
CrossLore: Boosting Low-Rank Adaptation for LLMs with Cross-Head
Projection

Anonymous ACL submission

Abstract001

Recent low-rank training methods, such as Ga-002
Lore, have significantly reduced the memory003
required to optimize large language models004
(LLMs). However, these methods often suf-005
fer from time-consuming low-rank projection006
estimations. In particular, the singular value007
decomposition (SVD) in GaLore can consume008
more than 80% of the total training time. To ad-009
dress this issue, we propose CrossLore, which010
uses cross-head low-rank projection to reduce011
the substantial time consumption in estimating012
low-rank projections for multi-head attention.013
In addition, we employ randomized subspace it-014
eration to achieve fast SVD. To further enhance015
performance, we propose sparsely coded resid-016
uals to reduce the errors caused by low-rank017
approximation on the first- and second-order018
moments of the optimizers and weight updates.019
We evaluate CrossLore on arithmetic reason-020
ing and natural language generation datasets.021
Our experiments demonstrate that CrossLore022
delivers superior performance while achieving023
approximately 4× fine-tuning speed compared024
to vanilla GaLore.025

1 Introduction026

As the sizes of language models grow rapidly, train-027

ing models from scratch for different tasks becomes028

impractical due to the significant time and computa-029

tional resources required. To address this challenge,030

current research and applications typically rely on031

pre-training large language models (LLMs) and032

subsequently fine-tuning them for specific down-033

stream tasks. This paradigm has demonstrated034

high efficiency across various tasks, including NLP,035

question-answering, and reasoning (Roziere et al.,036

2023; Li et al., 2023; Ouyang et al., 2022; Brown,037

2020).038

However, full fine-tuning of entire LLMs re-039

quires enormous memory, making it prohibitively040

expensive for individuals and start-ups. Parameter-041

efficient fine-tuning (PEFT) methods only fine-tune042

E2E GSM8k MAWPS0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ti
m

e
co

ns
um

pt
io

n
(h

ou
rs

) 18.45

3.5 2.61
4.52

0.92 0.62

GaLore
CrossLore

Figure 1: We compare the time consumption for fine-
tuning LLaMA2-7B on different datasets with GaLore
and CrossLore.

a small number of the weights, significantly reduc- 043

ing the memory requirements (Lialin et al., 2023; 044

Ding et al., 2023). Among them, the methods based 045

on low-rank reparameterization, such as LoRA (Hu 046

et al., 2022), have attracted much attention due 047

to their impressive efficiency. Recently, a low- 048

rank adaptation method named GaLore (Zhao et al., 049

2024) demonstrated the ability to optimize an LLM 050

with 7 billion parameters on a consumer-level GPU 051

with 24 GB of memory. Low-rank adaptation meth- 052

ods achieve dramatic memory reduction by updat- 053

ing the weights of LLMs in low-rank subspace, 054

thus reducing the number of fine-tuned weights. 055

We categorize existing low-rank adaptation meth- 056

ods into three groups based on how they construct 057

low-rank projections i.e., parameterized projection, 058

random projection, and analytic projection. 059

i) Parameterized projection. The representative 060

work is LoRA (Hu et al., 2022), which approxi- 061

mates the parameter updates as the product of two 062

trainable low-rank matrices. PiSSA (Meng et al., 063

2024) extends this by using SVD to decompose the 064

weight matrix and optimizing the principal compo- 065

nent with two trainable low-rank matrices, similar 066

to LoRA. LoRA has been further developed into ef- 067

ficient variants like QLoRA (Dettmers et al., 2023), 068

1

which enhances computational efficiency and re-069

duces memory through quantization. AdaLoRA070

enhances LoRA by adaptively adjusting the rank071

of low-rank updates (Zhang et al., 2023).072

ii) Random projection. Methods in this cate-073

gory employ random projections to further reduce074

the memory consumption on parameterized projec-075

tions. Flora (Hao et al., 2024) develops LoRA by076

substituting one of the two low-rank matrices with077

a randomly generated matrix, reducing the mem-078

ory consumption with comparable performance.079

VeRA (Kopiczko et al., 2024) employs a shared080

pair of random projections across all layers, fine-081

tuning the model by training layer-specific scaling082

vectors.083

iii) Analytic projection. Both parameterized and084

random projections may lead to low-quality approx-085

imations of gradient or weight updates, as they lack086

analytic guarantees. In contrast, GaLore (Zhao087

et al., 2024) introduces analytic projections de-088

rived from SVD to ensure that the key compo-089

nents of the gradients are preserved after low-rank090

projections, thereby offering a more accurate and091

reliable approximation. Tensor-GaLore (George092

et al., 2025) extends GaLore from matrix-based to093

tensor-based low-rank optimization. Meanwhile,094

WeLore (JAISWAL et al., 2025) extends GaLore095

by adaptively determining the number of retained096

singular values based on their heavy-tail distribu-097

tion.098

Existing methods for estimating low-rank pro-099

jections involve a trade-off between approximation100

error and resource consumption (e.g., on memory101

and time). Parameterized and random projections102

lack the accuracy of analytic decomposition, lead-103

ing to uncertain quality, while analytic methods like104

SVD, though more precise, are computationally ex-105

pensive. For instance, in GaLore, SVD accounts106

for over 80% of the total time consumed during107

the fine-tuning process. Therefore, a faster and108

more accurate estimation of low-rank projections109

is essential to further boost the low-rank adaptation110

methods.111

In this paper, we propose a low-rank adaptation112

method, CrossLore, which employs cross-head low-113

rank projection to realize fast and high-quality es-114

timation. Algorithm 1 presents the pseudo-code115

of integrating CrossLore into AdamW, with the116

highlighted improvement over GaLore (Zhao et al.,117

2024). CrossLore utilizes a cross-head low-rank118

projection inspired by the architecture of multi-119

head attention, where the projection matrices for120

the gradient of query or key transforms are shared 121

across multiple attention heads. Such sharing re- 122

duces the computational complexity of low-rank 123

projection matrices in h-head attention from O(h3) 124

to O(h). Additionally, randomized subspace iter- 125

ation for SVD is utilized to further reduce compu- 126

tational complexity. Besides, CrossLore incorpo- 127

rates sparsely coded residuals, enabling a sparse 128

representation of low-rank approximation errors in 129

weight updates, which helps to mitigate estimation 130

inaccuracies caused by the cross-head low-rank 131

projection. We evaluate the proposed CrossLore 132

on natural language processing and arithmetic rea- 133

soning tasks, comparing it against state-of-the-art 134

low-rank adaptation methods. 135

The main contributions of this work are as fol- 136

lows: 137

• We introduce cross-head low-rank projection, 138

which reduces computational complexity by 139

sharing projection matrices across multiple 140

query or key projections. Besides, we employ 141

randomized subspace iteration to accelerate 142

the estimation of the projections. 143

• We mitigate the impact of low-rank approxi- 144

mation errors on weight updates by utilizing 145

sparsely coded residuals for the optimizer’s 146

moments, thereby enhancing the quality of the 147

weight updates. 148

• Experimental results demonstrate that the pro- 149

posed method surpasses state-of-the-art ap- 150

proaches, including LoRA and GaLore, in 151

fine-tuning LLMs for tasks such as arithmetic 152

reasoning and natural language generation. 153

2 Related Work 154

Parameter Efficient Fine-Tuning. A variety 155

of parameter-efficient fine-tuning methods have 156

emerged in recent years, enabling an increasing 157

number of institutions and researchers to fine- 158

tune LLMs to meet their specific requirements. 159

Adapters (Rebuffi et al., 2017; Houlsby et al., 2019; 160

Lin et al., 2020; Karimi Mahabadi et al., 2021b,a) 161

enable parameter-efficient fine-tuning by inserting 162

trainable layers into LLMs while keeping other 163

layers frozen. However, this approach also in- 164

troduces additional inference latency. BitFit (Za- 165

ken et al., 2021) selectively tunes only the biases 166

within the network, significantly reducing the num- 167

ber of parameters involved in fine-tuning. Prompt 168

tuning achieves parameter-efficient fine-tuning by 169

2

Algorithm 1 CrossLore (PyTorch-like pseudocode)
1: for weight in model.parameters():
2: grad = weight.grad
3: # original space -> compact space
4: # cross-head low-rank projection
5: lor_grad,lor_proj = project(grad) ▷ Section 4.1
6: # update by AdamW or other optimizers
7: lor_update,lor_moments = update(lor_grad)
8: # sparsely coded residual
9: res_update = estimate(grad,lor_proj,lor_moments) ▷ Section 4.2

10: # compact space -> original space
11: update = project_back(lor_update) + res_update
12: weight.data += update

Note: The green background highlights the improvements over GaLore (Zhao et al., 2024).

optimizing a set of new input tokens or prompts170

for each task (Li and Liang, 2021; Lester et al.,171

2021; Hambardzumyan et al., 2021; Liu et al.,172

2023). Hu et al. (2022) introduced LoRA, propos-173

ing that weight updates are low-rank and can be174

expressed as the product of two low-rank matri-175

ces. Furthermore, the trainable parameters can176

be merged with the original weights, eliminating177

additional inference latency. Recent studies com-178

bined parameter-efficient fine-tuning methods with179

quantization to enhance memory efficiency dur-180

ing the fine-tuning of LLMs (Kwon et al., 2022;181

Dettmers et al., 2023; Chai et al., 2023; Xu et al.,182

2023). And DoRA (Liu et al., 2024), or Weight-183

Decomposed Low-Rank Adaptation, is a parameter-184

efficient fine-tuning method designed to enhance185

learning capacity and stability by decomposing pre-186

trained weights into magnitude and direction com-187

ponents, leveraging LoRA for directional updates,188

and achieving superior performance across tasks189

without additional inference costs.190

Parameter Sharing. Adam-mini partitions the191

model parameters into blocks based on the struc-192

ture of the Hessian matrix, assigning a unified193

second-order moment to all parameters within each194

block (Zhang et al., 2024). This approach signifi-195

cantly reduces the memory footprint of the second-196

order moment, thereby decreasing the optimizer’s197

memory usage. From a temporal perspective, Ga-198

Lore shares the same projection across a fixed num-199

ber of steps, reducing computational overhead. The200

above discussion demonstrates that many param-201

eters can be shared during fine-tuning, reducing202

memory usage or computational complexity.203

Low-Rank plus Sparse Matrix. Robust Prin-204

cipal Component Analysis (RPCA) decomposes a 205

data matrix into the sum of the product of low-rank 206

matrices and a sparse matrix and has been exten- 207

sively studied in both theory and applications (Lin 208

et al., 2010; Zhou and Tao, 2011; Liu et al., 2013; 209

Aravkin et al., 2014; Hintermüller and Wu, 2015; 210

Yi et al., 2016; Zhang and Yang, 2018). The recent 211

Robust Adaptation (RoSA) method extends Low- 212

Rank Adaptation (LoRA) by further decomposing 213

weight updates into the product of two low-rank 214

matrices, with an additional sparse matrix (Nikdan 215

et al., 2024). Using an optimizer to update both 216

the low-rank and sparse matrices, RoSA achieves 217

superior performance compared to LoRA. 218

3 Preliminaries 219

GaLore. Conventional PEFT methods, such as 220

LoRA (Hu et al., 2022), reduce the number of 221

parameters for fine-tuning LLMs. However, the 222

fixed low-rank nature of these methods limits the 223

effectiveness of weight updates, resulting in perfor- 224

mance inferior to full fine-tuning. GaLore (Zhao 225

et al., 2024) addresses this limitation by leverag- 226

ing the low-rank characteristics of gradients and 227

projecting them onto low-rank subspace, signifi- 228

cantly reducing the memory requirements for fine- 229

tuning LLMs, while still maintaining the capability 230

for full-parameter tuning. This approach enables 231

pre-training an LLM with 7 billion parameters on 232

a consumer-grade GPU, i.e., NVIDIA RTX 4090 233

with 24 GB memory. The low-rank projections 234

in GaLore are calculated via SVD and updated at 235

fixed intervals. Thus, the search space for param- 236

eters can dynamically change within the full-rank 237

space. 238

3

4 Methods239

To reduce the time consumption of GaLore while240

improving performance, we propose CrossLore,241

which introduces two key components, i.e., cross-242

head low-rank projection and sparsely coded resid-243

ual. The cross-head low-rank projection enables244

efficient estimation of projection matrices with re-245

duced computational complexity. Meanwhile, the246

sparsely coded residual corrects the weight up-247

date errors caused by low-rank projection, ensuring248

more accurate fine-tuning.249

4.1 Cross-Head Low-Rank Projection250

GaLore demonstrates remarkable performance on251

PEFT, enabling the training of a 7B LLM on a GPU252

with just 24GB of memory. However, the SVD em-253

ployed in GaLore (Zhao et al., 2024) is inherently254

time-consuming. Figure 2a presents the time con-255

sumption for SVD and other operations during the256

fine-tuning of a LLaMA2-7B model using GaLore.257

The figure indicates that SVD accounts for more258

than 80% of the time consumption of the whole259

fine-tuning process. Moreover, SVD for the multi-260

head attention (MHA) layers alone takes about half261

of the fine-tuning process.262

4.1.1 Cross-Head Similarity for Simplified263

SVD264

Note that the three linear transformations across265

different heads share the same input and can be266

processed in parallel. Thus, in practical implemen-267

tations, such as the PyTorch implementation1, the268

linear transforms of different heads are concate-269

nated into a single matrix. Here, we denote the270

concatenated transforms as271

WQ ≜
[
WQ

1 ,WQ
2 , . . . ,WQ

h

]
,

WK ≜
[
WK

1 ,WK
2 , . . . ,WK

h

]
,

W V ≜
[
W V

1 ,W V
2 , . . . ,W V

h

]
.

(1)272

Existing low-rank based methods, such as273

LoRA (Hu et al., 2022) and GaLore (Zhao et al.,274

2024), conduct low-rank approximation on the up-275

dates of the concatenated multi-head transforms276

rather than on the updates of each individual head.277

Specifically, GaLore applies SVD to the gradient278

of a concatenated transform to get the low-rank279

projection. For instance, the r-rank (r < hdk) ap-280

proximation of the gradient ∇WQ ∈ Rdmodel×hdk281

1https://pytorch.org/docs/stable/generated/torch.nn.
MultiheadAttention.html

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time consumption (hours)

E2E

GSM8k

MAWPS

8.75 5.81 2.99

1.67 / 1.07 / 0.68

1.31 / 0.82 / 0.41
SVD for MHA
SVD for other layers
Others

(a) Time consumption of GaLore

0 5 10 15 20 25 30
Head index

10 8

10 7

10 6

10 5

10 4

10 3

10 2

M
ea

n
sq

ua
re

d
er

ro
r

Cross-head projection (CrossLore)
Conventional projection (GaLore)

(b) Approximation error of low-rank projections

Figure 2: Motivations for cross-head low-rank pro-
jection. (a) illustrates the time consumption of SVD
and other operations when fine-tuning an LLaMA2-7B
model on different datasets with GaLore. MHA is short
for multi-head attention. (b) presents the approximation
errors of low-rank projection with cross-head projec-
tion (i.e., CrossLore) and conventional projection (i.e.,
GaLore).

is 282

∇WQ = UΣV ≈ U:,:rΣ:r,:rV:r,: = PP⊤∇WQ,
(2) 283

where P ≜ U:,:r is the low-rank projection matrix 284

that contains the first r columns of U . The low-rank 285

projections for ∇WK and ∇W V are calculated 286

similarly. 287

Cordonnier et al. (2020) observed that the query 288

or key transforms of different attention heads 289

within the same layer are similar. The authors show 290

that the concatenated projection is low-rank even 291

though the projections of each head are of high 292

ranks. Therefore, we hypothesize that the gradi- 293

ent ∇WQ
i (or ∇WK

i) of different heads within 294

the same layer are similar. Thus, we can obtain a 295

low-rank projection of the gradient of the concate- 296

nated transform ∇WQ (or ∇WK) via SVD on a 297

4

https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html
https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html

randomly selected WQ
i (or∇WK

i), i.e.,298

∇WQ
i = UiΣiVi ≈ (Ui):,:r(Σi):,:r(Vi):,:r299

= PiP
⊤
i ∇W

Q
i , (3)300

where Pi ≜ (Ui):,:r. Thus, the low-rank approx-301

imation of ∇WQ in the proposed CrossLore is302

achieved by with303

∇WQ ≈ PiP
⊤
i ∇WQ. (4)304

Figure 2b illustrates the approximation error305

of the gradients ∇WQ
i with a randomly selected306

multi-head attention head using the low-rank pro-307

jections using Equation 2 (vanilla GaLore) and308

Equation 4 (cross-head low-rank projection). The309

errors in Equation 4 are larger than those in Equa-310

tion 2, as shown in Figure 2b. However, both errors311

remain relatively low. Moreover, existing research312

indicates that a certain degree of noise does not313

necessarily compromise the final performance of314

the model; in some cases, it may even enhance315

its robustness (Neelakantan et al., 2015; Li et al.,316

2020; Wu et al., 2020). The results presented in Fig-317

ure 3 and Figure 4 further support this perspective.318

We further introduce sparsely coded residual to319

reduce for this discrepancy, as discussed in Sub-320

section 4.2. Since the computational complexity321

of SVD is O(mn × min(m,n)) for a matrix of322

m × n elements, the computational complexity323

for the SVD operations of ∇WQ ∈ Rdmodel×hdk324

and ∇WK ∈ Rdmodel×hdk can be reduced from325

O(h3d3k) to O(hd3k). As a reference, h is set to 32326

in LLaMA2-7B.327

4.1.2 Fast SVD with Randomized Subspace328

Iteration329

To further reduce the time consumption on SVD,330

we adopt the randomized subspace iteration al-331

gorithm proposed by Halko et al. (2011), which332

is a fast implementation of SVD. To obtain the333

m× r low-rank projection matrix from an m× n334

matrix, the randomized subspace iteration can re-335

duce the computational complexity from O(mn×336

min(m,n)) to O(mn× log(r)). Specifically, the337

computational complexity for the SVD operations338

of ∇WQ and ∇WK can be reduced from O(hd3k)339

to O(hd2k × log(r)).340

Furthermore, randomized subspace iteration also341

reduces memory consumption during fine-tuning.342

SVD of an m× n matrix produces three matrices343

with the shapes of m×m, min(m,n), and n× n.344

However, we only use one matrix of m×m or n×n345

to get the low-rank projection matrix. Randomized 346

subspace iteration only produces a r × r matrix 347

during SVD, which consumes significantly less 348

memory. The experiments in Section 5 demonstrate 349

the advantages of randomized subspace iteration 350

regarding time efficiency and memory usage. 351

4.2 Sparsely Coded Residual 352

The low-rank projection of the gradients can signifi- 353

cantly reduce the memory consumption during fine- 354

tuning, along with the low-rank first- and second- 355

order moments for optimizers. However, the low- 356

rank projection may not always be the main com- 357

ponent of practical implementations. For instance, 358

the low-rank projections are updated every hundred 359

steps during fine-tuning due to the high computa- 360

tional complexity of SVD, making it challenging 361

to apply low-rank projections at every step. More- 362

over, the cross-head low-rank projection introduces 363

increased approximation error due to cross-head 364

sharing and randomized subspace iterations, lead- 365

ing to less accurate SVD results. Consequently, 366

the low-rank first- and second-order moments for 367

the optimizers are also imprecise. To address this, 368

we estimate the residuals using a sparse represen- 369

tation, which improves the quality of the first- and 370

second-order moments. 371

4.2.1 Low-Rank Approximation Residual of 372

Moments 373

Let Gt ∈ Rm×n be the gradient of t-th step, and 374

Pt ∈ Rm×r be the low-rank projection of t-th step, 375

the residual of low-rank approximation of Gt is 376

∆Gt = Gt − PtP
⊤
t Gt. (5) 377

The first- and second-order moments (denoted as 378

Mt and Vt, with Mt, Vt ∈ Rm×n) for common 379

optimizers, such as Adam, AdaGrad, and AdamW, 380

are estimated as 381

Mt = β1Mt−1 + (1− β1)Gt,

Vt = β2Vt−1 + (1− β2)Gt ⊙Gt,
(6) 382

where β1 and β2 are decay rates of the moments, 383

and ⊙ means element-wise multiplication. The 384

low-rank first- and second-order moments (denoted 385

as M ′
t and V ′

t , with M ′
t , V

′
t ∈ Rr×n) used in Ga- 386

Lore are realized by 387

M ′
t = β1M

′
t−1 + (1− β1)P

⊤
t Gt,

V ′
t = β2V

′
t−1 + (1− β2)(P

⊤
t Gt)⊙ (P⊤

t Gt).
(7) 388

5

The low-rank approximation residuals of the mo-389

ments are390

∆Mt = Mt − PtM
′
t , ∆Vt = Vt − PtV

′
t . (8)391

Equation 8 can be extended into the following form392

considering Equation 5, 6, and 7,393

∆Mt ≈ β1∆Mt−1 + (1− β1)∆Gt,

∆Vt ≈ β2∆Vt−1 + 2(1− β2)(PtP
⊤
t Gt)⊙∆Gt,

(9)394

The detailed inference is provided in Appendix A.395

Equation 9 depicts the evolution of the low-rank396

approximation residual of the moments during fine-397

tuning. Thus, we employ two additional variables398

in fine-tuning as the estimate of the low-rank ap-399

proximation residual, and the two variables update400

following Equation 9.401

Furthermore, the approximation residual of the402

moments leads to bias in parameter updates. The403

bias formulation depends on the specific form of404

the optimizer, and we use AdamW as an example.405

Let ∆Wt and ∆W ′
t be the full-rank parameter up-406

date and the low-rank reconstruction of W at step407

t, then the following equations hold.408

∆Wt =
Mt/

(
1− βt

1

)√
Vt/ (1− βt

2) + ϵ
, (10)409

410

∆W ′
t =

PtM
′
t/

(
1− βt

1

)√
PtV ′

t / (1− βt
2) + ϵ

. (11)411

Then the low-rank approximation error of the up-412

date, denoted as δt, is413

δt = ∆Wt −∆W ′
t414

≈
∆Mt/

(
1− βt

1

)√
(∆Vt + PtV ′

t)/ (1− βt
2) + ϵ

. (12)415

Equation 12 demonstrates the evolution of low-416

rank approximation error of the update during fine-417

tuning, which is also used in the proposed sparsely418

coded residual.419

4.2.2 Sparse Indexing Matrix for the420

Residuals421

We can leverage the residuals in Equation 9 and422

Equation 12 to improve the quality of the updates423

during the optimization process. However, the424

residuals in Equation 9 and 12 are full-rank matri-425

ces, i.e., ∆Mt,∆Vt, δt ∈ Rm×n, consuming enor-426

mous memory during fine-tuning. To incorporate427

the residuals in memory-efficient PEFT methods,428

Algorithm 2 Sparsely Coded Residual of AdamW

1: given time step t, gradient Gt ∈ Rm×n, sparse
indexing matrix L ∈ Rm×n, low-rank pro-
jection Pt ∈ Rm×r, second-order low-rank
moment V ′

t ∈ Rr×n, first- and second-order
moment residuals ∆Mt−1,∆Vt−1 ∈ Rm×n,
constant ϵ

2: Ĝt ← PtP
⊤
t Gt

3: ∆Gt ← (Gt − Ĝt)⊙ L
4: ∆Mt ← β1∆Mt−1 + (1− β1)∆Gt

5: ∆Vt ← β2∆Vt−1 + 2(1− β2)Ĝt ⊙∆Gt

6: ∆M̂t ← ∆Mt/(1− βt
1)

7: ∆V̂t ← ∆Vt/(1− βt
2)

8: δt ← ∆M̂t/

(√
PtV ′

t /(1− βt
2) + ∆V̂t + ϵ

)
9: return compact residual δt

we employ sparse representations with a sparse 429

indexing matrix preserving the most significant el- 430

ements of the residuals. 431

We introduce a warm-up stage to determine the 432

sparse indexing matrix essential for efficient fine- 433

tuning. This warm-up stage occurs during the first 434

k steps of the fine-tuning process. At the end of 435

the warm-up stage, the positions for the top-1% 436

absolute values in the reconstructed first-order mo- 437

ment (i.e., PtM
′
t) are recorded and used to create 438

the sparse indexing matrix. This allows the approx- 439

imation residuals for both moments and updates to 440

be stored in sparse matrices, significantly reducing 441

memory requirements. During the warm-up stage, 442

the residuals are set to 0. 443

Algorithm 2 presents the whole process for ob- 444

taining the compact residuals at the t-th (t > k) 445

step of AdamW. Please note that the proposed 446

method can also be incorporated into other opti- 447

mizers with moments, such as Adam and AdaGrad, 448

to improve the quality of updates with low-rank 449

approximation. 450

5 Experiments 451

In this section, we present a series of experiments 452

to evaluate the effectiveness of CrossLore. We com- 453

pare our proposed method against a range of base- 454

lines in fine-tuning the LLaMA2-7B and LLaMA2- 455

13B models (Touvron et al., 2023), specifically fo- 456

cusing on tasks related to arithmetic reasoning and 457

natural language generation, to assess its overall 458

performance. 459

Implementation Details. We fine-tune all lay- 460

6

Datasets GSM8k MAWPS
Methods Rank Time↓ Mem.↓ Acc. (%)↑ Time↓ Mem.↓ Acc. (%)↑
LoRA 16 0.53 15.40 25.55 0.38 14.11 47.90
DoRA 16 1.12 14.76 22.84 0.68 13.88 47.48
GaLore 16 3.48 15.33 26.31 2.58 15.06 62.61
CrossLore 16 0.88 15.10 27.47 0.62 14.84 63.87
LoRA 128 0.53 16.99 30.78 0.45 15.64 65.97
DoRA 128 1.18 16.17 29.36 0.72 16.17 66.81
GaLore 128 3.50 16.06 33.66 2.61 15.79 64.29
CrossLore 128 0.92 15.73 34.65 0.62 15.44 67.64

Table 1: Comparison of fine-tuning LLaMA2-7B with different PEFT methods on the GSM8k and MAWPS datasets.
The metrics for fine-tuning time (Time) and memory consumption (Mem.) are ‘hours’ and ‘GB’.

ers of the LLaMA2-7B and LLaMA2-13B models,461

adding sparsely coded residuals only in the query462

and key projections, and load the parameters in463

bfloat16 format. For the arithmetic reasoning464

task, we evaluate the accuracy on the test set, while465

for the natural language generation task, we mea-466

sure both the similarity and quality of the gener-467

ated text compared to the reference text. All these468

experiments on LLaMA2-7B are carried out on469

an NVIDIA RTX 4090 GPU with 24GB of mem-470

ory, using the Llama-Factory framework (Zheng471

et al., 2024) for implementation. Additionally, ex-472

periments on LLaMA2-13B are conducted on an473

NVIDIA A800 GPU.474

Baselines. We apply CrossLore with the follow-475

ing baseline methods:476

i) LoRA (Hu et al., 2022) enables efficient model477

adaptation by freezing the backbone network and478

optimizing only low-rank adapters.479

ii) GaLore (Zhao et al., 2024) is a memory-480

efficient full-parameter fine-tuning method that sig-481

nificantly reduces memory usage by projecting gra-482

dients onto a low-rank subspace.483

iii) DoRA (Liu et al., 2024) builds on LoRA by484

decomposing weights into magnitude and direction,485

enhancing learning efficiency and stability.486

5.1 Arithmetic Reasoning487

Setups. For the arithmetic reasoning task, we488

utilize the GSM8k and MAWPS datasets to fine-489

tune and evaluate the models (Cobbe et al., 2021;490

Koncel-Kedziorski et al., 2016). We set the rank r491

to 16, 32, 128 and 256 for LoRA, DoRA, GaLore,492

and CrossLore. Detailed hyperparameter settings493

are provided in the Appendix B.494

Main Results. Table 1 compares the perfor-495

mance of CrossLore with other PEFT methods496

on the LLaMA2 models. On the GSM8k dataset,497

CrossLore outperforms other PEFT methods in 498

accuracy at ranks. For instance, at rank 128, 499

CrossLore achieves an accuracy of 34.65% on the 500

GSM8k dataset, when fine-tuning LLaMA2-7B, 501

surpassing the second-best result of 33.66%. Sim- 502

ilar trends are observed on the MAWPS dataset, 503

further demonstrating the superior performance of 504

CrossLore. The experimental results for LLaMA2- 505

7B with ranks 32 and 256, as well as those for 506

LLaMA2-13B with ranks 16, 32, 128, and 256, are 507

provided in the Appendix C. 508

5.2 Natural Language Generation 509

Setups. For the natural language generation task, 510

we fine-tune and evaluate the model using the E2E 511

dataset (Novikova et al., 2017). We set the rank r 512

to 16, 32, 128 and 256 for thorough comparison. 513

We set the number of training epochs to 1 and set 514

the learning rate to 1 × 10−6. We compare the 515

performance of LoRA, DoRA, GaLore, and the 516

proposed CrossLore with a range of metrics, in- 517

cluding peak memory consumption, BLEU, NIST, 518

MET, ROUGE-1/2/L, and CIDEr. For detailed ex- 519

periment settings, please refer to Appendix B. 520

Main Results. Table 2 presents the experimental 521

results on the E2E dataset, covering various metrics, 522

with ‘Mem.’ representing peak memory consump- 523

tion. Notably, CrossLore exhibits a competitive or 524

superior performance in most metrics compared 525

to LoRA, DoRA and GaLore. For instance, with 526

rank 128, CrossLore achieves better results in terms 527

of NIST, ROUGE, and CIDEr scores while main- 528

taining the same memory usage as LoRA, when 529

fine-tuning LLaMA2-7B. The experimental results 530

for LLaMA2-7B with ranks 32 and 256, as well as 531

those for LLaMA2-13B with ranks 16, 32, 128, and 532

256, are provided in the Appendix C. To further val- 533

idate the capabilities of CrossLore, we fine-tuned 534

7

Methods Rank Time↓ Mem.↓ BLEU↑ NIST↑ MET↑ ROUGE-1/2/L↑ CIDEr↑
LoRA 16 2.82 13.92 60.29 4.00 34.91 66.24 / 34.70 / 43.15 1.20
DoRA 16 4.97 13.88 60.39 4.05 34.93 66.26 / 34.74 / 43.30 1.21
GaLore 16 18.53 15.07 64.84 4.96 36.60 70.79 / 40.62 / 48.90 1.78
CrossLore 16 4.38 14.83 65.16 4.96 36.94 70.98 / 40.85 / 49.05 1.78
LoRA 128 3.02 15.43 64.60 4.86 36.74 70.67 / 40.20 / 48.54 1.70
DoRA 128 5.27 15.43 64.77 4.86 36.77 70.72 / 40.20 / 48.62 1.72
GaLore 128 18.45 15.79 64.22 5.14 36.50 70.99 / 41.19 / 49.37 1.80
CrossLore 128 4.52 15.43 64.22 5.16 36.66 71.07 / 41.54 / 49.71 1.82

Table 2: Comparison of fine-tuning LLaMA2-7B with different PEFT methods on the E2E dataset. The metrics for
fine-tuning time (Time) and memory consumption (Mem.) are ‘hours’ and ‘GB’.

0.0 0.6 1.2 1.8
Proportion (%)

29

30

31

32

33

34

35

36

Ac
cu

ra
cy

 (%
) 33.66 33.64 33.70 33.80

34.37

GSM8k
GaLore
CrossLore

0.0 0.6 1.2 1.8
Proportion (%)

63

64

65

66

67

Ac
cu

ra
cy

 (%
)

64.29

65.02 65.13

66.10 66.18

MAWPS
GaLore
CrossLore

0.0 0.6 1.2 1.8
Proportion (%)

53.5

53.6

53.7

53.8

53.9

54.0

54.1

54.2

54.3

Av
er

ag
e

RO
UG

E
Sc

or
e

53.850

53.966
54.03354.03554.038

E2E
GaLore
CrossLore

Figure 3: Ablation study on the sparsely coded residual, when fine-tuning LLaMA2-7B
. The results are obtained by adjusting the proportion of non-zero elements in the sparse indexing matrix.

LLaMA2-7B and LLaMA2-13B on the CNN/DM535

and XSum datasets, comparing it against several536

other PEFT methods. Detailed results are provided537

in Appendix C.538

Additionally, Figure 1 compares the time con-539

sumption between GaLore and CrossLore, when540

fine-tuning LLaMA2-7B. One of the key advan-541

tages of CrossLore is the negligible time to com-542

pute the projection matrices. As a result, the overall543

fine-tuning time is reduced by more than 70%, sig-544

nificantly accelerating the training process without545

compromising performance.546

5.3 Ablation Study547

To evaluate the effectiveness of the proposed548

sparsely coded residual, we conduct experiments549

on CrossLore with increasing number of non-zero550

elements in the sparse indexing matrix. All hyper-551

parameters except for the sparsity of the residuals552

are kept unchanged for reasonable ablation. For553

robustness of the results, experiments were con-554

ducted with four random seeds set for each exper-555

iment. The experimental results for LLaMA3-8B 556

are provided in Appendix D. 557

Figure 3 presents the results of the comparison, 558

suggesting that the residuals with more non-zero 559

elements lead to better performance in most cases 560

which indicates that the sparsely coded residuals 561

indeed mitigate projection-induced errors and en- 562

hance the model’s performance. 563

6 Conclusions 564

In this paper, we propose CrossLore, a low-rank 565

adaptation method with fast yet precise estima- 566

tion of the low-rank projections. The estimation 567

is achieved by cross-head low-rank projection and 568

randomized subspace iteration. We further employ 569

a sparsely coded residual to further reduce the error 570

of low-rank approximation, which works on the mo- 571

ments of the optimizer. Experiments on arithmetic 572

reasoning and natural language generation indicate 573

that CrossLore outperforms existing low-rank adap- 574

tation methods, offering superior performance with 575

reduced computational complexity. 576

8

Limitations577

There are two limitations in this work. Firstly, al-578

though the experiments validate that sharing low-579

rank projection matrices across heads in multi-head580

attention can be efficient, additional theoretical581

analysis is needed to measure the preciseness of582

such sharing. Secondly, we employ sparse matri-583

ces to store the approximation errors of first- and584

second-order moments and weight updates. How-585

ever, all these sparse matrices share the same index-586

ing matrices. Although experiments indicate that587

the current design is effective, the shared indexing588

matrices estimated from the first-order moment can589

be further improved.590

References591

Aleksandr Aravkin, Stephen Becker, Volkan Cevher,592
and Peder Olsen. 2014. A variational approach to593
stable principal component pursuit. arXiv preprint594
arXiv:1406.1089.595

Tom B Brown. 2020. Language models are few-shot596
learners. arXiv preprint arXiv:2005.14165.597

Yuji Chai, John Gkountouras, Glenn G Ko, David598
Brooks, and Gu-Yeon Wei. 2023. Int2. 1: Towards599
fine-tunable quantized large language models with600
error correction through low-rank adaptation. arXiv601
preprint arXiv:2306.08162.602

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,603
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias604
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro605
Nakano, et al. 2021. Training verifiers to solve math606
word problems. arXiv preprint arXiv:2110.14168.607

Jean-Baptiste Cordonnier, Andreas Loukas, and Mar-608
tin Jaggi. 2020. Multi-head attention: Collab-609
orate instead of concatenate. arXiv preprint610
arXiv:2006.16362.611

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and612
Luke Zettlemoyer. 2023. QLoRA: Efficient finetun-613
ing of quantized LLMs. In Thirty-seventh Confer-614
ence on Neural Information Processing Systems.615

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei,616
Zonghan Yang, Yusheng Su, Shengding Hu, Yulin617
Chen, Chi-Min Chan, Weize Chen, et al. 2023.618
Parameter-efficient fine-tuning of large-scale pre-619
trained language models. Nature Machine Intelli-620
gence, 5(3):220–235.621

Robert Joseph George, David Pitt, Jiawei Zhao, Jean622
Kossaifi, Cheng Luo, Yuandong Tian, and An-623
ima Anandkumar. 2025. Tensor-galore: Memory-624
efficient training via gradient tensor decomposition.625

Nathan Halko, Per-Gunnar Martinsson, and Joel A626
Tropp. 2011. Finding structure with randomness:627

Probabilistic algorithms for constructing approximate 628
matrix decompositions. SIAM review, 53(2):217– 629
288. 630

Karen Hambardzumyan, Hrant Khachatrian, and 631
Jonathan May. 2021. Warp: Word-level adversarial 632
reprogramming. arXiv preprint arXiv:2101.00121. 633

Yongchang Hao, Yanshuai Cao, and Lili Mou. 2024. 634
Flora: Low-rank adapters are secretly gradient com- 635
pressors. In Forty-first International Conference on 636
Machine Learning. 637

Michael Hintermüller and Tao Wu. 2015. Robust prin- 638
cipal component pursuit via inexact alternating mini- 639
mization on matrix manifolds. Journal of Mathemat- 640
ical Imaging and Vision, 51(3):361–377. 641

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 642
Bruna Morrone, Quentin De Laroussilhe, Andrea 643
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. 644
Parameter-efficient transfer learning for nlp. In In- 645
ternational conference on machine learning, pages 646
2790–2799. PMLR. 647

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen- 648
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu 649
Chen. 2022. LoRA: Low-rank adaptation of large 650
language models. In International Conference on 651
Learning Representations. 652

AJAY KUMAR JAISWAL, Lu Yin, Zhenyu Zhang, 653
Shiwei Liu, Jiawei Zhao, Yuandong Tian, and 654
Zhangyang Wang. 2025. From galore to welore: 655
How low-rank weights non-uniformly emerge from 656
low-rank gradients. 657

Rabeeh Karimi Mahabadi, James Henderson, and Se- 658
bastian Ruder. 2021a. Compacter: Efficient low-rank 659
hypercomplex adapter layers. Advances in Neural 660
Information Processing Systems, 34:1022–1035. 661

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa 662
Dehghani, and James Henderson. 2021b. Parameter- 663
efficient multi-task fine-tuning for transformers via 664
shared hypernetworks. In Annual Meeting of the 665
Association for Computational Linguistics. 666

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate 667
Kushman, and Hannaneh Hajishirzi. 2016. Mawps: 668
A math word problem repository. In Proceedings of 669
the 2016 conference of the north american chapter of 670
the association for computational linguistics: human 671
language technologies, pages 1152–1157. 672

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M 673
Asano. 2024. VeRA: Vector-based random matrix 674
adaptation. In The Twelfth International Conference 675
on Learning Representations. 676

Se Jung Kwon, Jeonghoon Kim, Jeongin Bae, Kang Min 677
Yoo, Jin-Hwa Kim, Baeseong Park, Byeongwook 678
Kim, Jung-Woo Ha, Nako Sung, and Dongsoo Lee. 679
2022. AlphaTuning: Quantization-aware parameter- 680
efficient adaptation of large-scale pre-trained lan- 681
guage models. In Findings of the Association for 682

9

https://openreview.net/forum?id=OUIFPHEgJU
https://openreview.net/forum?id=OUIFPHEgJU
https://openreview.net/forum?id=OUIFPHEgJU
https://openreview.net/forum?id=C85eSjKenO
https://openreview.net/forum?id=C85eSjKenO
https://openreview.net/forum?id=C85eSjKenO
https://arxiv.org/abs/2402.03293
https://arxiv.org/abs/2402.03293
https://arxiv.org/abs/2402.03293
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=OjP6LUrw1O
https://openreview.net/forum?id=OjP6LUrw1O
https://openreview.net/forum?id=OjP6LUrw1O
https://openreview.net/forum?id=OjP6LUrw1O
https://openreview.net/forum?id=OjP6LUrw1O
https://openreview.net/forum?id=NjNfLdxr3A
https://openreview.net/forum?id=NjNfLdxr3A
https://openreview.net/forum?id=NjNfLdxr3A
https://doi.org/10.18653/v1/2022.findings-emnlp.240
https://doi.org/10.18653/v1/2022.findings-emnlp.240
https://doi.org/10.18653/v1/2022.findings-emnlp.240
https://doi.org/10.18653/v1/2022.findings-emnlp.240
https://doi.org/10.18653/v1/2022.findings-emnlp.240

Computational Linguistics: EMNLP 2022, pages683
3288–3305, Abu Dhabi, United Arab Emirates. As-684
sociation for Computational Linguistics.685

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.686
The power of scale for parameter-efficient prompt687
tuning. arXiv preprint arXiv:2104.08691.688

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:689
Optimizing continuous prompts for generation. arXiv690
preprint arXiv:2101.00190.691

Xingjian Li, Haoyi Xiong, Haozhe An, Cheng-Zhong692
Xu, and Dejing Dou. 2020. Rifle: Backpropaga-693
tion in depth for deep transfer learning through re-694
initializing the fully-connected layer. In Interna-695
tional Conference on Machine Learning, pages 6010–696
6019. PMLR.697

Yunxiang Li, Zihan Li, Kai Zhang, Ruilong Dan, Steve698
Jiang, and You Zhang. 2023. Chatdoctor: A medical699
chat model fine-tuned on a large language model700
meta-ai (llama) using medical domain knowledge.701
Cureus, 15(6).702

Vladislav Lialin, Vijeta Deshpande, and Anna703
Rumshisky. 2023. Scaling down to scale up: A guide704
to parameter-efficient fine-tuning. arXiv preprint705
arXiv:2303.15647.706

Zhaojiang Lin, Andrea Madotto, and Pascale Fung.707
2020. Exploring versatile generative language model708
via parameter-efficient transfer learning. In Find-709
ings of the Association for Computational Linguistics:710
EMNLP 2020, pages 441–459, Online. Association711
for Computational Linguistics.712

Zhouchen Lin, Minming Chen, and Yi Ma. 2010. The713
augmented lagrange multiplier method for exact714
recovery of corrupted low-rank matrices. arXiv715
preprint arXiv:1009.5055.716

Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun,717
Yong Yu, and Yi Ma. 2013. Robust recovery of sub-718
space structures by low-rank representation. IEEE719
Trans. Pattern Anal. Mach. Intell., 35(1):171–184.720

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo721
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting722
Cheng, and Min-Hung Chen. 2024. Dora: Weight-723
decomposed low-rank adaptation. arXiv preprint724
arXiv:2402.09353.725

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,726
Yujie Qian, Zhilin Yang, and Jie Tang. 2023. Gpt727
understands, too. AI Open.728

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. 2024.729
Pissa: Principal singular values and singular vectors730
adaptation of large language models. arXiv preprint731
arXiv:2404.02948.732

Arvind Neelakantan, Luke Vilnis, Quoc V Le, Ilya733
Sutskever, Lukasz Kaiser, Karol Kurach, and James734
Martens. 2015. Adding gradient noise improves735
learning for very deep networks. arXiv preprint736
arXiv:1511.06807.737

Mahdi Nikdan, Soroush Tabesh, and Dan Alistarh. 2024. 738
Rosa: Accurate parameter-efficient fine-tuning via 739
robust adaptation. arXiv preprint arXiv:2401.04679. 740

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. 741
2017. The E2E dataset: New challenges for end- 742
to-end generation. In Proceedings of the 18th An- 743
nual SIGdial Meeting on Discourse and Dialogue, 744
pages 201–206, Saarbrücken, Germany. Association 745
for Computational Linguistics. 746

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 747
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 748
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 749
2022. Training language models to follow instruc- 750
tions with human feedback. Advances in neural in- 751
formation processing systems, 35:27730–27744. 752

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea 753
Vedaldi. 2017. Learning multiple visual domains 754
with residual adapters. Advances in neural informa- 755
tion processing systems, 30. 756

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten 757
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 758
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. 759
Code llama: Open foundation models for code. arXiv 760
preprint arXiv:2308.12950. 761

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 762
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 763
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 764
Bhosale, et al. 2023. Llama 2: Open founda- 765
tion and fine-tuned chat models. arXiv preprint 766
arXiv:2307.09288. 767

Jingfeng Wu, Wenqing Hu, Haoyi Xiong, Jun Huan, 768
Vladimir Braverman, and Zhanxing Zhu. 2020. On 769
the noisy gradient descent that generalizes as sgd. 770
In International Conference on Machine Learning, 771
pages 10367–10376. PMLR. 772

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng 773
Chang, Hengheng Zhang, Zhengsu Chen, Xiaopeng 774
Zhang, and Qi Tian. 2023. Qa-lora: Quantization- 775
aware low-rank adaptation of large language models. 776
arXiv preprint arXiv:2309.14717. 777

Xinyang Yi, Dohyung Park, Yudong Chen, and Constan- 778
tine Caramanis. 2016. Fast algorithms for robust pca 779
via gradient descent. Advances in neural information 780
processing systems, 29. 781

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold- 782
berg. 2021. Bitfit: Simple parameter-efficient 783
fine-tuning for transformer-based masked language- 784
models. arXiv preprint arXiv:2106.10199. 785

Qingru Zhang, Minshuo Chen, Alexander Bukharin, 786
Pengcheng He, Yu Cheng, Weizhu Chen, and 787
Tuo Zhao. 2023. Adaptive budget allocation for 788
parameter-efficient fine-tuning. In The Eleventh In- 789
ternational Conference on Learning Representations. 790

Teng Zhang and Yi Yang. 2018. Robust pca by man- 791
ifold optimization. Journal of Machine Learning 792
Research, 19(80):1–39. 793

10

https://doi.org/10.18653/v1/2020.findings-emnlp.41
https://doi.org/10.18653/v1/2020.findings-emnlp.41
https://doi.org/10.18653/v1/2020.findings-emnlp.41
https://doi.org/10.1109/TPAMI.2012.88
https://doi.org/10.1109/TPAMI.2012.88
https://doi.org/10.1109/TPAMI.2012.88
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.18653/v1/W17-5525
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding,794
Chenwei Wu, Yinyu Ye, Zhi-Quan Luo, and Ruoyu795
Sun. 2024. Adam-mini: Use fewer learning rates to796
gain more. arXiv preprint arXiv:2406.16793.797

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang798
Wang, Anima Anandkumar, and Yuandong Tian.799
2024. Galore: Memory-efficient LLM training by800
gradient low-rank projection. In 5th Workshop on801
practical ML for limited/low resource settings.802

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan803
Ye, and Zheyan Luo. 2024. Llamafactory: Unified804
efficient fine-tuning of 100+ language models. arXiv805
preprint arXiv:2403.13372.806

Tianyi Zhou and Dacheng Tao. 2011. Godec: Ran-807
domized low-rank & sparse matrix decomposition in808
noisy case. In Proceedings of the 28th International809
Conference on Machine Learning, ICML 2011.810

A Proof of Sparsely Coded Residual811

The origin of errors and the calculation of sparsely812

coded residual are analyzed, using AdamW as an813

example.814

First-order moment (denoted as Mt, with Mt ∈815

Rm×n) can be regarded as the sum of first-order816

moment projected back onto the original space and817

the error (denoted as ∆Mt, with ∆Mt ∈ Rm×n).818

Similarly, the gradient (denoted as Gt, with Gt ∈819

Rm×n) can be viewed as the sum of the gradient820

projected back onto the original space and the error821

(denoted as ∆Gt, with ∆Gt ∈ Rm×n):822

Mt = PtP
⊤
t Mt +∆Mt, (13)823

Gt = PtP
⊤
t Gt +∆Gt, (14)824

where Pt represents the projection matrix at step825

t. Therefore, the first-order moment updates are826

shown in Equation 15.827

Mt =β1Mt−1 + (1− β1)Gt828

=β1Pt−1P
⊤
t−1Mt−1 + (1− β1)PtP

⊤
t Gt829

+ β1∆Mt−1 + (1− β1)∆Gt, (15)830

The low-rank first-order moments (denoted as831

M ′
t = P⊤

t Mt, with M ′
t ∈ Rr×n) used in GaLore832

are realized by:833

M ′
t = β1M

′
t−1 + (1− β1)P

⊤
t Gt. (16)834

The low-rank approximation error of the first-order835

moment is836

∆Mt =Mt − PtM
′
t837

=β1(Pt−1 − Pt)P
⊤
t−1Mt−1 + β1∆Mt−1838

+ (1− β1)∆Gt. (17)839

The projection matrix Pt is updated every few hun- 840

dred steps, thus, outside of these updates, Pt−1 re- 841

mains equal to Pt. When Pt is updated, the weight 842

updates ∆Wt are so small that Pt−1 ≈ Pt, simi- 843

lar to the discussion in Section 4.1.1. Therefore, 844

the low-rank approximation error of the first-order 845

moment is 846

∆Mt ≈ β1∆Mt−1 + (1− β1)∆Gt. (18) 847

Similarly, the update process for the second-order 848

moment is as follows: 849

Vt = PtP
⊤
t Vt +∆Vt, (19) 850

851

Vt =β2Vt−1 + (1− β2)Gt ⊙Gt 852

=β2Pt−1P
⊤
t−1Vt−1 853

+ (1− β2)(PtP
⊤
t Gt)⊙ (PtP

⊤
t Gt) + β2∆Vt−1 854

+ (1− β2)
[
∆Gt ⊙∆Gt + 2(PtP

⊤
t Gt)⊙∆Gt

]
,

(20)

855

856

V ′
t = β2V

′
t−1+(1−β2)(P

⊤
t Gt)⊙(P⊤

t Gt), (21) 857

858

∆Vt =Vt − PtV
′
t 859

≈β2∆Vt−1 + 2(1− β2)(PtP
⊤
t Gt)⊙∆Gt 860

+ (1− β2)
[
∆Gt ⊙∆Gt 861

+ (PtP
⊤
t Gt)⊙ (PtP

⊤
t Gt) 862

− Pt(P
⊤
t Gt)⊙ (P⊤

t Gt)
]

863

≈β2∆Vt−1 + 2(1− β2)(PtP
⊤
t Gt)⊙∆Gt 864

+ (1− β2)
[
(PtP

⊤
t Gt)⊙ (PtP

⊤
t Gt) 865

− Pt(P
⊤
t Gt)⊙ (P⊤

t Gt)
]
. (22) 866

∆Vt can be approximated as 0. The expression 867

(PtP
⊤
t Gt)⊙ (PtP

⊤
t Gt)−Pt(P

⊤
t Gt)⊙ (P⊤

t Gt) is 868

only a part of ∆Vt, and its value is quite small. 869

Moreover, considering the significant computa- 870

tional burden associated with this part, we neglect 871

its calculation: 872

∆Vt ≈ β2∆Vt−1 + 2(1− β2)(PtP
⊤
t Gt)⊙∆Gt. 873

Thus, the parameter update can be expressed as 874

11

https://openreview.net/forum?id=AzqPyO22zt
https://openreview.net/forum?id=AzqPyO22zt
https://openreview.net/forum?id=AzqPyO22zt

follows:875

∆Wt =
Mt/(1− βt

1)√
Vt/(1− βt

2) + ϵ
876

=
∆M̂t + M̂t√
∆V̂t + V̂t + ϵ

877

=
M̂t√
V̂t + ϵ

+

[
M̂t

(√
V̂t −

√
∆V̂t + V̂t

)
878

+∆M̂t

(√
V̂t + ϵ

)]
879

/

[(√
∆V̂t + V̂t + ϵ

)(√
V̂t + ϵ

)]
,

(23)

880

where881

∆M̂t = ∆Mt/
(
1− βt

1

)
, M̂t = PtM

′
t/

(
1− βt

1

)
,882

∆V̂t = ∆Vt/
(
1− βt

2

)
, V̂t = PtV

′
t /

(
1− βt

2

)
,883

∆V̂t can be approximated as 0, so the Equation 23884

can be approximated as:885

∆Wt ≈
M̂t√
V̂t + ϵ

+
∆M̂t√

∆V̂t + V̂t + ϵ
886

=
M̂t√
V̂t + ϵ

+ δt, (24)887

where δt is the residual neglected by GaLore:888

δt =
∆M̂t√

∆V̂t + V̂t + ϵ
. (25)889

B Details of Experiment890

We fine-tuned the LLaMA2-7B model to validate891

the effectiveness of CrossLore. All experiments892

were conducted on an NVIDIA RTX 4090 GPU893

using the Llama-Factory framework. Detailed hy-894

perparameter settings are provided in Table 3.895

We fine-tuned the LLaMA2-13B model to val-896

idate the effectiveness of CrossLore. All experi-897

ments were conducted on an NVIDIA A800 GPU898

using the Llama-Factory framework. Detailed hy-899

perparameter settings are provided in Table 4.900

C Additional Experimental Results901

We have conducted additional experiments to in-902

vestigate the effectiveness of CrossLore. We have903

included two foundation models (i.e., LLaMA2-904

7B and LLaMA2-13B), and state-of-the-art PEFT905

methods as the baseline, with detailed experimental906

results presented in Table 5, 6, 7, 8 and 9.907

As shown in Table 5, 6, 7, 8 and 9, CrossLore 908

consistently achieves comparable or superior re- 909

sults across various scenarios. Experimental re- 910

sults show that the proposed method is specifically 911

effective in low-data fine-tuning scenarios, which 912

outperforms LoRA and other fine-tuning methods 913

significantly. 914

D Results of Ablation Study 915

To validate the effectiveness of the sparsely coded 916

residual, we also fine-tuned LLaMA3-8B with 917

residuals incorporated at varying proportions. The 918

experimental results are presented as shown in Fig- 919

ure 4 920

The experimental results in Figure 3 and Fig- 921

ure 4 were obtained using 4 random seeds, with the 922

standard deviations reported in Table 10. 923

12

Dataset E2E GSM8k MAWPS
Rank 16 32 128 256 16 32 128 256 16 32 128 256

Batch Size 1 1 1
Epochs 1 1 3

LearningRate 1E-06 1E-06 1E-06
LR Schedul cosine cosine cosine

α 32 32 128 64 32 32 64 32 32 16 32 32
Optimizer AdamW8bit AdamW8bit AdamW8bit

Residual Ratio 1.2% 1.2% 1.2%

Table 3: Hyperparameters on three benchmarks for the LLaMA2-7B model.

Dataset E2E GSM8k MAWPS
Rank 16 32 128 256 16 32 128 256 16 32 128 256

Batch Size 4 1 1
Epochs 1 1 3

Learning Rate 1E-06 1E-06 1E-06
LR Schedule cosine cosine cosine

α 32 32 128 64 32 32 32 64 64
Optimizer AdamW8bit AdamW8bit AdamW8bit

Residual Ratio 1.2% 1.2% 1.2%

Table 4: Hyperparameters on three benchmarks for the LLaMA2-13B model.

Datasets GSM8k MAWPS
Methods Rank Time↓ Mem.↓ Acc. (%)↑ Time↓ Mem.↓ Acc. (%)↑
LoRA 32 0.53 15.65 23.30 0.40 14.36 45.80
DoRA 32 1.15 15.01 21.08 0.69 15.01 44.96
GaLore 32 3.48 15.42 26.46 2.59 15.15 58.40
CrossLore 32 0.88 15.23 29.11 0.62 14.91 60.50
LoRA 256 0.55 18.79 33.36 0.4 17.60 61.76
DoRA 256 1.24 18.12 33.59 0.76 18.12 62.18
GaLore 256 3.53 16.66 31.92 2.66 16.39 63.03
CrossLore 256 0.92 15.74 33.81 0.69 16.12 65.55

Table 5: Comparison of fine-tuning LLaMA2-7B with different PEFT methods on the GSM8k and MAWPS datasets
at ranks 32 and 256. The metrics for fine-tuning time (Time) and memory consumption (Mem.) are ‘hours’ and
‘GB’.

13

Datasets GSM8k MAWPS
Methods Rank Time↓ Mem.↓ Acc. (%)↑ Time↓ Mem.↓ Acc. (%)↑
LoRA 16 0.73 27.59 30.46 0.50 26.14 54.20
DoRA 16 1.70 26.67 31.22 1.04 26.21 54.20
GaLore 16 7.18 28.01 35.18 5.39 27.82 58.40
CrossLore 16 1.22 27.83 36.24 0.79 27.49 62.18
LoRA 32 0.73 27.96 32.01 0.50 26.50 55.04
DoRA 32 1.68 27.04 32.12 1.03 26.57 53.78
GaLore 32 7.08 28.14 36.24 5.34 27.94 61.34
CrossLore 32 1.22 27.93 37.98 0.80 27.59 63.87
LoRA 128 0.77 30.11 33.99 0.53 28.77 54.62
DoRA 128 1.78 28.98 32.68 1.09 28.70 54.62
GaLore 128 7.20 29.28 40.03 5.39 28.99 65.13
CrossLore 128 1.37 28.90 41.24 0.91 28.54 69.75
LoRA 256 0.80 33.08 34.72 0.55 31.62 62.18
DoRA 256 1.83 31.88 33.59 1.14 31.72 62.18
GaLore 256 7.25 30.06 37.15 5.50 29.87 62.18
CrossLore 256 1.54 29.79 42.20 1.06 29.45 66.39

Table 6: Comparison of fine-tuning LLaMA2-13B with different PEFT methods on the GSM8k and MAWPS
datasets. The metrics for fine-tuning time (Time) and memory consumption (Mem.) are ‘hours’ and ‘GB’.

Methods Rank Time↓ Mem.↓ BLEU↑ NIST↑ MET↑ ROUGE-1/2/L↑ CIDEr↑
LoRA 32 2.94 14.17 62.47 4.58 35.07 69.16 / 38.00 / 46.24 1.46
DoRA 32 5.14 14.13 62.63 4.59 35.11 69.25 / 38.07 / 46.31 1.47
GaLore 32 18.57 15.15 64.95 4.96 36.92 70.99 / 40.77 / 49.15 1.77
CrossLore 32 4.41 14.92 65.15 4.97 37.32 71.17 / 41.06 / 49.38 1.78
LoRA 256 3.01 17.43 64.93 4.94 36.81 70.92 / 40.66 / 49.01 1.76
DoRA 256 5.61 17.67 64.94 4.95 36.81 70.94 / 40.72 / 49.04 1.77
GaLore 256 18.42 16.39 64.97 5.10 36.84 71.19 / 41.34 / 49.26 1.82
CrossLore 256 4.86 16.19 64.99 5.11 36.88 71.15 / 41.40 / 49.45 1.83

Table 7: Comparison of fine-tuning LLaMA2-7B with different PEFT methods on the E2E dataset at ranks 32 and
256. The metrics for fine-tuning time (Time) and memory consumption (Mem.) are ‘hours’ and ‘GB’.

0.0 0.6 1.2 1.8
Proportion (%)

65

66

67

68

69

70

71

72

Ac
cu

ra
cy

 (%
) 69.83 69.57

69.94 70.02 70.19

GSM8k
GaLore
CrossLore

0.0 0.6 1.2 1.8
Proportion (%)

80

81

82

83

84

Ac
cu

ra
cy

 (%
) 82.77 82.77

82.98
83.30 83.40

MAWPS
GaLore
CrossLore

0.0 0.6 1.2 1.8
Proportion (%)

53.6

53.7

53.8

53.9

54.0

54.1

54.2

54.3

54.4

Av
er

ag
e

RO
UG

E
Sc

or
e

54.035

54.12254.13554.139
54.176

E2E
GaLore
CrossLore

Figure 4: Ablation study on the sparsely coded residual, when fine-tuning LLaMA3-8B. The results are obtained by
adjusting the proportion of non-zero elements in the sparse indexing matrix.

14

Methods Rank Time↓ Mem.↓ BLEU↑ NIST↑ MET↑ ROUGE-1/2/L↑ CIDEr↑
LoRA 16 2.03 28.41 62.50 4.54 35.73 68.53 / 36.89 / 45.05 1.37
DoRA 16 4.17 28.21 62.41 4.54 35.66 68.42 / 36.89 / 45.02 1.36
GaLore 16 11.29 28.52 65.14 4.82 37.13 70.80 / 40.50 / 48.64 1.74
CrossLore 16 2.75 28.22 65.46 4.85 37.56 71.02 / 40.90 / 49.23 1.75
LoRA 32 2.02 28.79 62.92 4.65 35.53 69.52 / 38.38 / 46.26 1.50
DoRA 32 4.17 28.58 62.87 4.64 35.44 69.38 / 38.30 / 46.20 1.50
GaLore 32 11.23 28.65 65.45 4.87 37.40 71.04 / 40.81 / 48.91 1.76
CrossLore 32 2.77 28.33 65.55 4.89 37.59 71.18 / 41.11 / 49.18 1.78
LoRA 128 1.98 30.08 64.90 4.77 37.05 70.67 / 40.08 / 48.18 1.67
DoRA 128 4.33 30.30 64.82 4.77 37.02 70.65 / 40.03 / 48.14 1.67
GaLore 128 11.41 29.64 64.79 5.08 36.96 71.13 / 41.34 / 49.34 1.80
CrossLore 128 2.97 29.39 65.19 5.09 37.10 71.27 / 41.50 / 49.60 1.84
LoRA 256 2.18 33.15 65.02 4.82 37.12 70.81 / 40.40 / 48.48 1.71
DoRA 256 4.42 33.41 65.07 4.83 37.19 70.90 / 40.47 / 48.61 1.72
GaLore 256 11.58 30.57 65.12 4.98 37.13 71.08 / 41.35 / 49.35 1.82
CrossLore 256 3.22 30.20 65.19 5.05 37.28 71.29 / 41.49 / 49.53 1.82

Table 8: Comparison of fine-tuning LLaMA2-13B with different PEFT methods on the E2E dataset. The metrics for
fine-tuning time (Time) and memory consumption (Mem.) are ‘hours’ and ‘GB’.

Models Methods
CNN/DM XSum

Time↓ R-1↑ R-2↑ R-L↑ Time↓ R-1↑ R-2↑ R-L↑

LLaMA2-7B

LoRA 0.37 31.68 11.45 21.85 0.25 37.25 13.46 29.50
DoRA 0.68 31.98 11.57 22.01 0.50 37.52 13.53 29.91
GaLore 1.18 33.64 12.98 24.27 1.04 40.24 16.07 32.92

CrossLore 0.70 33.76 13.02 23.40 0.36 40.36 16.25 33.00

LLaMA2-13B

LoRA 0.51 32.77 12.14 22.98 0.35 39.15 15.11 31.53
DoRA 0.94 32.69 12.00 23.10 0.71 39.38 15.40 31.72
GaLore 2.23 33.65 13.06 24.33 2.03 42.54 18.08 35.15

CrossLore 0.65 34.05 13.25 24.44 0.49 42.70 18.06 35.26

Table 9: Comparison of fine-tuning LLaMA2-7B and LLaMA2-13B with different PEFT methods at rank 32 on the
CNN/DM and XSum datasets. The metrics for fine-tuning time is ’hours’. R-1, R-2, and R-L are abbreviations for
ROUGE-1, ROUGE-2, and ROUGE-L, respectively.

Datasets Models 0.0 0.6 1.2 1.8

GSM8k
LLaMA2-7B 33.64 (±0.97) 33.70 (±1.00) 33.80 (±0.69) 34.37 (±0.83)
LLaMA3-8B 69.57 (±0.76) 69.94 (±0.83) 70.02 (±0.59) 70.19 (±0.54)

MAWPS
LLaMA2-7B 65.02 (±2.80) 65.13 (±0.51) 66.10 (±1.77) 66.18 (±1.34)
LLaMA3-8B 82.77 (±0.59) 82.98 (±0.63) 83.30 (±1.00) 83.40 (±1.91)

E2E
LLaMA2-7B 53.966 (±0.113) 54.033 (±0.168) 54.035 (±0.042) 54.038 (±0.113)
LLaMA3-8B 54.122 (±0.098) 54.135 (±0.077) 54.139 (±0.086) 54.176 (±0.080)

Table 10: Ablation study on the sparsely coded residual across different datasets, with proportions 0.0, 0.6, 1.2, and
1.8%.

15

	Introduction
	Related Work
	Preliminaries
	Methods
	Cross-Head Low-Rank Projection
	Cross-Head Similarity for Simplified SVD
	Fast SVD with Randomized Subspace Iteration

	Sparsely Coded Residual
	Low-Rank Approximation Residual of Moments
	Sparse Indexing Matrix for the Residuals

	Experiments
	Arithmetic Reasoning
	Natural Language Generation
	Ablation Study

	Conclusions
	Proof of Sparsely Coded Residual
	Details of Experiment
	Additional Experimental Results
	Results of Ablation Study

