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Abstract

We propose an ensemble-based defense against adversarial examples using dis-
tance map layers (DMLs). Similar to fully connected layers, DMLs can be used
to output logits for a multi-class classification model. We show in this paper
how DMLs can be deployed to prevent transferability of attacks across ensemble
members by adapting pairwise (almost) orthogonal covariance matrices. We also
illustrate how DMLs provide an efficient way to regularize the Lipschitz constant
of the ensemble’s member models, which further boosts the resulting robustness.
Through empirical evaluations across multiple datasets and attack models, we
demonstrate that the ensembles based on DMLs can achieve high benign accuracy
while exhibiting robustness against adversarial attacks using multiple white-box
techniques along with AutoAttack.

1 Introduction

Ongoing research has provided defenses against adversarial examples, which are crafted from cor-
rectly classified inputs with imperceptible perturbations. Despite the success of ensemble learning
as a mechanism for reducing prediction errors and improving generalization by combining predic-
tions of multiple models performing the same task (Russakovsky et al., 2015; Sagi & Rokach),
early research has shown the ineffectiveness of mutiple ensemble-based defenses against adversarial
examples and even has gone further to suggest that ensembles are only as robust as their weak
components (He et al., 2017). If this claim is true, it basically defeats the purpose of using an
ensemble, which is building a strong model out of weaker ones. Nevertheless, research continued
to investigate the usage of ensembles as a defense mechanism (Pang et al., 2019; Verma & Swami;
Sen et al.). However, recent attempts have been quickly shown ineffective (Tramèr et al.; Croce &
Hein, 2020). We believe that one of the primary reasons for the weakness of ensemble defenses is
the inter-model attack transferability. It was shown that even fundamentally different models could
exhibit high attack transferability rate (Papernot et al., 2017; Kurakin et al., 2018). This phenomenon
hindered the consideration of ensemble learning as a strong defense mechanism on its own. The
reason is that if the member models are not robust, and they exhibit high attack transferability rate,
attacks generated from one model can attack the rest, and hence, attack the entire ensemble.

In this work, we show that it is possible to circumvent the problem above and instill diversity among
ensemble members via the employment of specially initialized and optimized distance-map-layers
(DMLs), and hence throttle the inter-model attack transferability. Moreover, we demonstrate that
DMLs provide spontaneous regularization of the Lipschitz constant, and therefore further boost the
robustness.

The rest of this paper is organized as follows: We first discuss an overview of relevant recent works
on ensemble defenses against adversarial examples and background information. Then we introduce
a distance map layer based on Mahalanobis distance, and also explain the threat models considered
in this work. We describe the creation of ensemble of DML-based individual models. Afterwards,
we introduce a randomized version of DML. Finally, we evaluate the robustness of our ensemble
model over MNIST, CIFAR-10 and RESISC-45 datasets.
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2 Background and related work

Not long ago, researchers revealed the vulnerability of machine learning models, particularly deep
neural networks (DNNs), against adversarial examples (Szegedy et al., 2014). These models can
provide incorrect predictions on examples that are slightly perturbed from correctly classified ones.
The process of generating adversarial examples from natural ones is called adversarial evasion
attacks (Biggio et al.). Evasion attacks can be categorized into black-box, gray-box, and white-box
attacks. In the black-box setting, the attacker does not have access to the model’s parameters and
the potential defense of the model (Papernot et al., 2017; Brendel et al., 2018). In the gray-box
setting, although the attacker does not have access to the model’s parameter, it is aware of the defense
applied in the model. In the white-box evasion, the attacker has access to both the parameters and
the defense applied in the model. Therefore, the attacker can apply gradient-based attack techniques
(Goodfellow et al., 2014; Carlini &Wagner, 2017; Madry et al., 2018), or it can even design a custom
made adaptive attack based on its knowledge about the model and the defense (Tramèr et al.). From
the defense perspective, white-box attacks are certainly the most challenging type of evasion attacks.
Our proposed defense targets white-box attacks. Specifically, we focus on !? restricted perturbations
of images, and, as it is typical in many research works, we consider the !∞ perturbations.

Since the discovery of adversarial attacks, a significant research activity has been devoted to de-
veloping appropriate defenses (Madry et al., 2018; Zhang et al.). However, most of the proposed
defenses have been soon defeated (Tramèr et al.; Croce & Hein, 2020). An intuitive mechanism to
defend against adversarial examples is training ensembles of other models in order to enhance their
defenses (Pang et al., 2019; Verma & Swami; Sen et al.). However, the efficacy of existing ensemble
approaches is often faced with skepticism due to the transferability phenomenon (Papernot et al.,
2017), which makes the ensemble model believed to be at most as robust as its strongest constituent
model (He et al., 2017). In this paper, we promote the diversity among individual networks from a
new perspective via distance map layers. Our construction is based on the assumption that defending
against transferred adversarial example is effective, even if the individual models are vulnerable to
direct attacks. Our approach is orthogonal to the previous approaches and can be combined with
other generic weak or strong defenses to further enhance the ensemble’s resistance to adversaries.

Although there is no strict illustration on what is intuitively defined as diversity, in this work, we
define the diversity as the highest dissimilarity between the learned features of different classes across
the ensemble members. Diversity is greater when the prediction errors of individual members are
highly uncorrelated (Liu & Yao, 1999a;b; Dietterich, 2000; Liu et al., 2019). This property may lead
an adversarial perturbation to fail to fool the majority of networks in the ensemble. Topologically,
diversity can be depicted as the variability in the shapes of the decision boundaries and inter-class
neighborhood relationships in the embedding space. Changing the shape of the decision boundaries
in the embedding space implies different loss shapes. With diversity in the shape of the losses
corresponding to different models, the gradient from one model would not be a good approximation
(transferable) to the other model. Note that due to the high capacity of DNNs, changing the topology
of the embedding space can have no or negligible effect on the model’s accuracy. Using this
perspective on model diversity, we will illustrate that DML-based ensembles could be designed
to achieve the requirement of diversity in prediction errors through injecting dissimilarities only
between the DMLs of ensemble members. Previous works increase the diversity over training data
via promoting the diversity of prediction errors of ensemble members (Liu & Yao, 1999a;b; Liu
et al., 2019).

3 Technical approach

In this section, we elaborate on our model with distance map layer (DML). We start by recalling the
definition of Mahalanobis distance between two point G1, G2 ∈ '=:

3" (G1, G2) =
√
(G1 − G2))" (G1 − G2), (1)

where " is the inverse of the covariance matrix (referred to as the " matrix for the rest of the paper),
which is a positive semi-definite matrix.

Lemma 1. TheMahalanobis distance is :-Lipschitz continuouswith : =
√

2 ‖%‖2, where" = %) %,
and % is a triangular matrix.
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A proof for this lemma can be found in (Zantedeschi et al., 2016). We now introduce a mapping
function, based on the Mahalanobis distance, that can be used as a differentiable layer in a neural
network. The function maps an input vector to an output vector by calculatingMahalanobis distances
between the input and the learned centers of the function. Equation 2 shows the element of the output
vector corresponding to center 2 for an input vector G. We call this function distance map layer
(DML).

3",2 (G) =
√
(G − 2))" (G − 2). (2)

In this formula, " ∈ R#×# and 2 ∈ R# are the learnable parameters of the DML. When the DML
is used as the penultimate layer of a classification neural network (i.e. the layer producing logits),
each center will correspond to one class. Essentially, the layer maps an input vector to a vector of
distances to class centers. Note that, in this usage, the negative of the distances has to be used to
maintain the typical assumption of DNNs that the highest logit corresponds to the most likely class.
The classification loss function will encourage the absolute distance to the target class to be small
while the distances to all other classes to be large, which induces compactness in the embedding
space. This compactness has been used in prior work for classification problems (Wan et al., 2018)
and for adversarial robustness of individual models (Pang et al., 2020).

Our setting is composed of combining a classification network � with a DML ℎ to obtain a model
� characterized by � (G) = ℎ ◦ � (G) where ℎ : R" → R" and � : R# → R" . In other words,
� is used as a prior to map the input space to a representation space, and ℎ maps the representation
space to distances from the corresponding class centers. In the next section, we demonstrate how
a distribution shift that � shows with respect to � could be efficiently utilized to form a diverse
ensemble of models. Before that, we want to highlight an important feature about DML. If the
network� is !�-Lipschitz continuous, and the DML ℎ is !ℎ-Lipschitz continuous, then the network
� is Lipschitz continuous with constant upper-bounded by !� · !ℎ . Thus, imposing small !ℎ during
the training process may lead to the regularization of Lipschitz constant for the network �. It is shown
in the appendix that this can also largely improve the certification bounds of network � compared to
the model �.

3.1 Enhancing diversity between ensemble members

The main part of the proposed ensemble model is the deployment of DMLs. The ensemble members
stacked with DMLs are trained interactively to achieve the highest level of diversity. In particular,
a DML ensemble is trained to satisfy these properties: 1) the ensemble members have the highest
accuracy over benign samples and diverse prediction errors over adversarial samples; 2) the attacks
generated on one ensemble member are not transferable to other ensemble members; and 3) the
training procedure maintains the Lipschitz constant of an ensemble member model small. The first
objective is important as it indicates that the ensemble could provide high accuracy even with the low
accuracy of the individual members. The second objective guarantees a well-performing ensemble
model under evasion attacks. That is an adversarial example crafted on an individual ensemble
member model would normally be misclassified in that individual member, but not necessarily in the
other ensemblemembers. This goal can be achieved in two folds: 1) by randomly choosing the centers
and shuffling them to vary over classifiers in the formulation of DML; 2) by imposing the " matrices
to be dissimilar and possibly orthogonal between the ensemble members. Increasing the cosine
dissimilarity of DML’s covariance matrices of ensemble members would lead to nontransferable
adversarial perturbations (Adam et al., 2019). One approach to reduce the transferability across
several models is to enforce various geometric relationship like orthogonality between the input-
output gradient of the models. For two distance map layers 5 and 6 with corresponding " 5 and "6
inverse covariance matrices, we have shown in the appendix that the orthogonality of the" matrices,
i.e., " 5 "6 = 0 is a sufficient condition for the input-output gradients of 5 and 6 to be orthogonal.
Note that the explored sufficient condition is independent of the input G. Roughly speaking, the
increase in the dissimilarity of the " matrices reduces the cosine similarity of input-output gradients
of the combined network by the chain rule formula. Therefore, practically, minimizing the cosine
similarity of the " matrices across models enables reducing the rate of transferability of adversarial
attacks across models in the ensemble.
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3.2 DML parameter initialization and training

In this section, we describe the procedure of simultaneous and interactive training of ensemble
members towards the goal of enhancing diversity. The main building block of various ensemble
members using DML is that the centers and the inverse covariance matrices of members are trained
to have the highest level of dissimilarities between the ensemble members. We aim to increase
the failure independence by enhancing the disagreement diversity of different networks. We recall
that these ensemble members are generated using a reference model by stacking a DML to the last
hidden layer of the prior model. The ensemble model consists of the created DML-based models.
To train the ensemble members, the parameters of each model learned to increase the dissimilarity
of the " matrices (e.g., by decreasing the dissimilarity loss function). The DML’s centers in the
ensemble are shuffled across its members. In practice, we initialize the centers to be a permutation
of the rows of an identity matrix. Applying the shuffled normal vectors as the centers of the DML
would avoid the scaling of the gradient of the network and can decrease the risk of gradient masking.
Shuffling the centers across the individual members may cause to diversity in adversarial directions
for the members. In this way, the ensemble framework can potentially be used to detect adversarial
examples. We discuss more about this mechanism in appendix. Dissimilar " matrices in the
ensemble of models alternate the way in which each individual learner traverses the hypothesis
space. We also make the " matrix partially learnable, i.e., only certain elements in " are trainable
and the rest are fixed during the training. This would make the classifiers have different prediction
errors on different labels. In the following, we elaborate on how we split the learnable parameters of
the " matrix across members to encourage diversity through diverse tasks.

3.3 Meta ensemble model

We choose the trainable parameters in " such that there would not be any overlap between the
indices of the learnable elements of different ensemble members. More specifically, let � 9 denote
the learnable parameters of the " matrix of the DML in the 9 Cℎ ensemble member. To promote
the diversity in the topology of the DNNs, we select � 9 such that � 9 ∩ �: = ∅ for 9 , : ∈ [ ]. By
allowing a classifier to learn specific elements in " , it causes the model to be more accurate on the
classes with labels corresponding to those elements, e.g., the : Cℎ ensemble model would show better
benign accuracy on the labels in the set �: . On the other hand, during experiments, we realized
that the classifiers are more vulnerable on those labels when exposed to the attackers. Since the
classifiers are more susceptible on those labels, the predictions from ensemble members could be
aggregated while excluding the predictions of each member classifier’s specific labels, e.g., �: for
classifier : . Due to the fact that the sets �: ’s for : ∈  have no pairwise intersections, neglecting
the prediction of models on those particular labels when aggregating the final prediction would not
impose any artificial bias on the ensemble. We will refer to the aforementioned mechanism in the
following as meta-model. In summary, we are training models which are fundamentally diverse in
their robustness to different adversarial attacks, and therefore it increases the varieties in the shape
of decision boundaries and consequently adversarial directions in the ensemble.

We use a tailored loss to interactively train the ensemble members. Formally, the loss function is
formulated as

L =
∑
:∈[ ]

L:�� + W
∑
:∈[ ]

∑
C ∈[ ]∧C≠:

‖": · "C ‖ + V
∑
:∈[ ]



"�:




1 (3)

where  is the number of ensemble members, ! is the number of classes, L:
��

is the classification
loss (cross entropy) of : Cℎ ensemble member.

Minimizing the sum of losses from ensemblemembers increases the benign accuracy of the ensemble
model, while the other terms in the loss formula (Equation (3)) manipulate the arrangement of the
decision boundaries. The second term encourages the dissimilarity of covariance matrices and thus
advocates diverse hypothesis for classifiers. The third term is a regularization parameter for the sum
of !1 norm of DML’s " matrices to achieve a DML with a low Lipschitz constant. The positive real
numbers W and V balance these terms with the cross-entropy objective. We choose these parameters
via hyper-parameter tuning. For training, one needs to initialize the centers and the " matrices of
the DML in each classifier to have the most dissimilarity to the other ensemble members. Towards
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having a DML with a low Lipschitz constant, we consider a diagonal " matrix, where the diagonal
terms are initialized randomly from the uniform distribution between 0 and 1. It is possible to
opt not to train the " matrices if there exist sufficient dissimilarities between paired matrices (i.e.,
orthogonality) via appropriate initialization, given that networks trained from different initialization
can be far apart in their internal representations.

Finally, a consensus method over the predictions from individual classifiers is performed to obtain
the output of the ensemble model. The consensus method could be any operation on the prediction
outputs, e.g., majority voting, mean, median, sum. In this work, the ensemble output is based on the
majority voting of :-top predictions of the ensemble members.

4 Randomized DML and uncertainty in the DML-based DNN

Considering the distance map layer 5 (G) =
√
(G − 2))" (G − 2), where " = %) % and % is a

lower-triangular matrix, we construct a randomized version of DML 6 from the base DML 5 . The
randomized DML 6, is the expectation of the isotropic Gaussian perturbation of the "

6(G) = EX∼N(0,f2� )

[√
(G − 2)) (% + X)) (% + X) (G − 2)

]
, (4)

where f is a hyper-parameter.

Here, we apply the uncertainty of a Gaussian process to identify the low-confidence regions of
the input space to the DML layer. The Gaussian process assumes a set of priors on the set of all
functions that can map the input space to the output space. At training time, for any sample G with
target classification H, only the function of the center corresponding to H will be considered. At
inference time, the expectation of all the output of these functions are used as the prediction. As
the " matrix determines the shape of decision boundaries, uncertainty estimation from randomized
smoothing of " can be extracted during the inference time. We sample i.i.d. Gaussian samples
X1, . . . , X) ∼ N(0, f2�), and use the following Monte-Carlo estimator for the expectation of the
randomized DML 6

6(G) ≈ 1
)

)∑
8=1

√
(G − 2)) (% + X8)) (% + X8) (G − 2). (5)

In the experiments, we show that the randomized DML provides better robust accuracy compared to
DML when used in an ensemble.

5 Experiments

In this section, we present our empirical studies to show the effectiveness of our proposed method
on decreasing the threat from adversarial attacks, while showing high benign accuracy. We perform
our experiments on MNIST, CIFAR-10 and RESISC-45 (Cheng et al., 2017) detasets. Each of
MNIST and CIFAR-10 has 10 classes and RESISC-45 has 45 classes. We implement the ensemble
model based on the networks shown in Table 1. In the experiments for each dataset, we consider an
ensemble of five models. Our baseline model is the ensemble of five models without DML trained
with cross-entropy loss. The DML-based ensemble models are jointly trained based on the loss in
Equation (3). We set V = 0.01 and W = 0.01 in Equation (3) for training the ensemble models over all
three datasets. Following the illustration of the ensemble meta-model, for each classifier, only two
elements of the diagonal elements of the " matrix are trainable and the rest of the diagonal elements
are set to the fixed value 0.1. For all the individual models in the ensemble and for all datasets, the
center points of DMLs are set to the columns of an identity matrix with different shuffling across
members. The centers are fixed during the training procedure.

In Figure 1, we show the distribution of the positive CLEVER score values (Weng et al., 2018) for
1000 randomly selected images from the MNIST dataset for a model formed by summing the outputs
of ensemble members. We used the !2 radius of 2 to calculate the CLEVER scores. The results
for the other datasets, which is similer to MNIST’s, are provided in the appendix. The results shows
that the number of samples with non-zero CLEVER score is an order of magnitude higher than the
counterpart for the baseline model. Moreover, for the baseline model, there exist no sample that has a
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Dataset MNIST CIFAR-10 RESISC-45
Model LeNet (Lecun et al., 1998) ResNet-18 (He et al., 2016)

Table 1: Base models for creating DML-based models for each dataset

(a) Baseline (b) DML-based ensemble

Figure 1: Distribution of non-zero CLEVER scores for baseline ensemble and DML-based ensemble
for 1000 randomly selected images from the MNIST dataset. The CLEVER scores are computed on
the !2-norm ball with radius 2.

score higher than 1.7 while for DML, the highest score is close to 2. This shows that the DML-based
ensemble has an intrinsic boost in robustness compared to the baseline.

In Tables 2-3, we show the benign and adversarial accuracy of ensemble models over the three
datasets. The white-box attacks that we consider are FGSM (Goodfellow et al., 2014), BIM (Kurakin
et al., 2017), PGD (Madry et al., 2018), and Carlini & Wagner (CW) (Carlini & Wagner, 2017),
which are commonly used for evaluating defense models. The number of iterations for BIM and
PGD are set to 10, while for CW, it is set to 200. The !∞ budget n for FGSM, PGD, and BIM; and
the penalty (initial constant) parameters W for CW are shown in the table. The attacks we consider in
this section are untargeted attacks unless otherwise mentioned. In untargeted attacks adversaries are
constructed to cause the classifier to produce any incorrect label. Unlike the previous research on
ensemble-based defenses (Sharif et al., 2019; Liu et al., 2019) where the adversaries were crafted over
a target model, in this paper, the adversarial examples are generated over the ensemble model derived
by summing the predictions. Crafting adversarial examples over the ensemble model would assess
the true resistance of the ensemble as the generated adversaries contain the gradient information
from all the individual members. The predicted labels for the benign and adversarial samples in
the ensemble model are obtained using the majority votes of top-1 predictions of the individual
classifiers. The results show a remarkable performance enhancement over the baseline model. This
could be explained by high non-transferability of adversaries and diverse ensemble representation
across the ensemble members, which hinders the process of finding an optimal adversary that could
fool the majority of ensemble members to have the correct prediction changed.

Table 2: MNIST white-box attack results. FGSM and PGD are applied with specific perturbation
budget n . CW is used with the specified penalty (initial constant) parameter W.

Training Benign FGSM FGSM BIM-10 PGD-10 CW
Model Acc n = 0.2 n = 0.3 n = 0.2 n = 0.2 W = 1
Baseline 98.79 23.81 3.12 0.00 0.00 0.00

DML Ensemble 93.66 68.55 39.62 63.08 62.92 85.00
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Table 3: White-box attack results for CIFAR-10 and RESISC-45 datasets. FGSM and PGD are
applied with specific perturbation budget n . CW is used with the specified penalty (initial constant)
parameter W.

Training Benign FGSM FGSM BIM-10 PGD-10 CW
Model Acc n = 0.015 n = 0.031 n = 0.015 n = 0.015 W = 1

CIFAR-10
Baseline 85.66 23.84 6.15 7.75 6.15 27.67

DML Ensemble 84.57 56.61 43.35 38.35 39.87 39.54
RESISC-45

Baseline 85.66 3.75 1.34 0.00 0.00 45.22

DML Ensemble 87.28 52.06 39.64 45.07 45.12 61.84

Table 4: Adversarial accuracy of all ensemble models when the attacks are crafted on Model 1 with
PGD-10. The labels for the targeted attacks are selected randomly and different from the true labels.
The size of perturbation n is 0.2, 0.015, 0.015 for MNIST, CIFAR-10, and RESISC-45, respectively.

Dataset Accuracy Ensemble Model 1 Model 2 Model 3 Model 4 Model 5
MNIST Benign 93.66 86.56 69.57 95.40 93.35 95.36

Untargeted 58.24 33.79 44.96 66.14 53.99 63.83
Targeted 83.07 58.24 58.03 84.53 76.49 83.64

CIFAR-10 Benign 84.57 82.08 82.02 81.30 81.42 81.64
Untargeted 61.35 40.93 64.61 64.15 63.40 63.84
Targeted 68.60 48.45 70.51 69.12 69.07 69.42

RESISC-45 Benign 87.29 75.33 78.33 79.67 79.51 79.89
Untargeted 74.02 30.80 68.44 69.42 71.07 69.31
Targeted 75.33 35.58 72.89 74.40 75.42 74.12

We now examine if the adversaries generated on one ensemble member could be transferred to the
other models in the ensemble. For this purpose, in Table 4, we provide the results for both targeted
and untargeted attacks when the crafted attacks on Model 1 are transferred to the other constituent
ensemble members and the ensemble model. It is observed that the crafted attacks exhibit low
transferability rate. This could be illustrated by the visualisation of the loss function around a
sample from RESISC-45 dataset in Figure 2, which shows that the shapes of the loss surfaces of the
constituent models are diverse and therefore the input-output gradients of a model do not provide a
close approximation for the other models included in the ensemble.

In Table 5, we compare the distortion needed for the ensemble model versus the individual members
for the targeted attacks using adaptive CW-!2 attack (He et al., 2017) for 100 randomly selected
samples from each dataset. The results show that the perturbation required to generate adversaries
on individual member is multiple times lower than the distortion required to create adversaries on
the ensemble models.

Finally, in Table 6 we compared the robust accuracy for DML-ensemble and randomized DML
ensemble over CIFAR-10 datasets. The results for the other dataset could be found in appendix. The
results from randomized DML-ensemble shows outperform adversarial accuracy.
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(a) Model 1 (b) Model 2 (c) Model 3

Figure 2: Loss surface for individual classifiers around a sample GB from RESISC-45 dataset for
points GB + A∇G!�� (GB , HB) + \% with % ∼ N(0, 0.05), A ∈ [0, 0.1], and \ ∈ [−0.1, 0.1].

Table 5: The required !2 distortion for adaptive CW-!2 attack (He et al., 2017) with W = 1 for
the combined and individual ensemble members of size 5 for 100 randomly selected images for
each dataset. The number of iterations and stepsize are 1000, 0.1, respectively. ^ is denoting the
confidence parameter for CW-!2 attack.

Dataset !2 distortion required for generating adversaries on each model
Ensemble Ensemble Model Model Model Model Model
^ = 0 ^ = 0.1 1 2 3 4 5

MNIST
Adversarial accuracy 66.00 45.00 0.00 8.00 1.00 1.00 4.00
Average distortion 2.31 3.79 1.34 1.41 1.52 1.36 1.52

CIFAR-10
Adversarial accuracy 52.00 12.00 0.00 0.00 0.00 0.00 0.00
Average distortion 0.46 23.30 0.52 2.67 2.69 0.51 0.45

RESISC-45
Adversarial accuracy 73.00 71.00 0.00 0.00 0.00 0.00 0.00
Average distortion 3.60 6.24 1.47 1.63 2.06 2.36 2.53
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Table 6: Accuracy of white box attacks on DML-based ensemble and randomized DML (R-DML)
ensemble (R-DML-ensemble) for the perturbation budget n specified for each dataset. The attacks
are performed with 5 random restarts.

Dataset Benign Acc FGSM PGD-20 PGD-40
CIFAR-10 (n = 8/255)
DML Ensemble 84.57 47.72 19.38 14.46

R-DML Ensemble 81.25 56.48 38.12 37.34

Table 7: MNIST AutoAttack (Croce & Hein, 2020) results. The adversaries are crafted with the
specified perturbation budgets n .

Training Benign AutoAttack
Model Acc n = 0.1 n = 0.2 n = 0.3
DML Ensemble 93.66 88.47 73.46 49.44

6 AutoAttack on the DML-based ensemble

In this section, we evaluate our proposedmodel by the ensemble of parameter-free attacks, AutoAttack
(Croce & Hein, 2020). In (Croce & Hein, 2020), several recently introduced defenses, including the
ensemble model in (Pang et al., 2019), were evaluated on AutoAttack, and most of them were shown
to be, at best, less robust than they had been thought to be according to their original papers. For
instance for the ensemble defense proposed in (Pang et al., 2019), it was reported that the accuracy
of the model dropped to zero under AutoAttack on CIFAR-10. In Tables 7-8, we show the results for
the evaluation of our proposed model under AutoAttack. The results indicate that the DML-based
ensemble models exhibit notable adversarial robustness.

7 Conclusion

In this paper, we introduces new Mahalanobis distance based ensemble models, in which the prop-
erties of the distance function are leveraged to increase the diversity of the ensemble predictions and
reduce the attack transferability rate across the individual members. The ensemble members initial-
ized in a way that induces diversity, and are jointly trained while encouraging orthogonality among
the inverse covariance matrices of their distance functions, which is shown to reduce transferability.
The proposed mechanism can be applied to pretrained networks as priors to form an ensemble with
enhanced properties, which makes our model complementary to other existing defenses. Our re-
sults show that the proposed ensemble-based defense achieves high benign accuracy and adversarial
accuracy across multiple attack algorithms, including AutoAttack, without using adversarial training.

Table 8: AutoAttack (Croce & Hein, 2020) results for CIFAR-10 and RESISC-45 datasets. The
adversaries are crafted with the specified perturbation budgets n .

Training Benign AutoAttack
Model Acc n = 4/255 n = 8/255 n = 16/255

CIFAR-10
DML Ensemble 81.62 40.23 16.8 6.77

RESISC-45
DML Ensemble 87.28 63.20 48.53 26.28
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A Appendix

A.1 Certifiable DML

Distance-map layer is a nonlinear map composed of square root of a quadratic function. We consider
the distance-map function ℎ

ℎ(G) =
√
(G − 2) ′"ℎ (G − 2)
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where "ℎ is a semi-definite positive matrix with a Choleskey decomposition denoted by "ℎ =

! ′
"
!" . We let qA−1 denote the input to the layer ℎ. Then, we obtain

ℎ(G) =
√
(qA−1 − 2) ′"ℎ (qA−1 − 2) =

√
(qA−1 − 2) ′! ′

"
!" (qA−1 − 2)

=


!" (qA−1 − 2)



 ≤ ‖!" ‖ 

(qA−1 − 2)




≤


!"qA−1
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�ℎqA−1

 + �ℎ (6)

On the other hand,

ℎ(qA−1) =
√
(qA−1 − 2) ′"ℎ (qA−1 − 2) =

√
(qA−1 − 2) ′! ′

"
!" (qA−1 − 2)

=


!" (qA−1 − 2)



 ≥ 

!"qA−1

 − ‖!" 2‖ = 

�ℎqA−1

 − �ℎ
(7)

Thus, the certifiable bound for ℎ is given by

�ℎqA−1

 − �ℎ ≤ ℎ(qA−1) ≤


�ℎqA−1

 + �ℎ

If "ℎ is a diagonal matrix, with U" = max8, 9 |"8 9 | and V" = min8, 9 |"8 9 |

V
1
4
"



qA−1

 − �ℎ ≤ ℎ(qA−1) ≤ U
1
4
"



qA−1

 + �ℎ
A.2 Orthogonality of input-output gradients of paired DMLs

One approach to reduce the transferability across several models is to enforce various geometric
relationship like orthogonality between the input-output gradient of the models. We consider two
(squared) distance map layers 5 , and 6 defined by 5 (G) = (G − 2 5 ) ′" 5 (G − 2 5 ) and 6(G) =

(G−26) ′"6 (G−26), where" 5 and"6 are the" matrices, and 2 5 and 26 are centers, corresponding
to 5 and 6. We have

∇G 5 (G) =
" 5 G − " 5 2 5

5 (G)
and

∇G6(G) =
"6G − "626

6(G)
Thus, we obtain

∇G 5 (G) · ∇G6(G) =
1

5 (G)6(G) (G
′" 5 "6G − G ′" 5 "626 − 2′5 " 5 "6G + 2′5 " 5 "626)

where we used the fact that " 5 and "6 are symmetric matrices. Given " 5 "6 = 0, we obtain

∇G 5 (G) · ∇G6(G) = 0.

Thus, the orthogonality of the " matrices for 5 and 6 is a sufficient condition for the input-output
gradients of 5 and 6 to be orthogonal.

A.3 The threat model for the ensemble

To classify the input G using an ensemble of classifiers, the output of each ensemble member on
input G is computed. The ensemble prediction is performed by applying a consensus method to
integrate the predictions form all individual members. The consensus method could be like majority
voting, mean, median, sum. If all the members can predict with uncorrelated error, then a simple
averaging may reduce the prediction error by the number of members. However, when the errors are
not independent, the reduction error would be smaller than this factor. In this work, the ensemble
output is obtained by using the majority voting of :-top predictions of the ensemble members. In the
experiments, since the majority voting operator is non-differentiable, the white box adversaries are
generated by the ensemble model which is obtained via summing of the predictions and attacking
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the aggregation layer of the ensemble. Unlike the previous research (Liu et al., 2019) where the
attacks are generated on a target model which is either a constituent ensemble member or a model
not included in the ensemble, the white box attacks in this work are generated on the ensemble layer.
Generating the attacks on a target model might provide a false sense of robustness for the ensemble,
while generating the adversaries by attacking the aggregation layer of the ensemble provides the
strongest white-box attack having the gradient information from all the individual members. Thus,
it can measure the real robustness of the ensemble model. We also investigate adaptive attacks
(He et al., 2017) by crafting adversaries on all the component models of the ensemble. We show
that the perturbation which is required to generate adversaries on individual member is by order of
magnitudes lower than the distortion required to create adversaries on the ensemble models.

A.4 DML-based ensemble for adversary detection

Given an input G, DML-based ensemblemight be utilized for detecting adversaries. More particularly
if the majority number of ensemble members which is determined by the threshold E do agree on a
class of the input class, the ensemble classifies the input as the majority class. Otherwise the input
is identified as adversarial example. To elaborate, we let 5: (G) is the output of the : Cℎ classifier on
the input G and ; = arg max8∈[! ] 5:8 (G). Then the output of ensemble classifier 54=B on G is given by

54=B (G) =
{
; if

��{: | arg max8∈[! ] 5:8 (G) = ;, : ∈ [ ]}
�� ≥ E

adversary otherwise. (8)

Evidently, increasing the threshold E rises the probability of detecting adversaries, while the number
of false positive casesmight grows at the same time and therefore the benign accuracy of the ensemble
model decreases. Practically, the threshold E in (8) is selected as b =2 c + 1. If E =  (i.e., the number
of ensemble members), the majority framework is called unanimity framework were the ensemble
classifies the input G only if all the classifiers agree on the class of input G. Unanimity framework
poses a security risk if the adversarial examples cause the misclassification to the same class over
models. Otherwise a defender can use the disagreement between models as a mechanism to detect
adversarial examples. An ensemblewith diverseDML-basedmembers is less likely tomislcassify the
adversary input G to the same class. Thus, the detector becomes more powerful when the predictions
from constituent members of ensemble are diverse. Due to the shuffled representation of neighbour
classes’ domain to the decision region of class G for the DML-based models, the adversaries for
the sample G is misclassified diversely (i.e., diverse labels) across the ensemble members. So the
likelihood of two classifiers to misclassify the adversary input to the same class would decrease and
it increases the probability to detect G. To insure the diversity in the centers form DML layer of
the ensemble members, we shuffle the centers of classes per each individual classifier. Note that
the diversity does not necessarily change the shape of the decision boundaries and only alter the
adversarial directions. In the other words, it could cause the classifiers to provide various prediction
on a given input that could be leveraged to detect adversaries. It is important to note that, unlike
previous approaches on ensemble model (Sharif et al., 2019), imposing this diversity does not imply
any upper bound in the number of constituent classifiers in the ensemble as there are infinitely many
ways to have the centers of classifiers shuffled. In previous research (Sharif et al., 2019; Liu et al.,
2019), the authors had to split the classifiers to plenty of ensembles in order to achieve diversity
inside each ensemble.

A.4.1 Unanimity framework for adversarial detection

Wemight use the ensemble ofDML-based networks to detect adversarial samples based on unanimity
framework. In this setting, the ensemble provides the prediction for label of input G, only if all the
individual members agree on the label of the G. Otherwise, the ensemble renders the sample as
an adversarial example. In Figure 3 we have shown the ROC plots and AUC scores for adversarial
detection using unanimity framework over three datasets. For each dataset we considered testset of
correctly classified benign samples and the corresponding adversarial samples crafted with white-box
attacks FGSM and PGD. The parameters for the attacks used are similar to the ones in Tables 2-10.
The results show the remarkable performance of DML-based ensemble with unanimity framework
as a detection metric.
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(a) MNIST (b) CIFAR-10 (c) RESISC-45

Figure 3: ROC curves for adversary detection using unanimity framework. The perturbation size n
is 0.3, 8.0/255 and 8.0/255 for MNIST, CIFAR-10 and RESISC-45 datasets, respectively.

A.5 Attack detection mechanism with 1-D projection

Shuffling the centers in high dimensional space does not necessarily lead to diverse adversarial
directions as in high dimension the decision boundaries of one class to the other class could be
numerous. To circumvent this issue to promote the diversity of the adversarial direction by taking
advantage of shuffled centers, we restrict the embedding space to a one dimensional centers, where
the center location for each class per each model in the classifier is just a shuffled representation of
fixed vector providing the center locations. In Figure 4 it is observed that shuffling the centers in 1-D
can significantly increase the rate of adversarial detection.

(a) MNIST (b) CIFAR-10 (c) RESISC-45

Figure 4: ROC curves for adversary detection using unanimity framework with 1-D mapping in the
embedding space. The perturbation size n is 0.3, 8.0/255 and 8.0/255 for MNIST, CIFAR-10 and
RESISC-45 datasets, respectively.

A.5.1 Adversarial detection using uncertainty metric

We define the uncertainty distribution of the model at sample points as the variance of outputs of
models across ensemble members and for multiple inferences. The quantified uncertainty of the
randomized-smoothing DML-based network is utilized to detect adversarial examples. Since there
is one output for each class in the network, the mean of the uncertainties for all classes indicates the
uncertainty of the model at the sample G. In Figure 5 we have shown the uncertainty distribution of
FGSM and PGD adversarial examples versus normal examples. Apparently, the distribution from
adversarial examples is distinguishable from normal and noisy samples. We use this intuition to
train a logistic-regression model on the inputs of uncertainty of data to detect adversarial examples.

In Table 9 we show the adversarial accuracy of the same ensemble models we considered in Tables
2-3 for the randomized smoothing DML layer indicated in equation (4). To compute the randomized
smoothing DML layer with Monte-Carlo approximation formulation (5), we set ) = 20 and the
noises are generated from the normal distribution N(0, f2�) with f = 0.1. It is seen in Table 9
that the adversarial accuracies of white box attacks for randomized smoothing DML outperform the
corresponding results for ensemble of DML based models.
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(a) FGSM (b) PGD

Figure 5: Uncertainty distribution.

Table 9: Accuracy of extended white box attacks on DML based ensemble (DML-ensemble) and
randomized smoothing DML ensemble (R-DML-ensemble) for the perturbation budget n specified
for each dataset. The attacks are performed with 5 random restarts.

Dataset Benign Acc FGSM PGD-20 PGD-40
MNIST (n = 0.3)
DML-ensemble 93.66 42.04 36.18 35.37

R-DML-ensemble 93.50 44.98 42.07 41.73

CIFAR-10 (n = 8/255)
DML-ensemble 84.57 47.72 19.38 14.46

R-DML-ensemble 81.25 56.48 38.12 37.34

We could also detect adversaries using the uncertainty quantity measured using randomized DML.
As shown, the benign, noisy and adversarial data are representing different uncertainty distribution.
Based on this observation, we train a logistic-regression classifier from the uncertainties of a com-
bined benign and noisy data as the negative class and the uncertainty from adversarial data as the
positive class. We use the testset of correctly classified samples for benign samples, and crafting
noisy, and adversarial examples. The adversaries are generated using from the FGSM and PGD
attackers. The trained model classifies benign and adversarial examples. We show the ROC plots
and AUC scores of the classifier in Figure 6. The ROC plots demonstrate that the uncertainty from
randomized DML might be used as an indicator to detect if a sample is adversary.

(a) MNIST (b) CIFAR-10 (c) RESISC-45

Figure 6: ROC curves for adversary detection using uncertainty distribution. The perturbation size
n is 0.3, 4.0/255 and 8.0/255 for MNIST, CIFAR-10 and RESISC-45 datasets, respectively.
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(a) Baseline (b) DML-based ensemble

Figure 7: Distribution of local CLEVER score for baseline ensemble and DML-based ensemble for
1000 randomly selected images from CIFAR-10 dataset with a CLEVER score of higher than the
threshold 0.2. The CLEVER scores are computed on the !2-norm ball with radius 2.0.

(a) Baseline (b) DML-based ensemble

Figure 8: Distribution of local CLEVER score for baseline ensemble and DML-based ensemble for
1000 randomly selected images from RESISC-45 dataset with a CLEVER score of higher than the
threshold 0.2. The CLEVER scores are computed on the !2-norm ball with radius 2.0.

A.6 CLEVER score

In Figures 7 and 8 we depicted the histogram of CLEVER score (Weng et al., 2018) of 1000 randomly
selected images of the model derived by summing the prediction of individual constituent models
in the ensemble for CIFAR-10 and RESISC-45 datasets. The results is shown for samples that have
higher CLEVER score than the threshold 0.2. CLEVER score provides an upper bound for the radius
of certified ball around each sample in !2 norm. The figures show that the scores from DML-based
ensemble outperform of the counterpart of baseline model. For instance for CIFAR-10 dataset the
number of samples with the CLEVER score greater than 1.0 is less than 15 samples, however for
DML-based ensemble around 250 samples have the score of 2.0.

A.7 Orthogonality of input-outputs gradients

Now we demonstrate the effect of pairwise orthogonality of the " matrices for DMLs across
the ensemble imposing by regularized W in (3) on orthogonality of the input-output gradients of
constituent models. For this purpose we design an ablation study for a ensemble of two models.
Once we train the ensemble model with W = 0.0 and once the ensemble model is trained with W = 1.0.
The histograms for the cosine similarity of input-output gradients of the two models in the ensemble
over three datasets is shown in Figures 9, 10 and 11. For each dataset we have shown the cosine
similarity of models’ gradients and also for the sign of gradients. Iterative attacks like PGD apply the
sign of gradients in order to craft the attacks. The figures show that the gradients for the models were

16



Under review as a conference paper at ICLR 2021

(a) gradient (b) gradient sign

Figure 9: Distribution of the cosine similarity of the gradients with respect to inputs for two models
in the DML-based ensemble trained with the regularizer term for imposing orthogonality of the "
matrices (W = 1.0) and the DML based ensemble trained without regularizer term (W = 0) for MNIST
dataset.

(a) gradient (b) gradient sign

Figure 10: Distribution of the cosine similarity of the gradients with respect to inputs for two models
in the DML-based ensemble trained with the regularizer term for imposing orthogonality of the
" matrices (W = 1.0) and the DML based ensemble trained without regularizer term (W = 0) for
CIFAR-10 dataset.

trained with W = 0 are more aligned compared to the ones with W = 1. The results for RESISC-45
is not prominent as the cosine similarity of the gradients of ensemble models trained with W = 0.0
is already close to zero. The results from these figures confirm that counting on the regularizer in
the loss function to impose the orthogonality of the " matrices of paired DMLs would significantly
reduce the cosine similarity between the gradients of loss function with respect to the input data for
paired models in the ensemble.

A.8 Effectiveness of R-DML in adversarial training

In this section we illustrate empirically that R-DML can provide better benign and robust accuracy
when compared to standard DML for adversarial training. To better distinguish the performance of
R-DML from the randomness obtained by augmenting data with Gaussian noise, in addition we also
perform experiments for DML where the input data is augmented with the isotropic Gaussian noise,
i.e.,

6(G) = EX∼N(0,f2� ) (G + X − 2 5 ) ′" (G + X − 2 5 )
We call this layer augmented DML (AUG-DML), as the input to DML augmented with random noise.
In Figure 12 we have shown the benign and robust validation accuracy. The validation set is equal to
the testset. Figure 13 also show the same counterparts for DML-based models which are obtained
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(a) gradient (b) gradient sign

Figure 11: Distribution of the cosine similarity of the gradients with respect to inputs for two models
in the DML-based ensemble trained with the regularizer term for imposing orthogonality of the
" matrices (W = 1.0) and the DML based ensemble trained without regularizer term (W = 0) for
RESISC-45 dataset.

(a) Benign validation accuracy (b) Robust validation accuracy

Figure 12: Benign and adversarial accuracy for adversarialy train models with FGSM attack without
random initialization.

by combining DML with the models which are adversarialy trained. In other words for the models
in Figure 13 we use prior models which are adversarialy trained. All the models we consider in this
section were trained adversarialy with one-step FGSM attack with the stepsize 10.0/255 and without
random initialization. The results in Figure 12 show that R-DML marginally show better benign
and robust accuracy, while the results from AUG-DML present similar performance as DML. It
shows that the noise injected to DML by convolving Gaussian distribution with the " matrix is more
effective compared to the DML obtained by augmenting inputs to DML with random noise. Also
the results from Figure 13 for R-DML show a significance improvement over DML and AUG-DML.
It is important to note that with the higher number of epochs in contrary to DML, R-DML avoids
over-fitting. It is also seen that standard DML based network achieve the peak of benign and robust
accuracy with only 2 epochs, although the results underperform the ones from R-DML after in the
long run training. It shows the DMLs can be applied effectively with pretrained adversarialy trained
priors to generate diversity across the model members.

A.9 Randomized smoothing and certified accuracy

In this section we examine the randomized smoothing model obtained by convolving the base model
with the isotropic Gaussian noise (Cohen et al., 2019). Our hypothesis is that the certified accuracy
for smoothed classifier with R-DML is providing tighter certified accuracy versus the standard DML.
The reason is that R-DML explores some points in the embedding space of the classifier for certifying
the samples which might be overlooked in the standard DML case when the input data is augmented
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(a) Benign validation accuracy (b) Robust validation accuracy

Figure 13: Benign and adversarial accuracy for adversarialy train models with FGSM attack without
random initialization. The DML based models formed with priors which are adversarialy trained.

(a) (b)

Figure 14: Certified accuracy for three types of DML-based model trained standardly. The standard
deviation to compute certified accuracy is (a) f = 0.1 and (a) f = 0.25. The standard deviation for
the Gaussian noise of R-DML and AUG-DML is f = 0.5.

with Gaussian noise. The reason for that is since we apply DML as a last hidden layer, augmenting
features with random noise could add more control on exploration of embedding space. Given that,
those embedding points may have different classification as the original sample. Thus, R-DML
results in a tighter bound for the certified accuracy by DML. We also demonstrate that AUG-DML
defined in the last section does not lead to dramatic change in the certified accuracy compared to
R-DML, which supports the significance of applying R-DML. Similar ideas on inserting noise to
the embedding space to explore overlooked regions based on data augmentation has been recently
explored in for example (Chen et al., 2020). However in this work, the noise is backpropagated
in the network to find the mapped location for the noise in the input space, which add additional
computational burden to the training procedure. However, in R-DML the noise in embedding space
freely added by convolving it to the " matrix. In Figure 14 we have shown the certified accuracy for
R-DML versus DML and AUG-DML. Note that these models are trained regularly and not through
randomized smoothing training procedure. The random noise for training R-DML and AuG-DML
which is applied is isotropic Gaussian noise with standard deviation of 0.5. The certified accuracy
for models in this section is measured over 1000 randomly selected samples. Figure 14 shows that
R-DML basically provides better certified accuracy compared to the other two DML based models.

In Figure 15 we have shown the certified accuracy of smoothed classifier based on standard DML.
The figure also shows the certified accuracy of smoothed classifier, when the DML in the smoothed
classifier is replaced by R-DML and AUG-DML. This figure shows that R-DML provides tighter
bound for the certified accuracy of smoothed classifier by DML.
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(a) f2 = 0.25, f' = 0.1 (b) f2 = 0.5, f' = 0.1

(c) f2 = 0.25, f' = 0.25 (d) f2 = 0.5, f' = 0.25

Figure 15: Certified accuracy for smoothed classifier obtained by randomized smoothing of the classifier with
DML. The curves corresponding to R-DML and AUG-DML show the certified accuracy when the DML layer
replaced by R-DML and AUG-DML where the std of Gaussian noise is f' . f2 denotes the std of Gaussian
noise used to compute certified accuracy.

Table 10: RESISC-45 extensive white-box attack results by scaling the " matrix. FGSM and PGD
are applied with specific perturbation scale n . CW is used with the specified penalty parameter W.

Training Benign FGSM FGSM BIM-10 PGD-10 CW
Model Acc n = 0.015 n = 0.03 n = 0.015 n = 0.015 W = 1
Baseline 85.66 3.75 1.34 0.00 0.00 45.22

DML Ensemble 88.71 44.40 33.24 23.93 25.76 36.12

In Figure 16 we have shown the certified accuracy for smoothed classifier with three types of DML
layer. We then removed the DML layer and replaced it with R-DML tomeasure the certified accuracy.
It is seen that the model trained with AUG-DML does not not tolerate the noise from R-DML and
it failed to provide certification for any sample. The smoothed classifier trained by R-DML could
provide high certified accuracy.

A.9.1 Effect of meta-model on promoting diversity

To show the effectiveness of group-splitting mechanism discussed in earlier, we trained the RESISC-
45 dataset without this mechanism and only by scaling the " matrix to impose diversity across
members. Figure 17 shows that under this experiment setting, no remarkable diversity in the shape
of loss function across members are created. The corresponding results for the robust accuracy and
rate of transferability as presented in Tables 10, 11, 12 show lower performance compared to the
model trained with meta-model description.
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(a) f2 = 0.25, f' = 0.1 (b) f2 = 0.5, f' = 0.1

(c) f2 = 0.25, f' = 0.25 (d) f2 = 0.5, f' = 0.25

Figure 16: Certified accuracy for smoothed classifier obtained by randomized smoothing of the classifiers
with three types of DML: DML, R-DML and AUG-DML. To calculate the certified accuracy the DML layer for
each smoothed classifier is replaced with R-DML where f' denotes the std of Gaussian noise for R-DML. f2
denotes the std of Gaussian noise used to compute certified accuracy.

Table 11: Adversarial accuracy of models when the attacks are crafted on the target Model 1 with
PGD-10. The labels form the targeted attacks are selected randomly and different from true labels.
The size of perturbation n is0.015. The model trained without using meta-model and diversity
imposed only be scaling the " matrix per each ensemble member.

Dataset Ensemble Model 1 Model 2 Model 3 Model 4 Model 5
RESISC-45
Benign Acc 88.71 83.80 86.42 85.40 87.69 84.80
Untargeted 67.96 20.40 68.22 64.91 70.31 69.21

Targeted 79.16 21.36 77.73 74.96 79.40 77.24

A.9.2 Distortion-accuracy plots

In Figure 18 the distortion-accuracy plots are shown for FGSM, BIM and PGD white-box attacks
and over all three datasets. It is observed that increasing the distortion scale n leads to almost 0%
accuracy for the ensemble models which could be an indication that the DML-based models do not
mask the gradient information, i.e., the attackers are applying interpretable gradients from the model.

In Figures 19-21 we visualize samples of original images and the corresponding adversarial images
generated from Table 5 for all three datasets. These figures show that the DML-based ensemble
largely increases the required distortion such that the distortion is highly perceptible.
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Table 12: The rate of required !2 distortion for adaptive CW-!2 attack (He et al., 2017) with W = 1
for the combined and individual ensemble members of size 5 for 100 randomly selected images. The
number of iterations and stepsize are 1000, 0.1, respectively. ^ is denoting the confidence parameter
for CW-!2 attack. The model trained without using meta-model and diversity imposed only be
scaling the " matrix per each ensemble member.

Dataset !2 distortion required for generating adversaries on each model
Ensemble Ensemble Model Model Model Model Model
^ = 0 ^ = 0.1 1 2 3 4 5

RESISC-45
Adversarial accuracy 70.00 2.00 0.00 0.00 0.00 0.00 0.00

Average distortion 3.69 182.90 2.77 2.72 2.73 2.82 3.32

(a) Model 1 (b) Model 2 (c) Model 3

Figure 17: Loss surface for three individual classifiers from the ensemble model without group-wise
splitting mechanism. The loss is depicted around the sample GB with the label HB from RESISC-45
dataset. The noise vector % is drawn from the normal distribution N(0, 0.05). The loss surfaces
does not show significant diversity across members.

(a) MNIST (b) CIFAR-10 (c) RESISC-45

Figure 18: Distortion-accuracy curves for adversarial examples crafted by FGSMand PGDwhite-box
aattacks over three datasets.
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Figure 19: Adversarial samples generated by CW-!2 attack (^=0.0) on the original samples from
MNIST dataset (first row), and on Ensemble model (2nd row), Model 1 (3rd row), Model 2 (4th
row), Model 3 (5th row), Model 4 (6th row), Model 5 (7th row).

Figure 20: Adversarial samples generated by CW-!2 attack (^ = 0.10) on the original samples from
CIFAR-10 dataset (first row), and on Ensemble model (2nd row), Model 1 (3rd row), Model 2 (4th
row), Model 3 (5th row), Model 4 (6th row), Model 5 (7th row).
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Figure 21: Adversarial samples generated by CW-!2 attack (^ = 0.10) on the original samples from
RESISC-45 dataset (first row), and on Ensemble model (2nd row), Model 1 (3rd row), Model 2 (4th
row), Model 3 (5th row), Model 4 (6th row), Model 5 (7th row).
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