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Abstract

Recent low-rank training methods, such as Ga-
Lore, have significantly reduced the memory
required to optimize large language models
(LLMs). However, these methods often suf-
fer from time-consuming low-rank projection
estimations. In particular, the singular value
decomposition (SVD) in GaLore can consume
more than 80% of the total training time. To ad-
dress this issue, we propose CrossLore, which
uses cross-head low-rank projection to reduce
the substantial time consumption in estimating
low-rank projections for multi-head attention.
In addition, we employ randomized subspace it-
eration to achieve fast SVD. To further enhance
performance, we propose sparsely coded resid-
uals to reduce the errors caused by low-rank
approximation on the first- and second-order
moments of the optimizers and weight updates.
We evaluate CrossLore on arithmetic reason-
ing and natural language generation datasets.
Our experiments demonstrate that CrossLore
delivers superior performance while achieving
approximately 4 x fine-tuning speed compared
to vanilla GaLore.

1 Introduction

As the sizes of language models grow rapidly, train-
ing models from scratch for different tasks becomes
impractical due to the significant time and computa-
tional resources required. To address this challenge,
current research and applications typically rely on
pre-training large language models (LLMs) and
subsequently fine-tuning them for specific down-
stream tasks. This paradigm has demonstrated
high efficiency across various tasks, including NLP,
question-answering, and reasoning (Roziere et al.,
2023; Li et al., 2023; Ouyang et al., 2022; Brown,
2020).

However, full fine-tuning of entire LLMs re-
quires enormous memory, making it prohibitively
expensive for individuals and start-ups. Parameter-
efficient fine-tuning (PEFT) methods only fine-tune
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Figure 1: We compare the time consumption for fine-
tuning LLaMAZ2-7B on different datasets with Gal.ore
and CrossLore.

a small number of the weights, significantly reduc-
ing the memory requirements (Lialin et al., 2023;
Ding et al., 2023). Among them, the methods based
on low-rank reparameterization, such as LoRA (Hu
et al., 2022), have attracted much attention due
to their impressive efficiency. Recently, a low-
rank adaptation method named GaLore (Zhao et al.,
2024) demonstrated the ability to optimize an LLM
with 7 billion parameters on a consumer-level GPU
with 24 GB of memory. Low-rank adaptation meth-
ods achieve dramatic memory reduction by updat-
ing the weights of LLMs in low-rank subspace,
thus reducing the number of fine-tuned weights.
We categorize existing low-rank adaptation meth-
ods into three groups based on how they construct
low-rank projections i.e., parameterized projection,
random projection, and analytic projection.

i) Parameterized projection. The representative
work is LoRA (Hu et al., 2022), which approxi-
mates the parameter updates as the product of two
trainable low-rank matrices. PiISSA (Meng et al.,
2024) extends this by using SVD to decompose the
weight matrix and optimizing the principal compo-
nent with two trainable low-rank matrices, similar
to LoRA. LoRA has been further developed into ef-
ficient variants like QLoRA (Dettmers et al., 2023),



which enhances computational efficiency and re-
duces memory through quantization. AdalLLoRA
enhances LoRA by adaptively adjusting the rank
of low-rank updates (Zhang et al., 2023).

ii) Random projection. Methods in this cate-
gory employ random projections to further reduce
the memory consumption on parameterized projec-
tions. Flora (Hao et al., 2024) develops LoRA by
substituting one of the two low-rank matrices with
a randomly generated matrix, reducing the mem-
ory consumption with comparable performance.
VeRA (Kopiczko et al., 2024) employs a shared
pair of random projections across all layers, fine-
tuning the model by training layer-specific scaling
vectors.

iii) Analytic projection. Both parameterized and
random projections may lead to low-quality approx-
imations of gradient or weight updates, as they lack
analytic guarantees. In contrast, GalLore (Zhao
et al., 2024) introduces analytic projections de-
rived from SVD to ensure that the key compo-
nents of the gradients are preserved after low-rank
projections, thereby offering a more accurate and
reliable approximation. Tensor-Gal.ore (George
et al., 2025) extends GalL.ore from matrix-based to
tensor-based low-rank optimization. Meanwhile,
WeLore (JAISWAL et al., 2025) extends Gal.ore
by adaptively determining the number of retained
singular values based on their heavy-tail distribu-
tion.

Existing methods for estimating low-rank pro-
jections involve a trade-off between approximation
error and resource consumption (e.g., on memory
and time). Parameterized and random projections
lack the accuracy of analytic decomposition, lead-
ing to uncertain quality, while analytic methods like
SVD, though more precise, are computationally ex-
pensive. For instance, in Galore, SVD accounts
for over 80% of the total time consumed during
the fine-tuning process. Therefore, a faster and
more accurate estimation of low-rank projections
is essential to further boost the low-rank adaptation
methods.

In this paper, we propose a low-rank adaptation
method, CrossLore, which employs cross-head low-
rank projection to realize fast and high-quality es-
timation. Algorithm 1 presents the pseudo-code
of integrating CrossLore into AdamW, with the
highlighted improvement over GaLore (Zhao et al.,
2024). CrossLore utilizes a cross-head low-rank
projection inspired by the architecture of multi-
head attention, where the projection matrices for

the gradient of query or key transforms are shared
across multiple attention heads. Such sharing re-
duces the computational complexity of low-rank
projection matrices in h-head attention from O(h?)
to O(h). Additionally, randomized subspace iter-
ation for SVD is utilized to further reduce compu-
tational complexity. Besides, CrossLore incorpo-
rates sparsely coded residuals, enabling a sparse
representation of low-rank approximation errors in
weight updates, which helps to mitigate estimation
inaccuracies caused by the cross-head low-rank
projection. We evaluate the proposed CrossLore
on natural language processing and arithmetic rea-
soning tasks, comparing it against state-of-the-art
low-rank adaptation methods.

The main contributions of this work are as fol-
lows:

* We introduce cross-head low-rank projection,
which reduces computational complexity by
sharing projection matrices across multiple
query or key projections. Besides, we employ
randomized subspace iteration to accelerate
the estimation of the projections.

* We mitigate the impact of low-rank approxi-
mation errors on weight updates by utilizing
sparsely coded residuals for the optimizer’s
moments, thereby enhancing the quality of the
weight updates.

» Experimental results demonstrate that the pro-
posed method surpasses state-of-the-art ap-
proaches, including LoRA and Gal.ore, in
fine-tuning LLMs for tasks such as arithmetic
reasoning and natural language generation.

2 Related Work

Parameter Efficient Fine-Tuning. A variety
of parameter-efficient fine-tuning methods have
emerged in recent years, enabling an increasing
number of institutions and researchers to fine-
tune LLMs to meet their specific requirements.
Adapters (Rebulffi et al., 2017; Houlsby et al., 2019;
Lin et al., 2020; Karimi Mahabadi et al., 2021b,a)
enable parameter-efficient fine-tuning by inserting
trainable layers into LLMs while keeping other
layers frozen. However, this approach also in-
troduces additional inference latency. BitFit (Za-
ken et al., 2021) selectively tunes only the biases
within the network, significantly reducing the num-
ber of parameters involved in fine-tuning. Prompt
tuning achieves parameter-efficient fine-tuning by



Algorithm 1 CrossLore (PyTorch-like pseudocode)

1: for weight in model.parameters():

2 grad =weight.grad

3

4

5: lor_grad, lor_proj = project(grad) > Section 4.1
6

7 lor_update, lor_moments = update(lor_grad)

8

9: res_update = estimate(grad, lor_proj, lor_moments) > Section 4.2
10:
11: update = project_back(lor_update) + res_update
12: weight.data += update

Note: The green background highlights the improvements over GaLore (Zhao et al., 2024).

optimizing a set of new input tokens or prompts
for each task (Li and Liang, 2021; Lester et al.,
2021; Hambardzumyan et al., 2021; Liu et al.,,
2023). Hu et al. (2022) introduced LoRA, propos-
ing that weight updates are low-rank and can be
expressed as the product of two low-rank matri-
ces. Furthermore, the trainable parameters can
be merged with the original weights, eliminating
additional inference latency. Recent studies com-
bined parameter-efficient fine-tuning methods with
quantization to enhance memory efficiency dur-
ing the fine-tuning of LLMs (Kwon et al., 2022;
Dettmers et al., 2023; Chai et al., 2023; Xu et al.,
2023). And DoRA (Liu et al., 2024), or Weight-
Decomposed Low-Rank Adaptation, is a parameter-
efficient fine-tuning method designed to enhance
learning capacity and stability by decomposing pre-
trained weights into magnitude and direction com-
ponents, leveraging LoRA for directional updates,
and achieving superior performance across tasks
without additional inference costs.

Parameter Sharing. Adam-mini partitions the
model parameters into blocks based on the struc-
ture of the Hessian matrix, assigning a unified
second-order moment to all parameters within each
block (Zhang et al., 2024). This approach signifi-
cantly reduces the memory footprint of the second-
order moment, thereby decreasing the optimizer’s
memory usage. From a temporal perspective, Ga-
Lore shares the same projection across a fixed num-
ber of steps, reducing computational overhead. The
above discussion demonstrates that many param-
eters can be shared during fine-tuning, reducing
memory usage or computational complexity.

Low-Rank plus Sparse Matrix. Robust Prin-

cipal Component Analysis (RPCA) decomposes a
data matrix into the sum of the product of low-rank
matrices and a sparse matrix and has been exten-
sively studied in both theory and applications (Lin
et al., 2010; Zhou and Tao, 2011; Liu et al., 2013;
Aravkin et al., 2014; Hintermiiller and Wu, 2015;
Yi et al., 2016; Zhang and Yang, 2018). The recent
Robust Adaptation (RoSA) method extends Low-
Rank Adaptation (LoRA) by further decomposing
weight updates into the product of two low-rank
matrices, with an additional sparse matrix (Nikdan
et al., 2024). Using an optimizer to update both
the low-rank and sparse matrices, RoSA achieves
superior performance compared to LoRA.

3 Preliminaries

GaLore. Conventional PEFT methods, such as
LoRA (Hu et al., 2022), reduce the number of
parameters for fine-tuning LLMs. However, the
fixed low-rank nature of these methods limits the
effectiveness of weight updates, resulting in perfor-
mance inferior to full fine-tuning. GaLore (Zhao
et al., 2024) addresses this limitation by leverag-
ing the low-rank characteristics of gradients and
projecting them onto low-rank subspace, signifi-
cantly reducing the memory requirements for fine-
tuning LLMs, while still maintaining the capability
for full-parameter tuning. This approach enables
pre-training an LLM with 7 billion parameters on
a consumer-grade GPU, i.e., NVIDIA RTX 4090
with 24 GB memory. The low-rank projections
in GalLore are calculated via SVD and updated at
fixed intervals. Thus, the search space for param-
eters can dynamically change within the full-rank
space.



4 Methods

To reduce the time consumption of GalLore while
improving performance, we propose CrossLore,
which introduces two key components, i.e., cross-
head low-rank projection and sparsely coded resid-
ual. The cross-head low-rank projection enables
efficient estimation of projection matrices with re-
duced computational complexity. Meanwhile, the
sparsely coded residual corrects the weight up-
date errors caused by low-rank projection, ensuring
more accurate fine-tuning.

4.1 Cross-Head Low-Rank Projection

GaLore demonstrates remarkable performance on
PEFT, enabling the training of a 7B LLM on a GPU
with just 24GB of memory. However, the SVD em-
ployed in GaLore (Zhao et al., 2024) is inherently
time-consuming. Figure 2a presents the time con-
sumption for SVD and other operations during the
fine-tuning of a LLaMA2-7B model using GaL.ore.
The figure indicates that SVD accounts for more
than 80% of the time consumption of the whole
fine-tuning process. Moreover, SVD for the multi-
head attention (MHA) layers alone takes about half
of the fine-tuning process.

4.1.1 Cross-Head Similarity for Simplified
SVD

Note that the three linear transformations across
different heads share the same input and can be
processed in parallel. Thus, in practical implemen-
tations, such as the PyTorch implementation', the
linear transforms of different heads are concate-
nated into a single matrix. Here, we denote the
concatenated transforms as

we e (Wi wg,. . we,
(Wi, Wy, W], (D
wY e WY, wy, . Wy

S
=
[2

Existing low-rank based methods, such as
LoRA (Hu et al., 2022) and Gal.ore (Zhao et al.,
2024), conduct low-rank approximation on the up-
dates of the concatenated multi-head transforms
rather than on the updates of each individual head.
Specifically, Gal.ore applies SVD to the gradient
of a concatenated transform to get the low-rank
projection. For instance, the r-rank (r < hdy) ap-
proximation of the gradient VIW© & Rmode1xhds

"https://pytorch.org/docs/stable/generated/torch.nn.
MultiheadAttention.html
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Figure 2: Motivations for cross-head low-rank pro-
jection. (a) illustrates the time consumption of SVD
and other operations when fine-tuning an LLaMA2-7B
model on different datasets with GaLore. MHA is short
for multi-head attention. (b) presents the approximation
errors of low-rank projection with cross-head projec-
tion (i.e., CrossLore) and conventional projection (i.e.,
GalLore).

is

VWe =U2V ~U._,%,.,V,. = PPTVW?,

2
where P = U. .. 18 the low-rank projection matrix
that contains the first r columns of U. The low-rank
projections for VIWX and VWV are calculated
similarly.

Cordonnier et al. (2020) observed that the query
or key transforms of different attention heads
within the same layer are similar. The authors show
that the concatenated projection is low-rank even
though the projections of each head are of high
ranks. Therefore, we hypothesize that the gradi-
ent VWiQ (or VWiK ) of different heads within
the same layer are similar. Thus, we can obtain a
low-rank projection of the gradient of the concate-
nated transform VW (or VIWX) via SVD on a
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randomly selected WZQ (or VWiK ), i.e.,
VWP = USiV;  (Ui):or(Zi)er (Vi)

= BP VWP, 3)

where P; & (U;): .. Thus, the low-rank approx-
imation of VIW® in the proposed CrossLore is
achieved by with

VWe ~ PP VW<, 4)

Figure 2b illustrates the approximation error
of the gradients VVViQ with a randomly selected
multi-head attention head using the low-rank pro-
jections using Equation 2 (vanilla Gal.ore) and
Equation 4 (cross-head low-rank projection). The
errors in Equation 4 are larger than those in Equa-
tion 2, as shown in Figure 2b. However, both errors
remain relatively low. Moreover, existing research
indicates that a certain degree of noise does not
necessarily compromise the final performance of
the model; in some cases, it may even enhance
its robustness (Neelakantan et al., 2015; Li et al.,
2020; Wu et al., 2020). The results presented in Fig-
ure 3 and Figure 4 further support this perspective.
We further introduce sparsely coded residual to
reduce for this discrepancy, as discussed in Sub-
section 4.2. Since the computational complexity
of SVD is O(mn x min(m,n)) for a matrix of
m X n elements, the computational complexity
for the SVD operations of VIVE € R%modelxhdy
and VIWE ¢ Rfmoderxhdi can be reduced from
O(h3d3) to O(hd3). As areference, h is set to 32
in LLaMA2-7B.

4.1.2 Fast SVD with Randomized Subspace
Iteration

To further reduce the time consumption on SVD,
we adopt the randomized subspace iteration al-
gorithm proposed by Halko et al. (2011), which
is a fast implementation of SVD. To obtain the
m X r low-rank projection matrix from an m x n
matrix, the randomized subspace iteration can re-
duce the computational complexity from O(mn x
min(m,n)) to O(mn x log(r)). Specifically, the
computational complexity for the SVD operations
of VIW® and VIWX can be reduced from O(hd3)
to O(hd2 x log(r)).

Furthermore, randomized subspace iteration also
reduces memory consumption during fine-tuning.
SVD of an m x n matrix produces three matrices
with the shapes of m x m, min(m,n), and n x n.
However, we only use one matrix of mxm ornxn

to get the low-rank projection matrix. Randomized
subspace iteration only produces a r X r matrix
during SVD, which consumes significantly less
memory. The experiments in Section 5 demonstrate
the advantages of randomized subspace iteration
regarding time efficiency and memory usage.

4.2 Sparsely Coded Residual

The low-rank projection of the gradients can signifi-
cantly reduce the memory consumption during fine-
tuning, along with the low-rank first- and second-
order moments for optimizers. However, the low-
rank projection may not always be the main com-
ponent of practical implementations. For instance,
the low-rank projections are updated every hundred
steps during fine-tuning due to the high computa-
tional complexity of SVD, making it challenging
to apply low-rank projections at every step. More-
over, the cross-head low-rank projection introduces
increased approximation error due to cross-head
sharing and randomized subspace iterations, lead-
ing to less accurate SVD results. Consequently,
the low-rank first- and second-order moments for
the optimizers are also imprecise. To address this,
we estimate the residuals using a sparse represen-
tation, which improves the quality of the first- and
second-order moments.

4.2.1 Low-Rank Approximation Residual of
Moments

Let Gy € R™*™ be the gradient of ¢-th step, and

P, € R™*" be the low-rank projection of ¢-th step,

the residual of low-rank approximation of G is

AG; = Gy — PP G,. (5)

The first- and second-order moments (denoted as
M; and V;, with M;,V; € R™*"™) for common
optimizers, such as Adam, AdaGrad, and AdamW,
are estimated as

My = BiMi—1 + (1 — B1)Gy,

6
Vi =BaVic1 + (1 = B2)G © Gy, ©

where 31 and 35 are decay rates of the moments,
and ® means element-wise multiplication. The
low-rank first- and second-order moments (denoted
as M/ and V}/, with M/, V/ € R"™*™) used in Ga-
Lore are realized by

M =M |+ (1- )P Gy,

V) =BVl + (1= Bo) (P Gy) © (P Gy).
@)



The low-rank approximation residuals of the mo-
ments are

AM; = My - PM}, AV, =V, = BV{. ®

Equation 8 can be extended into the following form
considering Equation 5, 6, and 7,

AM; = B1AM;_1 + (1 — p1)AGy,

AV, & B AViey +2(1 — Bo) (PP Gy) © A((Jgt),
The detailed inference is provided in Appendix A.
Equation 9 depicts the evolution of the low-rank
approximation residual of the moments during fine-
tuning. Thus, we employ two additional variables
in fine-tuning as the estimate of the low-rank ap-
proximation residual, and the two variables update
following Equation 9.

Furthermore, the approximation residual of the
moments leads to bias in parameter updates. The
bias formulation depends on the specific form of
the optimizer, and we use AdamW as an example.
Let AW; and AW/ be the full-rank parameter up-
date and the low-rank reconstruction of W at step
t, then the following equations hold.

My (1-51)
Vi/(1—B5) +¢€

I _ PtMt// (1 - B%)

VRV =B+ €

Then the low-rank approximation error of the up-
date, denoted as d, is

(10)

Y

5 = AW, — AW/

_qt

VAV + RV/)/ (1 - B)) + e

Equation 12 demonstrates the evolution of low-
rank approximation error of the update during fine-
tuning, which is also used in the proposed sparsely
coded residual.

4.2.2 Sparse Indexing Matrix for the
Residuals

We can leverage the residuals in Equation 9 and
Equation 12 to improve the quality of the updates
during the optimization process. However, the
residuals in Equation 9 and 12 are full-rank matri-
ces, i.e., AMy, AV;, 6 € R™*™ consuming enor-
mous memory during fine-tuning. To incorporate
the residuals in memory-efficient PEFT methods,

Algorithm 2 Sparsely Coded Residual of AdamW

1: given time step ¢, gradient G; € R™*", sparse
indexing matrix L € R™*", low-rank pro-
jection P, € R™*" second-order low-rank
moment V;/ € R"™", first- and second-order
moment residuals AM;_1, AV,_1 € R™*",
constant €

: ét < PtPtTGt

: AGy + (G —Gy) O L

AM; «+ B1AM;—1 + (1 = 1) AG;

AVy < BaAVi1 +2(1 = B2)Gr © AGY

: AN+ AM/(1 - BY)

. AV, + AV;/(1 - Bh)

8: 0y AM,/ <\/ptv;/(1 — B4) + AV, + e>

9: return compact residual ;

we employ sparse representations with a sparse
indexing matrix preserving the most significant el-
ements of the residuals.

We introduce a warm-up stage to determine the
sparse indexing matrix essential for efficient fine-
tuning. This warm-up stage occurs during the first
k steps of the fine-tuning process. At the end of
the warm-up stage, the positions for the top-1%
absolute values in the reconstructed first-order mo-
ment (i.e., P;M]) are recorded and used to create
the sparse indexing matrix. This allows the approx-
imation residuals for both moments and updates to
be stored in sparse matrices, significantly reducing
memory requirements. During the warm-up stage,
the residuals are set to 0.

Algorithm 2 presents the whole process for ob-
taining the compact residuals at the ¢t-th ( > k)
step of AdamW. Please note that the proposed
method can also be incorporated into other opti-
mizers with moments, such as Adam and AdaGrad,
to improve the quality of updates with low-rank
approximation.

S Experiments

In this section, we present a series of experiments
to evaluate the effectiveness of CrossLore. We com-
pare our proposed method against a range of base-
lines in fine-tuning the LLaMA2-7B and LLaMA2-
13B models (Touvron et al., 2023), specifically fo-
cusing on tasks related to arithmetic reasoning and
natural language generation, to assess its overall
performance.

Implementation Details. We fine-tune all lay-



Datasets GSMS8k MAWPS

Methods Rank | Time] Mem.] Acc. (%)t | Time] Mem.| Acc. (%)1
LoRA 16 0.53 15.40 25.55 0.38 14.11 47.90
DoRA 16 1.12 14.76 22.84 0.68 13.88 47.48
GalL.ore 16 348 15.33 26.31 2.58 15.06 62.61
CrossLore 16 0.88 15.10 27.47 0.62 14.84 63.87
LoRA 128 0.53 16.99 30.78 0.45 15.64 65.97
DoRA 128 1.18 16.17 29.36 0.72 16.17 66.81
Galore 128 3.50 16.06 33.66 2.61 15.79 64.29
CrossLore 128 0.92 15.73 34.65 0.62 15.44 67.64

Table 1: Comparison of fine-tuning LLaMA?2-7B with different PEFT methods on the GSM8k and MAWPS datasets.
The metrics for fine-tuning time (Time) and memory consumption (Mem.) are ‘hours’ and ‘GB’.

ers of the LLaMA2-7B and LLaMAZ2-13B models,
adding sparsely coded residuals only in the query
and key projections, and load the parameters in
bfloat16 format. For the arithmetic reasoning
task, we evaluate the accuracy on the test set, while
for the natural language generation task, we mea-
sure both the similarity and quality of the gener-
ated text compared to the reference text. All these
experiments on LLaMA2-7B are carried out on
an NVIDIA RTX 4090 GPU with 24GB of mem-
ory, using the Llama-Factory framework (Zheng
et al., 2024) for implementation. Additionally, ex-
periments on LLaMA2-13B are conducted on an
NVIDIA A800 GPU.

Baselines. We apply CrossLore with the follow-
ing baseline methods:

i) LoRA (Hu et al., 2022) enables efficient model
adaptation by freezing the backbone network and
optimizing only low-rank adapters.

ii) GaLore (Zhao et al., 2024) is a memory-
efficient full-parameter fine-tuning method that sig-
nificantly reduces memory usage by projecting gra-
dients onto a low-rank subspace.

iii) DoRA (Liu et al., 2024) builds on LoRA by
decomposing weights into magnitude and direction,
enhancing learning efficiency and stability.

5.1 Arithmetic Reasoning

Setups. For the arithmetic reasoning task, we
utilize the GSM8k and MAWPS datasets to fine-
tune and evaluate the models (Cobbe et al., 2021;
Koncel-Kedziorski et al., 2016). We set the rank r
to 16, 32, 128 and 256 for LoRA, DoRA, Gal ore,
and CrossLore. Detailed hyperparameter settings
are provided in the Appendix B.

Main Results. Table 1 compares the perfor-
mance of CrossLore with other PEFT methods
on the LLaMA?2 models. On the GSM8k dataset,

CrossLore outperforms other PEFT methods in
accuracy at ranks. For instance, at rank 128,
CrossLore achieves an accuracy of 34.65% on the
GSMS8k dataset, when fine-tuning LLaMA2-7B,
surpassing the second-best result of 33.66%. Sim-
ilar trends are observed on the MAWPS dataset,
further demonstrating the superior performance of
CrossLore. The experimental results for LLaMA2-
7B with ranks 32 and 256, as well as those for
LLaMAZ2-13B with ranks 16, 32, 128, and 256, are
provided in the Appendix C.

5.2 Natural Language Generation

Setups. For the natural language generation task,
we fine-tune and evaluate the model using the E2E
dataset (Novikova et al., 2017). We set the rank r
to 16, 32, 128 and 256 for thorough comparison.
We set the number of training epochs to 1 and set
the learning rate to 1 x 1075, We compare the
performance of LoRA, DoRA, GaLlore, and the
proposed CrossLore with a range of metrics, in-
cluding peak memory consumption, BLEU, NIST,
MET, ROUGE-1/2/L, and CIDEr. For detailed ex-
periment settings, please refer to Appendix B.
Main Results. Table 2 presents the experimental
results on the E2E dataset, covering various metrics,
with ‘Mem.” representing peak memory consump-
tion. Notably, CrossLore exhibits a competitive or
superior performance in most metrics compared
to LoRA, DoRA and Gal ore. For instance, with
rank 128, CrossLore achieves better results in terms
of NIST, ROUGE, and CIDEr scores while main-
taining the same memory usage as LoRA, when
fine-tuning LLaMA2-7B. The experimental results
for LLaMA2-7B with ranks 32 and 256, as well as
those for LLaMA2-13B with ranks 16, 32, 128, and
256, are provided in the Appendix C. To further val-
idate the capabilities of CrossLore, we fine-tuned



Methods  Rank Timel Mem.]} BLEU{ NIST{ MET{  ROUGE-1/2/L1  CIDEr]
LoRA 16 282 1392 6029 400 3491 6624/3470/4315 1.20
DoRA 16 497 1388 6039 405 3493 66.26/34.74/4330 1.1
GaLore 16 1853 1507 64.84 496 36.60 70.79/40.62/4890  1.78
CrossLore 16 438 1483 6516 4.96 3694 70.98/40.85/49.05 1.78
LoRA 128 3.02 1543 6460 486 36.74 70.67/4020/4854 1.70
DoRA 128 527 1543 6477 486 3677 70.72/4020/48.62  1.72
GaLore 128 1845 1579 6422 514 3650 70.99/41.19/4937  1.80
CrossLore 128 452 1543 6422 516 36.66 71.07/41.54/49.71 1.82

Table 2: Comparison of fine-tuning LLaMA2-7B with different PEFT methods on the E2E dataset. The metrics for
fine-tuning time (Time) and memory consumption (Mem.) are ‘hours’ and ‘GB’.
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Figure 3: Ablation study on the sparsely coded residual, when fine-tuning LLaMA?2-7B
. The results are obtained by adjusting the proportion of non-zero elements in the sparse indexing matrix.

LLaMA2-7B and LLaMA2-13B on the CNN/DM
and XSum datasets, comparing it against several
other PEFT methods. Detailed results are provided
in Appendix C.

Additionally, Figure 1 compares the time con-
sumption between Gal.ore and CrossLore, when
fine-tuning LLaMA2-7B. One of the key advan-
tages of CrossLore is the negligible time to com-
pute the projection matrices. As a result, the overall
fine-tuning time is reduced by more than 70%, sig-
nificantly accelerating the training process without
compromising performance.

5.3 Ablation Study

To evaluate the effectiveness of the proposed
sparsely coded residual, we conduct experiments
on CrossLore with increasing number of non-zero
elements in the sparse indexing matrix. All hyper-
parameters except for the sparsity of the residuals
are kept unchanged for reasonable ablation. For
robustness of the results, experiments were con-
ducted with four random seeds set for each exper-

iment. The experimental results for LLaMA3-8B
are provided in Appendix D.

Figure 3 presents the results of the comparison,
suggesting that the residuals with more non-zero
elements lead to better performance in most cases
which indicates that the sparsely coded residuals
indeed mitigate projection-induced errors and en-
hance the model’s performance.

6 Conclusions

In this paper, we propose CrossLore, a low-rank
adaptation method with fast yet precise estima-
tion of the low-rank projections. The estimation
is achieved by cross-head low-rank projection and
randomized subspace iteration. We further employ
a sparsely coded residual to further reduce the error
of low-rank approximation, which works on the mo-
ments of the optimizer. Experiments on arithmetic
reasoning and natural language generation indicate
that CrossLore outperforms existing low-rank adap-
tation methods, offering superior performance with
reduced computational complexity.



Limitations

There are two limitations in this work. Firstly, al-
though the experiments validate that sharing low-
rank projection matrices across heads in multi-head
attention can be efficient, additional theoretical
analysis is needed to measure the preciseness of
such sharing. Secondly, we employ sparse matri-
ces to store the approximation errors of first- and
second-order moments and weight updates. How-
ever, all these sparse matrices share the same index-
ing matrices. Although experiments indicate that
the current design is effective, the shared indexing
matrices estimated from the first-order moment can
be further improved.
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A Proof of Sparsely Coded Residual

The origin of errors and the calculation of sparsely
coded residual are analyzed, using AdamW as an
example.

First-order moment (denoted as M;, with M; €
R™*™) can be regarded as the sum of first-order
moment projected back onto the original space and
the error (denoted as AM;, with AM,; € R™*"™),
Similarly, the gradient (denoted as Gy, with G €
R™*™) can be viewed as the sum of the gradient
projected back onto the original space and the error
(denoted as AGy, with AG; € R™*™):

M; = P,P," M; + AM;,
Gy = PP G, + AG,,

(13)
(14)
where P; represents the projection matrix at step
t. Therefore, the first-order moment updates are
shown in Equation 15.
My =p1 M1 + (1 = 31)Gy
=p1P1 P, My + (1 - B1) PP, Gy

+ B1AM—1 + (1 — B1)AG,, (15)

The low-rank first-order moments (denoted as

M] = P,’ My, with M] € R"™") used in GaLore
are realized by:

M! =pM |+ (1- )P G, (16)

The low-rank approximation error of the first-order
moment is

AM, =M, — P,M!
=B1(P_1 — P)P [ M,_1 + By AM,;_,
+ (1 = p1)AG;. (17)
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The projection matrix P; is updated every few hun-
dred steps, thus, outside of these updates, P;_; re-
mains equal to ;. When F; is updated, the weight
updates AW; are so small that P;_; ~ P;, simi-
lar to the discussion in Section 4.1.1. Therefore,
the low-rank approximation error of the first-order
moment is

AM; =~ B1AM;—1 + (1 — p1)AG;. (18)

Similarly, the update process for the second-order
moment is as follows:

Vi = PPV, + AV, (19)

Vi =B2Vic1 + (1 = B2)G © Gy
=BoP, 1P Vi
+ (1= B2) (PP Gy) © (PP Gy) + B2AV,

+ (1 — B2) [AGt © AG; +2(PP] Gy) © AGy |

(20)

V! = BV 4+ (1= B2) (P G1) O (P Gy), (21)

AV, =V, — PV/

~BAVi_1 +2(1 — B2) (PP, Gy) © AG,
+ (1= B2) [AG © AGy
+ (PP, Gy) © (PP Gy)
— PP/ Gy) © (P Gy)]

~BAVi_1 + 2(1 — B2) (PP, Gy) © AG,
+ (1 - B) (PP Gy @ (PP Gy)
— P(PGy) © (P Gy)]. (22)

AV, can be approximated as 0. The expression
(PP Gy) © (PP Gy) = P(P Gy) © (P Gy) is
only a part of AV}, and its value is quite small.
Moreover, considering the significant computa-
tional burden associated with this part, we neglect
its calculation:

AV, = B AV, 1 + 2(1 — B2) (PP Gy) ® AG,.

Thus, the parameter update can be expressed as


https://openreview.net/forum?id=AzqPyO22zt
https://openreview.net/forum?id=AzqPyO22zt
https://openreview.net/forum?id=AzqPyO22zt

follows:

M, /(1 - B})
VVi/(1—B5) +e
. AM; + M;

AV, + Vi +e

ZL-&- [Mt<\/;t—\/A‘7i+‘7t>

Vi—i—e

+AMt<\/;t+e>]
/[(\/AVH—VH%) <ﬁ+e”

(23)

AW, =

where
AM; = AM,/ (1 - B), My = PM]/ (1 - BY)

AV, can be approximated as 0, so the Equation 23
can be approximated as:

M, AM,
AWt ~ — ! + = tA

Vite AVi+Vite
M,

= —=—+6, 24)
Vi+e

where 0, is the residual neglected by GaL.ore:
AM
6 = : (25)

VAV + Vi + ¢
B Details of Experiment

We fine-tuned the LLaMA2-7B model to validate
the effectiveness of CrossLore. All experiments
were conducted on an NVIDIA RTX 4090 GPU
using the Llama-Factory framework. Detailed hy-
perparameter settings are provided in Table 3.

We fine-tuned the LLaMA?2-13B model to val-
idate the effectiveness of CrossLore. All experi-
ments were conducted on an NVIDIA A800 GPU
using the Llama-Factory framework. Detailed hy-
perparameter settings are provided in Table 4.

C Additional Experimental Results

We have conducted additional experiments to in-
vestigate the effectiveness of CrossLore. We have
included two foundation models (i.e., LLaMA2-
7B and LLaMA2-13B), and state-of-the-art PEFT
methods as the baseline, with detailed experimental
results presented in Table 5, 6, 7, 8 and 9.
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As shown in Table 5, 6, 7, 8 and 9, CrossLore
consistently achieves comparable or superior re-
sults across various scenarios. Experimental re-
sults show that the proposed method is specifically
effective in low-data fine-tuning scenarios, which
outperforms LoRA and other fine-tuning methods
significantly.

D Results of Ablation Study

To validate the effectiveness of the sparsely coded
residual, we also fine-tuned LLaMA3-8B with
residuals incorporated at varying proportions. The
experimental results are presented as shown in Fig-
ure 4

The experimental results in Figure 3 and Fig-
ure 4 were obtained using 4 random seeds, with the
standard deviations reported in Table 10.



Dataset E2E GSM8k MAWPS
Rank 16 32 128 256 | 16 32 128 256 |16 32 128 256
Batch Size 1 1 1
Epochs 1 1 3
LearningRate 1E-06 1E-06 1E-06
LR Schedul cosine cosine cosine
o 32 32 128 64 |32 32 64 32 |32 16 32 32
Optimizer AdamW8bit AdamWS8bit AdamW8bit
Residual Ratio 1.2% 1.2% 1.2%

Table 3: Hyperparameters on three benchmarks for the LLaMA2-7B model.

Dataset E2E GSMS8k MAWPS
Rank 16 32 128 256 |16 32 128 256 | 16 32 128 256
Batch Size 4 1 1
Epochs 1 1 3
Learning Rate 1E-06 1E-06 1E-06
LR Schedule cosine cosine cosine
« 32 32 128 64 32 32 32 64 64
Optimizer AdamW8bit AdamW8bit AdamW8bit
Residual Ratio 1.2% 1.2% 1.2%

Table 4: Hyperparameters on three benchmarks for the LLaMA2-13B model.

Datasets GSMS8k MAWPS

Methods Rank | Time] Mem.] Acc. (%)T | Timel Mem.| Acc. (%)t
LoRA 32 0.53 15.65 23.30 0.40 14.36 45.80
DoRA 32 1.15 15.01 21.08 0.69 15.01 44.96
Galore 32 3.48 15.42 26.46 2.59 15.15 58.40
CrossLore 32 0.88 15.23 29.11 0.62 14.91 60.50
LoRA 256 0.55 18.79 33.36 04 17.60 61.76
DoRA 256 1.24 18.12 33.59 0.76 18.12 62.18
GaLore 256 3.53 16.66 31.92 2.66 16.39 63.03
CrossLore 256 0.92 15.74 33.81 0.69 16.12 65.55

Table 5: Comparison of fine-tuning LLaMA2-7B with different PEFT methods on the GSM8k and MAWPS datasets
at ranks 32 and 256. The metrics for fine-tuning time (Time) and memory consumption (Mem.) are ‘hours’ and
‘GB’.
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Datasets GSM8k MAWPS
Methods Rank | Time] Mem.] Acc. (%)t | Time] Mem.| Acc. (%)t

LoRA 16 0.73 27.59 30.46 0.50  26.14 54.20
DoRA 16 1.70  26.67 31.22 1.04 26.21 54.20
GalLore 16 7.18 28.01 35.18 5.39 27.82 58.40
CrossLore 16 1.22 27.83 36.24 0.79 27.49 62.18
LoRA 32 0.73 27.96 32.01 0.50  26.50 55.04
DoRA 32 1.68 27.04 32.12 1.03 26.57 53.78
GaLore 32 7.08 28.14 36.24 5.34 27.94 61.34
CrossLore 32 1.22 27.93 37.98 0.80 27.59 63.87
LoRA 128 0.77 30.11 33.99 0.53 28.77 54.62
DoRA 128 1.78 28.98 32.68 1.09 28.70 54.62

Galore 128 7.20 29.28 40.03 5.39 28.99 65.13
CrossLore 128 1.37 28.90 41.24 0.91 28.54 69.75
LoRA 256 0.80 33.08 34.72 0.55 31.62 62.18
DoRA 256 1.83 31.88 33.59 1.14 31.72 62.18
Galore 256 7.25 30.06 37.15 5.50 29.87 62.18
CrossLore 256 1.54 29.79 42.20 1.06 29.45 66.39

Table 6: Comparison of fine-tuning LLaMA2-13B with different PEFT methods on the GSM8k and MAWPS
datasets. The metrics for fine-tuning time (Time) and memory consumption (Mem.) are ‘hours’ and ‘GB’.

Methods  Rank Time) Mem.]} BLEU{ NISTT MET{  ROUGE-1/2/L1  CIDEr]

LoRA 32 2.94 14.17 62.47 4.58 35.07 69.16/38.00/46.24 1.46
DoRA 32 5.14 14.13 62.63 459 3511 69.25/38.07/46.31 1.47
GaLore 32 18.57 15.15 64.95 496 3692 70.99/40.77/49.15 1.77
CrossLore 32 4.41 14.92 65.15 497 3732 71.17/41.06/49.38 1.78
LoRA 256 3.01 17.43 64.93 494  36.81 70.92/40.66/49.01 1.76
DoRA 256 5.61 17.67 64.94 4.95 36.81 70.94/40.72/49.04 1.77

GaLore 256 1842 16.39 64.97 5.10 36.84 71.19/41.34/49.26 1.82
CrossLore 256  4.86 16.19 64.99 511  36.88 71.15/41.40/49.45 1.83

Table 7: Comparison of fine-tuning LLaMA2-7B with different PEFT methods on the E2E dataset at ranks 32 and
256. The metrics for fine-tuning time (Time) and memory consumption (Mem.) are ‘hours’ and ‘GB’.

GSM8k MAWPS E2E
72 84 54.4
== Galore == Galore == Galore
71 4 3 CrossLore s [ CrosslLore 3.30 83.40 54.31 =3 Crosslore =TT
69.94 70.02 7019 831 52.08 B B - 54:176
_ 6983 6% T e Eeg e n] {8277 &L ek b {1 8 54.12254.13554.139
8 & w 54149 -
> 6971 > S 54,035 f=o == F = J==L.
© © 821 8 54.01 -~
g 1 g > 53.97 -
< < g >
4 - (9]
67 8l — z 5387~
661 - - 53.74 -
65 T T T T 80 T T T T 53.6 T T T T
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Figure 4: Ablation study on the sparsely coded residual, when fine-tuning LLaMA3-8B. The results are obtained by
adjusting the proportion of non-zero elements in the sparse indexing matrix.
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Methods  Rank Time) Mem.]} BLEU{ NIST{ MET{  ROUGE-1/2/L1  CIDEr]
LoRA 16 203 2841 6250 454 3573 68.53/36.89/4505 137
DoRA 16 417 2821 6241 454 3566 68.42/36.89/45.02 1.36
GaLore 16 1129 2852 6514 482 37.13 70.80/40.50/48.64  1.74
CrossLore 16 275 2822 6546  4.85 37.56 71.02/40.90/4923 175
LoRA 32 202 2879 6292 465 3553 69.52/3838/4626  1.50
DoRA 32 417 2858 6287 464 3544 69.38/3830/4620  1.50
GaLore 32 1123 2865 6545 487 3740 71.04/40.81/4891 176
CrossLore 32 277 2833 6555 4.89 37.59 71.18/41.11/49.18 1.78
LoRA 128 198 3008 6490 477 37.05 70.67/40.08/48.18 1.67
DoRA 128 433 3030 64.82 477 37.02 70.65/40.03/48.14  1.67
GaLore 128 1141 2964 6479 508 3696 71.13/4134/4934  1.80
CrossLore 128 297 2939 6519 5.09 37.10 71.27/41.50/49.60 1.84
LoRA 256 2.18 33.15 65.02 482 37.12 70.81/4040/4848 1.71
DoRA 256 442 3341 6507  4.83  37.19 70.90/40.47/4861 1.72
GaLore 256 11.58 30.57 6512 498 37.13 71.08/4135/4935 1.82
CrossLore 256 322 3020 6519 505 37.28 71.29/41.49/49.53 1.82

Table 8: Comparison of fine-tuning LLaMA2-13B with different PEFT methods on the E2E dataset. The metrics for
fine-tuning time (Time) and memory consumption (Mem.) are ‘hours’ and ‘GB’.

CNN/DM XSum

Models Methods R0t R2T RLT | Time] R1T R2] RLT
LoRA | 037 31.68 1145 21.85| 025 3725 1346 2950

DoRA | 0.68 3198 11.57 2201 | 050 3752 1353 2991

LLaMAZTB | olore | 118 3364 1298 2427 | 104 4024 1607 32.92
CrossLore | 0.70 33.76 13.02 2340 | 036 40.36 16.25 33.00

LoRA | 051 3277 12.14 2298 | 035 39.15 1511 31.53

DoRA | 094 3269 1200 23.10| 071 3938 1540 31.72

LLaMA2-I3B | 5 lore | 223 3365 1306 2433 | 203 4254 18.08 35.15
CrossLore | 0.65 34.05 1325 24.44 | 049 4270 18.06 35.26

Table 9: Comparison of fine-tuning LLaMA2-7B and LLaMA2-13B with different PEFT methods at rank 32 on the
CNN/DM and XSum datasets. The metrics for fine-tuning time is "hours’. R-1, R-2, and R-L are abbreviations for
ROUGE-1, ROUGE-2, and ROUGE-L, respectively.

Datasets Models 0.0 0.6 1.2 1.8
GSMSK LLaMA2-7B | 33.64 (£0.97) 33.70 (£1.00) 33.80 (£0.69) 34.37 (£0.83)
LLaMA3-8B | 69.57 (£0.76) 69.94 (£0.83) 70.02 (£0.59) 70.19 (£0.54)
MAWPS LLaMA2-7B | 65.02 (£2.80) 65.13 (£0.51) 66.10 (£1.77) 66.18 (£1.34)
LLaMA3-8B | 82.77 (£0.59) 82.98 (£0.63) 83.30 (£1.00) 83.40 (£1.91)
EIE LLaMA2-7B | 53.966 (£0.113) | 54.033 (£0.168) | 54.035 (£0.042) | 54.038 (£0.113)
LLaMA3-8B | 54.122 (£0.098) | 54.135 (£0.077) | 54.139 (£0.086) | 54.176 (+0.080)

Table 10: Ablation study on the sparsely coded residual across different datasets, with proportions 0.0, 0.6, 1.2, and
1.8%.
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