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Abstract

Conformal prediction has emerged as a powerful
tool for building prediction intervals that are valid
in a distribution-free way. However, its evaluation
may be computationally costly, especially in the
high-dimensional setting where the dimensionality
and sample sizes are both large and of comparable
magnitudes. To address this challenge in the con-
text of generalized linear regression, we propose a
novel algorithm based on Approximate Message
Passing (AMP) to accelerate the computation of
prediction intervals using full conformal predic-
tion, by approximating the computation of con-
formity scores. Our work bridges a gap between
modern uncertainty quantification techniques and
tools for high-dimensional problems involving the
AMP algorithm. We evaluate our method on both
synthetic and real data, and show that it produces
prediction intervals that are close to the baseline
methods, while being orders of magnitude faster.
Additionally, in the high-dimensional limit and un-
der assumptions on the data distribution, the con-
formity scores computed by AMP converge to the
one computed exactly, which allows theoretical
study and benchmarking of conformal methods in
high dimensions.

1 INTRODUCTION

Quantifying uncertainty is a central task in statistics, es-
pecially in sensitive applications. For regression tasks, the
goal is to produce prediction sets instead of point estimates:
consider here a dataset D = ((x1, y1), · · · , (xn, yn)) with
independent samples of the same distribution, with (x, y) ∈
Rd × R. Given a new input x, we aim to produce a set of
prediction S(x) that contains the observed label y with prob-
ability 1− κ for κ ∈ (0, 1). Conformal methods constitute

a general framework used to produce such prediction sets
with guarantees on their coverage. Among these methods,
we can cite full and split conformal prediction (FCP and
SCP) Vovk et al. [2005], Shafer and Vovk [2007] and Jack-
knife+ Barber et al. [2019]. In full conformal prediction, the
prediction set of x is the set of labels y whose typicalness
is sufficiently high. The computation of this typicalness is
based on leave-one-out residuals that are computed on an
augmented dataset that includes the test data. Full conformal
prediction has been shown to provide the correct coverage
under the exchangeability of the data samples and symmetry
of the scoring function under the permutation of the data.
However, the computation cost of FCP is proportional to
the number of training samples and the number of possible
labels, making it computationally very heavy in practice.
Split conformal prediction (SCP) Shafer and Vovk [2007],
Jing et al. [2018] is an efficient alternative to FCP, in which
data is split between training and validation sets, the lat-
ter being used to calibrate the model after training. SCP is
much more efficient than FCP, at the expense of statistical
efficiency. Indeed, because the model is fitted on a lower
amount of data than in FCP, the intervals of SCP are wider
and thus less informative than FCP, as illustrated in Jing
et al. [2018]. Similarly to SCP, the Jackknife+Barber et al.
[2019] does not require to iterate over possible labels, but
still requires to compute-leave-one-out residuals. It provides
weaker coverage guarantees than FCP in exchange for faster
computations. Finally, other works are concerned with ac-
celerating full conformal prediction [Lei, 2019, Ndiaye and
Takeuchi, 2019]. While the work of [Lei, 2019] focuses to
the Lasso and ElasticNet, the method introduced in [Ndiaye
and Takeuchi, 2019] is applicable to general convex empiri-
cal risks. Additionally, the work of Cherubin et al. [2021]
leverages incremental learning in the context of classifica-
tion, kernel density estimation and k-NN regression while
Martinez et al. [2023] approximates FCP in the context of
classification.

Uncertainty quantification in high dimensions – In this
work, we will focus our attention on the high-dimensional
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regime, where the number of samples n and the dimension
d are both large with a fixed ratio α = n/d. In this regime,
many common uncertainty quantification methods are not
applicable or quantify the true uncertainty wrongly. Full
conformal prediction is computationally demanding as it
needs to fit n estimators for each possible label. Alternatives,
such as split conformal prediction or the Jackknife+ Barber
et al. [2019] are more tractable, at the expense of statistical
efficiency. On the other hand, the bootstrap Davison and
Hinkley [1997] has been shown to fail in high-dimensional
linear regression Clarté et al. [2024], Karoui and Purdom
[2018] and with deep neural networks Nixon and Tran
[2020]. Other methods based on ensembling, like the jack-
knife Quenouille [1956] or Adaboost Zhu et al. [2006], have
been analyzed in high-dimension Takahashi [2024], Clarté
et al. [2024], Loureiro et al. [2023], Liang and Sur [2022]
and have been shown to be problematic in that setting as
well. Authors of Bai et al. [2021b] have shown that unpe-
nalized quantile regression achieves under-coverage in high
dimensions.

High-dimensional inference with AMP – Approximate
message passing (AMP) algorithms are a class of itera-
tive equations used to solve inference problems in high-
dimension under certain distributional assumptions Donoho
et al. [2009], Zdeborová and Krzakala [2016]. These equa-
tions are usually derived by relaxing belief propagation equa-
tions in a graphical model Pearl [1988]. A central property of
AMP algorithms is their state-evolution equations that track
their behaviour in high dimensions. Thanks to these state-
evolution equations, AMP has been used as an analytical
tool to tackle a wide range of problems in high-dimensional
statistics Sur and Candès [2019], Donoho et al. [2009], Bay-
ati and Montanari [2010]. In the context of uncertainty quan-
tification, AMP has been used to study the calibration of
frequentist and Bayesian classifiers Bai et al. [2021a], Clarté
et al. [2023b,a] and for change point detection Arpino et al.
[2024]. Additionally to these analyses, AMP algorithms
have also been used in practical scenarios, such as com-
pressed sensing Donoho et al. [2009], genomics [Depope
et al., 2024], to accelerate cross-validation [Obuchi and
Kabashima, 2016] or for change point detection [Arpino
et al., 2024]. Finally, in Bayesian learning, AMP can be used
to compute marginals of the posterior distributions faster
than with Monte-Carlo methods [Clarté et al., 2023b], or it
can be used to establish fast sampling rigorously [El Alaoui
et al., 2022]. However, to our knowledge, no work has ap-
plied AMP to accelerate the computation of full conformal
prediction.

Contributions – Our contributions are four-fold:

• First, we apply the AMP algorithm on generalized
linear regression to compute the prediction intervals
of full conformal prediction. AMP accelerates FCP
by approximating the n leave-one-out estimators si-

multaneously. We show that it still provides coverage
guarantees under the standard assumption that the data
is exchangeable.

• Second, we introduce the Taylor-AMP algorithm,
which further accelerates the computations by remov-
ing the need to fit an estimator for each possible label.
We claim that Taylor-AMP is a good approximation
of AMP if the empirical risk minimizer only weakly
depends on each sample.

• Third, we show that in a teacher-student model with
Gaussian data and in the high-dimensional limit, AMP
recovers the prediction intervals obtained by comput-
ing the leave-one-out scores exactly. As a consequence,
our algorithm allows the study of conformal prediction
in high dimensions and provides a non-trivial bench-
mark for other methods in this regime. We also leverage
the state-evolution equations of AMP in the teacher-
student model to predict sharply the performance of
conformal prediction and benchmark it against Bayes-
optimal estimation.

• Finally, we demonstrate the performance of Taylor-
AMP on real data and benchmark it against other algo-
rithms. We show that it provides the correct coverage
and tight prediction intervals, thus demonstrating its
practical interest.

To our knowledge, our work is the first to apply ideas from
the area of approximate message-passing algorithms to full
conformal prediction and opens the door to a new research
direction in which methods from high-dimensional statistics
can be used practically for uncertainty quantification. The
AMP-based method has the coverage guarantees celebrated
in conformal prediction, with possible wide prediction in-
tervals if the scores are estimated inacurately. The method
can be used with practical advantages in scenarios where
the AMP is usable for estimation, for instance, genomics
[Depope et al., 2024] or MRI reconstruction [Millard et al.,
2020]. Another practical interest of our work stems from
the utility of having non-trivial high-dimensional settings
where FCP can be evaluated rapidly, as this may be useful
for theoretical research and benchmarking of other more
general speed-up methods.

Notation – For a set of real values z = z1, · · · , zn we
will write q̂κ (z) the κ quantile of z (i.e the κ × n largest
value). The normal distribution of mean µ and variance σ2

will be noted N (µ, σ2) while we will denote by L(µ, b)
the Laplace distribution with density p(x) = 1

2be
− |x−µ|

b .
The element-wise product between two vectors or matrices
A,B will be written A⊗B. Jac denotes the Jacobian of a
vector-valued function.



2 SETTING

We consider here the framework of generalized linear mod-
els for regression. Assume a training set D = (xi, yi)

n
i=1

with xi, yi ∈ Rd × R. Given a test sample x, we want to
build a prediction set S(x) that contains the true label y
with probability 1− κ

PD,x (y ∈ S(x)) ⩾ 1− κ . (1)

In (1), the randomness is on the training data and the test
sample. We are interested in methods that provide the correct
coverage with prediction sets of minimal size. In this work,
we will focus on generalized linear models trained using
empirical risk minimization

θ̂ = argmin
θ

R (θ) = argmin
θ

n∑
i=1

ℓ
(
yi,θ

⊤xi

)
+

d∑
µ=1

r(θµ)

(2)
where ℓ is a convex loss and r is a convex regularizer. For
concreteness, we will consider the cases of Ridge (r(θ) =
λ
2 θ

2) and Lasso (r(θ) = λ|θ|) regression, but our results
apply to other problems such as quantile regression. Because
the algorithms that we introduce rely on the computation
of leave-one-out residuals, we introduce the leave-one out
estimators θ̂−i that are learned on the whole dataset except
sample i.

2.1 FULL CONFORMAL PREDICTION

The basic procedure of full conformal prediction is to iterate
over any possible label y, for which we define the augmented
dataset D+ (y) = D ∪ (x, y). We then compute the n + 1

leave-one-out estimators θ̂−i trained on D+ (y) from which
we compute the conformity scores σi (y). These scores will
be used to compute test statistics that will determine the
inclusion y in the prediction set S (x). We first define

θ̂−i (y) = argmin
θ

∑
j ̸=i

ℓ
(
yj ,θ

⊤xj

)
+ ℓ

(
y,θ⊤x

)
(3)

+
∑
µ

r (θµ)

that minimizes the empirical risk on D+ (y). We then define
the conformity scores as the leave-one-out residuals:

σi(y) = |θ̂−i (y)
⊤
xi − yi| (4)

From these scores, the prediction set Sfcp (x) is defined by

y ∈ Sfcp (x) ⇔ σn+1 (y) ⩽ q̂⌈(1−κ)(n+1)⌉/n(σ(y)) (5)

in other words, a label y is included in the prediction set
if the conformity score of the test sample, when using the
yn+1 = y, is lower than the ⌈(1 − κ) (n + 1)⌉/n quantile of the

scores σ1(y), · · · , σn+1(y) [Vovk et al., 2005, Angelopou-
los and Bates, 2022].

In what follows, we will refer as exact LOO the computation
of the conformity scores (4) by solving the minimization
problems (3) exactly. The prediction set Sfcp achieves the
desired coverage on average under the assumption that the
data is exchangeable and the regression function used to pro-
duce the conformity scores is symmetric [Vovk et al., 2005].
However, as noted before, fitting a model for all possible
labels and computing the residuals by solving the mini-
mization problem (3) is computationally heavy in practice.
Methods have been developed to accelerate the computation
of full conformal prediction, and in this paper, we introduce
two algorithms that leverage tools from high-dimensional
statistics, namely the AMP and Taylor-AMP algorithms.
Contrary to exact LOO, our methods approximate the com-
putation of the leave-one-out estimators (3) used to build
prediction intervals. Note that other works[Lei, 2019, Ndi-
aye and Takeuchi, 2019] use σi (y) = |θ̂ (y)

⊤
xi − yi| for

the conformity scores. While this definition does not require
to compute leave-one-out estimators, this leads to issues if
θ̂ overfits the training data, which typically happens in the
overparametrized regime. In this work, we will thus focus
on the scores defined in Eq. (4).

2.2 SPLIT CONFORMAL PREDICTION

Split conformal prediction (SCP, also known as inductive
conformal prediction) [Papadopoulos et al., 2002, Vovk
et al., 2005] is an alternative to FCP that is computation-
ally much cheaper. In the simplest form of SCP, D is split
between the training and calibration sets Dtrain,Dcal. An
estimator θ̂ will be fit using Dtrain, and the conformity
scores (σi)

|Dcal|
i=1 are computed on the calibration set. We

then extract the ⌈(1− κ)× (n+ 1)⌉ quantile of the scores.

σi = |yi − θ̂
⊤
xi|, Q = q̂⌈(1 − κ) × (n + 1)⌉/n (σi) (6)

SSCP (x) =
[
θ̂
⊤
x−Q, θ̂

⊤
x+Q

]
(7)

One drawback of (7) is that its prediction intervals are of the
same size for all test samples. In this context, Romano et al.
[2019] introduced conformal quantile regression, which
combines split conformal prediction and quantile regression
to accommodate potential heteroskedasticity and produce
intervals with data-dependent length.

2.3 BAYES-OPTIMAL ESTIMATOR

Consider the Bayesian setting where the parameter to infer
θ⋆ is sampled from a prior pθ⋆ and the labels are gener-
ated by the likelihood distribution p(y|θ⋆

⊤x). One can then



compute the Bayes posterior

θ ∼ p(θ|D) ∝
n∏

i=1

p
(
yi|θ⋆

⊤xi

)
pθ⋆ (θ⋆) (8)

which yields the Bayes-optimal estimator, with the lowest
generalisation error. This posterior distribution yields the
predictive posterior distribution

p(y|D,x) =

∫
dθp(y|θ⊤x)p(θ|D) (9)

One can then build a prediction interval Sbo(x) for the
Bayes-optimal estimator using the highest density interval,
which for a coverage 1− κ is the smallest set with measure
1− κ.

Bayes posterior and maximum a posteriori In some
settings, the empirical risk (2) corresponds to the logarithm
of the Bayes-posterior. For instance, Ridge regression with
λ = 1 corresponds to the log-posterior for the Gaussian
prior pθ⋆ = N (0, 1) while Lasso with λ = 1 matches the
log posterior for the Laplace prior pθ⋆ = L(0, 1).

3 APPROXIMATE MESSAGE PASSING
FOR UNCERTAINTY
QUANTIFICATION

3.1 COMPUTING RESIDUALS USING AMP

We first introduce the AMP algorithm, stated in Algo-
rithm 1. Given the regression problem (2), AMP approxi-
mates θ̂gamp of the empirical risk minimizer θ̂. As we will
show later, using AMP to solve Eq. (2) will allow us to
simultaneously compute all the leave-one-out estimators
instead of fitting the model n times, thus dramatically accel-
erating the computations. While AMP has been discussed
extensively in the literature, for example, in Donoho et al.
[2009], Zdeborová and Krzakala [2016], Mézard and Mon-
tanari [2009], we point the reader to Appendix A for its
derivation.

Algorithm 1 requires to define a channel and denoising
functions, respectively noted as gout and fw and defined as
follows depending on the choice of loss and regularization:

gout(y, ω, V ) = argmin
z

ℓ (z, y) +
1

2V
(z − ω)

2 (10)

fw(b, A) = argmin
z

r(z) +
1

2A
(z −Ab)2 (11)

Above, gout and fw take scalar arguments but are applied on
vectors in Algorithm 1 by applying the functions component-
wise.

Channel and denoiser for Ridge and Lasso – In the
general setting, computing gout and fw requires minimizing

Algorithm 1 AMP

Input: Data X ∈ Rn×d, y ∈ Rn

Define X2 = X ⊗ X ∈ Rn×d and initialize θ̂
t=0

=
N (0, Id), v̂

t=0 = 1d, gt=0 = 0n.
for t ≤ tmax or until convergence do

/* Update channel mean and variance
V t = X2v̂t ; ωt = Xθ̂

t
− V t ⊗ gt−1 ;

/* Update channel
gt = gout(y,ω

t,V t) ; ∂gt = ∂ωgout(y,ω
t,V t) ;

/* Update prior mean and variance
At = −X2⊤∂gt ; bt = X⊤gt +At ⊗ θ̂

t
;

/* Update marginals */
θ̂
t+1

= fw(b
t,At) ; v̂t+1 = ∂bfw(b

t,At)
end for
/* Compute the leave-one-out estimators with Eq. (13)
for 1 ⩽ i ⩽ n do
θ̂−i,gamp = θ̂gamp − ggamp,ixi ⊗ v̂gamp

end for
Return: θ̂gamp, (θ̂−i,gamp)

n
i=1

a scalar function. For concreteness, for Ridge regression and
the Lasso these functions have a closed-form expression{

gRidge
out (y, ω, V ) = y−ω

1+V

fRidge
w (b, A) = b

λ+A

, (12){
gLassoout (y, ω, V ) = y−ω

1+V

fLasso
w (b, A) = b−λ

A if b > λ, b+λ
A if b < −λ else 0

but we provide in Appendix E examples of channels for
other losses such as the pinball loss.

Leave-one-out estimation – Using AMP, one can approx-
imate the leave-one-out-estimators (3) and the associated
residuals (4) with a single fit of the algorithm: for any sam-
ple i, an approximation of the θ̂−i is given by the following
expression

θ̂−i,gamp (y) = θ̂gamp (y)− gi,gamp (y)×x⊤
i ⊗ v̂gamp (y)

(13)
where all the vectors θ̂gamp, v̂gamp, ggamp are computed in
Algorithm 1, and the dependency on the last label y is made
explicit. We refer the reader to Appendix A for a justification
of the above expression. The derivation is based on a close
cousin of AMP, relaxed Belief Propagation (rBP), which
is equivalent in the high-dimensional limit under Gaussian-
ity assumptions on the data distribution, which we discuss
in Section 3.3. At finite dimensions d the leave-one-out esti-
mators θ̂−i,gamp from (13) are only approximations of the
solutions of (3) and may not be very good approximations.
However, they still provide valid coverage guarantees, as
essential in the conformal prediction.

Coverage guarantees for AMP – A central property of
conformal prediction is that under very weak assumptions,



one get prediction sets that have the correct coverage. In-
deed, a standard property of FCP is that if the data is ex-
changeable and the score function f , which maps samples to
confirmity scores, is symmetric, then the prediction intervals
given by f satisfy Eq. (1), as shown in Vovk et al. [2005].
Recall that symmetric means here that for any permutation
s : [1, n] → [1, n], then f̂(

(
xs(i), ys(i)

)
)ni=1 =

(
σs(i)

)n
i=1

.
We show in Appendix Appendix C that AMP is symmetric,
which leads to the following property:

Property 1 Consider training data D = (xi, yi)
n
i=1 and a

test sample x, assuming that the data is exchangeable. Con-

sider the conformity scores (σi,gamp)i = |yi − θ̂
⊤
−i,gampxi|

where the leave-one-out estimators are computed using
AMP:

θ̂−i,gamp = θ̂gamp − gi,gampx
⊤
i ⊗ v̂gamp

and the confidence set with target coverage 1− κ, defined
as

Sfcp(x) =
{
y|σn+1 ⩽ q̂⌈(1−κ)(n+1)⌉/n (σi)

}
then, Sfcp achieves coverage at 1− κ on average

PD,x (y ∈ Sfcp (x)) ⩾ 1− κ (14)

Note that Property 1 is valid at finite dimension and inde-
pendently of the data distribution : AMP needs not to ap-
proximate precisely the leave-one-out residuals to achieve
the correct coverage. In particular, we only require the data
to be exchangeable for the property to hold.

3.2 TAYLOR-AMP

In the previous paragraphs, we saw that AMP can be used to
accelerate the computation of the conformity scores σi (y)
by computing the n leave-one-out estimators simultane-
ously for a fixed label y of the test data. In this section, we
present a variant of AMP called Taylor-AMP and described
in Algorithm 2, whose goal is to further accelerate AMP
by approximating the iteration over the set of possible la-
bels: Taylor-AMP will compute the leave-one out estimators
θ̂−i,gamp (y) without fitting the model for each label y. The

general idea is to approximate the quantities θ̂
⊤
−ixi by an

affine function around a reference value ŷ. To do so, we
will compute the derivative of the estimators θ̂−i(y) with
respect to y, around ŷ. Then, for any possible label y, the
corresponding scores will be approximated with

σi (y) = |yi − θ̂−i,gamp (y)
⊤
xi|

= |yi −

(
θ̂−i,gamp (ŷ) + (y − ŷ)

∂θ̂−i,gamp

∂y
(ŷ)

)⊤

xi|

The central part is the estimation of ∂θ̂−i,gamp

∂y using AMP.

Indeed, θ̂gamp solves a fixed point equation of the form

fgamp

(
θ̂gamp (yn+1) , yn+1

)
= θ̂gamp (yn+1)

where we only make explicit its dependency yn+1 as the
rest of the training data is fixed. Using the implicit function
theorem, one can compute the derivative ∂θ̂gamp

∂yn+1
from the

implicit equation

∂θ̂gamp

∂y
(ŷ) =

(
I− Jac

(
fgamp

))−1 ∂fgamp

∂y
(ŷ) (15)

which can be solved iteratively:

∆θ̂
t+1

= Jac
(
fgamp

) (
∆θ̂

t
)
+

∂fgamp

∂y
(ŷ) . (16)

In Algorithm 2, we iterate Eq. (16) until convergence, at
which point

(
∆θ̂,∆v̂,∆g

)
=
(

∂θ̂
∂y ,

∂v̂
∂y ,

∂g
∂y

)
. We provide

more details, in particular the explicit form of the function
fgamp in Appendix B.

To summarize, Algorithm 2 computes the deriva-
tives ∆θ̂gamp,∆v̂gamp,∆ggamp of θ̂gamp, v̂gamp, ggamp

around some value ŷ = θ̂
⊤
xn where θ̂ minimizes (2) on

D. We can then approximate the leave-one-out estimators
θ̂−i,gamp (y) by differentiating the expression of the leave-
one-out estimators (13), which yields

∂θ̂−i,gamp

∂y
(y) = ∆θ̂ − gi,gamp (ŷ)× xi ⊗∆v̂gamp

−∆gi,gampxi ⊗ v̂gamp (ŷ)

which allows us to compute the conformity scores of FCP
in Eq. (4).

Justification of Taylor-AMP – Taylor-AMP is based on
the idea that the value of the last sample only weakly af-
fects the value of the estimator θ̂gamp. More precisely, in

high-dimensions as n, d → ∞, θ̂gamp

∂y → 0. This implies
for instance that the data contains no outliers, whose value
would induce a significant change in θ̂gamp. We refer the
reader to Appendix B.1 for more details: we numerically
observe for synthetic Gaussian data that Taylor-AMP accu-

rately approximates the leave-one-out predictions θ̂
⊤
−ixi in

high dimensions.

3.3 EXACTNESS IN HIGH DIMENSIONS FOR
GAUSSIAN DATA

In this section, we provide guarantees on the size of the pre-
diction intervals using conformity scores produced by AMP
in high dimensions. Suppose that the samples (xi, yi)i=1

are i.i.d and follow the distribution

yi ∼ p(·|θ⋆
⊤xi), xi ∼ N (0, Id/d) (17)



Algorithm 2 Taylor-AMP

Input: Data X ∈ Rn×d, y ∈ Rn

Compute
(
θ̂, v̂,ω,V ,A, b, g,∂g

)
using Algorithm 1

Initialize ∆θ̂
0
= 0,∆v̂0 = 0,∆V 0 = 0,∆ω0 = 0

for t ≤ tmax or until convergence do
∆V t = X2∆v̂t−1

∆ωt = X∆θ̂
t−1

−∆V ⊗ gt−1 − V ⊗∆gt−1

∆gt = ∂ωgout∆ωt + ∂V gout∆V t +
(
∂ygout|n

)
en

∆∂gt = ∂2
ω2gout∆ωt + ∂V ∂ωgout∆V t +(

∂y∂ωgout|n

)
en

∆At = −X2⊤∆∂gt

∆bt = X⊤∆gt

∆θ̂
t
= ∂bfw∆bt + ∂Afw∆At

∆v̂t = ∂b (∂bfw)∆bt + ∂A (∂bfw)∆At

end for
Return: Derivatives

(
∆θ̂gamp,∆v̂gamp,∆g,

)

for θ⋆ teacher vector that is to be recovered from the training
data and with a likelihood function p(·|z) that is not known
to the statistician e.g. y = θ⋆

⊤x + ε, with ε ∼ N (0, 1).
Assume also that θ⋆ is random and its components are inde-
pendently sampled from the same distribution pθ⋆ . In what
follow we will assume that pθ⋆ is either the standard normal
pθ⋆

= N (0, 1) or the Laplace distribution pθ⋆
(z) = 1

2e
−|z|.

Then, under these assumptions on θ⋆ and the data, in the
high-dimensional limit where n, d → ∞ with n/d fixed,
the estimator θ̂gamp converges to the true empirical risk
minimizer, provided the samples xi, yi come from the dis-
tribution (17) as shown in Zdeborová and Krzakala [2016],
Mézard and Montanari [2009], Donoho et al. [2009]. Thus,
for any test sample x and any ε > 0

PD,x

(
|θ̂

⊤
gampx− θ̂

⊤
x| < ε

)
−−−−−−−−−→
n,d→∞,n/d=α

1 (18)

Moreover, we show in Appendix A that in this high-
dimensional limit, the estimators θ̂i,gamp of Eq. (13) con-
verge to the true leave-one-out estimators Eq. (3).

Exact distribution of the prediction intervals in high-di-
mensions Under the assumption in Eq. (17) on the data,
we can leverage the state-evolution equations of AMP to
compute exactly the distribution of the prediction interval
S(x) for a random test vectors x. We illustrate this asymp-
totic behaviour for Ridge regression in the following prop-
erty :

Property 2 Consider a training data D = (xi, yi)
n
i=1 and

a test sample x following (17) with y ∼ N
(
θ⊤⋆ x,∆

)
and

the estimator is Ridge regression with penalty λ. Then, in
the limit n, d → ∞ with n/d = α, the prediction set S(x) is

an interval of width

2× q1−κ/2(Z)×
√
ρ− 2×m+ q +∆ (19)

where q1−κ/2(Z) denotes the 1−κ/2 quantile of the standard
normal distribution Z ∼ N (0, 1), ρ = 1

d∥θ⋆∥2 and the
overlaps m, q are the solutions of the following equations

m̂ =
α

1 + v
, q̂ =

α(ρ+ q − 2m+∆)

(1 + v)2
, (20)

m =
ρm̂

λ+ m̂
, q =

(m̂2ρ+ q̂)

(λ+ m̂)2
, v =

1

λ+ m̂
(21)

We refer to Appendix F for a more general statement and
the derivation of Property 2.

4 NUMERICAL EXPERIMENTS

In this section, we first show that on synthetic Gaussian
data, our method correctly approximates the conformity
scores while accelerating their computations by orders of
magnitude. This allows us to compare FCP to other methods
such as split conformal prediction and the Bayes-optimal
estimator in a non-trivial high-dimensional setting. We then
evaluate the methods on real datasets, showing the useful-
ness of AMP for uncertainty quantification beyond synthetic
data with no distributional assumptions. In all of our numer-
ical experiments, the prediction intervals will have a target
coverage of 90%. For the sake of completeness, we provide
experiments at other target coverages in Appendix D.1.

4.1 SYNTHETIC HIGH-DIMENSIONAL
BENCHMARK

Coverage and size of prediction intervals – In this sec-
tion, we consider synthetic data generated by the model
described in Eq. (17). In Table 1, we first compute the cov-
erage of Taylor-AMP for the Ridge and Lasso regressions
at different values of λ. We see in the right-most column
that our method provides the desired coverage. Moreover,
on this synthetic data we compare the size of prediction
intervals produced by exact LOO and observe that the aver-
age length are almost equal. This numerically validates the
statement of Section 3.3 and shows that with Gaussian data,
even at moderate dimension, Taylor-AMP is very close to
exact LOO.

We also compute the similarity between the prediction inter-
vals produced by Taylor-AMP with those returned by exact
LOO, to show that both methods return the same intervals.
To this end, we compute the Jaccard index between the ex-
act and approximate intervals. Recall that the Jaccard index
between two sets S1,S2 is defined as

J (S1,S2) =
|S1 ∩ S2|
|S1 ∪ S2|

∈ [0, 1]



Problem exact LOO Taylor-AMP SCP CQP Coverage of Taylor-AMP

Lasso (λ = 1) 3.9 ± 0.45 4.2 ± 0.8 4.3 ± 0.9 4.7 ± 0.9 0.9
Ridge (λ = 1) 3.7 ± 0.34 3.9 ± 0.4 4.4 ± 0.8 4.7 ± 0.9 0.89

Ridge (λ = 0.01) 4.4 ± 0.5 4.7 ± 0.7 5.7 ± 1.2 4.8 ± 0.9 0.91

Table 1: Mean and standard deviation, of the size of prediction intervals at coverage q = 0.9, with random data at
n = 100, d = 50 generated from a Gaussian teacher. For all methods except exact LOO, values are averaged over 1000 test
samples.

Problem JI (Taylor-AMP ) JI (SCP)

Ridge (λ = 0.01) 0.93 ± 0.04 0.80 ± 0.12
Ridge (λ = 0.1) 0.95 ± 0.04 0.83 ± 0.1
Ridge (λ = 1) 0.98 ± 0.02 0.84 ± 0.04

Lasso (λ = 0.01) 0.90 ± 0.06 0.86 ± 0.11
Lasso (λ = 0.1) 0.92 ± 0.05 0.87 ± 0.09
Lasso (λ = 1) 0.97 ± 0.03 0.88 ± 0.08

Table 2: Jaccard index (JI) between exact LOO and Taylor-
AMP and SCP for different estimators, with data generated
from a Gaussian teacher, and d = 50, n = 100. We report
the averages and standard deviation over 20 test samples.

values closer to 1 indicate more precise approxima-
tions. We report our findings in Table 2, where we eval-
uate the Jaccard index J (Sfcp(x),STaylor-AMP (x)) and
J (Sfcp(x),SSCP (x)). Taylor-AMP has a higher similarity
to FCP than SCP, confirming that even though our method
is approximate, it provides intervals that are very close to
the exact ones even at moderate dimensions.

Computation speed – In Figure 1, we compare the time
to compute S(x) for a single test sample x, as a function
of the dimension for a fixed sampling ratio α = n/d. Our
method provides a speed-up over exact LOO by more than
two orders of magnitude, and allows us to quantify the
uncertainty for dimensions about 10 times higher for the
same amount of time. With the Taylor-AMP algorithm, we
can readily treat problems of dimension 104. So far our
numerical results show that our algorithm approximates
precisely exact LOO, while being order of magnitudes faster.
This allows to benchmark FCP against other methods in
large dimensions, as we do in the following paragraphs.

Figure 1: Computation time to produce a single prediction
interval, for exact LOO and Taylor-AMP , for Lasso at λ = 1
and n/d = 0.5.

Comparison with Bayes posterior – We compare the pre-
diction intervals of conformal prediction with those of the
Bayes-optimal estimator as defined in Section 2.3. Recall
that the Bayes-optimal estimator has the lowest general-
isation error when the data-generating process is known.
When the prior pθ⋆

is Gaussian, the log-posterior exactly
corresponds to Ridge regression with λ = 1. Likewise, for
a Laplace prior on θ⋆, the log-posterior is exactly the em-
pirical risk of Lasso, with λ = 1. In Table 3, we compare
the average length of the prediction intervals provided by
FCP with the highest density intervals of the Bayes poste-
rior. Note that for a Gaussian prior, the posterior distribution
is also Gaussian and can be easily sampled. However, this
is not the case for a Laplace prior. In general, one would
sample the posterior using Monte-Carlo methods. However,
within our synthetic data setting, we can leverage the AMP
algorithm 1 to sample the posterior [Clarté et al., 2023b].
AMP is much faster than costly Monte-Carlo sampling,
while being exact in the high-dimensional limit. Lines in
bold represent the matched settings where the minimized
empirical risk matches the true log posterior. In these set-
tings, FCP has almost optimal length, as it is very close to
those of the Bayes-optimal estimator. On the other hand,
when λ has a value that does not match the true prior, then
the intervals obtained with Taylor-AMP are significantly
larger than those of Bayes, for instance with λ = 0.1.
Finally, we show in italic the theoretical predictions us-
ing Eq. (19) and observe a good match with the empirical
values.

Comparison with split conformal prediction – In Ta-
ble 1, we compare the length of the prediction intervals of
Taylor-AMP with SCP described in 7, and to conformalized
quantile regression (CQP) [Romano et al., 2019], where
split conformal prediction is applied on two estimators of
the quantile functions of the likelihood p(y|x). We observe
that as expected, our method provides tighter intervals while
having the correct coverage.

Comparison on real data– In this section, we compare
the performance of Taylor-AMP with other methods in the
literature : exact homotopy[Lei, 2019], approximate homo-
topy[Ndiaye and Takeuchi, 2019] and the Jackknife+[Barber
et al., 2019]. For a fair comparison, the experiments are done
for the Lasso since Lei [2019] focuses on the Lasso and



Teacher Regularization Bayes Taylor-AMP

Gaussian
L2 (λ = 0.1)

4.4
4.8 ± 0.6 (4.8)

L2(λ = 1.0) 4.4 ± 0.4 (4.4)
L1 (λ = 1.0) 5.0 ± 1.2 (4.6)

Laplace
L1 (λ = 0.1)

5.1
7.6 ± 2.1 (6.0)

L1(λ = 1.0) 5.8 ± 1.2 (5.3)
L2 (λ = 1.0) 5.2 ± 0.4 (5.2)

Table 3: Average and standard deviation of length of predic-
tion intervals of FCP with Taylor-AMP , at d = 250, n =
125 compared with the Bayes optimal estimator. Measures
are averaged over 1000 samples of both D and the single
test sample. Bold lines correspond to the matched setting
where the empirical risk corresponds to the log-posterior of
the data-generating process. Values in italic are the theoreti-
cal predictions using state-evolution equations 19.

ElasticNet. Note however that Taylor-AMP is extendable to
other empirical risks as we detail in Appendix E. We evalu-
ate the methods on three datasets : the wine quality[Cortez
et al., 2009], the Boston housing and the Riboflavin pro-
duction rate[Bühlmann et al., 2014] datasets. We evaluate
the coverage, the mean size of the prediction intervals and
the computation time of the four methods. We observe that
Taylor-AMP has the correct coverage and comparable sizes
as Lei [2019] and Ndiaye and Takeuchi [2019]. Moreover,
for the Riboflavin dataset, at d = 4088, approximate homo-
topy becomes overly conservative and is significantly slower
than our method, while we perform similarly as Lei [2019].
Note that the Jackknife+ is overly conservative across all
datasets. We refer the reader to Appendix D for more details
on the datasets and the methods.

Beyond Ridge and Lasso regression– While the com-
parison Table 4 was only done for the Lasso, our method
is very generic and is applicable to any generalized lin-
ear model whose loss and regularization are convex. For
instance, one can apply AMP and Taylor-AMP to classifica-
tion tasks, robust regression or quantile regression. We refer
to Appendix E for more details.

5 DISCUSSION

In this paper, we introduce a method to accelerate the com-
putations of full conformal prediction while guaranteeing
confidence sets with the correct coverage. Our method lever-
ages methods stemming from high-dimensional statistics
literature, namely the approximate message passing (AMP)
algorithm. Our numerical experiments on synthetic and real
data show that the method has the potential to provide nar-
row confidence sets (with coverage guarantees) while reduc-
ing the computation time by almost three orders of magni-
tude compared to the baseline. Our method has a particular

theoretical interest, as Taylor-AMP can be used to investi-
gate more easily the properties of full conformal prediction
in high dimensions by drastically speeding up the simula-
tions. The proposed algorithm can leverage the fact that
it is asymptotically exact on the synthetic Gaussian data
and these data can thus be used as a benchmark for other
speed-up methods in high-dimensions. The state-evolution
equations of AMP can be used to compute exactly the size
of the prediction intervals of FCP in this setting.

Possible extensions – While we only investigated con-
formal prediction for frequentist estimators, AMP can be
used to sample from Bayesian posteriors more efficiently
than Monte-Carlo methods. Our results could thus be ex-
tended to Bayesian conformal prediction, where the confor-
mity scores are given by the predictive posterior [Fong and
Holmes, 2021, Papadopoulos, 2024]. Moreover, one could
improve Algorithm 1 to compute the prediction intervals of
several samples simultaneously.

Limitations – One limitation of our work is the assump-
tion weak dependence on every sample in Taylor-AMP .
Further, while we show that our method is applicable to real
data. The extension of our method to more complex algo-
rithms of a similar kind such as VAMP Rangan et al. [2019],
which would make our method applicable to a broader set
of data, is left to future work. The code used to produce
the figures can be found the following github repository:
github.com/SPOC-group/ConformalAmp.jl.
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Dataset Regularization Method Size Time Coverage

Wine Lasso (λ = 1)

Taylor-AMP 2.49 ± 0.08 0.15 0.89 ± 0.03
Approximate homotopy 2.6 ± 0.02 0.09 0.91 ± 0.03

Exact homotopy 2.58 ± 0.02 0.001 0.9 ± 0.03
Jackknife+ 3.19 ± 0.04 0.002 0.94 ± 0.02

Boston Lasso (λ = 1)

Taylor-AMP 1.52 ±0.07 0.027 0.89 ± 0.03
Approximate homotopy 1.5 ± 0.04 0.04 0.88 ± 0.04

Exact homotopy 1.57 ± 0.05 5e-4 0.90 ± 0.03
Jackknife+ 2.17 ± 0.10 2e-3 0.95 ± 0.02

Riboflavin Lasso (λ = 0.25)

Taylor-AMP 2.2 ± 0.3 0.4 0.88 ± 0.07
Approximate homotopy 3.6 ± 0.25 2.5 0.96 ± 0.04

Exact homotopy 2.3 ± 0.16 0.61 0.9 ± 0.09
Jackknife+ 4.1 ± 0.36 0.03 0.95 ± 0.06

Table 4: Comparison of Taylor-AMP with exact homotopy, approximate homotopy and Jackknife+ on the Boston and
Riboflavin datasets. We show the mean and standard deviation over 20 train / test splits.
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A APPROXIMATE MESSAGE PASSING TO APPROXIMATE LEAVE-ONE-OUT
RESIDUALS

A.1 INTRODUCTION OF RELAXED-BELIEF PROPAGATION AND APPROXIMATE MESSAGE PASSING

In this section, we explain how AMP can be used to compute the leave-one-out residuals used in Eq. (4). The naive way to
compute these residuals is to fit the leave-one-out estimators θ̂−i(y) for each sample 1 ⩽ i ⩽ n and each possible label y,
which requires n× |Y| fits, with Y the set of candidate labels, typically a discretization of R. We will first see that AMP can
be used to compute all the θ̂−i

To introduce AMP, we first consider the following problem. Consider a dataset D = (xi, yi)
n
i=1 of size n. Assume that the

data is generated from the model (17), where the input xi ∈ Rd are sampled according to N (0, Id/d), and the labels are
generated from a teacher as y ∼ p(y|θ⋆

⊤x). Our goal is to sample the following distribution

p(θ) =
1

Z

n∏
i=1

Pout

(
yi|θ⊤xi

) d∏
µ=1

Pθ(θµ) (22)

The empirical risk minimization problem (2) introduced in Section 2 is a particular instance of Eq. (22) where

Pout(y|z) ∝ e−βℓ(y,z), Pθ(z) ∝ e−βr(z) (23)

in the limit β → ∞. The starting point of approximate message passing is the writing of the belief-propagation algorithm
for the graph associated with Eq. (22), where the variable-nodes of the graph are the coordinates θµ and the factor nodes,
representing the interaction between the variable-nodes, are the observations yi. The message passing consists in iterating
messages mµ→i from variable to factor-nodes and mi→µ from factor to variable-nodes. These messages read

mµ→i(θµ) =
1

zi→µ
Pθ(θµ)

∏
j ̸=i

mj→µ(θµ) (24)

mi→µ(θµ) =
1

zµ→i

∫ ∏
ν ̸=µ

dθνmν→iPout

(
yi|
∑
ν

xiνθν

)
(25)

This messages give access to the distribution p (θ) and in particular this marginals : indeed, the marginal distribution p(θµ)
is given by

p(θµ) =
1

zµ
Pθ(θµ)

n∏
i=1

mi→µ(θµ) (26)

where zµ is a normalization constant. Iterating Eq. (25) is not tractable, especially in high-dimensions as it involves (d− 1)
integrals to update each mi→µ. To make these equations tractable, one can use relaxed-Belief Propagation (rBP), which
relies on the central limit theorem and the projection of the messages on their first two moments. We thus define the cavity
mean θ̂µ→i and cavity variance v̂µ→i as

θ̂µ→i =

∫
dθµθµmµ→i(θµ) (27)

v̂µ→i =

∫
dθµθ

2
µmµ→i(θµ)− θ̂2µ→i (28)

In particular, the vector
(
θ̂µ→i

)d
µ=1

represents the mean of the marginals of distribution (22) in the absence of the i-th

sample. In the context of empirical risk minimization, this is exactly the leave-one-out estimator θ̂−i defined as

θ̂−i = argmin
θ

∑
j ̸=i

ℓ
(
yj ,θ

⊤xj

)
+

d∑
µ=1

r(θµ) (29)

Our goal is thus to compute efficiently the cavity means and use them to compute the leave-one-out residuals.



rBP The main idea behind rBP is to iteratively compute the cavity means and variances, to obtain the desired marginal
mean and variance of θ. We define ωi→µ, Vi→µ the mean and variance of the messages mi→µ and θ̂µ→i, v̂µ→i the mean
and variance of mµ→i.

We detail rBP in Algorithm 3, and refer to [Zdeborová and Krzakala, 2016, Chapter VI, Section C] for a detailed explanation
of the algorithm. In particular, the algorithm makes use of the channel and denoising functions gout and fw functions,
defined respectively as

gout(y, ω, V ) =
∂ logZy(y, ω, V )

∂ω
, Zy(y, ω, V ) =

∫
dzPout(y|z)e−

1
2V (z−ω)2 (30)

and

fw(b, A) =
∂ logZw(b, A)

∂b
, Zw(b, A) =

∫
dxPθ(x)e

bx−A
2 x2

(31)

In the case of empirical risk minization (2), using the prior and likelihood from Eq. (23) into the definitions(30) and (31)
and taking the limit β → ∞ yields Equation (11).

From rBP to AMP Note that in rBP, we iterate over n× d means and variances ωi→µ, Vi→µ, θ̂µ→i, v̂µ→i, which scales
quadratically with the dimension in the high-dimensional limit where n, d → ∞ with a constant sampling ratio n/d = α.
However, a key observation is that the quantities θ̂µ→i, v̂µ→i only weakly depend on µ, and similarly ωi→µ, Vi→µ weakly
depend on µ. Hence, let us define{

ωi =
∑

µ xiµθ̂µ→i

Vi =
∑

µ x
2
iµv̂µ→i

,

{
Aµ = −

∑n
i=1 ∂ωgout (yi, ωi, Vi)x

2
iµ

bµ =
∑n

i=1 gout (yi, ωi→µ, Vi→µ)xiµ

(32)

note that for all µ and all i, in the high-dimensonal limit considered here we have

ωi = ωi→µ + xiµθ̂µ→i = ωi→µ +O (1/
√
n) (33)

Vi = Vi→µ + x2
iµv̂µ→i = Vi→µ +O (1/n) (34)

As a consequence, we have for all µ and all i

Aµ = −
n∑

j=1

x2
jµ∂ωgout (yj , ωj , Vj) =

n∑
j=1

x2
jµ [∂ωgout (yj , ωj→µ, Vj→µ) +O(1/

√
n)] (35)

= −
n∑

j=1

x2
jµ∂ωgout (yj , ωj→µ, Vj→µ) +O(1/

√
n) (36)

= −
n∑

j ̸=i

x2
jµ∂ωgout (yj , ωj→µ, Vj→µ) +O(1/

√
n) (37)

= −Aµ→i +O (1/
√
n) (38)

Similarly, we get

bµ = bµ→i +O (1/
√
n) (39)

So that one can simply compute the estimator θ = fw (b,A). The challenge is to compute the vectors ω,V , b. To do so, we
note that

gout (yi, ωi→µ, Vi→µ) = gout (yi, ωi, Vi)− xiµθ̂µ→i∂ωgout (yi, ωi→µ, Vi→µ) +O (1/n) (40)
(41)

such that

bµ =

n∑
i=1

xiµgout (yi, ωi, Vi)−
∑
i

x2
iµθ̂µ∂ωgout (yi, ωi, Vi) +O (1/

√
n) (42)

(43)



Moreover,

ωi =

d∑
µ=1

xiµθ̂µ→i =
∑
µ

xiµ

(
θ̂µ − xiµvµgout (yi, ωi, Vi)

)
+O(1/n) (44)

(45)

These iterative equations are, in the leading order, the same as those shown in Algorithm 1. In the high-dimensional regime,
these iteratives coincide with rBP. Going from rBP to AMP, we have reduced the number of variables to iterate on from
O(n× d) to O(n+ d), and can still recover the marginal distribution by

θ̂µ = fw (bµ, Aµ) (46)

A.2 RECOVERING THE LEAVE-ONE-OUT ESTIMATORS FROM AMP

For each sample i, computing the leave-one-out estimator θ̂−i means computing the marginals of the distribution

p(θ) =
1

Z

∏
j ̸=i

Pout

(
yj |θ⊤xj

) d∏
µ=1

Pθ (θµ) (47)

with Pout and Pθ defined in Eq. (23) and where the sample (xi, yi) is removed from the data. Our method leverages the fact
that these marginals are computed iteratively by relaxed-BP and stored in the variables θ̂µ→i. Indeed, each θ̂µ→i stores the
posterior mean of θmu when the interaction node i is removed from the graph associated to Eq. (22), which corresponds
exactly to the distribution of Eq. (47). While rBP explicitly computes these quantities, its computational complexity makes it
unusable. Instead, we will recover these estimators from AMP. Indeed, at the leading order we have :

θ̂µ→i = fw (bµ→i, Aµ→i) = fw (bµ→i, Aµ) +O (1/n) (48)

= fw (bµ, Aµ)− bi→µ∂bfw (bµ, Aµ) +O (1/n) = θ̂µ − gout(yi, ωi, Vi)xiµv̂µ +O (1/n) (49)

The expression on the right-hand side corresponds to the approximation of the leave-one-out estimators θ̂−i,gamp used
in Algorithm 1.

Convergence of the leave-one-out residuals in high-dimensions Under the assumptions (17), we see from Eq. (49)
thatin the high-dimensional limit the leave-one-out estimators computed by AMP will converge to the exact ones at a O(1/n)
rate. As such, for a given test sample x, y the approximated residuals y − x⊤θ−i,gamp will converge to y − x⊤θ−i at a
O (1/

√
n) rate. This implies that asymptotically the prediction intervals built using the AMP leave-one-out converge to the

prediction intervals with the exact residuals.

Applying AMP without Gaussian assumptions We thus see that from AMP, we get an approximation of the leave-one-out
estimator that can be used to compute the residuals in Eq. (4). The derivations performed in this section were done under the
assumption that the input data are Gaussian with i.i.d. covariance and 1/d variance. However, AMP can be applied on any
data, with no guarantee a priori on its performance.

B DERIVATION OT TAYLOR-AMP

In this section, we derive the Taylor-AMP algorithm. Our starting point is AMP, derived in Appendix A. In what follow,
we consider a dataset D of size n + 1 to stay consistent with the notation of the main text. Our goal is to compute the
variation of the θ̂−i to the first order with respect to the last label yn+1. To this end, we will write the vectors defined in
AMP θ̂(y), v̂(y), g(y), ∂g(y), b(y),A(y),ω(y),V (y) as functions of yn+1 = y

For the sake of conciseness, let us define the vector

Ω (y) =
(
θ̂(y), v̂(y),ω(y),V (y), g(y), ∂g(y), b(y),A(y)

)
∈ R4×(d+n) (56)



Algorithm 3 relaxed-Belief Propagation
repeat

Input: Dataset D = (xi, yi)
n
i=1

{
V t
i→µ =

∑
ν ̸=µ x

2
iµv

t−1
ν→i

ωt
i→µ =

∑
ν ̸=µ xiµθ̂

t−1
ν→i

(50)

{
At

µ→i = −
∑

j ̸=i ∂ωgout
(
yj , ω

t
j→µ, Vj→µ

)
x2
jµ

btµ→i =
∑

j ̸=i gout
(
yj , ω

t
j→µ, Vj→µ

)
xjµ

(51)

θ̂tµ→i = fw
(
btµ→i, A

t
µ→i

)
(52)

v̂tµ→i = ∂bfw
(
btµ→i, A

t
µ→i

)
(53)

until Convergence of θ̂µ→i, v̂µ→i

Return θ̂, v̂ such that :

θ̂µ = fw

(∑
i

bµ→i,
∑
i

Aµ→i

)
(54)

v̂µ = ∂bfw

(∑
i

bµ→i,
∑
i

Aµ→i

)
(55)

Then, Ω(y) is the fixed point of the equation

Ω(y) = fgamp(Ω(y), y)

where the function fgamp(Ω) =
(
f θ̂
gamp, f

v̂
gamp, f

ω
gamp, f

V
gamp, f

g
gamp, f

∂g
gamp, f

b
gamp, f

∂A
gamp

)
is defined as

f θ̂
gamp = fw(b,A)

f v̂
gamp = ∂bfw(b,A)

fω
gamp = Xθ̂ − V ⊙ g

fV
gamp = X2v̂

fg
gamp = gout (y,ω,V )

f∂g
gamp = ∂ωgout (y,ω,V )

fb
gamp = X⊤g +A⊙ θ̂

f∂A
gamp = −X2⊤∂g

(57)

Equivalently, we have Ω(y)− fgamp(Ω(y), y) = 0. Under the assumption that the function Ω(y) is differentiable, one can
use the implicit function theorem around a value ŷ to write

∂Ω

∂y
(ŷ) =

(
I− Jac

(
fgamp

))−1 ∂fgamp

∂y
(ŷ) (58)

⇔ ∂Ω

∂y
(ŷ) = Jac

(
fgamp

)(∂Ω

∂y
(ŷ)

)
+

∂fgamp

∂y
(ŷ) (59)

From the last equality we find that we can compute the derivative ∂Ω
∂y (ŷ) by iterating the following system of linear equations

over a vector ∆Ωt :

∆Ωt+1 = Jac
(
fgamp

) (
∆Ωt

)
+

∂fgamp

∂y
(ŷ) (60)



The jacobian of the function fgamp is written

Jacf θ̂
amp = (0,0,0,0, ∂bfw(b,A), ∂Afw(b,A))

Jacf v̂
amp = (0,0,0,0, ∂b∂bfw(b,A), ∂A∂bfw(b,A))

Jacfω
amp = (X,0,0,−Diag(g),−Diag(V ),0,0,0)

JacfV
amp =

(
0, X2,0,0,0,0

)
Jacfg

amp = (0,0, ∂ωg, ∂V g,0,0,0,0)

Jacf∂g
amp = (0,0, ∂ω∂ωg, ∂V ∂ωg,0,0)

Jacfb
amp =

(
Diag(A),0,0,0, X⊤,0,0, Diag(w)

)
JacfA

amp =
(
0,0,0,0,−X2⊤,0,0,0

)
(61)

and the derivative ∂fgamp

∂y with respect to the last label is

∂yf
θ
amp = 0

∂yf
v
amp = 0

∂yf
ω
amp = 0

∂yf
V
amp = 0

∂yf
g
amp = (0, · · · , 0, ∂yg(yn, ωn, Vn))

∂yf
∂g
amp = (0, · · · , 0, ∂y∂ωg(yn, ωn, Vn))

∂yf
b
amp = 0

∂yf
A
amp = 0

When writing Equation (60) with the expression of the Jacobian of Equation (61), one obtains the iterations of Taylor-AMP
in Algorithm 2.

B.1 JUSTIFICATION OF TAYLOR-AMP

As stated in the previous subsection, Taylor-AMP is based on the assumption that the function y → Ω )y) is differentiable.
Our underlying assumption behind Taylor-AMP is that the leave-one-out residuals only weakly depend on the last label in
high-dimensions. We numerically justify this assumption in Fig. 2. In this Figure, we compare the leave-one-out residuals
obtained by computing the estimators θ̂−i exactly and with Taylor-AMP for different settings. To do so, we sample a
dataset D at random. We use Algorithm 1 and Algorithm 2 to compute the θ̂−i,gamp(yn) and ∆θ̂−i,gamp(y) as prescribed
above. Then, we change the last label yn → yn + δy with δy = 5. After this change we compute the leave-one-estimators
exactly θ̂−i(yn + δy) and use our linear approximation θ̂−i,gamp(y + δy) = θ̂−i(y) + δy∆θ̂−i.gamp(y). We then compare
θ̂−i(yn + δy)⊤xi and our approximation θ̂−i,gamp(yn + δy)⊤xi that is used to compute our conformity scores. As we
observe in the figure, at high dimensions d = 1000, our approximations are very close to the true values, meaning that
Taylor-AMP will accurately estimate the scores (hence the prediction intervals) of FCP.

We note however from the lower-left plot that at moderate dimension, Taylor-AMP does not precisely approximates the
leave-one-out residuals for the LASSO, which partly explains the mediocre results obtained by Taylor-AMP on real data
in Table 4 in the main.

C COVERAGE GUARANTEE FOR AMP

First, we show that AMP is symmetric : indeed, consider a permutation s : [1, n] → [1, n] and S the corresponding
permutation matrix defined as Sij = δ (j = s(i)). Then, consider running AMP on the permutated data X̃ = SX and labels
ỹ = SY . At each iteration t, the channel vectors g̃t, ∂̃g

t
g̃t = Sgt and ˜∂gt = S∂gt. Then, the vectors bt,At now become{

Ã
t

= − ˜X2⊤ ˜∂gt = −X2⊤STSgt = At

b̃
t

= X̃⊤g̃t + Ãt ⊗ θ̂
t
= X⊤STSgt + Ãt ⊗ θ̂

t
= bt

(62)



Figure 2: Comparison of the leave-one-out estimators computed exactly by solving Eq. (3) and by Taylor-AMP , for Ridge
(top row) and Lasso (bottom row), as λ = 0.01 (left column) and λ = 1 (right column). All plots are at n/d = 0.5

and by recursion we deduce that the estimator of AMP (θ̂, v̂) given after convergence is invariant under permutation. Then,
the scores computed from Eq. (13) are symmetric. Then, under the assumption that the data (xi, yi) is exchangeable, we
obtain Property 1 : in expectation over the training and test data

PD,x (y ∈ S(x)) ⩾ 1− κ (63)

D DETAILS ON REAL DATASETS

In this section, we provide details on the datasets used in Table 4. We use :

1. The wine quality dataset [Cortez et al., 2009], containing 1143 samples at dimension 11, containing a rating of the
wine quality on a 1-5 scale as a function of different physical quantities. In our experiments, we split the data into a
training and test sets with a 90% / 10% proportion.

2. The Boston housing dataset containing 506 samples at dimension 14, with a training / test split of 80 % / 20 %.

3. The Riboflavin dataset Bühlmann et al. [2014] of 71 samples at dimension 4088

All datasets, with dimension noted as d, where normalized such that that standard deviation of the output y is 1 and the
standard deviation of each input dimension is 1/

√
d.

For Table 4, approximate homotopy and exact homotopy were used with the default parameters provided by the authors.

D.1 ADDITIONAL TARGET COVERAGES

For the sake of completeness, we reproduce the experiments of Table 4 at other target coverages for the Boston and the
Riboflavin datasets. We plot the empirical coverage for GAMP and Taylor-AMP over as a function of the target coverage.
The solid line and shaded area are respectively the mean and standard deviation over different train / test splits, and observe
that both methods achieve the correct coverage on both datasets.



Figure 3: Coverage of AMP (Left) and Taylor-AMP (Right) on the Boston dataset as a function of the target coverage. Line
and shaded area are respectively the mean and standard deviation of the coverage over 100 random training / test splits.
Black dashed line corresponds to a valid coverage that matches the target.

Figure 4: Coverage of AMP (Left) and Taylor-AMP (Right) on the Riboflavin dataset as a function of the target coverage.
Line and shaded area are respectively the mean and standard deviation of the coverage over 20 random training / test splits.
Black dashed line corresponds to a valid coverage that matches the target.



Note that all experiments in the paper were carried out on a Apple M1 Pro laptop with 16 Go of memory. The predictions
intervals are obtained by selecting potential labels over a grid.

The code and data used for the experiments are available at github.com/lclarte/ConformalAmp.jl

E EXTENSION TO GENERALIZED LINEAR MODELS

Robust regression and quantile regression Numerical experiments in Section 4 were focused on the square loss. However,
our method can be extended to other regression problems. In this section, we consider the pinball loss, also known as
quantile loss, defined as

ℓ(y, ŷ) = q ×max(y − ŷ, 0) + (1− q)×max(ŷ − y, 0) (64)

and used to estimate the quantile function q of the data. The AMP can be applied to this loss with the channel

proxℓ(y, ω, V ) = argmin
z

ℓ(y, z) +
1

2V
(ω − z)2 =


ω + (q − 1)V if ω > y − (q − 1)V

ω + qV if ω < y − qV

y otherwise
(65)

and gout(y, ω, V ) = prox(y,ω,V )−ω
V . For q = 1/2, this loss is equal (up to a factor 2 scaling) to the absolute value loss, as it

equates

ℓ(y, ŷ) =
1

2
|y − ŷ| (66)

which is notably used for robust regression in the presence of outliers.

Binary classification Conformal prediction has been successfully applied for classification tasks Angelopoulos et al.
[2021], Angelopoulos and Bates [2022]. Consider a classification task with k classes, where a predictor estimate the
probabilities p1(x), · · · , pn(x). Then, the conformity scores are defined as

σi =

π−1(y)∑
k=1

pπ(1) (67)

where π is a permutation that ranks the classes by decreasing order of probability, i.e pπ(1) > · · · > pπ(K). In words, the
score is the sum of the probability of all the classes whose pi is higher of equal to the true observed class.

In the context of generalized linear model, one might train an estimator using the cross entropy loss with an L2 regularizer.
For K = 2 classes, this is logistic regression

θ̂ = argmin
θ

−
n∑

i=1

log
(
1 + e−yi×x⊤

i θ
)
+ λ/2∥θ∥2 (68)

As for regression, one can use AMP and Taylor-AMP with the adequate channel and denoising function to estimate θ̂, and
compute the leave-one-out estimators using Eq. (13). For the logistic loss, the channel function is defined as

gout(y, ω, V ) =
proxℓω,V (y, ·)− ω

V
, proxℓω,V (y, ·) = argmin

z
ℓ(y, z) +

1

2V
(z − ω)

2 (69)

F ASYMPTOTIC OF THE PREDICTION INTERVAL SIZES UNDER GAUSSIAN
ASSUMPTION

Our method leverages the state-evolution equations of AMP. In fact, using the state evolution equations of AMP, we can
sharply compute the size of the prediction intervals in the high-dimensional limit, under the assumption of Eq. (17). First,
consider the leave-one-out residualx ri

ri := θ̂−i (y)
⊤
xi − yi (70)

such that σi = |ri|. These residuals can be computed using r-BP as explained in Appendix A. Indeed, in the high-dimensional
limit

ri = θ̂−i,rBP (y)
⊤
xi − yi (71)

github.com/lclarte/ConformalAmp.jl


where the value of the vector θ̂−i,rBP at the index µ is the cavity mean θ̂µ→i defined in Eq. (28). Now, note that the
distribution on the ri can be easily computed under the Gaussian data assumption : by definition, the vector θ̂−i is

uncorrelated with xi. Hence, θ̂
⊤
−ixi − yi =

(
θ̂−i − θ⋆

)⊤
xi + ε follows a Gaussian distribution with mean 0 and

variance ∥ 1
d

(
θ⋆∥2 − 2× θ⋆

⊤θ̂−i + ∥θ̂−i∥2 +∆
)

. ρ = 1
d∥θ⋆∥2 is given by the prior on θ⋆, and is for instance equal

to 1 when θ⋆i ∼ N (0, 1). In the high-dimensional limit, the scalar products 1
dθ⋆

⊤θ̂−i(y) converge to a common value
m = limd→∞

1
dθ⋆

⊤θ̂ for all i and all y. Similarly, the square norms of the leave-one-out estimators converge to the same
value q = limd→∞

1
d∥θ̂∥

2.

To summarize, as n, d → ∞ the residuals ri follow the distribution

ri ∼ N (0, ρ− 2m+ q +∆) (72)

with
m = lim

d→∞

1

d
θ⋆

⊤θ̂, q = lim
d→∞

1

d
∥θ̂∥2 (73)

From the distribution of the residuals to the prediction interval Since the asymptotic distribution of the (ri)i is
Gaussian, one obtains the 1− κ quantile of the scores σi by computing the 1 - κ/2 and the κ/2 quantiles of this Gaussian
distribution. By definition of full conformal prediction, a label y will be included in the prediction set if and only if

|y − θ̂
⊤
−(n+1)x| < q1−κ((σi)i), but since these scores asymptotically follow the distribution of the absolute value of a

Gaussian variable, its 1−κ quantile is equal to the 1−κ/2 quantile of the corresponding Gaussian distribution. In conclusion,
asymptotically, the prediction interval will be

S(x) = [θ̂
⊤
x±

√
ρ− 2m+ q +∆× q1−κ/2 (Z)], Z ∼ N (0, 1) (74)

where m, q are given by the state-evolution equations of AMP that we detail in Appendix F.1. Note that ρ− 2m+ q +∆ is
exactly equal the generalization error (for the mean square error) of the ERM estimator. Thus, Eq. (74) directly links the
generalization error of the estimator with the size of the prediction intervals and shows that the best estimator also has the
tightest intervals.

F.1 STATE-EVOLUTION EQUATIONS OF AMP

As explained in the previous section, one only needs the value of the overlaps m and q (73) to compute the size of the
prediction intervals in high-dimension. To do so, it is useful to go back to relaxed-BP, which is asymptotically equivalent to
AMP and thus has the same overlaps.

The rBP equations are written,

{
ω
(t)
µ→i =

∑
j ̸=i Xµ,j θ̂

(t)
j→µ

V
(t)
µ→i =

∑
j ̸=i X

2
µ,jĈ

(t)
j→µ

,

{
gout

(t)
µ→i = gout(yµ, ω

(t)
µ→i, V

(t)
µ→i)

∂gout
(t)
µ→i = ∂ωgout(yµ, ω

(t)
µ→i, V

(t)
µ→i)

(75)

{
b
(t)
µ→i =

∑
ν ̸=µ Xν,ig

(t)
outν→i

A
(t)
µ→i = −

∑
ν ̸=µ X

2
ν,i∂g

(t)
outν→i

,

{
θ̂
(t)
i→µ = fw(b

(t)
i→µ, A

(t)
i→µ)

Ĉ
(t)
i→µ = ∂bfw(b

(t)
i→µ, A

(t)
i→µ).

(76)

It turns out that the average asymptotic behavior of these equations can be tracked with some overlap parameters defined as
follows:

m(t) ≡ lim
d→∞

1

d

d∑
i=1

θ̂
(t)

i θ⋆
⊤, Q(t) ≡ lim

d→∞

1

d

d∑
i=1

θ̂
(t)

i θ̂
(t)⊤
i (77)

V (t) ≡ lim
d→∞

1

d

d∑
i=1

Ĉ
(t)
i , ρ = lim

d→∞

∥θ⋆∥2

d
. (78)

To derive the asymptotic behavior of these overlap parameters, we compute the overlap distributions starting from the rBP
equations above.



F.1.1 Messages Distribution

For convenience, let us define zµ ≡ x⊤
µ θ⋆ and zµ→i ≡ 1

d

∑
j ̸=i xµ,jθ⋆j .

Distribution of (zµ, ω
(t)
µ→i) By the Central Limit Theorem, since (zµ, ω

(t)
µ→i) are the sum of independent variables, they

follow Gaussian distributions in the d → ∞ limit. Therefore, we only need to compute their means, variances, and cross-
correlation. Recall that from our assumptions, the random variables Xµ,j are i.i.d. zero-mean Gaussian with variance 1/d.
Hence, the first and second-order statistics read

E [zµ] = θ⋆
⊤E[Xµ] = 0 (79)

E
[
z2µ
]
=

d∑
i,j=1

E[Xµ,iXµ,j ]θ⋆iθ⋆j =

d∑
i,j=1

1

d
δijθ⋆iθ⋆j =

∥θ⋆∥2

d

d→∞−→ ρ (80)

E
[
ω
(t)
µ→i

]
=
∑
j ̸=i

E[Xµ,j ]θ̂
(t)

j→µ = 0 (81)

E
[
ω
(t)
µ→i(ω

(t)
µ→i)

⊤
]
=

d∑
j ̸=i

d∑
k ̸=i

E[Xµ,jXµ,k]θ̂
(t)

j→µθ̂
(t)⊤
k→µ =

1

d

d∑
j ̸=i

θ̂
(t)

j→µθ̂
(t)⊤
k→µ (82)

=
1

d

d∑
j=1

θ̂
(t)

j→µθ̂
(t)⊤
j→µ − 1

d
θ̂
(t)

i→µθ̂
(t)⊤
i→µ

d→∞−→ q(t) (83)

E
[
zµω

(t)
µ→i

]
=

d∑
j=1

d∑
k ̸=i

E[Xµ,jXµ,k]θ̂
(t)

k→µθ⋆j =
1

d

∑
j ̸=i

θ̂
(t)

j→µθ⋆ (84)

=
1

d

d∑
j=1

θ̂
(t)

j→µθ⋆ −
1

d
θ̂
(t)

i→µθ⋆
d→∞−→ m(t) (85)

In summary, in the d → ∞ limit : (
zµ, ω

(t)
µ→i

)
∼ N

(
0,

[
ρ m(t)⊤

m(t) q(t)

])
(86)

Concentration of V (t)
µ→i In the asymptotic limit, the variances V (t)

µ→i concentrate around their means, which equates

E
[
V

(t)
µ→i

]
=

d∑
j ̸=i

E
[
X2

µ,j

]
Ĉ(t) =

1

d

∑
j ̸=i

Ĉ
(t)
j =

1

d

d∑
j=1

Ĉ
(t)
j − 1

d
Ĉ

(t)
i

d→∞−→ V (t) (87)

Distribution of b(t)µ→i Recall from our setting that for a given input xµ, the corresponding label is distributed as yµ ∼
p(·|zµ). In fact, one can equivalently write yµ = φ0(zµ) for some (random) function φ0. For example, the choice
φ0(x) = x+

√
∆ξ corresponds to the linear regression, where ξ ∼ N (0, 1) is Gaussian noise scaled by a variance ∆ ≥ 0.

With this representation for yµ, we have

b
(t)
µ→i =

∑
ν ̸=µ

Xν,igout(φ0 (zν) , ω
(t)
ν→i, V

(t)
ν→i) (88)

=
∑
ν ̸=µ

Xν,igout(φ0 (zν→i + θ⋆iXν,i) , ω
(t)
ν→i, V

(t)
ν→i) (89)

=
∑
ν ̸=µ

Xν,igout(φ0 (zν→i) , ω
(t)
ν→i, V

(t)
ν→i) +X2

ν,iθ⋆i∂zgout(φ0 (zν→i) , ω
(t)
ν→i, V

(t)
ν→i) +O(d−3/2), (90)



where in the last equality we have expanded the denoising function at leading order. Taking expectation on both sides yields

E[b(t)µ→i] =
θ⋆i
d

∑
ν ̸=µ

∂zgout(φ0 (zν→i) , ω
(t)
ν→i, V

(t)
ν→i) +O(d−3/2) (91)

=
θ⋆i
d

n∑
ν=1

∂zgout(φ0 (zν→i) , ω
(t)
ν→i, V

(t)
ν→i)−

θ⋆i
d
∂zgout(φ0 (zµ→i) , ω

(t)
µ→i, V

(t)
µ→i) +O(d−3/2), (92)

Note that as d → ∞, it follows from our computations above that for all ν, (zν→i, ω
(t)
ν→i) are identically distributed according

to Eq. (86). Consequently, by the Law of Large Numbers,

n

d
· 1
n

n∑
ν=1

∂zgout(φ0 (zν→i) , ω
(t)
ν→i, V

(t)
ν→i)

n,d→∞−→ αE(z,ω)

[
∂zgout(φ0 (z) , ω, V

(t))
]
≡ m̂(t), (93)

from which we find that
E[b(t)µ→i]

n,d→∞−→ θ⋆im̂
(t). (94)

The second moment can be computed in a similar fashion:

E[b(t)µ→ib
(t)⊤
µ→i] =

∑
ν ̸=µ

∑
κ ̸=µ

E[Xν,iXκ,i]gout(φ0 (zν) , ω
(t)
ν→i, V

(t)
ν→i)gout(φ0 (zκ) , ω

(t)
κ→i, V

(t)
κ→i)

⊤ (95)

=
1

d

∑
ν ̸=µ

gout(φ0 (zν→i) , ω
(t)
ν→i, V

(t)
ν→i)gout(φ0 (zν→i) , ω

(t)
ν→i, V

(t)
ν→i)

⊤ +O(d−2) (96)

=
1

d

n∑
ν=1

gout(φ0 (zν→i) , ω
(t)
ν→i, V

(t)
ν→i)gout(φ0 (zν→i) , ω

(t)
ν→i, V

(t)
ν→i)

⊤ +O(d−2) (97)

n,d→∞−→ αE(z,ω(t))

[
gout(φ0 (z) , ω

(t), V (t))gout(φ0 (z) , ω
(t), V (t))⊤

]
≡ q̂(t). (98)

Hence, b(t)µ→i = θ⋆im̂
(t) +

(
q̂(t)
)1/2

ξ with ξ ∼ N (0, 1).

Concentration of A(t)
µ→i It remains to show that the covariances A(t)

µ→i concentrate. We have

A
(t)
µ→i = −

∑
ν ̸=µ

X2
ν,i∂ωgout(yν , ω

(t)
ν→i, V

(t)
ν→i) (99)

= −
∑
ν ̸=µ

X2
ν,i∂ωgout(φ0(zν), ω

(t)
ν→i, V

(t)
ν→i) (100)

= −
∑
ν ̸=µ

X2
ν,i∂ωgout(φ0(zν→i), ω

(t)
ν→i, V

(t)
ν→i) +O(d−3/2). (101)

Taking the expectation gives

E[A(t)
µ→i] = −1

d

∑
ν ̸=µ

∂ωgout(φ0(zν→i), ω
(t)
ν→i, V

(t)
ν→i) +O(d−3/2) (102)

= −1

d

n∑
ν=1

∂ωgout(φ0(zν→i), ω
(t)
ν→i, V

(t)
ν→i)−

1

d
∂ωgout(φ0(zµ→i), ω

(t)
µ→i, V

(t)
µ→i) +O(d−3/2) (103)

n,d→∞−→ −αE(z,ω(t))

[
∂ωgout(φ0 (z) , ω

(t), V (t))
]
≡ V̂ (t) (104)

State-evolution equations From the previous computations, we deduce that asymptotically the coordinates of the estimator
are distributed as

θ̂ti ∼ fw

(
θ⋆im̂

t +
√
q̂ε, V̂

)
, ε ∼ N (0, 1) (105)



And finally, we get that the overlaps m, q are the solutions of the following state-evolution equations
m = Eθ⋆,ε

[
fw(m̂θ⋆ +

√
q̂ε, v̂)θ⋆

]
q = Eθ⋆,ε

[
fw(m̂θ⋆ +

√
q̂ε, v̂)2

]
V = Eθ⋆,ε

[
∂bfw(m̂θ⋆ +

√
q̂ε, v̂)

] (106)

for ε ∼ N (0, 1) and


m̂ = αEz,ω [∂zgout(φ0(z), ω, V )]

q̂ = αEz,ω

[
gout(φ0(z), ω, V )2

]
V̂ = −αEz,ω [∂ωgout(φ0(z), ω, V )]

(107)

Solving these equations, we deduce the value of m, q that we can plug in Eq. (74) to compute the size of the prediction
intervals in the high-dimensional limit.
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