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ABSTRACT

High-content screening (HCS) assays based on high-throughput microscopy tech-
niques such as Cell Painting have enabled the interrogation of cells’ morphological
responses to perturbations at an unprecedented scale. The collection of such data
promises to facilitate a better understanding of the relationships between differ-
ent perturbations and their effects on cellular state. Towards achieving this goal,
recent advances in multimodal contrastive learning could, in theory, be leveraged
to learn a unified latent space that aligns perturbations with their corresponding
morphological effects. However, the application of such methods to HCS data is
not straightforward due to substantial technical artifacts and the difficulty of rep-
resenting different classes of perturbations (e.g. small molecule vs CRISPR gene
knockout) in a single latent space. In response to these challenges, here we intro-
duce CellCLIP, a multi-modal contrastive learning framework for HCS data. Cell-
CLIP leverages pre-trained image encoders coupled with a novel channel encoding
scheme to better capture relationships between different microscopy channels in
image embeddings, along with natural language encoders for representing pertur-
bations. Our framework outperforms current open-source models, demonstrating
the best performance in both profile-to-perturbation and perturbation-to-profile re-
trieval tasks while also achieving significant reductions in computation time. Code
for our reproducing our experiments is available at www.placeholder.com.

1 INTRODUCTION

A grand challenge in cellular biology is understanding the impacts of different perturbations, such
as exposure to chemical compounds or gene knockouts, on cellular function. In pursuit of this goal,
a number of high-content screening (HCS) assays have been developed that combine image-based
deep phenotyping with high-throughput perturbations (Gu et al., 2024; Kudo et al., 2024). For
example, the Cell Painting assay (Bray et al., 2016) has been leveraged to profile cells’ response to
chemical and genetic perturbations (Sivanandan et al., 2023; Ramezani et al., 2025).

Despite the promise of this data, extracting meaningful quantitative representations of cellular states
from morphological profiles presents a formidable challenge. Traditional analyses of image-based
cellular profiles extracted sets of domain-expert-crafted morphological features implemented in
tools like CellProfiler (Caicedo et al., 2017; Carpenter et al., 2006). More recent works have found
that self-supervised deep learning methods based on DINO models (Caron et al., 2021; Oquab et al.,
2023) or masked autoencoders (MAEs; He et al. (2022)) can capture more subtle changes in cellular
morphology, resulting in representations that better agree with known biology.

In order to more explicitly capture the relationships between perturbations’ effects on cellular state, a
recent line of work has applied multi-modal contrastive learning techniques (Radford et al., 2021) to
learn unified representations of both perturbation labels and imaging readouts for Cell Painting data.
In particular, recent work has leveraged contrastive learning techniques by treating images and their
corresponding perturbation labels as paired samples from different modalities (Fradkin et al., 2024;
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Figure 1: Overview of our proposed framework: CrossChannelFormer (left) processes channel em-
beddings; CellCLIP (right) employs contrastive learning with (profile, perturbation) pairs.

Sanchez-Fernandez et al., 2023). By leveraging the learned representations of perturbations, such
methods enable the systematic identification of perturbations with similar morphological effects.
Moreover, post-training, these models’ perturbation encoders can be queried for novel perturbations
not present in the training data to predict the effects of new perturbations.

Despite their promise, previous contrastive learning methods for Cell Painting come with signifi-
cant drawbacks. For example, microscopy image data exhibits substantial differences from natural
images, such as a variable number of channels and less information shared between different chan-
nels compared to standard RGB images; however, existing methods either fail to account for these
differences (Sanchez-Fernandez et al., 2023) or are not openly available to the community (Frad-
kin et al., 2024). Moreover, previous works have exclusively focused on chemical perturbations,
relying on graph representation learning techniques applied to chemical structures to learn pertur-
bation representations. Thus, these methods cannot be applied to other classes of perturbations (e.g.
CRISPR-mediated gene knockouts), and it is unclear how to represent perturbations from different
classes in the same input space for contrastive learning.

To address these challenges, we propose CellCLIP (Figure 1), a contrastive learning framework
designed to account for the unique challenges in Cell Painting perturbation data. Our framework
employs off-the-shelf pretrained vision models combined with a novel channel-encoding scheme to
account for different information in Cell Painting channels when embedding cellular images, and
leverages natural language encoders for representing cells’ corresponding perturbations. By using
natural language to encode perturbations, CellCLIP can be readily applied to arbitrary classes of
perturbations. Moreover, by using publicly available pretrained vision and natural language en-
coders, CellCLIP can be easily applied to new datasets without requiring costly training of image or
perturbation encoders from scratch.

We benchmark CellCLIP on profile-perturbation retrieval for unseen compounds (Bray et al., 2016)
and its ability to recover biological relationships via perturbation matching (Chandrasekaran et al.,
2024). Our results show that CellCLIP achieves strong performance while using readily available
off-the-shelf components. Our method also shows promising results in cross-perturbation class
matching, providing a scalable and effective solution for biological discovery.

2 BACKGROUND

Representation Learning for Cell Painting Self-supervised learning (SSL) deep learning tech-
niques have been successfully applied to experimental microscopy data, with recent studies demon-
strating their ability to capture intricate details of cellular morphology (Sivanandan et al., 2023;
Doron et al., 2023) better than hand-crafted features as implemented in CellProfiler (Carpenter et al.,
2006). Initial applications of SSL methods to Cell Painting reiled on architectures designed for nat-
ural RGB images, where information across channels exhibits strong correlations. On the other
hand, Cell Painting channels each capture distinct biological structures (e.g. actin via phalloidin,
mitochondria via MitoProbe etc.). To account for this, recent works (Bao et al., 2023; Kraus et al.,
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2024) have proposed so-called channel-agnostic vision transformers (CA-ViTs) that use separate
tokens for each channel in a spatial patch rather than aggregating information across all channels.
However, CA-ViTs significantly increase computational costs due to increased number of tokens1.

Multi-modal Contrastive Learning Multi-modal contrastive learning methods such as CLIP
(Radford et al., 2021) learn joint latent representations across modalities (e.g. text and image).
Such methods optimize a symmetric contrastive loss to maximize the similarity between correct
pairs while minimizing it for incorrect ones. Specifically, given a batch of N image-text pairs
{(Ii, Ti)}Ni=1, let f(I) and g(T ) be the normalized embeddings of an image and text, respectively.
Their similarity is defined as, sij =

f(Ii)·g(Tj)
τ where τ is a learnable temperature parameter. The

CLIP loss consists of two cross-entropy objectives for image-to-text and text-to-image alignment:

LCLIP =
1

N

N∑
i=1

[
− log

exp(sii)∑N
j=1 exp(sij)

− log
exp(sii)∑N
j=1 exp(sji)

]
(1)

While contrastive learning excels in cross-modality alignment, several challenges remain in its ap-
plication to Cell Painting perturbation data. First, while a thorough body of work exists studying
encoding (tokenization) strategies for natural images and natural language (Sennrich, 2015; Wu,
2016; Alexey, 2020), encoding strategies specifically designed for cellular perturbations and Cell
Painting images remain largely underexplored. Second, perturbations in Cell Painting experiments
can span a variety of classes, including chemical perturbations, gene knockouts, and open reading
frames (ORFs). Yet, existing contrastive learning approaches for Cell Painting, such as CLOOME
(Sanchez-Fernandez et al., 2023) and MolPhenix (Fradkin et al., 2024) have exclusively focused on
chemical peturbations, limiting their applicability. Lastly, model weights for some recent state of
the art methods (e.g. (Fradkin et al., 2024)) are not openly available, and training these models from
scratch is prohibitively expensive, requiring large datasets and significant GPU resources.

3 METHOD

In this section we introduce CellCLIP, our multi-modal contrastive learning framework for learning
a unified latent space of perturbations and corresponding Cell Painting images. We begin by describ-
ing our strategy for encoding Cell Painting images in a manner suitable for applying the contrastive
loss with perturbation labels (Section 3.1); due to substantial technical effects in optical perturbation
screens, this encoding must be done with care, and we cannot naively reuse strategies from natural
images. We then proceed to describe our strategy for encoding perturbations (Section 3.2), and for
training the model (Section 3.3).

3.1 CELL PAINTING IMAGE ENCODING

Image Profiles. Recent works have developed image foundation models trained on natural im-
ages, such as DINOv2 (Oquab et al., 2023), which have demonstrated strong capabilities in cap-
turing global structural image features. Rather than training new models from scratch, we choose
to adopt these pretrained models as image encoders in the CellCLIP framework. However, unlike
natural images with the standard set of RGB channels, Cell Painting images contain a variable num-
ber of channels corresponding to the specific stains used in an experiment. To work around this
difference and enable models trained on natural images to be applied to Cell Painting data, we treat
each Cell Painting channel as an independent grayscale image and extract embeddings separately.
Formally, for each perturbation i we denote the collection of Cell Painting images corresponding to
that perturbation as Xi = {xk}Ni

k=1, where xk ∈ RC×H×W denotes an individual image. For each
image xk, we may apply a feature extractor ϕθ that maps individual channels xc

k to an embedding,
zck = ϕθ(x

c
k) ∈ Rm. This produces a channel-wise embedding matrix,

zk = [z1k, z
2
k, . . . , z

C
k ]T ∈ RC×m. (2)

As in previous work (Caicedo et al., 2018), we refer to this matrix as the profile of a Cell Painting
image.

1For an image of size h× w with c channels, CA-ViTs produce h×w
p2

× c tokens assuming a patch size p.
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Mean Perturbation Profiles. The standard CLIP model aligns pairs of natural images and corre-
sponding text annotations. However, attempting to align individual Cell Painting image profiles and
corresponding perturbation annotations as done by CLOOME (Sanchez-Fernandez et al., 2023) may
produce subpar results. Beyond standard pathologies with the contrastive loss, such as false neg-
ative pairs, Cell Painting perturbation screens have a number of technical issues that may impede
successful model training. For example, due to variable guide efficiency, cells with guide RNA bar-
codes corresponding to a specific gene knockdown may not have truly undergone the corresponding
perturbation (Papalexi et al., 2021; Weinberger et al., 2024). Similarly, cells exposed to chemical
perturbations may have highly varied responses (or no response at all) due to their position in a
microscope well rather than properties of the chemical (Wang et al., 2023).

To work around these issues, similar to Fradkin et al. (2024), we instead choose to align each per-
turbation with an aggregated summary of all images labeled with the perturbation. In particular, we
compute the mean profile of a perturbation i:

µ(Xi) =
1

Ni

Ni∑
k=1

zk, (3)

where zk was defined in Equation (2). By aggregating information across cells receiving the same
perturbation, we may mitigate noise in individual cells’ responses and facilitate more stable training.

CrossChannelFormer. Beyond a different number of channels, the relationships between Cell
Painting image channels exhibit substantial differences compared to natural image channels. In
particular, while natural image channels share a significant amount of information, Cell Painting
image channels correspond to stains that each highlight distinct, semantically independent aspects
of cellular morphology. Thus, to effectively learn meaningful embeddings of Cell Painting images,
it is necessary to explicitly reason between information in different channels (Bao et al., 2023).

To accomplish this task while minimizing computational costs, we introduce CrossChannelFormer, a
specialized encoder for CellCLIP (Figure 1). Unlike the standard Vision Transformer (ViT; (Alexey,
2020)), where each input token represents a multi-channel image patch, CrossChannelFormer takes
as input mean profiles (Equation (3)) that encode the global cellular features associated with a spe-
cific stain. Following Bao et al. (2023), we then introduce a set of learnable channel embeddings,
[chn1, . . . ,chnC ], where each chnc ∈ Rd encodes information unique to its respective channel.
We then prepend a learnable classifier token cls ∈ Rd to the sequence, which aggregates global
image features across all channels. The resulting input sequence to the transformer is:

[cls, µ(Xi)
1 + chn1, µ(Xi)

2 + chn2, . . . , µ(Xi)
C + chnC ], (4)

where µ(Xi)
c corresponds to the cth channel of µ(Xi). Following the original ViT, we feed the

above sequence into a Transformer encoder. The Transformer encoder consists of alternating layers
of multi-head self-attention and MLP blocks, with layer normalization applied before each block
and residual connections established after each block. The final layer representation of the CLS
token serves as the projection in the latent space.

Altogether, our proposed framework provides two major advantages over previous encoding
schemes for Cell Painting images. First, our approach allows us to reuse off-the-shelf vision en-
coders pretrained on natural image data, which are far more plentiful than specialized models pre-
trained on Cell Painting images. Second, our CrossChannelFormer method allows us to capture the
relationships between information in different CellPainting channels with only C +1 tokens, which
is far more computationally efficient compared to previously proposed CA-ViT methods.

3.2 PERTURBATION ENCODING

Previous contrastive learning methods for Cell Painting rely on perturbation-class-specific encoders
to represent perturbation treatments. For instance, CLOOME (Sanchez-Fernandez et al., 2023) en-
codes chemical compounds by passing Morgan fingerprints (Morgan, 1965) through a simple multi-
layer perceptron (MLP). This setup is not ideal, as different perturbation types (e.g. chemical com-
pound vs gene knockouts) require distinct encoder networks, making it challenging to incorporate
data from multiple perturbation types into the contrastive learning process.
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To address this, we adopt a simple approach—representing each perturbation using text. Since most
perturbations and their associated metadata can be effectively captured through textual descriptions,
text serves as an efficient intermediate modality for generalizing across multiple perturbation types.
We construct a corresponding text prompt t ∈ Rdt that encodes information on cell types and
perturbation-specific details. For example, to encode the chemical compound ethotoin, an anticon-
vulsant used in the treatment of epilepsy, we use the prompt:

”A cell painting image of U2OS cells treated with ethotoin,

with SMILES string: CCN1C(=O)NC(C1=O)C1=CC=CC=C1.”
Similarily, for a CRISPR perturbation, the prompt is structured as:

“A cell painting image of U2OS cells treated with CRISPR, targeting genes: AP2S1.”

By representing perturbations as text prompts, our approach facilitates encoding arbitrary pertur-
bations from different classes, simplifying training across diverse perturbation types. It can also
potentially integrate relevant textual metadata, enhancing perturbation retrieval across experiments.

For the text encoder, we utilize a pretrained BiomedicalCLIP (Zhang et al., 2023) text encoder which
is adapted from a domain-specific language model PubMedBERT (Gu et al., 2021).

3.3 CELLCLIP TRAINING

For CellCLIP training, we adopt the contrastive loss to align profile and text embeddings of the same
perturbation while separating those of different perturbations. Given a batch of N paired mean Cell
Painting profile embeddings and their corresponding perturbation (text) inputs, (zi, ti), we compute
their embeddings using a profile encoder f(·) and a perturbation encoder g(·), respectively. The
similarity score between a profile zi and a perturbation text, tj is then defined as, si,j =

f(zi)·g(tj)
τ .

We then apply the loss calculation as described in Equation (1).

4 EXPERIMENT SETUP

In this section, we describe the datasets and tasks used to evaluate our framework.

4.1 PERTURBATION-PROFILE RETRIEVAL

We first benchmarked CellCLIP’s performance by assessing its ability to retrieve test set perturba-
tions given corresponding Cell Painting image profiles treated with each perturbation. That is, for
a given model we compute perturbation projections along with corresponding mean Cell Painting
profile projections in the shared latent space. Given the mean Cell Painting profile embeddings, we
then compute cosine similarities with all perturbations’ embeddings in the test set and retrieve the
top-k most similar perturbations; ideally, the image profile’s true perturbation should be contained
in this nearest neighbors set. Our evaluation metric, Recall@k (R@k), measures whether the cor-
rect perturbation appears in the top-k retrieved results, with k = 1, 5, 10. We denote this task as
profile-to-perturbation retrieval

Swapping the roles of perturbations and Cell Painting profiles, we may similarly evaluate
perturbation-to-profile retrieval, where, given a perturbation embedding, we compute similarities
with mean Cell Painting profile embeddings. For this task we again use Recall@k for evaluation.

4.2 PERTURBATION DETECTION AND MATCHING

To further assess CellCLIP’s ability to identify meaningful biological relationships, we also evalu-
ated its image embeddings via the following tasks defined by Chandrasekaran et al. (2024):

• Perturbation detection assesses replicability, measuring how well replicates across
batches of a given perturbation can be distinguished from negative controls.

• Perturbation matching evaluates biological relevance by identifying perturbations that
target the same genes that would induce similar cellular morphological changes. This in-
cludes comparisons within the same perturbation class (e.g., compound-compound) and
across different classes (e.g., CRISPR-compound).
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Following Chandrasekaran et al. (2024) and Kalinin et al. (2024), we use average precision (AP) as
our primary evaluation metric, defined as:

AP =

n∑
k=1

(Rk −Rk−1)Pk (5)

where Pk and Rk denote the precision and recall at rank k, respectively, based on cosine similarity
between query profiles. The ranking is determined by sorting profiles in descending order of cosine
similarity to the query. To assess statistical significance, we perform permutation testing by shuf-
fling rankings 100,000 times to construct a null distribution. We then apply multiple comparison
corrections (Benjamini & Hochberg, 1995) and filter out non-significant AP values. For each per-
turbation replicate in different batches, we compute AP scores, which are then averaged to obtain
a mean average precision (mAP) score representing the perturbation’s phenotypic activity. Finally,
we use mAP across classes, defined by specific perturbations or gene associations, to evaluate the
performance in both tasks.

4.3 DATASETS

For retrieval tasks, following Sanchez-Fernandez et al. (2023), we utilize the dataset from Bray
et al. (2016). This dataset consists of 919,874 five-channel Cell Painting images corresponding to
30,616 small-molecule perturbations. We partitioned the dataset into train, validation, and test sets
with a 70/10/20 split, resulting in 2115 unseen small molecules in the test set.

For perturbation detection & matching, we employ CPJUMP1 (Chandrasekaran et al., 2024),
which features 186,925 nine-channel microscopy images.These images include three bright-field
channels in addition to six Cell Painting dye channels. They are perturbed across 650 distinct per-
turbations, including compounds and genetic modifications such as CRISPR and ORF interventions.
For each perturbation class, we applied a 70/10/20 split for training, validation, and testing.

Further details about datasets and preprocessing can be found in Appendix A.

4.4 IMPLEMENTATION DETAILS

Profile & Perturbation Encoding We utilized a series of pre-trained models (Appendix B) to gen-
erate profiles following the encoding strategy described in Section 3.1. For generating text prompts,
we adopted the template: ”A {cell type} treated with {perturbation}, with {detailed perturbation
information, such as SMILE or target genes}”.

CellCLIP Backbone Our CrossChannelFormer backbone consists of a transformer model with 12
layers, 8 attention heads, and a 512-dimensional embedding space. For the text encoder, we employ
the pre-trained PubMedBERT from BiomedCLIP (Zhang et al., 2023) from Microsoft Research.

Model Training For retrieval evaluation on Bray et al. (2016), CellCLIP was trained with 50
epochs using a batch size of 768 and an AdamW optimizer. The learning rate was set at 2e−4

with cosine annealing and restart. The temperature parameter, τ , is initialized from the pretrained
BiomedicalCLIP. For perturbation detection and matching in CPJUMP1 (Chandrasekaran et al.,
2024), given the limited number of unique perturbations, we reused our model trained on the Bray
et al. (2016) dataset and fine-tuned it for another 50 epochs, using the same parameter settings as
during their initial training. More details about training CellCLIP and other baselines can be found
in Appendix B.

5 RESULTS

5.1 EACH COMPONENT OF CELLCLIP IMPROVES ALIGNMENT

We began by assessing the effectiveness of CellCLIP’s approaches for encoding perturbations
and mean Cell Painting profiles by evaluating their impact on retrieval performance for unseen
molecules. In particular, starting with CLOOME’s proposed encoding scheme, where individual
images encoded using ResNet50 are aligned with chemical perturbations encoded using Morgan
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Vision Encoder Perturb. Encoder Train time (hr) Chem-to-Profile (%) Profile-to-Chem (%)
R@1 R@5 R@10 R@1 R@5 R@10

ResNet50 Morgan Fingerprint + MLP 48.3 0.56 1.37 2.31 0.23 0.91 1.41
ResNet50 PubMedBERT 48.3 0.56 2.11 3.10 0.24 1.96 3.84
CrossChannelFormer PubMedBERT 10.2 0.56 2.26 3.44 0.56 2.26 4.34

CrossChannelFormer (M) PubMedBERT 1.4 1.08 3.68 6.01 1.05 3.78 5.76
M: Mean perturbation profiles used for alignment rather than individual images.

Table 1: Retrieval performance of different vision and perturbation encoder combinations for Chem-
to-Profile and Profile-to-Chem tasks on 2,115 unseen small molecules. We evaluate retrieval using
mean-pooled Cell Painting image embeddings, reporting recall at rank 1, 5, and 10. The channel
profiles for CellCLIP training are generated from DINOv2 as described in Equation (2).

fingerprints combined with an MLP, we gradually replaced each of CLOOME’s components with
those of CellCLIP and assessed each change’s impact on model performance (Table 1).

We first found that replacing the Morgan fingerprint encoder with our proposed natural language
approach significantly improved retrieval performance, suggesting that perturbation information can
indeed be effectively captured through textual descriptions. We next replaced CLOOME’s ResNet50
encoder from with our CrossChannelFormer method for capturing relationships across different Cell
Painting channels, and we found that this change again leads to a substantial improvement in retrieval
performance. This results illustrates the importance of explicitly accounting for the relationships
between different channels when learning embeddings of Cell Painting images. Notably, beyond
providing an increase in performance, this change also resulted in substantially reduced training
time, with 4.8 times faster training compared to the original CLOOME model.

Finally, we considered the impact of using mean Cell Painting profiles for each perturbation during
training rather than attempting to align individual Cell Painting images. We found that this change
led to yet another jump in performance while further reducing training time.

Altogether, these results demonstrate that each component of our CellCLIP framework contribute to
significantly stronger retrieval performance.

5.2 EFFECTS OF DIFFERENT IMAGE PROFILE ENCODING

CellCLIP provides a flexible framework for integrating off-the-shelf pretrained image foundation
models into Cell Painting analyses (Section 3.2). To understand the impact of different vision en-
coding backbones on CellCLIP’s performance, we conducted an ablation study where we varied
CellCLIP’s image encoder while holding all other aspects of our framework constant. Specifically,
for this experiment we considered DINOv1 along with DINOv2 models of varying sizes. Align-
ing with results for natural images, we found that increases in model size broadly led to increased
performance on our retrieval tasks (Table 2).

To understand the impact of using image encoder backbones originally trained on natural images
versus those trained directly on Cell Painting data, we also applied OpenPhenom-S/16, an openly
available masked autoencoder model pretrained on Cell Painting data (Kraus et al., 2024). Inter-
estingly, we found that using OpenPhenom-S/16 did not result in superior performance compared
to DINO models trained on natural images. This suggests that, despite not being originally trained
on microscopy data, foundation models trained on diverse natural image distributions combined
with small tweaks to account for differences in channels as in CellCLIP can achieve competitive
performance on Cell Painting data.

5.3 PERTURBATION DETECTION & MATCHING THROUGH CELLCLIP

Finally, we assessed the replicability and biological relevance (Section 4.3) of learned Cell Painting
image embeddings on unseen perturbations in JUMPCP. For this evaluation, only image embed-
dings (and not perturbation embeddings) are required. Thus, here we not only compared between
multimodal contrastive learning methods, but also assessed CellCLIP’s performance compared to
unimodal self-supervised learning (SSL) and weakly supervised learning (WSL) methods trained to
predict perturbation labels. As an additional baseline, we also considered CellProfiler features.
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Image Encoding Backbone Chem-to-Profile Retrieval (%) Profile-to-Chem Retrieval (%)

R@1 R@5 R@10 R@1 R@5 R@10

DINOv1 0.75 2.22 3.78 0.66 1.90 3.73
DINOv2 (small) 1.18 3.35 5.05 0.99 3.16 4.82
DINOv2 (base) 1.11 3.63 5.48 1.04 3.35 5.24
DINOv2 (large) 1.08 3.61 5.67 0.99 3.45 5.50
DINOv2 (giant) 1.08 3.68 6.01 1.05 3.78 5.76

CA-MAE (OpenPhenom-S/16) 0.99 3.64 5.29 0.75 3.35 5.39

Table 2: Retrieval performance of CellCLIP trained with profiles generated from various pretrained
imaging models on Chem-to-Profile and Profile-to-Chem tasks. Results are reported as Recall@k
(%) for k = 1, 5, 10.

Method Detection Matching

Within Perturb. Across Perturb.

CellProfiler 0.463 0.293 0.072

Multi-modal contrastive learning
CellCLIP (CLIP-B/16) 0.593 0.434 0.024
CellCLIP (DINOv2-Large) 0.612 0.467 0.033
CellCLIP (DINOv2-Giant) 0.663 0.385 0.043
CellCLIP (OpenPhenom-S/16) 0.596 0.211 0.036
CLOOME 0.538 0.199 0.028

Weakly supervised models
ViT-L/16 0.513 0.217 0.028

Channel-agnostic MAE ViTs
OpenPhenom-S/16 0.357 0.219 0.031

Table 3: Comparison of different models for perturbation detection and matching within and across
perturbation classes. Results are reported as mean average precision (mAP) across perturbations.

Overall, our findings demonstrate that contrastive learning approaches significantly outperform both
WSL and SSL approaches. Within the considered contrastive learning approaches, we found that
CellCLIP with a DINOv2-Giant backbone outperformed all other approaches for detecting replicates
of the same perturbation. This result suggests that our approach can distinguish distinct perturbation
effects more accurately compared to previous work.

For perturbation matching, where we compare profiles targeting the same genes within the same
perturbation class (e.g., compounds vs compounds), CellCLIP (DINOv2-Large) again performs the
best among all approaches. Notably, for cross-class perturbation matching, (e.g. CRISPR vs com-
pounds), the overall mean Average Precision (mAP) for all machine-learning-based methods re-
mains low, even falling below the baseline CellProfiler. This suggests that, despite targeting the same
gene, morphological changes across different perturbation classes remain highly distinct, aligning
with previous findings reported in Chandrasekaran et al. (2024).

6 CONCLUSION

In this work, we addressed the challenge of learning meaningful representations of Cell Painting
images by introducing CellCLIP, a multi-modal contrastive learning framework that unifies pertur-
bations across classes through textual descriptions. As part of our framework, we also developed
CrossChannelFormer, a transformer-based architecture that efficiently captures channel dependen-
cies and processes profile data while reducing computational costs. Our results demonstrate that
CellCLIP improves retrieval performance, and replicates detection, and generalization across per-
turbation types. Overall, CellCLIP offers a promising solution for analyzing high-content morpho-
logical screening data, and future work will explore the impact of various contrastive losses and the
contributions of each Cell Painting channel to downstream performance.
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7 MEANINGFULNESS STATEMENT

We define meaningful representations of life as embeddings produced by methods that capture estab-
lished biological features while enabling the discovery of novel ones, ultimately enhancing down-
stream task performance. Our approach leverages contrastive learning to integrate textual perturba-
tion information with cell painting profiles. This integration captures underlying perturbation effects
across diverse classes and facilitates the identification of perturbations with similar morphological
signatures.
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APPENDIX

A DATASETS & PREPROCESSING

Bray et al. (2016) The dataset2 consists of 919,265 five-channel microscopy images with resolu-
tions 520 × 696 corresponding to 30,616 different molecules. These images were captured using
406 multi-well plates, with each image representing a view from a sample within one well. Six
adjacent views collectively form one sample.

Sanchez-Fernandez et al. (2023) refined the dataset by removing images that were out of focus, ex-
hibited high fluorescence, or contained untreated control cells. The final dataset comprises 759,782
images linked to 30,404 unique molecules, split into training (674,357), validation (28,632), and
test (56,793) sets. The processed dataset is publicly available at3. Next, for retrieval evaluation on
unseen compounds Section 4.3, following Sanchez-Fernandez et al. (2023), we removed samples
from the test set that corresponded to the same molecule and plate to mitigate plate effects. The
remaining samples are referred to as the final ”test set”, which consists of 2,115 compounds.

CPJUMP1 CPJUMP1 (Chandrasekaran et al., 2024) comprises 186,925 nine-channel (3 bright
field channels) microscopy images of resolution 1080 × 1080. This dataset features a comprehen-
sive collection of perturbations conducted on U2OS and A549 cell lines, including 52 replicates. For
perturbations, it includes 301 small-molecule compounds ( 46 controls), 335 sgRNAs (CRISPR) tar-
geting 175 genes ( 88 control sgRNAs), and 175 ORFs (45 controls) for the corresponding genes.
(Chandrasekaran et al., 2024) also provides annotations of associations between genes and com-
pounds, enhancing its utility for exploring gene function and compound effects. We split the dataset
into 70/10/20 for training, validation, and testing. Raw data, relevant metadata, and gene annotation
can be found in4

Image Preprocessing For both datasets, our preprocessing followed the protocols established by
Sanchez-Fernandez et al. (2023) and Hofmarcher et al. (2019), which consist of converting the
original TIF images from 16-bit to 8-bit and removing the 0.0028 % of pixels with the highest
values5. To maintain channel consistency between datasets, we processed the CPJUMP1 images
and reordered channels to match the five-channel format of Bray et al. (2016).

B ADDITIONAL DETAILS ABOUT TRAINING & BASELINES

B.1 BASELINES FOR RETRIEVAL EVALUATION

We compared CellCLIP against random baselines and CLOOME to assess the impact of different
training modalities on retrieval performance. Since molPhenix (Fradkin et al., 2024) is trained on
proprietary datasets and its implementation is not publicly available, we did not include it in this
work.

Random For the random baseline, given a perturbation projection embedding, we randomly select
a text embedding.

CLOOME We follow the official implementation available at 6. For retrieval evaluation with
Bray et al. (2016), we use the best-performing hyperparameters reported in (Sanchez-Fernandez
et al., 2023), employing ResNet50 as the vision encoder and a four-layer MLP as the molecule
encoder, excluding the Hopfield layer. The training loss follows the original contrastive loss, using
raw images paired with a max-pooled combination of Morgan and RDKit count-based fingerprints7,
resulting in an 8192-bit input representation. The training setup includes a batch size of 256, the

2http://gigadb.org/dataset/100351
3https://ml.jku.at/software/cellpainting/dataset/
4https://github.com/jump-cellpainting/2024_Chandrasekaran_NatureMethods
5TIF files preprocessing
6https://github.com/ml-jku/cloome
7The official sources for the RDKit library
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AdamW optimizer, and a learning rate of 1e−3 with cosine annealing with restart. The learnable
temperature parameter τ was set to 14.3. The model is trained for 70 epochs. We use the same
training parameter above for CLOOME’s variants in Table 1.

Pretrained Models for CellCLIP Profiles For generating channel embeddings (profiles), Sec-
tion 3, for CellCLIP training, we experimented with a range of image foundation models, includ-
ing DINO, DINOv2 (small, base, large, giant), CLIP (L16, B14), SigCLIP (so400m, B-16), and
CA-MAE (OpenPhenom-S/16). Checkpoints for all models are available on Hugging Face8. Cell
painting images were treated as grayscale images with a multi-crop strategy and preprocessed using
their respective preprocessors.

B.2 PERTURBATION DETECTION & MATCHING

For perturbation detection and matching, we compared CellCLIP with the best-performing pre-
trained models, including DINOv2-giant and DINOv2-large, against CellProfiler, CLOOME, and
pretrained models, including CA-MAE (Openphenom)9 and ViT-L/1610. The evaluation pipelines
were implemented, following in11.

CellProfiler For CellProfiler features of CPJUMP1, we utilize embeddings provided by Chan-
drasekaran et al. (2024)12.

CLOOME Since CLOOME is designed specifically for small molecules, we fine-tuned the model
using only small molecules within CPJUMP1 training set, employing the same parameters used in
training with the (Bray et al., 2016) dataset.

CellCLIP Similarly, for CellCLIP, we used the model pretrained from Bray et al. (2016) and fine-
tuned with CPJUMP1 using the same parameters as pretraining.

Weakly Supervised Learning (WSL) For the weakly supervised baseline, following Kraus et al.
(2024), we constructed a Vision Transformer (ViT) Large with a patch size of 16, modified to ac-
commodate five channels, serving as the backbone (Alexey, 2020). We attached a classifier head
to this backbone and trained the model for 10 epochs using a learning rate of 1e−3, incorporating
weight decay. The batch size was set at 256. For perturbation detection and evaluation experiments
in CPJUMP, we utilized the output from just before the classifier head as the learned embeddings.

B.3 BATCH EFFECT CORRECTION

For the detection and matching evaluation in CPJUMP1, we follow the approach of Celik et al.
(2022). First, we fit a PCA kernel13 on all control images (profiles) across experimental batches
(e.g., the assay’s plate wells). Then, we transform all embeddings using this PCA kernel. Next,
for each experimental batch, we fit a separate StandardScaler on the transformed embeddings
of the controls from step 2 and use it to normalize the remaining embeddings from that batch. For
kernel selection, we experimented with RBF, polynomial, and linear kernels, selecting the best-
performing kernel for each method.

B.4 IMPLEMENTATION DETAILS

This study employs the PyTorch package tutorial (version 2.2.1). All experiments are conducted on
systems equipped with 64 CPU cores and the specified NVIDIA GPUs. Models trained with the
largest possible batch size on 8 RTX-6k GPUs.

8https://huggingface.co/
9https://huggingface.co/recursionpharma/OpenPhenom

10https://github.com/pprp/timm
11https://github.com/jump-cellpainting/2024_Chandrasekaran_

NatureMethods/blob/main/benchmark/1.0.calculate-map-cp.ipynb
12https://github.com/jump-cellpainting/2024_Chandrasekaran_NatureMethods
13https://scikit-learn.org/1.5/modules/generated/sklearn.decomposition.

KernelPCA.html
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