrary novel views and timesteps. To
this end, we propose Dy-MonoGS which jointly optimizes a set of 3D Gaussian with continuous
deformable files and the corresponding camera poses for all input frames. As illustrated in Fig 2, we
begin with the efficient relative pose estimation technique to recover the coarse camera trajectory
which we find is a crucial step to facilitate the whole scene optimization (Sec. 3.2). Upon the pose
initialization, we further optimize a set of Gaussians with a Hexplane-based encoder by disentangling
the static(Sec. 3.3.1) and dynamic aspects(Sec. 3.3.2). Meanwhile, we refine the initial camera poses
and improve the geometric consistency of proposed Mono-DynGS by leveraging the dense depth and
optical flow predictions.

3.1 PRELIMINARY: 3D GAUSSIAN SPLATTING

3D Gaussian Splatting (Kerbl et al., 2023) is a differentiable rendering method that performs well
in 3D reconstruction tasks. It models a scene through a group of "Gaussians" and "splats" them to
the image plane. More specifically, a 3D scene is represented by a gaussian set G, which contains
multiple Gaussians

g(x) = e−
1
2X

TΣ−1X (1)

. For each Gaussian, it’s parameterized by its center µ ∈ R3, scale s ∈ R3, rotation q ∈ SO(3), color
c ∈ R3 and opacity α ∈ [0, 1]. The covariance Σ of the Gaussian can be computed by its scale and
rotation:

Σ = RSSTR, (2)

where S is the diagonal matrix characterized by scaling s; R is the rotation matrix correponds to q.

When rendering novel views, Gaussians are differentiably splatted to the image plane as follows:

Σ
′
= JWΣWTJT , (3)

where J is the Jacobian of the approximately affine projective transformation and W is the camera
view transformation matrix. For a certain pixel, the color ci and opacity αi of all the Gaussians are

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Overview. 1) Given a monocular video, we first use the existing dense prediction model to initialize
local Gaussians and run relative pose initialization to initialize camera poses(Sec. 3.2); 2) our proposed Hexplane-
based Gaussian field model the static geometry and dynamic deformation in a unified representation, through
static Gaussian field(Sec. 3.3.1) and triplane deformation(Sec. 3.3.2)

computed using the Gaussian’s representation Eq. 1. The blending of N ordered points that overlap
the pixel is given by the formula:

C =

N∑
i=1

ciαi

i∏
j=1

(1− αi) (4)

3.2 RELATIVE POSE INITIALIZATION

Some previous works (Fu et al., 2023; Lei et al., 2024) have shown the superiority of 3DGS over
implicit representation like NeRFs on recovering camera poses for its explicit representation. Inspired
by Fu et al. (2023), we propose to initialize the camera pose trajectory by estimating the relative
camera poses between every two adjacent frames. As demonstrated in the top part in Fig. 2, given
frame i− 1 with image Ii, we initialize a set of local Gaussians Gi−1 by lifting the monocular depth
Di−1 from a depth prediction model, i.e., Depth Anything (Yang et al., 2024). After the initialization,
we first optimize the local 3D Gaussian Gi−1 based on the current frame Ii−1

G∗
i−1 = arg min

Gi−1

L(R(Gi−1, I), Ii−1), (5)

where R stands for the differentiable rendering process and I stands for idenity camera pose. Based
on the optimized local Gaussian set G∗

i−1, we further optimize the relative pose Ti between frame i
and frame i− 1,

T ∗
i = argmin

Ti

L(R(G∗
i−1, Ti), Ii) (6)

These two optimizations are only conducted on the static part of images Ii and Ii+1. By employing
the local 3DGS on every pair of images, we can infer the absolute pose based on the first frame as
follows,

Pi = T ∗
i ◦ T ∗

i−1 · · · ◦ T ∗
1 (7)

where ◦ represents the dot product operation between two camera pose matrices. The optimization of
local 3DGS along the whole video is quite efficient, i.e., 80 frames in about 70 minutes. Although
these poses could be noisy, we found the coarse trajectory of camera poses performs as a good
initialization to accelerate the dynamic scene reconstruction. These initial camera poses are also
refined during the following optimization.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.3 HEXPLANE-BASED GAUSSIAN FIELD

Given the initial camera poses, we propose a Hexplane-based Gaussian field to model both the static
geometry and dynamic deformation through a unified representation. Recognizing that nearby 3D
Gaussians typically share similar spatial and temporal information, we introduce an efficient spatial-
temporal encoder that utilizes a 4D Hexplane to decompose the 4D neural voxel into various multi-
resolution planes. Specifically, the spatial-temporal structure encoder comprises six plane modules:
{Rxy, Rxz, Ryz, Rxt, Ryt, Rzt}. All 3D Gaussians can be represented by plane features derived
from these modules. These six planes can be naturally decomposed into two distinct sets: i) three
spatial planes {Rxy, Rxz, Ryz}; and ii) three temporal planes {Rxt, Ryt, Rzt}. This decomposition
allows us to construct the static Gaussian field using the spatial planes and the deformable Gaussian
field using the temporal planes.

3.3.1 STATIC GAUSSIAN FIELD

The proposed static model contains 2 components: gaussian centers {µi|1 ≤ i ≤ Ns} and spatial
feature fields Fs composed by three subplane modules {Rxy, Rxz, Ryz} and a multi-head Gaussian
decoder ϕ. Each subplane is defined by Rij ∈ RNi×Nj×hs , where hs is the static spatial feature
dimension and Ni, Nj denotes the resolution the voxel plane. Given a Gaussian centered at µ, we
first perform the bilinear interpolation with the projected 2D coordinates [pi, pj ] on plane ij,

f (ij)
s = Interp (Rij , pi, pj) . (8)

Then, the final feature is the concatenation of query features on different planes,

fs =
⋃
i,j

f (ij)
s , (i, j) ∈ {(x, y), (x, z), (y, z)} (9)

where
⋃

represents the concatenation operation. Finally, we compute all Gaussian attributes,
i.e., scaling s, sphere harmonics c, rotation q and opacity α, by the multi-head Gaussian decoder
{ϕs, ϕc, ϕq, ϕα}. Then, the set of Gaussians can be expressed as follows,

G = {µ, ϕs(fs), ϕq(fs), ϕα(fs), ϕc(fs)} (10)
where we omit the 3D Gaussian index for simplicity.

We jointly optimize the static Gaussian field and the initial 6D camera poses {Pi|1 ≤ i ≤ Nt}
across different frames, where Nt is the number of input frames. The main supervision signal comes
from the photometric loss between the rendered image Ît = R(Gs, Tt) and the input image It at
time t. We omit time t in the following objective functions for simplicity. To ensure the static field
only represents static contents, we directly compute the photometric loss in static regions with the
pre-computed mask Ms as follows,

Ls
pho(I, Î) = Ms ⊙

(
(1− γ)||Îs − Is||22 + γDSSIM(Îs, Is)

)
(11)

where ⊙ is the element-wise production, DSSIM is the structural dissimilarity loss and we set the
factor γ = 0.2. To address the ill-posed problem inherent in monocular videos, we introduce auxiliary
losses to regularize the training process by leveraging estimations of monocular depth and optical
flow. Given the forward optical flow Fi and backward flow Bi from frame i to frame i+ 1 and from
frame i to frame i− 1, the reprojection loss is calculated as,

Ls
reproj =∥πK(Ti+1T

−1
i π−1

K (pi, Di[pi]))− (Fi − pi)∥+
∥πK(Ti−1T

−1
i π−1

K (pi, Di[pi]))− (Bi − pi)∥,
(12)

where pi denotes the pixel coordinates of the static regions in frame i (we omit the s subscript for
simplicity) and πK represents the projection function from 3D space onto the pixel plane using
camera intrinsics K. To account for potential errors in monocular depth estimation, particularly scale
misalignment across different frames, we jointly optimize a correction to depth Di. This correction
comprises per-frame global scaling factors and per-pixel adjustments, implemented through a depth
alignment loss as follows

Ls
z = Dinv

([
Wi+1W

−1
i πK(pi, Di)

]
z
, Di+1

)
, (13)

where [·]z extracts the z coordinate, and Dinv(x, y) = |xy − 1|+ | yx − 1| is the scale-invariant loss.
Consequently, the final loss for the static part is

Ls = λphoLs
pho + λreprojLs

reproj + λzLs
z (14)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: Novel view synthesis results on iPhone Reality Check dataset. Note that our model’s results are
quite sharper than others.

3.3.2 DEFORMABLE GAUSSIAN FIELD

We model the deformation of foreground objects by Deformable Gaussian Field composed by three
spatial-temporal subplane modules {Rxt, Ryt, Rzt} and a multi-head deformation decoder ξ. Similar
to static Gaussian fields, each subplane has the shape of Ni × Nt × hd, where hd stands for the
dimension of spatial-temporal features. Given a 3D Gaussian located at µ, we follow the same
procedure to obtain the spatial-temporal feature from three spatial-temporal planes,

fd =
⋃
(i,j)

Interp (Rij , pi, pj), (i, j) ∈ {(x, t), (y, t), (z, t)} (15)

The multi-head deformation decoder is employed to compute the deformation of Gaussian’s positions
∆µ = ξx(fd) and the Gaussian’s rotation ∆q = ξq(fd). Then, the deformed Gaussian G′can be
expressed as G′ = {µ+∆µ, q +∆q, s, α, c}, where q, s, α, c are obtained via Eq. 10.

To supervise the deformable Gaussian field, we first employ the same photometric loss Ld
pho as Eq. 11

while using the foreground dynamic mask Md = 1−Ms. To enforce the geometric consistency of
the deformable Gaussian field, we introduce two regularization terms that focus on the smoothness of
rotations and centers of the deformed Gaussians. To maintain the rotation smoothness, we employ the
As-Rigid-As-Possible (ARAP) principle. Specifically, we utilize an ARAP loss to generate ground
truth rotations corresponding to each 2D tracking trajectory. Note that we utilize Co-tracker (Karaev
et al., 2023) here to capture long-range correspondence. We then encourage the deformed Gaussian
rotations to align with these ground truth rotations through a rotation smoothness loss. Furthermore,
we introduce a spatial smoothness loss to address the temporal consistency of Gaussian centers. This
loss encourages the Gaussian centers at different timesteps to remain close to their corresponding 2D
tracking trajectories. More details are discussed in A.

4 EXPERIMENTAL RESULTS

Implementation Details. We use isl-MiDaS (Ranftl et al., 2022) as the backbone to compute
monocular depth for each frame. Also, we use CoTracker (Karaev et al., 2023) to compute the
long-term pixel trajectory, which facilitates the optimization of camera poses. RAFT (Teed & Deng,
2020) is applied to produce forward and backward optical flows, which is used in fine optimization

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

apple block paper-windmill space-out
mPSNR mSSIM mLPIPS mPSNR mSSIM mLPIPS mPSNR mSSIM mLPIPS mPSNR mSSIM mLPIPS

D-NeRF 17.43 0.728 0.508 17.52 0.669 0.346 17.55 0.367 0.258 17.71 0.591 0.377
NSFF 16.47 0.754 0.414 14.71 0.606 0.438 14.94 0.272 0.348 17.65 0.636 0.341
4DGS 14.44 0.698 0.716 12.30 0.498 0.706 12.77 0.251 0.697 14.46 0.479 0.790

Shape-of-motion 16.86 0.715 0.459 16.21 0.603 0.341 16.35 0.289 0.413 16.27 0.552 0.406
HyperNeRF 17.64 0.743 0.478 17.54 0.670 0.331 17.38 0.382 0.209 17.93 0.605 0.320

DynPoint 17.78 0.743 - 17.67 0.667 - 17.32 0.366 - 17.78 0.603 -
PGDVS 16.66 0.721 0.411 16.38 0.601 0.293 17.19 0.386 0.277 16.49 0.592 0.326

DyBluRF 18.00 0.737 0.488 17.47 0.665 0.349 18.19 0.405 0.301 18.83 0.643 0.326
CTNeRF 19.53 0.691 - 19.74 0.626 - 17.66 0.346 - 18.11 0.601 -

DGSMarbles 16.50 0.703 0.499 16.11 0.599 0.363 16.19 0.302 0.454 15.97 0.513 0.437
RoDynRF 18.73 0.722 0.552 18.73 0.634 0.513 16.71 0.321 0.482 18.56 0.594 0.413

Mosca 13.38 0.661 0.616 18.43 0.684 0.221 19.79 0.563 0.165 21.42 0.718 0.159
Ours 15.29 0.679 0.592 20.02 0.692 0.201 19.53 0.571 0.152 21.89 0.726 0.178

spin teddy wheel Mean across all scenes
mPSNR mSSIM mLPIPS mPSNR mSSIM mLPIPS mPSNR mSSIM mLPIPS mPSNR mSSIM mLPIPS

D-NeRF 19.16 0.567 0.443 13.71 0.570 0.429 15.65 0.548 0.292 16.96 0.577 0.379
NSFF 17.26 0.540 0.371 12.59 0.537 0.527 14.59 0.511 0.331 15.46 0.551 0.396
4DGS 14.93 0.417 0.640 11.86 0.458 0.729 10.99 0.304 0.803 13.11 0.443 0.726

Shape-of-motion 17.83 0.492 0.501 13.97 0.584 0.438 15.01 0.602 0.352 15.92 0.548 0.416
HyperNeRF 19.20 0.561 0.325 13.97 0.568 0.350 13.99 0.455 0.310 16.81 0.569 0.332

DynPoint 19.04 0.564 - 13.95 0.551 - 14.72 0.515 - 16.89 0.573 -
PGDVS 18.49 0.590 0.247 13.29 0.516 0.399 12.68 0.429 0.429 15.88 0.548 0.340

DyBluRF 18.20 0.541 0.400 14.61 0.572 0.425 16.26 0.575 0.325 17.37 0.591 0.373
CTNeRF 19.79 0.516 - 14.51 0.509 - 14.48 0.430 - 17.69 0.531 -

DGMarbles 17.51 0.537 0.424 13.68 0.573 0.443 14.58 0.569 0.389 15.79 0.542 0.428
RoDynRF 17.41 0.484 0.570 14.33 0.536 0.613 15.20 0.449 0.478 17.10 0.534 0.517

Mosca 20.20 0.650 0.188 14.40 0.573 0.314 13.04 0.399 0.314 17.24 0.607 0.283
Ours 20.82 0.661 0.186 14.98 0.585 0.307 15.32 0.488 0.513 18.26 0.629 0.304

Table 1: Novel view synthesis results on iPhone reality check dataset. Each baseline method is trained
with its public code under the original settings and evaluated with the given testing poses. The best results are
highlighted in bold. According to whether camera poses are necessary during training, we separate the baselines
into 2 blocks: the first block contains baselines that require camera poses as input; the second block contains
COLMAP-free methods.

of camera poses in the global optimization stage. During inference, we follow the protocol in
previous COLMAP-free novel-view synthesis work (Fu et al., 2024), which takes 1 out of 8 frames
for inference, while the left 7 frames are used as training data. When testing, we optimize for testing
poses that maximize PSNR on testing images, while keeping the Hexplane-based Gaussian field
unchanged. We implement our COLMAP-free renderer based on the native 3DGS renderer (Kerbl
et al., 2023), which passes gradient to camera pose parameters for pose optimization.

4.1 EVALUATION ON DYNAMIC VIEW SYNTHESIS

Results on DyCheck Dataset Currently, the most challenging and widely used dataset for monocu-
lar reconstruction is the DyCheck dataset (Gao et al., 2022), which is generated by multiple dynamic
scenes recorded through a hand-held iPhone device. Also, this dataset provides us with the corre-
sponding camera poses when capturing the videos as well as two static cameras of large baselines for
testing. For fairness, we replace our depth predictor based on isl-MiDaS (Ranftl et al., 2022) with
the given lidar depth from the dataset. Since the Dycheck dataset provides us with given testing and
training views, we choose to apply them for our inference. Most previous 3DGS-based models rely
heavily on multi-view stereo cues(present in unnatural fast-moving camera motions) to reconstruct the
scene, most of them failed in the DyCheck dataset due to the large deviation of testing camera poses
from training camera trajectories. Our model outperforms all existing works in DyCheck scenes as
shown in the quantitative results in Tab 1 and the qualitative results in Fig 3 The improvement can be
attributed to 2 factors: firstly, our model adopts a 2-stage optimization, which first optimizes in a local
Gaussian manner to produce relative poses between frames; and the relative poses are used for the
initialization of camera poses, which enables better optimization over the global camera trajectory and
facilitates the aggregation of observations over different frames; secondly, our model uses a Triplane
to replace the redundant static Gaussian set, which reduces the possibility of overfitting, and since the
optimization of Triplane field is much slower than native gaussian attributes, the optimization is done
over all frames, which increase the integrity over different timesteps.

Results on Nvidia Dataset We also evaluate our model on the Nvidia dataset, following the
inference protocol in RoDynRF (Liu et al., 2023). As shown in Tab 2 and Fig 4, our model reaches
highly competitive results on the Nvidia DynamicNeRF dataset. Our improvement is relatively
smaller compared to that in the Dycheck dataset due to easier inference settings on the Nvidia dataset:
Since the testing and training poses are generated from a single trajectory, the inference is quite

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: Novel view synthesis results on Nvidia DynamicNeRF dataset.
Jumping Skating Truck Umbrella

mPSNR mSSIM mLPIPS mPSNR mSSIM mLPIPS mPSNR mSSIM mLPIPS mPSNR mSSIM mLPIPS
D-NeRF 17.43 0.728 0.508 17.52 0.669 0.346 17.55 0.367 0.258 17.71 0.591 0.377

NSFF 16.47 0.754 0.414 14.71 0.606 0.438 14.94 0.272 0.348 17.65 0.636 0.341
4DGS 17.32 0.736 0.326 19.41 0.619 0.218 21.25 0.701 0.172 19.00 0.652 0.346

HyperNeRF 17.64 0.743 0.478 17.54 0.670 0.331 17.38 0.382 0.209 17.93 0.605 0.320
DynPoint 17.78 0.743 - 17.67 0.667 - 17.32 0.366 - 17.78 0.603 -
PGDVS 16.66 0.721 0.411 16.38 0.601 0.293 17.19 0.386 0.277 16.49 0.592 0.326

DyBluRF 18.00 0.737 0.488 17.47 0.665 0.349 18.19 0.405 0.301 18.83 0.643 0.326
CTNeRF 19.53 0.691 - 19.74 0.626 - 17.66 0.346 - 18.11 0.601 -

DGMarbles 19.61 0.703 0.180 24.24 0.759 0.091 27.18 0.781 0.060 23.76 0.752 0.123
RoDynRF 18.73 0.722 0.552 18.73 0.634 0.513 16.71 0.321 0.482 18.56 0.594 0.413

Mosca 13.38 0.661 0.616 18.43 0.684 0.221 19.79 0.563 0.165 21.42 0.718 0.159
Ours 21.01 0.752 0.109 23.65 0.732 0.108 27.52 0.769 0.106 24.58 0.741 0.136

Balloon1 Balloon2 Playground Mean across all scenes
mPSNR mSSIM mLPIPS mPSNR mSSIM mLPIPS mPSNR mSSIM mLPIPS mPSNR mSSIM mLPIPS

D-NeRF 19.16 0.567 0.443 13.71 0.570 0.429 15.65 0.548 0.292 16.96 0.577 0.379
NSFF 17.26 0.540 0.371 12.59 0.537 0.527 14.59 0.511 0.331 15.46 0.551 0.396
4DGS 14.11 0.309 0.404 18.56 0.607 0.239 13.51 0.457 0.341 17.59 0.583 0.292

HyperNeRF 19.20 0.561 0.325 13.97 0.568 0.350 13.99 0.455 0.310 16.81 0.569 0.332
DynPoint 19.04 0.564 - 13.95 0.551 - 14.72 0.515 - 16.89 0.573 -
PGDVS 18.49 0.590 0.247 13.29 0.516 0.399 12.68 0.429 0.429 15.88 0.548 0.340

DyBluRF 18.20 0.541 0.400 14.61 0.572 0.425 16.26 0.575 0.325 17.37 0.591 0.373
CTNeRF 19.79 0.516 - 14.51 0.509 - 14.48 0.430 - 17.69 0.531 -

DGMarbles 23.65 0.698 0.072 21.60 0.791 0.142 27.18 0.804 0.060 22.32 0.756 0.129
RoDynRF 17.41 0.484 0.570 14.33 0.536 0.613 15.20 0.449 0.478 17.10 0.534 0.517

Mosca 20.20 0.650 0.188 14.40 0.573 0.314 13.04 0.399 0.314 17.24 0.607 0.283
Ours 23.78 0.681 0.059 24.12 0.852 0.079 26.98 0.759 0.117 24.52 0.755 0.101

Table 2: Novel view synthesis results on Nvidia DynamicNeRF dataset. Each baseline method is trained with
its public code under the original settings and evaluated with the same evaluation protocol. The best results are
highlighted in bold. According to whether camera poses are necessary during training, we separate the baselines
into 2 blocks: the first block contains baselines that require camera poses as input; the second block contains
COLMAP-free methods.

coherent, thus easier than that in the Dycheck dataset. Also, all forward-facing setup reduces the
necessity of strong reconstruction on occluded areas.

Results on Davis Dataset We also verify the effectiveness of Dy-MonoGS on in-the-wild videos(on
DAVIS dataset) in Fig. 5

4.2 EVALUATION ON CAMERA POSES ESTIMATION

We conduct camera pose estimation experiments on the MPI Sintel dataset. The results are shown
in Table 3. Our model outperforms both previous NeRF-based models, like robust-dynrf (Liu et al.,
2023), BARF (Lin et al., 2021), and traditional SfM methods like (Teed & Deng, 2021; Schonberger
& Frahm, 2016). The improvement over traditional SLAM methods can be attributed to the global
optimization of our model over the entire video instead of local registration over certain frames,
which is adopted by SLAM-based methods. Also, the relative camera pose initialization plays an
important role in the optimization of camera poses as our model performs better than traditional
NeRF-based methods which train all camera poses all at once from scratch.

4.3 ABLATION STUDY

To verify the effectiveness of our design, we ablate our full framework. We report the average PSNR,
LPIPS, SSIM on the DyCheck dataset and the average ATE and RPE on the MPI Sintel dataset in
Tab 4.

We first verify the necessity of relative pose initialization. We can see from the 1st and 2nd rows
of Tab 4 that through relative pose initialization, our model’s performance on both the dynamic

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: Novel view synthesis from in-the-wild dynamic monocular videos. Our method uses
COLMAP-free dynamic monocular videos as input and reconstructs camera poses of all frames and
Gaussian representation of the dynamic scene.

Models ATE↓ RPEtrans ↓ RPErot ↓
DROID_SLAM (Teed & Deng, 2021) 0.175 0.084 1.912

COLMAP (Schonberger & Frahm, 2016) 0.213 0.164 5.312
Robust-CVD (Kopf et al., 2021) 0.360 0.154 3.443

NeRF- (Wang et al., 2021) 0.433 0.220 3.088
BARF (Lin et al., 2021) 0.447 0.203 6.353

RoDynRF (Liu et al., 2023) 0.089 0.073 1.313
Ours 0.165 0.069 1.028

Table 3: Camera poses estimation results on the MPI Sintel dataset. For the first 3 baselines, the dynamic
parts are blocked out since they cannot handle dynamic scenes. Each baseline method is trained or run with its
public code under the original settings and evaluated with the same evaluation protocol. The best results are
highlighted in bold.

scene reconstruction task and the camera pose estimation task improves. Also, from Tab 5, we can
find that the training time with relative pose initialization is the lowest among all other methods.
These results reveal the effectiveness and efficiency of relative pose initialization on camera pose
optimization, which helps the model to incorporate different frames into a compressed expression
using the continuity between neighboring frames.

Second, we verify the effectiveness of our Triplane deformation field. From the 4th row and 5th
row in Tab 4, it’s obvious that our model’s PSNR increases when imposing Triplane deformation to
replace simple MLP deformation, which yields the necessity of incorporating our Triplane deformable
field, especially when facing complex dynamic scenes.

Last, we test the advantage of our static Gaussian field, which replaces the original Gaussian
representation in our model. It can be seen from the 3rd row and 5th row of Tab 4 that the triplane
Gaussian field increases reconstruction quality and reduces pose error. This can be attributed to the
weaker ability of our triplane Gaussian field, which reduces the possibility of geometric overfitting
and thus ill-posed camera poses.

5 CONCLUSION

In this work, we propose Mono-DyGS, a novel end-to-end framework that jointly optimizes camera
poses and dynamic scene representation on monocular videos. We demonstrate that previous works
either deal with static backgrounds and dynamic foregrounds separately or require an extremely
long training duration. We impose the relative pose initialization which significantly reduces the
training time and improves the performance of camera pose estimation. Leveraging from the explicit
representation of 3DGS (Kerbl et al., 2023), we propose a concise representation for both static
backgrounds and dynamic foregrounds based on Hexplane. We show the effectiveness and robustness
of our approach on challenging scenes like the DyCheck dataset. Thanks to the advantages of
Gaussian splatting, our approach achieves rapid training and inference speeds.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Pose Deformation Static Novel View Synthesis Pose Estimation
Initialization Representation Representation mPSNR mLPIPS mSSIM ATE↓ RPEtrans↓ RPErot↓

MLP 3DGS 21.09 0.562 0.331 0.501 0.312 10.329
✓ MLP 3DGS 24.01 0.698 0.152 0.201 0.117 3.145
✓ Triplane 3DGS 23.31 0.601 0.270 0.213 0.146 4.018
✓ MLP Triplane+3DGS 24.36 0.702 0.137 0.198 0.102 1.543
✓ Triplane Triplane+3DGS 24.52 0.755 0.101 0.165 0.069 1.028

Table 4: Ablation results of different components on the iPhone Dycheck dataset and the MPI Sintel
dataset. The results are the averages over all scenes. The best results are highlighted in bold.

Models Times
DGSMarlbes 4∼5h

RoDynRF ≥ 20h
Shape-of-motion 6∼7h

Ours w.o. pose initialization ≥8h
Ours 2∼3h

Table 5: Training time on Nvidia Dycheck dataset. The results are the averages over all scenes. The best
results are highlighted in bold.

Limitations Our relative pose initialization estimates camera poses sequentially, thereby restricting
its application primarily to video streams or ordered image collections. Exploring extensions of our
work to accommodate unordered image collections is promising for future research.

Reproducibility Statement All experiments in this paper are reproducible. We are committed to
releasing the source codes once accepted. Our code is built upon the Pytorch (Paszke et al., 2019).

REFERENCES

D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for optical
flow evaluation. In A. Fitzgibbon et al. (Eds.) (ed.), European Conf. on Computer Vision (ECCV),
Part IV, LNCS 7577, pp. 611–625. Springer-Verlag, October 2012. 2

Carlos Campos, Richard Elvira, Juan J. Gomez, José M. M. Montiel, and Juan D. Tardós. ORB-
SLAM3: An accurate open-source library for visual, visual-inertial and multi-map SLAM. IEEE
Transactions on Robotics, 37(6):1874–1890, 2021. 3

Ang Cao and Justin Johnson. Hexplane: A fast representation for dynamic scenes. CVPR, 2023. 1, 2

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance fields.
In European Conference on Computer Vision (ECCV), 2022. 1, 2

Andrew J. Davison, Ian D. Reid, Nicholas D. Molton, and Olivier Stasse. Monoslam: Real-time
single camera slam. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6):
1052–1067, 2007. doi: 10.1109/TPAMI.2007.1049. 3

Zhiwen Fan, Wenyan Cong, Kairun Wen, Kevin Wang, Jian Zhang, Xinghao Ding, Danfei Xu, Boris
Ivanovic, Marco Pavone, Georgios Pavlakos, Zhangyang Wang, and Yue Wang. Instantsplat:
Unbounded sparse-view pose-free gaussian splatting in 40 seconds, 2024. 3

Jiemin Fang, Taoran Yi, Xinggang Wang, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu, Matthias Nießner,
and Qi Tian. Fast dynamic radiance fields with time-aware neural voxels. In SIGGRAPH Asia
2022 Conference Papers, pp. 1–9, 2022. 3

Yang Fu, Sifei Liu, Amey Kulkarni, Jan Kautz, Alexei A. Efros, and Xiaolong Wang. Colmap-free
3d gaussian splatting. 2023. 4

Yang Fu, Sifei Liu, Amey Kulkarni, Jan Kautz, Alexei A. Efros, and Xiaolong Wang. Colmap-free 3d
gaussian splatting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 20796–20805, June 2024. 1, 3, 7

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Chen Gao, Ayush Saraf, Johannes Kopf, and Jia-Bin Huang. Dynamic view synthesis from dynamic
monocular video. In Proceedings of the IEEE International Conference on Computer Vision, 2021.
1, 2

Hang Gao, Ruilong Li, Shubham Tulsiani, Bryan Russell, and Angjoo Kanazawa. Dynamic novel-
view synthesis: A reality check. In NeurIPS, 2022. 2, 7

Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia Neverova, Andrea Vedaldi, and Christian
Rupprecht. Cotracker: It is better to track together. arXiv:2307.07635, 2023. 6, 12

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting
for real-time radiance field rendering. ACM Transactions on Graphics, 42(4), July 2023. URL
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/. 1, 3, 7, 9

Johannes Kopf, Xuejian Rong, and Jia-Bin Huang. Robust consistent video depth estimation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1611–1621, 2021. 9

Jiahui Lei, Yijia Weng, Adam Harley, Leonidas Guibas, and Kostas Daniilidis. Mosca: Dynamic
gaussian fusion from casual videos via 4d motion scaffolds. arXiv preprint arXiv:2405.17421,
2024. 1, 2, 3, 4

Junxuan Li and Hongdong Li. Neural reflectance for shape recovery with shadow handling. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
16221–16230, 2022. 2

Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. Neural scene flow fields for space-time
view synthesis of dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6498–6508, 2021. 2

Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey. Barf: Bundle-adjusting neural
radiance fields. In IEEE International Conference on Computer Vision (ICCV), 2021. 3, 8, 9

Yu-Lun Liu, Chen Gao, Andreas Meuleman, Hung-Yu Tseng, Ayush Saraf, Changil Kim, Yung-Yu
Chuang, Johannes Kopf, and Jia-Bin Huang. Robust dynamic radiance fields. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023. 1, 2, 3, 7, 8, 9

Quan Meng, Anpei Chen, Haimin Luo, Minye Wu, Hao Su, Lan Xu, Xuming He, and Jingyi
Yu. GNeRF: GAN-based Neural Radiance Field without Posed Camera. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), 2021. 3

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019. 10

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural
radiance fields for dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10318–10327, 2021. 2

René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun. Towards
robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(3), 2022. 6, 7

Sara Fridovich-Keil and Giacomo Meanti, Frederik Rahbæk Warburg, Benjamin Recht, and Angjoo
Kanazawa. K-planes: Explicit radiance fields in space, time, and appearance. In CVPR, 2023. 2

Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 4104–4113, 2016. 3, 8, 9

Richard Shaw, Jifei Song, Arthur Moreau, Michal Nazarczuk, Sibi Catley-Chandar, Helisa Dhamo,
and Eduardo Perez-Pellitero. Swags: Sampling windows adaptively for dynamic 3d gaussian
splatting. arXiv preprint arXiv:2312.13308, 2023. 3

11

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Noah Snavely. Bundler: Structure from motion (sfm) for unordered image collections. http://phototour.
cs. washington. edu/bundler/, 2008. 3

Colton Stearns, Adam W. Harley, Mikaela Uy, Florian Dubost, Federico Tombari, Gordon Wetzstein,
and Leonidas Guibas. Dynamic gaussian marbles for novel view synthesis of casual monocular
videos. In ArXiv, 2024. 2

Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part II 16, pp. 402–419. Springer, 2020. 6

Zachary Teed and Jia Deng. Droid-slam: Deep visual slam for monocular, stereo, and rgb-d cameras.
Advances in neural information processing systems, 34:16558–16569, 2021. 8, 9

Qianqian Wang, Vickie Ye, Hang Gao, Jake Austin, Zhengqi Li, and Angjoo Kanazawa. Shape of
motion: 4d reconstruction from a single video. 2024. 1, 3

Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and Victor Adrian Prisacariu. Nerf–: Neural
radiance fields without known camera parameters. arXiv preprint arXiv:2102.07064, 2021. 9

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20310–20320,
2024. 1, 3

Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. Depth
anything: Unleashing the power of large-scale unlabeled data. In CVPR, 2024. 4

Lin Yen-Chen, Pete Florence, Jonathan T. Barron, Alberto Rodriguez, Phillip Isola, and Tsung-Yi Lin.
iNeRF: Inverting neural radiance fields for pose estimation. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2021. 3

Heng Yu, Joel Julin, Zoltán Á Milacski, Koichiro Niinuma, and László A Jeni. Cogs: Controllable
gaussian splatting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 21624–21633, 2024a. 3

Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and Andreas Geiger. Mip-splatting: Alias-free
3d gaussian splatting. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 19447–19456, June 2024b. 1

A GEOMETRIC CONSTRAINTS ON DEFORMABLE FIELD

Given the 2D tracking trajectories of points {1, 2, · · · , N} provided by Co-tracker(Karaev et al.,
2023), we use the ARAP principle to compute the corresponding deformed rotation by minimizing
an ARAP loss:

R = argmin
R

T∑
i=1

N∑
n=1

∑
m∈kNN(n)

∥R−1
i,nPim −R−1

0,mP0n∥, (16)

where Ri,n stands for deformed rotation at point n at frame i; Pin stands for the 3D coordinate of
point n at frame i inferred from the given 2D tracking trajectories and depth; kNN(n) indicates the
top-k nearest points to point n. We further impose a rotation smoothness loss to supervise the rotation
deformation of our deformable field:

Lrot =

T∑
i=1

N∑
n=1

∥Ri,n − rotDeform
(
W−1

0 π−1 (T0n, d0n)
)
∥, (17)

where Tin is the pixel coordinate of point n at frame i; πK represents the projection function from
3D space onto the pixel plane using camera intrinsics K; Wi is the camera view transformation
matrix at frame i, and rotDeform stands for the rotation deformation in our deformable Gaussian field.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Moreover, we introduce a spatial smoothness loss to enforce geometric consistency of the position
deformation of our deformable field:

Lcenter =

T∑
i=1

∥W−1
i π−1 (Ti, di)− posiDeform

(
W−1

0 π−1 (T0, d0)
)
∥, (18)

where posiDeform is the deformation of Gaussian’s positions. In summary, the final loss for the
dynamic part is composed of 3 components:

Ld = λphoLd
pho + λrotLrot + λcenterLcenter (19)

During optimization, the dynamic loss only passes gradients back to the Hexplane-based Gaussian
field, while ignoring the camera poses.

13


