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ABSTRACT

Training embodied agents to perform complex robotic tasks presents significant
challenges due to the entangled factors of task compositionality, environmental di-
versity, and dynamic changes. In this work, we introduce a novel imitation learning
framework to train closed-loop concept-guided policies that enhance long-horizon
task performance by leveraging discovered manipulation concepts. Unlike methods
that rely on predefined skills and human-annotated labels, our approach allows
agents to autonomously abstract manipulation concepts from their proprioceptive
states, thereby alleviating misalignment due to ambiguities in human semantics and
environmental complexity. Our framework comprises two primary components:
an Automatic Concept Discovery module that identifies meaningful and consistent
manipulation concepts, and a Concept-Guided Policy Learning module that effec-
tively utilizes these manipulation concepts for adaptive task execution, including a
Concept Selection Transformer for concept-based guidance and a Concept-Guided
Policy for action prediction with the selected concepts. Experimental results demon-
strate that our approach significantly outperforms baseline methods across a range
of tasks and environments, while showcasing emergent consistency in motion pat-
terns associated with the discovered manipulation concepts. Our code and trained
models will be made public for reproducibility and future research.

1 INTRODUCTION

The pursuit of developing robotic systems that can perform a wide array of tasks in diverse environ-
ments is a core mission in embodied AI and robotics. While imitation learning has been employed
to derive policies from extensive robotic datasets (Collaboration et al., 2024; Kim et al., 2024), it
remains challenging for embodied agents to effectively learn policies for long-horizon tasks. Errors
and inconsistencies can accumulate, making situations progressively more dynamic and complex to
manage. Additionally, imitation learning faces further difficulties due to the varying and unpredictable
conditions encountered at each step (Padalkar et al., 2023; Brohan et al., 2022; 2023; Fu et al., 2024).

To tackle long-horizon tasks, it is effective to divide them into sequential sub-tasks with specific goals.
This strategy offers two main advantages: first, breaking down a complex task into simpler sub-tasks
makes the learning process more manageable by focusing on attainable goals, thereby reducing
overall complexity and enhancing feasibility. Second, these sub-tasks often involve common actions,
such as “grasping,” which are frequently repeated in various tasks. By learning these common actions,
the training dataset is more effectively utilized, allowing for reuse in new, unseen tasks. Therefore, it
is beneficial to learn a representation that captures the intrinsic patterns of these common actions,
referred to as manipulation concepts (Shao et al., 2021; Liu et al., 2024a; Jia et al., 2024). These
concepts are analogous to human motor skills like grasping, throwing, pushing, and pulling (see
Fig. 1). Just as a set of basic skills can facilitate humans to perform complicated tasks such as cooking
or assembling furniture, the learned manipulation concepts can also be composed or reused to address
complex long-horizon robotic manipulation tasks.

Many prior works have relied on human semantics, e.g., using natural language, to label sub-processes
and enhance imitation learning by training hierarchical policies. These approaches often depend
on manually crafted annotations, heuristic rules, or large models trained for encoding human prior
(Eisner et al., 2022; Li et al., 2023b; Mo et al., 2019; Ahn et al., 2022; Di Palo et al., 2023; Ding et al.,
2023; Lin et al., 2023). This reliance poses significant challenges: the extensive manual effort required
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Figure 1: Comparison of human defined manipulation concepts with those derived by our method.
Human manipulation concepts, or motor skills, can be described in natural language and combined
for long-horizon tasks. In contrast, our method applies a self-supervised learning framework to
discover meaningful manipulation concepts as feature vectors (see Sec. 3.1). These manipulation
concepts can be applied to manipulation tasks via composition. For humans, manipulation concepts
inform planning, which guides specific actions. Similarly, our model execute policies guided by the
discovered manipulation concepts (see Sec. 3.2).

for data collection is time-consuming and resource-intensive, and the inherent subjectivity may lead
to manipulation concepts that do not align well with the robot’s configuration or its operational
environment, ultimately hindering effective learning and performance.

To address these challenges of manual annotation, task complexity, and environmental unpredictability,
we propose a novel framework that combines automatic concept discovery with closed-loop concept-
guided policy learning. Our approach aims to autonomously extract and utilize manipulation concepts
directly from the robot’s proprioceptive states, thereby eliminating the dependency on predefined
skills and human-annotated labels. This self-supervised method not only mitigates the misalignment
caused by ambiguities in human semantics but also adapts dynamically to unforeseen situations.

Specifically, our framework consists of two main components. The first is the Automatic Concept
Discovery module, which enables robots to derive manipulation concepts in a bottom-up manner
without resorting to human annotators. This module focuses on key characteristics shared by a
wide range of skills and sub-goals, allowing for the abstraction of high-quality and consistent
manipulation concepts across various tasks. The second component is the Closed-Loop Concept-
Guided Policy Learning module. This module establishes an adaptive policy by employing a Concept
Selection Transformer (CST) to propose and adjust manipulation concepts in real-time during the
robot’s interactions with the environment. This dynamic selection enables the system to adapt to
environmental changes and select the most appropriate concept for the current situation. Subsequently,
the Concept-Guided Policy (CGP) utilizes the selected manipulation concepts to execute actions
based on instantaneous visual inputs, leveraging a diffusion policy to generate efficient and high-
dimensional actions. This closed-loop approach ensures that the policy can dynamically adjust and
refine its actions based on continuous feedback, effectively addressing the challenges of dynamic and
unpredictable environments.

The experimental results demonstrate that our pipeline significantly improves manipulation task
performance, surpassing baseline methods across a variety of tasks and environments. We observe
emergent consistency within these manipulation concepts, particularly in terms of motion patterns.
Our contributions can be categorized into three major aspects: 1) A novel closed-loop concept-guided
learning pipeline that discovers and utilizes manipulation concepts from unlabeled demonstrations;
2) A manipulation concept discovery method that abstracts high-quality, consistent manipulation
concepts in various tasks, reducing dependence on human prior knowledge; and 3) A concept-
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guided policy that incorporates learned manipulation concepts with a diffusion policy, achieving
state-of-the-art performance on various benchmarks.

2 RELATED WORK

Concept discovery in manipulation tasks. The manipulation concepts we propose are discrete
symbolic representations, akin to natural language and codes, which are widely used and beneficial
for learning manipulation tasks. Despite advances in improving manipulation tasks through costly
manual labeling (Eisner et al., 2022; Li et al., 2023b; Mo et al., 2019), unsupervised concept discovery
remains under-explored. Recent advances in Large Language Models (LLMs) show promise for
automated labeling (Ahn et al., 2022; Di Palo et al., 2023; Ding et al., 2023; Lin et al., 2023), but
they lack sufficient grounding in real-world sensor data (Zhou & Yang, 2024). Studies adopting
self-supervised methods to discover manipulation concepts (Liu et al., 2024a; Morgan et al., 2021;
Sermanet et al., 2018; von Hartz et al., 2022; Weng et al., 2023; Yan et al., 2020; Zambelli et al., 2021)
include utilizing mutual information (Gregor et al., 2016; Hausman et al., 2018), time-contrastive
learning (Ma et al., 2023; Nair et al., 2022), identifying critical temporal junctures (Caldarelli et al.,
2022; Jayaraman et al., 2018; Neitz et al., 2018; Pertsch et al., 2020; Zhu et al., 2022), and applying
geometric (Morgan et al., 2021; Shi et al., 2023; Zhu et al., 2022) and physical (Yan et al., 2020)
constraints. Several approaches struggle to generalize due to data inefficiency or heuristic designs,
while others rely on overly broad self-supervised principles that lack focus on the intended concept
use cases. The proposed discovery mechanism efficiently manages generalization across robots with
the same morphology while capturing key features of diverse manipulation skills.

Manipulation policy learning. A significant body of research is devoted to learning manipulation
policies through methods like imitation learning (Argall et al., 2009; Fang et al., 2019; Rahmatizadeh
et al., 2018; Zhang et al., 2018) and reinforcement learning. These approaches primarily use deep
neural networks to map states to actions, enabling interaction. Key techniques in this field include the
Decision Transformer (Chen et al., 2021; Tanaka et al., 2024; Team et al., 2023; Xu et al., 2023b;
Zhao et al., 2023) and Diffusion Policy (Chi et al., 2023; Li et al., 2023a; Liu et al., 2024b; Pearce
et al., 2023; Tan et al., 2024; Wang et al., 2022; Yan et al., 2024; Ze et al., 2024). To address more
complex tasks, recent advancements have integrated hierarchical planning with concepts into policy
learning (Hutsebaut-Buysse et al., 2022; Jia et al., 2023; Liang et al., 2023; Xu et al., 2018; Yang
et al., 2022). Various methods have also been proposed to handle multiple manipulation concepts
within a single model (Brohan et al., 2023; 2022; Driess et al., 2023). Additionally, Large Language
Models (LLMs) are leveraged for the massive prior knowledge encoded to manage diverse situations
in manipulation tasks (Huang et al., 2023a;b; Izzo et al., 2024; Long et al., 2023; Wang et al., 2023;
Wong et al., 2023; Xie et al., 2023; Yu et al., 2023; Zhou et al., 2024). However, these methods
often struggle with real-world tasks due to the lack of physical grounding. Our approach overcomes
this by deriving manipulation concepts directly from robot observations and proprioceptive states,
automatically ensuring physical grounding in an end-to-end manner.

3 METHOD

We aim to develop closed-loop concept-guided policies, which output action by taking in a manipula-
tion concept (e.g., indicating a motor skill) and the current state. The manipulation concept in effect
is adjusted according to the task and the current situation (i.e., closed-loop). Moreover, these manipu-
lation concepts are discovered in a self-supervised manner without resorting to human annotations.
Specifically, our pipeline consists of two key modules as shown in Fig. 2. The first module, Automatic
Concept Discovery, detects segments of similar motion patterns from unannotated demonstrations to
derive manipulation concepts. The second module, Concept-Guided Policy Learning, leverages these
manipulation concepts to train a policy that adapts to environmental changes by selecting the most
appropriate manipulation concept (Concept Selection Transformer (CST)) and predicting actions
with the proposed manipulation concept (Concept-Guided Policy (CGP)). Next, we describe each
module in detail.

3.1 AUTOMATIC CONCEPT DISCOVERY

Given unannotated demonstrations D, where τ ∈ D is a trajectory, i.e., τ = {(sτt , oτt , aτt )}
T (τ)
t=1 (with

oτt the environmental observation, sτt the agent’s proprioceptive state, aτt the action at time-step t, and

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Pipeline for Learning Closed-Loop Concept-Guided Policies from unlabeled demon-
strations. The Automatic Concept Discovery module labels demonstrations in D with manipulation
concepts using three strategies (see Sec. 3.1 and Fig. 3). These strategies form a self-supervised
learning (SSL) process, refining the assignment of manipulation concepts with E . The labeled
demonstrations form Daug, providing observations (ot and st) and labels (αk) for Concept-Guided
Policy Learning, which trains the Closed-Loop Policy comprising CST and CGP (see Sec. 3.2). In
this setup, CST selects the appropriate manipulation concept (αk) to guide CGP in generating actions.

T (τ) the length of τ ), the Automatic Concept Discovery (ACD) module aims to detect manipulation
concepts by assigning each state in a trajectory to one of the K learnable embeddings A = {αk}Kk=1.
We denote K = {k}Kk=1 as the index set for the manipulation concepts. Specifically, to perform the
assignment, we instantiate an encoder E , such that for every τ ∈ D, E maps its state at t to an index
kτ
t ∈ K corresponding to the embedding ατ

t . Let ΘE be the parameters of E (excluding K and A),
then we have:

kτ
t = E(t|τ ;K,A,ΘE), ατ

t = αkτ
t
. (1)

Note that sub-sequences sharing an index k ∈ K belong to the same manipulation concept represented
by αk, depicting the behaviors initiated by it. Additionally, the assignment encoder E prioritizes the
proprioceptive information to facilitate deriving coherent manipulation concepts, since proprioceptive
motion sequences exhibit high consistency across tasks and different data types.

The structure of E (Eq. 1) is adapted from the VQ-VAE architecture (Van Den Oord et al., 2017),
which selects an index from K = {k}Kk=1 as the manipulation concept for time step t in a demonstra-
tion τ . This selection matches the feature vector generated by the encoder to the nearest embeddings
in A = {αk}Kk=1:

kτ
t = E(t|τ ;K,A,ΘE) = argmin

k∈K
∥Ẽ(t|τ ; ΘE)− αk∥, ατ

t = αkτ
t
. (2)

Here, Ẽ is the sub-module that takes the demonstration τ ∈ D as input and outputs a feature of
the same dimension as the approximation of the embedding vectors in A at each time step t. The
discrete nature of the VQ-VAE encoder, as discussed in the following sections, naturally enables
the segmentation of sub-trajectories that achieve sub-goals represented by the same manipulation
concepts, facilitating the identification of the moment when the sub-goal is accomplished during
training. Please see Sec. A.1 for further implementation details of E1.

Goal State Detection. Given the current state, a manipulation concept or sub-goal enables the
envisioning of the future state upon its accomplishment. To encourage the discovery of meaningful
manipulation concepts, we leverage the above phenomenon and design a Goal State Detection
strategy, which learns by training a network G that maps each state of τ with the putatively associated
manipulation concept embedding to the goal state (ending state) of the corresponding sub-sequence.
This allows manipulation concept embeddings (A) and the assignment encoder (E) to be refined
through back-propagation. The objective is the loss between the goal states predicted by G and those
defined by the partitioning of the manipulation concepts:

Lgd = ∥G({sτt ,ατ
t }

T (τ)
t=1 )− (gτt )

T (τ)
t=1 ∥ . (3)

Here ατ
t is computed according to Eq. 2, and gτt denotes the proprioceptive state at which the sub-goal

for time-step t in τ is achieved. Leveraging the discrete embeddings in E , once indices from K
are assigned as manipulation concepts to the states in demonstration τ , the state at the sub-goal’s

1Especially for preservation of gradient.
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Figure 3: Automatic Concept Discovery Strategies. The Automatic Concept Discovery (ACD)
module employs three key strategies. The Goal State Detection strategy maps each state, along with
its manipulation concept (embedding), to the goal state of its sub-process, defined at the junction
between segments with different manipulation concepts (k and k′, see Eq. 4). The Goal State
Evaluation strategy uses the value function V to evaluate both the Alignment and the Completion
of a proprioceptive state based on the manipulation concept and goal state. Alignment is indicated
by the value difference between states within and outside specific manipulation concept segments.
Completion is derived from the gradient of V , guiding state transitions. The Goal Consolidation
strategy maps manipulation concept embeddings (i.e., Emb.) back to their proprioceptive states.

accomplishment can be detected by retrieving the nearest time step where the manipulation concept
switches, indicating the completion of the current sub-goal:

gτt = sτargminu{u:u≥t,kτ
u+1 ̸=kτ

u} . (4)

Please refer to Fig. 3 for an illustration of the Goal State Detection procedure.

Goal State Evaluation. Given a state depicting when the sub-goal indicated by a manipulation
concept is achieved, one can assess whether a state is well-aligned towards achieving the sub-goal,
and can further evaluate the progress toward its completion at the current state. To further enhance
the quality of the discovered manipulation concepts, we develop a Goal State Evaluation strategy.
This involves using the assigned manipulation concepts to train a value function V that evaluates
both the alignment and the completion degrees for a proprioceptive state conditioning on the specific
manipulation concept and its associated goal state:

V(sτt , gτu;αk) → [0, 1],where αk ∈ A . (5)

A detailed implementation of Eq. 5 can be found in Sec. A.2, and V , in theory, shall differentiate the
compatibilities of a state against various manipulation concepts by their values. States compatible
with the manipulation concept αk that aiming for the goal state gτu should be assigned higher values,
while others with lower values, due to either a mismatch of the manipulation concept or not resulting
in the goal state (Goal State Evaluation in Fig. 3). This discriminative ability (for alignment) of V
could be acquired by training with the following binary classification objective2:

Lge
a (sτt , g

τ
u; k) =

{
logV (sτt , g

τ
u;αk) if kτ

t = k and gτu = gτt ,

log (1− V (sτt , g
τ
u;αk)) otherwise .

Lge
a = Σ

T (τ)
u=1

(
I{kτ

u ̸= kτ
u+1} · Σ

T (τ)
t=1 Lge

a (sτt , g
τ
u;k

τ
u)
)
.

(6)

2The total loss Lge
a in Eq. 6 focuses on the time-step when the manipulation concept switch occurs, similar to

Eq. 4. Once this switch time-step is determined, the binary classification objective is applied to every time step
of the trajectory.
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However, the compatibility learned according to the above may not faithfully assess the completion
degree of a state regarding the sub-goal state, as Eq. 6 does not explicitly enforce that a higher score
represents greater progress towards the sub-goal state, thus the ambiguities in the evaluation.

To address this issue, we further constrain the gradient field of V to enforce accurate completeness
evaluation for more informative manipulation concepts. We propose that the progress toward
completion should be correlated with the increase or decrease in V’s value, which can be effectively
captured through its gradients. Moreover, when gτt and αk are fixed in Eq. 5, the gradient field with
respect to the current state sτt , while αk is in effect, should guide the state transition, represented by
∇sτt (Goal State Evaluation in Fig. 3). Thus, we train a network Π, which maps the current state and
its gradient to this state transition as follows:

Lge
c = Σ

T (τ)
t=1

∥∥Π (
sτt ,∇sτt

V (sτt , g
τ
t ;α

τ
t )
)
−∇sτt

∥∥ , (7)

where the state transition ∇sτt can be computed as the discrepancy between the states from two
consecutive time steps, i.e., finite difference.

Goal Consolidation. Furthermore, we propose that all states associated with a given manipulation
concept shall exhibit similarity to some extent, as they share the same sub-goal or skill. To utilize this
characteristic, we introduce a reconstruction network R trained to map the embedding vector back to
its corresponding state:

Lgc =
∥∥∥sτ1:T (τ) −R

(
ατ

1:T (τ)

)∥∥∥ . (8)

We denote this as a consolidation aimed at promoting the consistency of sub-sequences assigned with
the same manipulation concept, ensuring that similar states serve similar purposes.

Together, Eq. 9 constitute the training objective for the self-supervised discovery of manipulation
concepts from unannotated demonstrations:

LACD = Lgd + Lge
c + λent (Lge

a + Lvq) + λgcLgc . (9)

Here Lvq is the combination of the commitment loss and vector quantization loss in Van Den Oord
et al. (2017), and λent and λgc are positive hyperparameters. Next, we describe the learning of
closed-loop concept-guided policies with the discovered concepts.

3.2 CLOSED-LOOP CONCEPT-GUIDED POLICY LEARNING

With the self-supervised discovered manipulation concepts, we augment the unannotated demonstra-
tions D = {τ = {(sτt , oτt , aτt )}

T (τ)
t=1 } by tagging each state in a demonstration with a manipulation

concept kτ
t ∈ K, resulting in the augmented dataset Daug = {τ = {(sτt , oτt , aτt ,kτ

t )}
T (τ)
t=1 }. With

Daug, we can utilize the discovered and grounded manipulation concepts K to learn a closed-loop
visuomotor policy:

(a, k) ∼ (πD(a|o, s, k; ΘCGP), pCST(k|o, s; ΘCST)) , (10)

where ΘCST are the parameters of pCST and ΘCGP are the parameters of πD. The proposed frame-
work enables the policy to dynamically select and adjust the manipulation concept in response to
environmental changes with the Concept Selection Transformer (CST): k ∼ pCST(k|o, s; ΘCST), and
to execute appropriate actions based on real-time visual inputs and corresponding manipulation
concepts through the Concept-Guided Policy (CGP): a ∼ πD(a|o, s, k; ΘCGP), which we detail in the
following.

Concept Selection Transformer (CST). The Concept Selection Transformer (CST) determines
the manipulation concept based on run-time observations: kt ∼ pCST(k|ot, st), where ot and st
denote the observation and proprioceptive state, respectively, and kt is the selected manipulation
concept from K. This design allows adjustments at any time step, enabling the system to adapt to
environmental changes and select the most appropriate concept for the current situation. The training
leverages cross-entropy loss to align the predicted probability distribution over manipulation concepts
with the one-hot labels corresponding to the manipulation concepts provided by E :

LCST = Eτ∼D,t∼U(0,T (τ)) log pCST(k = kτ
t |oτt , sτt ; ΘCST) . (11)
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Concept-Guided Policy (CGP). The Concept-Guided Policy (CGP) πD utilizes manipulation con-
cepts predicted by pCST within an imitation learning framework. We adopt the Diffusion Policy (Chi
et al., 2023) for its ability to generate complex, high-dimensional actions from learned distributions.
Given varying stages and sub-goals in a manipulation process, CGP adjusts itself with respect to the
conditional manipulation concept provided by the CST module. Since the sub-trajectories labeled
with a specific manipulation concept are always shorter than the original τ , the learning of the skills
indicated by these manipulation concepts is usually more efficient due to reduced complexity and can
lead to improved performance due to compositional generalization.

Specifically, we leverage a diffusion policy πD conditioned on the observed environment, the robot’s
proprioceptive state, and the selected manipulation concept. It then denoises the action from a
random sample drawn from N (0, I) using a DDPM framework with the denoising module D (Eq. 13
and Eq. 14). As stated in Chi et al. (2023), this approach yields actions that are more robust to
multiple viable options and dynamic environments compared to other methods. To enhance the
coupling between pCST and πD, we utilize the entire manipulation concept distribution T (ot, st; ΘCST)
predicted by pCST rather than simply selecting the manipulation concept with the highest probability:

at ∼ πD(a|ot, st, T (ot, st; ΘCST); ΘCGP) ,

where T (ot, st; ΘCST) = [pCST(k|ot, st; ΘCST)]
K
k=1 ∈ RK .

(12)

This enables the joint training of pCST and πD, allowing pCST to refine its manipulation concept
(distribution) prediction with not only the augmented manipulation concepts from Automatic Concept
Discovery, but also with the feedback from training πD using the action prediction loss.

More precisely, for the DDPM training of the denoising module D with demonstrations τ ∈ Daug,
we minimize the prediction loss between the injected random noise ϵ(n) (for time step n) and the
predicted noise from the noisy action e

τ,(n)
t , where aτt is perturbed by ϵ(n). The DDPM loss is jointly

optimized with the loss for the Concept Selection Transformer in Eq. 11 to enhance pCST’s selection
of manipulation concepts and its coordinated behavior with πD:

LCGP = E
[∣∣∣D(ϵ

τ,(n)
t |oτt , sτt , T (oτt , s

τ
t ; ΘCST); ΘCGP)− ϵ(n)

∣∣∣2] ,

Lpolicy = LCGP + λLCST .

(13)

Here, LCST is the loss for training pCST (Eq. 11), and λ > 0 is the hyper-parameter for weighting.
For action inference, it incrementally refines the generated actions, beginning with random Gaussian
noise, by applying a reverse diffusion process, resulting in a

(1)
t as the sampled (predicted) action:

πD : a
(n−1)
t = βn

(
a
(n)
t − γnD(ϵ

(n)
t |st, ot, T (ot, st; ΘCST); ΘCGP)

)
+ σnN (0, I) . (14)

Leveraging the diffusion model’s strong capability to model complex distributions, πD can produce
actions of higher quality when conditioned on the selected manipulation concept. For the detailed
architecture and training pipeline, please refer to Sec. B.

4 EXPERIMENTS

We evaluate the proposed pipeline for Automatic Concept Discovery and Closed-Loop Concept-
Guided Policy learning on various manipulation tasks. Our primary evaluation compares the per-
formance of our method with major baseline approaches across diverse tasks within the Robosuite
simulation environment (Zhu et al., 2020). Moreover, we conduct an ablation study to analyze the
contributions of the different components within our manipulation concept discovery and policy
learning modules. We demonstrate the advantages of the discovered manipulation concepts and
validate the efficacy of the conditional diffusion policy in improving task performance under the
closed-loop framework.

4.1 EXPERIMENTAL SETTING

Implementation details. We evaluate our method on tabletop manipulation tasks as described in
MimicGen (Mandlekar et al., 2023), detailed in Sec. C.1. These tasks are categorized into six types:
Coffee Making (Cof.), Hammer Cleanup (Ham.), Stack Three Cubes (Stk. 3), Three Piece Assembly
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Table 1: Success rates of policies trained with the proposed method and competing baselines across
diverse manipulation tasks. DP represents the standard diffusion policy, while all other methods build
on this framework by incorporating various concept discovery approaches.

Cof. Ham. Stk. 3 3 Pc. Thd. Mug.
D0 D1 D2 D0 D1 D0 D1 D0 D1 D2 D0 D1 D0 D1

DP 0.80 0.58 0.40 1.00 0.46 0.68 0.68 0.54 0.28 0.00 0.60 0.28 0.76 0.28
InfoCon+DP 0.90 0.70 0.58 0.96 0.58 0.62 0.52 0.66 0.22 0.02 0.72 0.16 0.78 0.36
Xskill+DP 0.88 0.74 0.50 1.00 0.54 0.72 0.76 0.74 0.36 0.00 0.70 0.20 0.70 0.40
AWE+DP 0.86 0.68 0.48 0.96 0.56 0.70 0.68 0.60 0.26 0.00 0.62 0.16 0.76 0.30
Ours+DP 0.98 0.84 0.72 1.00 0.66 0.78 0.72 0.82 0.42 0.04 0.80 0.28 0.88 0.50

(3 Pc.), Threading (Thd.), and Mug Cleanup (Mug.). Each task varies in initial settings, denoted as
D0, D1, and D2, with higher numbers indicating greater variations. For each task, we utilize 950
training demonstrations, capturing data at each timestep, including front-view images, wrist-view
images, robot proprioceptive state, and ground-truth actions. We follow the procedures described in
Sec. 3 to train our concept-guided policies: 1) Automatic Concept Discovery: Initially, we employ
our framework’s Automatic Concept Discovery method across all 14 tasks to identify multi-task
concepts. Subsequently, all demonstrations across these tasks are labeled using the trained concept
discovery network. 2) CST and CGP: For each task, we use a Concept Selection Transformer (CST)
to map inputs—comprising front-view images, wrist-view images, and robot state—to the relevant
execution concepts. Concurrently, a Concept-Guided Policy (CGP) mentioned in Sec. 3.2 is trained to
map the CST inputs and manipulation concepts into actions. These two processes are jointly trained
to enhance synergy and performance. Further training details are discussed in Sec. B.

Baselines. We first train the baseline Diffusion Policy (DP) without leveraging manipulation
concepts. We then compare our method with other major concept discovery baselines, utilizing
DP as the backbone for all comparisons. The detailed implementations of these baselines can be
found in Sec. A.4. Here is a brief summary: 1) InfoCon (Liu et al., 2024a): InfoCon is a self-
supervised framework that discovers manipulation concepts through generative and discriminative
informativeness regarding the low-level physical state and state changes. 2) XSkill (Xu et al.,
2023a): XSkill is an imitation learning framework that extracts and transfers manipulation skills
from unlabeled human and robot videos. In this case, we reimplement XSkill using only robotic
demonstrations. 3) AWE (Shi et al., 2023): AWE enhances robotic imitation learning by automatically
extracting minimal waypoints from demonstrations, simplifying the decision-making process by
approximating full trajectories through linear interpolation.

4.2 QUANTITATIVE RESULTS

Evaluation. Our primary evaluation metric is the task success rate (SR), which varies based on the
specific criteria for each task (see Sec. C.1 for details). For instance, in the Coffee Making task,
success is defined as accurately grasping the coffee and placing it into the coffee machine, while in the
Mug Cleanup task, success involves moving the mug from the table into a drawer. The observation
space for all tasks includes two images (each 112 × 112) from the front and wrist views, along with
9-dimensional proprioceptive information of the agent (gripper position, rotation, and opening state).
During evaluations, the initial environment is generated completely at random. We conduct tests
over 50 episodes for each task using a set of fixed random seeds for fair comparison. Given the
complexity of these multi-step manipulation tasks, we set a maximum of 600 rollout steps per episode
for evaluation.

Main results. Tab. 1 presents the task success rates (SR) of the trained policies across 50 randomly
initialized environments, with variations in object positions and placement angles. We use SR
to evaluate the quality of the discovered concepts, since a higher success rate indicates that the
manipulation concepts learned by the model can guide the policy towards task completion more
effectively. The results demonstrate that our proposed method consistently outperforms DP baseline
and other concept discovery pipelines on the majority of tasks. In particular, for relatively challenging
tasks like the Cof.(D2) task and the Mug.(D1) task, the performance improvement is even more
pronounced, indicating that our method excels in handling more complex, long-horizon tasks. This
suggests that our approach is highly effective at discovering intrinsically meaningful manipulation
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Table 2: Ablation study of our proposed Automatic Concept Discovery module. We show the success
rates of ablations of different components in the module.

Cof. Ham. Stk. 3 3 Pc. Thd. Mug.
D0 D1 D2 D0 D1 D0 D1 D0 D1 D0 D0 D1

w/o GD 0.92 0.80 0.58 0.98 0.58 0.70 0.68 0.72 0.38 0.72 0.88 0.48
w/o GE 0.92 0.78 0.58 1.00 0.64 0.72 0.64 0.80 0.40 0.78 0.78 0.40
w/o GC 0.96 0.84 0.60 0.94 0.56 0.68 0.68 0.74 0.38 0.80 0.72 0.46

Ours 0.98 0.84 0.62 1.00 0.66 0.78 0.72 0.82 0.42 0.80 0.88 0.50

concepts that enhance the learned policies’ ability to generalize across dynamic environments during
robotic execution. The discovery of these meaningful concepts highlights the practical benefits of the
proposed closed-loop framework in solving manipulation tasks with high variability and complexity.

Ablation study We conduct an ablation study to assess the impact of various components within
our concept discovery and policy learning pipeline, with results detailed in Tab. 2. As described
in Sec. 3.1, the Automatic Concept Discovery module consists of three primary components. This
ablation involves systematically disabling each component to evaluate their individual contributions
to concept discovery and subsequent policy training. The results, as shown in Tab. 2, demonstrate
that omitting any of these components adversely affects performance across tasks. Specific settings
tested include disabling goal state detection (w/o GD), goal state evaluation (w/o GE), and goal
consolidation (w/o GC). The table illustrates that policies trained with a fully integrated concept
discovery module achieve the best performance across a variety of tasks, underscoring the importance
of each component in enhancing policy performance with improved manipulation concept quality 3.

4.3 VISUAL RESULTS

We also visualize and assess the concepts discovered by our method. First, we demonstrate the
consistency of the concepts identified across different manipulation trajectories of the same task
(Coffee D2), as illustrated in Fig. 4 (upper). The results highlight how well our method generalizes
the identified concepts within variations of the same task. We also compare our results with those
from XSkill (Xu et al., 2023a), shown in Fig. 4 (lower). For XSkill embeddings, we utilize K-means
clustering to group the embeddings into separate concepts, allowing for a direct comparison between
the two methods. This comparison underscores a key advantage of our approach: our method
consistently identifies similar, robust manipulation concepts across different trajectories of the same
task, even when there are variations during execution. This suggests that our framework effectively
captures the underlying motion pattern of the task. In contrast, the concepts identified by the XSkill
pipeline exhibit greater variability and are prone to noise.

Furthermore, Fig. 5 illustrates that sub-sequences corresponding to the same manipulation concepts
exhibit similarity in proprioceptive motion, even when these sub-sequences are derived from different
tasks. This suggests that the discovered concepts capture underlying commonalities in dynamics,
regardless of the task context. These similarities highlight the generalizability and robustness of the
concepts, making them transferable across various tasks. More visualizations of concept consistency
can be found in Sec. C.3.

5 DISCUSSION
In this work, we develop a closed-loop concept-guided manipulation policy learning pipeline with
two modules: Automatic Concept Discovery and Concept-Guided Policy Learning, which abstracts
manipulation concepts from unannotated robot demonstrations and uses these manipulation concepts
to improve manipulation policy efficacy in an automatic manner. Our findings highlight the signifi-
cance of using autonomously discovered manipulation concepts to enhance policy training in complex
manipulation tasks. However, one potential limitation is that the maximum number of concepts is
predefined due to the nature of the vector codebook. Additionally, this pipeline has not yet been tested
on more complex morphology, e.g., humanoid. Possible future research could focus on increasing the
agent’s ability to generalize across a broader range of realistic scenarios and developing automatic
methods to assess concept consistency in diverse situations.

3Our observation of Concept Discovery indicates that ablation cases struggle to identify fine-grained manipu-
lation concepts, potentially leading to performance decline. Please refer to Sec. C.2
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Figure 4: Visual comparison of manipulation concepts discovered by our method versus Xskill
(Xu et al., 2023a). F{number} denotes the frame index of an image within a trajectory. Our method
demonstrates significantly greater consistency across different trajectories compared to Xskill.

Figure 5: Consistency check of the concepts discovered by our method across different tasks. The
sub-sequences under the same concept from different tasks share similarities in motion. Concept #4:
robot arms are placing the objects in target locations. Concept #8: robot arms are moving toward the
objects and preparing to pick. Concept #10: robot arms are pulling the drawer handles.
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Ethics Statement: Our research explores concepts that may go beyond common semantics. For
now, we are concentrating on extracting concepts from basic manipulation tasks and will maintain
this focus. While the algorithm holds potential for advancing toward more complex concepts, we
intend to proceed cautiously, carefully considering ethical implications and the need for responsible
control mechanisms.

Reproducibility Statement: We provide our implementation details of our Manipulation Concept
Discovery (including baselines) and Concept-Guided policies in the appendix (Sec. A and Sec. B)
and the supplementary material. Our experiments use the environments based on simulator Robosuite
(Zhu et al., 2020). We welcome discussion and advice on better and more stable performance of our
pipeline and further implementation improvement in more practical environments.
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survey and open research challenges. Machine Learning and Knowledge Extraction, 4(1):172–221,
2022.

Riccardo Andrea Izzo, Gianluca Bardaro, and Matteo Matteucci. Btgenbot: Behavior tree generation
for robotic tasks with lightweight llms. arXiv preprint arXiv:2403.12761, 2024.

Dinesh Jayaraman, Frederik Ebert, Alexei A Efros, and Sergey Levine. Time-agnostic prediction:
Predicting predictable video frames. arXiv preprint arXiv:1808.07784, 2018.

Zhiwei Jia, Fangchen Liu, Vineet Thumuluri, Linghao Chen, Zhiao Huang, and Hao Su. Chain-of-
thought predictive control. arXiv preprint arXiv:2304.00776, 2023.

Zhiwei Jia, Vineet Thumuluri, Fangchen Liu, Linghao Chen, Zhiao Huang, and Hao Su. Chain-
of-thought predictive control. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian
Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st
International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning
Research, pp. 21768–21790. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.
press/v235/jia24c.html.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair, Rafael
Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, Quan Vuong, Thomas Kollar, Benjamin Burch-
fiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn. Openvla: An
open-source vision-language-action model, 2024. URL https://arxiv.org/abs/2406.
09246.

Xiang Li, Varun Belagali, Jinghuan Shang, and Michael S Ryoo. Crossway diffusion: Improving
diffusion-based visuomotor policy via self-supervised learning. arXiv preprint arXiv:2307.01849,
2023a.

Xiaoqi Li, Mingxu Zhang, Yiran Geng, Haoran Geng, Yuxing Long, Yan Shen, Renrui Zhang, Jiaming
Liu, and Hao Dong. Manipllm: Embodied multimodal large language model for object-centric
robotic manipulation. arXiv preprint arXiv:2312.16217, 2023b.

Zhixuan Liang, Yao Mu, Hengbo Ma, Masayoshi Tomizuka, Mingyu Ding, and Ping Luo. Skilldif-
fuser: Interpretable hierarchical planning via skill abstractions in diffusion-based task execution.
arXiv preprint arXiv:2312.11598, 2023.

Kevin Lin, Christopher Agia, Toki Migimatsu, Marco Pavone, and Jeannette Bohg. Text2motion:
From natural language instructions to feasible plans. Autonomous Robots, 47(8):1345–1365, 2023.

Ruizhe Liu, Qian Luo, and Yanchao Yang. Infocon: Concept discovery with generative and discrim-
inative informativeness. In The Twelfth International Conference on Learning Representations,
2024a. URL https://openreview.net/forum?id=g6eCbercEc.

Yijing Liu, Chao Du, Tianyu Pang, Chongxuan Li, Wei Chen, and Min Lin. Graph diffusion policy
optimization. arXiv preprint arXiv:2402.16302, 2024b.

Zijun Long, George Killick, Richard McCreadie, and Gerardo Aragon Camarasa. Robollm: Robotic
vision tasks grounded on multimodal large language models. arXiv preprint arXiv:2310.10221,
2023.

Yecheng Jason Ma, Vikash Kumar, Amy Zhang, Osbert Bastani, and Dinesh Jayaraman. Liv:
Language-image representations and rewards for robotic control. In International Conference on
Machine Learning, pp. 23301–23320. PMLR, 2023.

13

https://proceedings.mlr.press/v235/jia24c.html
https://proceedings.mlr.press/v235/jia24c.html
https://arxiv.org/abs/2406.09246
https://arxiv.org/abs/2406.09246
https://openreview.net/forum?id=g6eCbercEc


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ajay Mandlekar, Soroush Nasiriany, Bowen Wen, Iretiayo Akinola, Yashraj Narang, Linxi Fan, Yuke
Zhu, and Dieter Fox. Mimicgen: A data generation system for scalable robot learning using human
demonstrations. In 7th Annual Conference on Robot Learning, 2023.

Kaichun Mo, Shilin Zhu, Angel X Chang, Li Yi, Subarna Tripathi, Leonidas J Guibas, and Hao
Su. Partnet: A large-scale benchmark for fine-grained and hierarchical part-level 3d object
understanding. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 909–918, 2019.

Andrew S. Morgan, Walter G. Bircher, and Aaron M. Dollar. Towards generalized manipulation
learning through grasp mechanics-based features and self-supervision. IEEE Transactions on
Robotics, 37(5):1553–1569, 2021. doi: 10.1109/TRO.2021.3057802.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A universal
visual representation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

Alexander Neitz, Giambattista Parascandolo, Stefan Bauer, and Bernhard Schölkopf. Adaptive skip
intervals: Temporal abstraction for recurrent dynamical models. Advances in Neural Information
Processing Systems, 31, 2018.

Abhishek Padalkar, Acorn Pooley, Ajinkya Jain, Alex Bewley, Alex Herzog, Alex Irpan, Alexander
Khazatsky, Anant Rai, Anikait Singh, Anthony Brohan, et al. Open X-Embodiment: Robotic
Learning Datasets and RT-X Models. In CoRL Workshop TGR, 2023.

Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu,
Sergio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, et al. Imitating
human behaviour with diffusion models. arXiv preprint arXiv:2301.10677, 2023.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Karl Pertsch, Oleh Rybkin, Jingyun Yang, Shenghao Zhou, Konstantinos Derpanis, Kostas Daniilidis,
Joseph Lim, and Andrew Jaegle. Keyframing the future: Keyframe discovery for visual prediction
and planning. In Learning for Dynamics and Control, pp. 969–979. PMLR, 2020.

Rouhollah Rahmatizadeh, Pooya Abolghasemi, Ladislau Bölöni, and Sergey Levine. Vision-based
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A CONCEPT DISCOVERY IMPLEMENTATION

A.1 IMPLEMENTATION OF E

We use VQ-VAE Encoder Van Den Oord et al. (2017) as the basic structure of E in Eq. 1, since it can
output a feature vector from an index-able code-book and preserve the gradient flow from continuous
encoder Ẽ (Eq. 2):

zτt = Ẽ(t|τ ; ΘE)

kτ
t = argmin

k∈K
∥zτt − αk∥,

ατ
t = αkτ

t
.

ατ
t = SG(ατ

t − zτt ) + zτt

(15)

Here we implement Ẽ as a transformer that outputs a feature vector for each time-step t of τ ∈ D,
SG(·) is the stop gradient operator. The fourth line in Eq. 15 makes sure that the gradient in ατ

t can
be propagated back to zτt .

A.2 IMPLEMENTATION OF VALUE FUNCTION V

For implementation of Eq. 5, we use a hyper-network to form a deep neural network. This deep
neural network takes in proprioceptive states and outputs a feature vector.

HNαk
(sτt ), αk ∈ A (16)

Here HN∗(·) is a hyper-network, and its parameters are generated from the input of concept αk ∈ A.
We use the Sigmoid-processed cosine similarity to form the value function in Eq. 5. Here ⟨·, ·⟩
represents the scalar product of two vectors:

V(sτt , gτu;αk) = Sigmoid
(
T · ⟨HNαk

(sτt ),HNαk
(gτu)⟩

∥HNαk
(sτt )∥2 · ∥HNαk

(gτu)∥2

)
(17)

Here T > 0 is the hyper-parameter, we set it as 5.0 to make full use of the values Sigmoid can have
( 1
1+e−5.0 ≈ 0.9933).

A.3 PSEUDO-CODES

We present the pseudocode for the Automatic Concept Discovery pipeline, designed to derive ma-
nipulation concepts from demonstrations τ ∈ D. The provided example assumes a training batch
containing a single τ from D, which is analogous to the case when the batch contains multiple τ .

A.4 IMPLEMENTATION OF BASELINES

• Our method. All the transformers used in our Concept Discovery Module refer to the structure of
transformers used in (Brown et al., 2020) and have an inner embedding feature of 128 dimensions
with 8 heads. The network E in Eq. 1 contains Ẽ (Eq. 2), which is a 4-layer transformer, and a VQ-
VAE of 30 codebook items as A. The model G in Eq. 3 is a 2-layer transformer. The hyper-network
HN∗ in Eq. 16 is able to generate a feed-forward linear network of 2 hidden layers to former V in
5. The Π used in Eq. 7 is a 1-layer transformer. The R used in Eq. 8 is a 4-layer transformer. We
employ the AdamW optimizer, coupled with a warm-up cosine annealing scheduler to modulate
the learning rate. This scheduler initiates at 0.1 times the base learning rate, linearly increases the
rate to the base level over the course of 1000 epochs, and subsequently reduces the learning rate to
0.1 times the base rate following a cosine function. The weight decay is always 1.0× 10−3. We
append all input sequences to the length of 440 and use a batch size of 16 during training. We train
our model for 4000 epochs with a base learning rate of 1.0× 10−4. The loss term Eq. 3 and Eq. 7
receive a weight of 1.0. The loss term Eq. 6 and Eq. 8 receive a weight of 1.0× 10−3. The training
process can be finished on a single GeForce RTX 3090 in 1.5 days.

• XSkill. Based on the design of Xskill Xu et al. (2023a), we implement the skill discovery framework
on the Mimicgen dataset, which only contains the “robot” embodiment in the Xskill pipeline. We
use the default hyperparameters as in the Xskill code base. For the temporal skill encoder, we use a
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Algorithm 1 Automatic Concept Discovery
Input: Demo D = {τ = (sτt , o

τ
t , a

τ
t , )

T (τ)
t=1 }

Modules: Ẽ , A = {αk}Kk=1 and index K = {k}Kk=1
Goal State Detection: G
Goal State Evaluation: V(HN∗), Π,
Goal Consolidation: R

Output: trained state encoder ϕ
for iteration of training do

sample τ ∼ D
for t = 1, 2, ..., T (τ) do

zτt = Ẽ(t|τ ; ΘE)
kτ
t = argmink∈K ∥zτt − αk∥ ▷ VQ-VAE Encoder Select Manipulation Concepts

ατ
t = αkτ

t

ατ
t = SG(ατ

t − zτt ) + zτt ▷ Preserve Gradient
end for
for t = 1, 2, ..., T (τ) do

Calculate gτt using Eq. 4
end for
Calculate Lgd,Lge

a ,Lge
c ,Lgc ▷ See Eq. 3, Eq. 6, Eq. 7, Eq. 8

Calculate Lvq ▷ VQ loss and Commitment loss according to (Van Den Oord et al., 2017)
LACD = Lgd + Lge

c + λent (Lge
a + Lvq) + λgcLgc

Back propagation from LACD

end for

3-layer CNN network followed by an MLP layer as the vision backbone. Same as Xu et al. (2023a),
we augment the images in the input video clip by a randomly selected operation from a set of image
transformations, including random resize crop, color jitter, grayscale, and Gaussian blur. For the
Skill Alignment Transformer (SAT), we also use a standard ResNet-18 as our state encoder. The
transformer encoder is composed of 16 layers, each layer featuring a transformer encoder with 4
attention heads. Additionally, the feedforward network within each layer has a dimensionality of
512. We set the training batch size to 28 and a learning rate of 1.0× 10−4. The training takes 4
days to converge on a GeForce RTX 4090 GPU.

• InfoCon. Based on the design of InfoCon, we refer to the structure of the transformer used in
(Brown et al., 2020). All the size of hidden features output by transformers and concept features is
128 here4. The state encoder and state reconstructor both use a 4-layer transformer. The goal-based
policy uses a 1-layer transformer. The predictor for the generative goal uses a 2-layer transformer.
For hyper-network used for discriminative goals, we use 2 hidden layers in the goal function. The
number of concepts is fixed, the maximum number of 30 manipulation concepts for all the tasks.
We employ the AdamW optimizer, coupled with a warm-up cosine annealing scheduler same as
“Our method”. The weight decay is always 1.0 × 10−3. We append all input sequences to the
length of 440 and use a batch size of 16 during training. We train our model for 4000 epochs with
a base learning rate of 1.0× 10−4. Other hyper-parameters are aligned with the work (Liu et al.,
2024a). The training process can be finished on a single GeForce RTX 3090 in 1.5 days.

• AWE. In the work of AWE, they set thresholds for the end condition of the dynamic programming
of finding way-points with different manipulation tasks. Here we modify the method so that it can
discover a fixed number (here we choose 10) of key states for all sequences. Since the dynamic
programming process naturally discovers a solution with the increasing of a key state number, we
can just let it stop at a certain key state number.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 6: The architecture of concept-aware diffusion policy

B CONCEPT-GUIDED POLICY IMPLEMENTATION

B.1 POLICY ARCHITECTURE

For Concept Selection Transformer (CST), we employ a transformer architecture to effectively
capture the temporal relationships within a sequence of historical observations and proprioceptive
information. This setup is designed to predict the manipulation concepts to be executed, based on
current observations. We utilize the standard transformer model, which incorporates a series of self-
attention layers and feed-forward networks, as described in (Vaswani et al., 2017). This transformer
has 16 standard self-attention blocks with a feedforward dimension of 512. For Concept-Guided
Policy (CGP), we use the U-Net architecture, a robust CNN-based network. Initially, the front and
wrist images are processed through separate ResNet-18 networks to extract image features. These
features are then combined with proprioceptive information and the manipulation concepts predicted
by CST. This combined data is repeatedly injected into each block of the policy network to enhance
the model’s responsiveness to conditional information. Thus, the inputs to the CGP include the
concatenated features and additional noise. Furthermore, we employ sinusoidal position embedding
to embed diffusion timestep information, and within each block, Feature-wise Linear Modulation
is used for integrating these features, following the method introduced in (Perez et al., 2018). The
architecture of CGP is illustrated in Fig. 6.

B.2 TRAINING DETAILS

For training, each task utilizes 950 randomly sampled demonstrations. The policy network maintains
an input observation length of 4 and an action prediction horizon of 8, with a batch size set at 150.
To minimize overfitting, we employ the AdamW optimizer, incorporating a linear warmup of the
learning rate. The initial learning rate is set at 1× 10−4 and gradually decreases following a cosine
annealing schedule as the number of iterations progresses. Training consists of 100 epochs in total.
Additionally, we apply a weight decay of 1× 10−6 to improve model generalization. For diffusion
model training, we employ a beta schedule called squaredcos cap v2, with a beta range of 1e-4 to
2e-2, which optimizes the generation process by smoothly and controllably adjusting the introduction
of noise levels. The CST and CGP are trained simultaneously. The training process can be completed
in less than one day on a single GeForce RTX 4090 GPU.

4We use proprioceptive states.
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C MORE ABOUT EXPERIMENTS

C.1 TASK DETAILS

In our experiment, we utilize the MimicGen dataset for the following six categories of tasks (Fig. 7):
(a) Coffee: Insert a cylindrical coffee packet into the coffee machine and secure the lid.
(b) Hammer Cleanup: Store the hammer in a drawer.
(c) Mug Cleanup: Place the mug into a drawer.
(d) Stack Three: Stack three blocks in the following order from top to bottom: blue, red, green.
(e) Threading: Thread a needle through a hole.
(f) Three Piece Assembly: Assemble three components together.

Figure 7: Visualization of the 6 categories of tasks in our experiments.

C.2 ABOUT ABLATION STUDY

Here, we present an analysis on the granularity of the discovered manipulation concepts. Since each
segment labeled with a specific manipulation concept corresponds to a sub-process that achieves the
sub-goal associated with that concept, we calculate the average length of these segments across each
task presented in Tab. 2 for both the ablation cases and our proposed approach to assess granularity.
The results are summarized in Tab. 3. As observed, the manipulation concept segments in the
non-ablated version are shorter than those in the ablation cases. This suggests that the performance
degradation due to ablation may stem from the less fine-grained manipulation concepts. This finding
aligns with our hypothesis: shorter segments correspond to simpler sub-tasks, thereby facilitating
enhanced policy learning.

Table 3: Ablation Study of the Proposed Automatic Concept Discovery Module: Average segment
lengths for ablations of different components within the module, compared to the non-ablated version.

Cof. Ham. Stk. 3 3 Pc. Thd. Mug.
D0 D1 D2 D0 D1 D0 D1 D0 D1 D0 D0 D1

w/o GD 72.0 78.3 75.3 68.5 80.5 78.7 85.7 70.4 70.0 70.3 76.3 72.2
w/o GE 54.3 59.0 44.0 52.0 53.8 57.8 51.6 58.8 58.3 52.8 61.0 51.6
w/o GC 36.2 39.3 63.8 34.5 32.3 38.5 27.5 29.4 29.3 52.8 29.7 31.1

Ours 28.3 31.0 27.6 33.9 29.5 26.7 22.5 28.5 28.8 33.3 29.3 28.5

C.3 CONCEPT VISUALIZATIONS

See Fig. 8, Fig. 9, Fig. 10 and Fig. 11
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Figure 8: Consistency visualization of the concepts discovered by our method across different tasks.
Here the robot arms release their grippers and put the objects down.

Figure 9: Consistency visualization of the concepts discovered by our method across different tasks.
Here the robot arms pull things out.
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Figure 10: Consistency visualization of the concepts discovered by our method across different tasks.
Here the robot arms transit the objects in hands.
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Figure 11: Consistency visualization of the concepts discovered by our method across different tasks.
Here the robot arms move towards the objects and ready to pick.
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