
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

IMPROVER: AGENT-BASED AUTOMATED
PROOF OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have been used to generate formal proofs of
mathematical theorems in proofs assistants such as Lean. However, we often
want to optimize a formal proof with respect to various criteria, depending on its
downstream use. For example, we may want a proof to adhere to a certain style, or
to be declaratively structured, concise, or contain minimal dependencies. Having
suitably optimized proofs is also important for learning tasks, especially since
human-written proofs may not optimal for that purpose. To this end, we study a
new problem of automated proof optimization: rewriting a proof so that it is correct
and optimizes for an arbitrary criterion, such as length or declarativity. As a first
method for automated proof optimization, we present ImProver, a large-language-
model agent that rewrites proofs to optimize arbitrary user-defined metrics in Lean.
We find that naively applying LLMs to proof optimization falls short, and we
incorporate various improvements into ImProver, such as the use of symbolic
Lean context in a novel Chain-of-States technique, as well as error-correction and
retrieval. We test ImProver on rewriting real-world undergraduate, competition,
and research-level mathematics theorems, finding that ImProver is capable of
rewriting proofs so that they are substantially shorter and more declarative in
structure.

1 INTRODUCTION

The fundamental virtue of a mathematical proof is that it provides certainty: a deductive argument
shows that the assumptions of a mathematical statement logically guarantee the conclusion. In
practice, however, informal, natural-language proofs are prone to imprecision, ambiguity, and error.
Using a formal language such as Lean (Moura & Ullrich, 2021) removes such ambiguity and
imprecision and enables a proof assistant to verify correctness down to the primitives of a formal
axiomatic system.

Although any two correct formal proofs of a statement equally establish the validity of their conclusion,
there are various criteria on which one of them may be preferred over another. When an expert
formalizer finishes a proof, they always go back and revise it, aiming, for example, to improve
readability and robustness. Instructors show their students how to shorten their proofs and structure
them better, and the maintainers of Lean’s Mathlib (mathlib Community, 2020) demand revisions to
submissions to improve their robustness and adhere to style guidelines.

To this end, we study a new problem of automated proof optimization: rewriting a proof so that it
is correct and optimizes a user-specified criterion such as length or readability. To mathematicians
and formalizers, the ability to improve proofs automatically is invaluable to the maintenance and
development of libraries for research and pedagogy alike. For example, the development of Mathlib
as an evolving corpus maintained by hundreds of human formalizers requires strict guidelines to
ensure efficient and generalized theorems - a task that proof optimizers can excel at automating, in
order to generate proofs that rely on existing lemmas with concision and generalizability.

Moreover, automated proof optimization is not only useful in its own right, but also for the purposes of
improving AI that can find proof on its own. At the very least, it provides a form of data augmentation:
the limited amount of formal training data is currently a bottleneck for machine learning, and our
methods provide ways of generating additional data automatically. More interestingly, our methods
also provide a means of optimizing training data. For example, other work (Jiang et al., 2023)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

suggests that a promising means for generating formal proofs is to have an LLM sketch a high-level
outline of a proof that can be filled in by symbolic automated reasoning methods. For that purpose, it
is useful to have a corpus of proofs that are written in such a structured form. Our methods provide
means of generating such proofs from less structured ones.

Our work shows that naively applying LLMs to proof optimization falls short, often resulting in
incorrect or poorly optimized proofs. We develop various improvements that can be applied on top of
a black-box language model, including Chain-of-States prompting – an analogy to chain-of-thought
prompting (Wei et al., 2022) that shows intermediate proof states, contextual information, error-
correction, and retrieval. We incorporate these into ImProver: a large language model agent that
rewrites proofs to optimize arbitrary user-defined metrics in Lean. We test ImProver on rewriting
real-world undergraduate theorems, competition problems, and research-level mathematics, finding
that ImProver is capable of rewriting proofs so that they are substantially shorter and more declarative
in style.1

Original (human-written)
lemma lemma0 {α : Type} {p : α → α → Prop}

(h1 : ∀ x, ∃! y, p x y)
(h2 : ∀ x y, p x y ↔ p y x) :
∀ x, Classical.choose

(h1 (Classical.choose (h1
x).exists)).exists=x := by

-- PROOF START
intro x
obtain ⟨y, h1e, h1u⟩ := h1 x
have h2' : Classical.choose (h1 x).exists =

y :=
h1u _ (Classical.choose_spec (h1
x).exists)

rw [h2']
obtain ⟨w, h1e', h1u'⟩ := h1 y
have h4 := Classical.choose_spec (h1

y).exists
have hxw : x = w := by
apply h1u'
rw [h2]
exact h1e

rw [hxw]
exact h1u' _ h4

ImProver (length-optimized)
lemma lemma0 {α : Type} {p : α → α → Prop}

(h1 : ∀ x, ∃! y, p x y)
(h2 : ∀ x y, p x y ↔ p y x) :
∀ x, Classical.choose

(h1 (Classical.choose (h1
x).exists)).exists=x := by

-- PROOF START
intro x
obtain ⟨y, h1e, h1u⟩ := h1 x
rw [h1u _ (Classical.choose_spec _)]
obtain ⟨w, h1e', h1u'⟩ := h1 y
rw [h1u' _ ((h2 _ _).mpr h1e)]
exact h1u' _ (Classical.choose_spec _)

Figure 1: ImProver automatically rewrites formal proofs to optimize a criterion such as length or
readability while remaining correct. In this example, ImProver optimizes a human-written lemma
from the 2022 International Math Olympiad (Question 2, solution from Compfiles (David Renshaw,
2024)) for length. ImProver’s optimized proof is correct and more concise.

2 RELATED WORK

Recently there has been wide interest in automating theorem proving in interactive proof assistants;
see (Lu et al., 2023; Li et al., 2024) for surveys. Indeed, at a high level, proof assistants constitute a
sound verifier in a prover-verifier game (Anil et al., 2021), suggesting that a machine-learning based
prover that interfaces with such a verifier is a natural next step for formal reasoning systems.

A typical approach to developing machine learning provers (Polu & Sutskever, 2020) is to train
on a large corpus of mathematical proofs such as Lean’s Mathlib (mathlib Community, 2020; Han
et al., 2022; Polu et al., 2022; Lample et al., 2022; Yang et al., 2023; Hu et al., 2024). A model
learns from the distribution of proofs in the corpus, such as Mathlib-style proofs. Recently, the
AlphaProof (AlphaProof & Teams, 2024) system was shown to produce proofs with an arcane,
non-human structure and syntax. We consider the new problem of rewriting a proof to optimize a
metric, such as rewriting a proof into a more declarative or more concise one. Proof optimization is
more general than theorem proving, since we can also rewrite an empty proof to optimize correctness.
Finally, there is a rich literature on the varied styles of (human) formal proofs (e.g., (Autexier &
Dietrich, 2010; Wiedijk, 2004)). Our model, ImProver, builds on neural theorem proving techniques

1Code is available at [link removed for anonymity]

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

including full proof generation (Jiang et al., 2023; First et al., 2023), conditioning on example
proofs (Jiang et al., 2023), retrieval (Yang et al., 2023; Thakur et al., 2024), and preceding file
context (First et al., 2023; Hu et al., 2024), as well as error correction (Madaan et al., 2023; Chen
et al., 2023) and documentation retrieval (Zhou et al., 2023) from code generation. ImProver brings
these code generation techniques, along with new Chain-of-States prompting and meta-programmed
contextual information, into a unified proof optimization agent.

3 AUTOMATED PROOF OPTIMIZATION WITH ImProver

Given a theorem statement x, additional context c, and an initial proof y0, proof optimization consists
of generating a new proof y that is correct and minimizes (or maximizes) a metric µ(x, c, y0, y) → R.

3.1 METRICS

By varying the metric, we can perform tasks such as shortening proofs, making them more declarative
in structure, or even automated proving. We consider 3 metrics:

Length Metric: The length metric measures the number of tactic invocations in the tactic proof,
aiming to reduce the proof’s length while ensuring its correctness. Note that shorter proofs often
represent more efficient proofs.

Declarative Metric: We aim to rewrite proofs to be written in a declarative style (Autexier & Dietrich,
2010; Wiedijk, 2004), which is related to the number of independent subproofs in a proof. Intuitively,
this corresponds with a sense of structure for the proof, and can be interpreted as being more readable,
explicit, or modular in style. Concretely, we evaluate declarativity using the ratio of number of
explicitly typed have tactics to total number of tactic invocations.

Completion Metric: The completion of a proof simply describes its correctness. This is a trivial
metric which measures the number of errors present. The completion metric is used for concretely
viewing proof optimization as a generalization of neural theorem proving.

Our goal here has been to provide a flexible means to optimize proofs with respect to any metric
that might prove useful. The particular metrics we use here are intentionally simplistic, in that they
are used only to test and evaluate the method. The task of designing metrics that correspond more
accurately to human criteria or are optimal for various training tasks is left to later work as what
defines a good metric are dependent on the use case.

Additionally, we note the possibility of degenerate solutions, as in, generations of proofs that score
highly on a certain metric, while not corresponding to the intuitive sense of that metric. For example,
overuse of have statements can greatly increase the declarativity of the proof, despite not being used
in the proof’s deductive process whatsoever. It is undesirable for a model to generate such degenerate
solutions, and to account for this, we guide the model with many human-written examples of each
metric in question, rather than requiring it to solely maximize a reward function. For more complex,
user-defined metrics, the possibilities for degenerate solutions only increases, and as such, guiding
models using concrete examples as well as using reward models rather than reward functions to score
metrics may mitigate the risks of such degenerate solutions.

3.2 IMPROVER

We develop several improvements that can be applied to a black-box LLM generator yout ∼ G(·|xin),
such as GPT-4 (OpenAI et al., 2024), and specify ImProver with respect to these parameters. The
explicit prompts and templates that are sent to the LLM can be found in (§A).

3.2.1 CHAIN-OF-STATES PROMPTING

Typical formal proofs are a sequence of tactics (akin to steps) and states that show the hypotheses
and goals at each step. The intermediate states often contain valuable information (e.g., an expression
after it has been simplified) that is not present in the tactics. To allow the model to reason about
these intermediate goals and hypotheses, we use tools from Lean metaprogramming to automatically
annotate each proof state as a comment prior to each tactic. We refer to this method as Chain-of-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Without Chain-of-States
example : s ∩ t ∪ s ∩ u ⊆ s ∩ (t ∪ u) := by
rintro x (⟨xs, xt⟩ | ⟨xs, xu⟩)
· use xs; left; exact xt
. use xs; right; exact xu

With Chain-of-States
example : s ∩ t ∪ s ∩ u ⊆ s ∩ (t ∪ u) := by
rintro x (⟨xs, xt⟩ | ⟨xs, xu⟩)
/-
case inl.intro
α : Type u_1
s t u : Set α
x : α
xs : x ∈ s
xt : x ∈ t
⊢ x ∈ s ∩ (t ∪ u)
case inr.intro
α : Type u_1
s t u : Set α
x : α
xs : x ∈ s
xu : x ∈ u
⊢ x ∈ s ∩ (t ∪ u)
-/
· use xs; left; exact xt
/-
Goals Solved!
-/
. use xs; right; exact xu
/-
Goals Solved!
-/

Figure 2: A Lean proof (left) with Chain-of-States prompting annotations (right).

States (CoS) prompting since it makes intermediate states explicit, akin to how chain-of-thought
prompting (Wei et al., 2022) makes intermediate steps of a solution explicit.

These states are extracted directly and symbolically from the underlying Lean compilation steps using
Lean’s rich metaprogramming suite. The implementation of this extraction system is modeled from
the work (Kim Morrison, 2024). Specifically, in the compiler’s elaboration and evaluation stages
– where the parsed theorem code is first converted into concrete syntax trees (in practice, Syntax
objects) and abstract syntax trees (Expr objects) – we convert the CST and AST output objects
into the relevant proof data and proof states in the form of proof trees (Lean.Elab.InfoTree).
These proof trees contain detailed context and information on a tactic-by-tactic level relating to the
modification of the proof state, metavariable context, and proof correctness.

After state extraction is completed and cached for efficient future access, we annotate the proof text
itself to contain the intermediate states in the form as comments. Figure 2 shows an example.

This explicit reasoning aims to help the generator model construct more optimized proofs via
additional symbolic data.

3.2.2 OUTPUT FORMATTING.

LLM outputs often contain ancillary and syntactically invalid content, especially before and after
the actual proof. Additionally, by applying additional structure to the LLM outputs, we may hope
to generate more structured proofs. To analyze this hypothesis, we introduce two additional output
formats in addition to the standard string output: string list and string tree. The
former enforces the model output of a proof to be a tactic sequence represented as a list of strings,
and the latter enforces proofs to be written as proof trees, represented as a tree of strings.

3.2.3 SAMPLING METHOD

We also introduce different methods of sampling between many (sequential or parallel) LLM inference
calls, involving best-of-n and iterative refinement implementations, as well as combinations thereof.

Best-of-n. The best-of-n technique generates multiple (n) calls to the language model and selects the
“best” via a simple selection policy that first prioritizes output correctness, and secondly prioritizes
the evaluated metric delta score.

Using a temperature value of 1, we ensure that our n calls to the model are diverse, as the temperature
hyperparameter (ranging between 0 and 2) controls the randomness of the outputs. The default

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

value of 1 ensures that outputs are sufficiently random without sacrificing accuracy and generating
unpredictable behavior. Moreover, this allows for sufficient variance that the best-of-n scoring
function has many distinct inputs to choose from.

More specifically, our scoring function is given by the 2-ary comparison function S, whose arguments
are output objects y, y′.

S(y, y′) =


max(y, y′, key: x 7→ µ(x)), E(y) = E(y′) = 0

y, E(y) = 0, E(y′) > 0

y′, E(y) > 0, E(y′) = 0

min(y, y′, key: x 7→ E(x)), E(y) = E(y′) > 0

Where µ(x) is the metric score of x, and E(x) is the number of errors in x. This comparison function
can be extended to evaluate the best output of any finite n via induction.

Error correction and Refinement. Inspired by self-debugging techniques in code genera-
tion (Madaan et al., 2023; Chen et al., 2023), ImProver identifies and corrects errors in the generated
proofs by iteratively refining its outputs. The refinement process relies on user-defined parameters n
and prev_num to specify the number of iterations and the number of previous iterations’ data to
forward, respectively. Each iteration carries information on the last prev_num iterations, including
input, output, metric score, correctness, and error messages.

Combination Sampling and Compound Prompt Functions. Compound prompt functions utilize
the curried nature of the back-end implementations of best-of-n and refinement to nest these techniques
within one another. For example:

best_of_n((refinement,m),n) is a compound sampling method that run a best-of-n, where
each call is a m-step refinement.

refinement((best_of_n,m),n) is a compound sampling method that runs a n-step refine-
ment, where each call is a best-of-m call to the LLM.

Note that with each of these compound prompt functions, there are always a total of mn iterations.

3.2.4 RETRIEVAL

ImProver uses MMR (Maximum Marginal Relevance)-based (Carbonell & Goldstein, 1998) retrieval-
augmented generation to select relevant examples and documents. More specifically, for a user-
specified k, example retrieval selects the k most relevant examples of proof optimization on a specific
metric. additionally, document retrieval extracts information using MMR from a pair of fixed (vector)
databases for the specified metric. The databases store syntactically chunked data from the Theorem
Proving in Lean (TPiL) handbook – containing syntax guides and tactic explanations – and the
Mathlib mathematics libary – containing thousands of theorems and lemmas.

The Mathlib retriever finds the top k documents that score the highest MMR score against the current
theorem, the TPiL retriever finds the top k documents that score the highest MMR score against the
current theorem in context and all current error messages. This retrieval process helps in generating
more contextually accurate prompts that allow the language model to better correct its own errors as
well as find useful lemmas to reference.

4 EXPERIMENTS

We test ImProver on rewriting real-world undergraduate theorems, competition problems, and
research-level mathematics and compare its results to those of the base GPT-4o and GPT-4o-mini
models. We examine the optimization capabilities of ImProver for the length and declarative metrics
- studying the effectiveness in maintaining the correctness of the tactic proof while making it more
concise as well as making it more declarative in style and structure.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.1 SETUP

Our experimentation is split into three distinct stages. We first perform ablation testing on the
ImProver model parameters (§3.2) to ensure that ImProver’s parameter specification is the optimal
one with respect to correctness and metric optimization score. We then evaluate this optimal parameter
combination on datasets of varying complexity and analyze the performance and results thereof.
Lastly, we note the performance of ImProver in NTP applications in comparison to the base GPT-4o
and GPT-4o-mini models.

Datasets. We evaluate ImProver on subsets of the Mathematics in Lean (MIL) (leanprover-
community, 2024), Compfiles (David Renshaw, 2024), and Mathlib (mathlib Community, 2020)
datasets. Details of the datasets used in each experiment is included in appendix B.1.

Models. Our base generator uses GPT-4o (OpenAI et al., 2024) (gpt-4o-2024-08-06). Since
no prior methods currently exist for automated proof optimization, we consider a prompted GPT-
4o without the improvements described in (§3.2) as our baseline. Additionally, the baseline and
ImProver both receive a prompt containing instructions to optimize for the given metric, with the
theorem statement, context, and initial proof. ImProver augments this prompt with the data from the
improvements described in §3.2. Additional input information is detailed in appendix A.

Performance metrics. Since proof optimization is a new task, we define four performance metrics
for measuring aspects of correctness and improvement.

First, we define improvement for length as percentage change in length, µlen(y0)−µlen(y)
µlen(y0)

× 100. For
readability, we use the difference, µread(y)− µread(yo). If no correct output is generated by the model
for a specific theorem, improvement is defined to be zero. We define nonempty improvement as the
improvement restricted to theorems for which some output has nonzero improvement. Intuitively,
improvement is the expected improvement in metric score from the input to output, accounting for
errors in the generation. The nonempty improvement score is the expected improvement in metric
score, given that there are no errors in the generation.

Additionally, the accuracy is the percentage of theorems in the dataset which the model was able to
generate a correct output for. The improved accuracy is the percentage of theorems in the dataset
which the model was able to generate a correct output for, as well as improve the metric to be nonzero.

4.1.1 ABLATIONS

When performing our ablation studies, we used a fixed dataset (MIL; see appendix B.1) and metric
(length) and varied the parameters of all the features to find the optimal combination. However, as
there are over 8640 possible combinations, rather than test all combinations, we evaluate using a
factorial testing method.

Testing Groups.

We define the following testing groups with the specified parameter combinations:

GPT-4o-mini/GPT-4o: This varies the GPT-4o model, outputting a string with no other features.

Output and CoS: We evaluate the effects of different output formatting styles (string, string
list, string tree) and CoS (True, False), with the model fixed as GPT-4o, with no other
features enabled.

Example Retrieval: We evaluate the effects of increasing the number of examples provided (multi-
shot prompting) in the range of 0, 3, 5, 7, and 10, with the model fixed as GPT-4o, CoS and output
formatting fixed as the best combination from the previous test, and no other features enabled.

Sampling Method: Here, we evaluate the effects of best-of-n and refinement for a fixed n = 5.
Additionally we test on the refinement cases if forwarding the most recent iteration result, or all
previous iteration results is the best, and if we should keep the best out of the iterations, or the most
recent. The model is fixed as GPT-4o, CoS, output formatting, and examples are fixed as the best
combination from the previous test, and no other features enabled.

n and Model: Here, we evaluate the effects of larger n values and different models. We test
n = 3, 5, 7, 10, 15 on GPT-4o and GPT-4o-mini, as well as n = 20 for GPT-4o-mini (as it is of a

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Average Proof optimization results.
Metric Model Improvement Nonempty Improvement Accuracy Improved Acc.

Length GPT-4o 3.7 15.15 26.36% 8.31%
ImProver 20.96 55.29 100.0% 35.44%

Readability GPT-4o 2.21 8.02 18.75% 6.13 %
ImProver 9.34 30.53 100.0% 24.56%

Table 2: MIL Proof optimization results.
Metric Model Improvement Nonempty Improvement Accuracy Improved Acc.

Length GPT-4o 6.25 18.58 37.5% 14.42%
ImProver 30.54 56.56 100.0% 50.0%

Declarativity GPT-4o 4.18 14.48 28.85% 11.54%
ImProver 13.45 30.97 100.0% 34.21%

far lower token cost). CoS, output formatting, examples, and sampling method are fixed as the best
combination from the previous test, and no other features enabled.

Combos and RAG: We evaluate combination methods refinement(best_of_m',m) and
best_of_m'(refinement(m)), for m ̸= m′ with mm′ equal to the optimal value m from the
previous test. We also test the effect of enabling document retrieval. Model, CoS, output formatting,
examples, n, and sampling method are fixed as the best combination from the previous test.

Selection. For each testing group, we select the best parameter combination - which is then held as
constant for the testing of all future testing groups - based on the combination that has the maximal
improvement score. This improvement score represents the expected improvement in metric score,
accounting for possible errors in the generation; selecting the parameter combination with the highest
such score allows for rewarding both generation accuracy and large improvements in the metric score.

Comparing this with the other three performance metrics, accuracy is not prefered as a selection
heuristic, as by simply returning the initial input, we can get 100% accuracy. Improved accuracy
accounts for this by only counting theorems that has some positive improvement in metric score in
the calculation, but this does not reward larger improvements to metric score any differently than
smaller ones. Conversely, nonempty improvement ignores incorrect generations, so it is also not
preferable for selection. The improvement score accounts for all this, rewarding correct generations
and discouraging incorrect ones, and placing a higher weight to larger improvements in metric score.

Ablation datasets. We evaluate our ablations on a subset of MIL as detailed in appendix B.1.

4.2 RESULTS

ImProver is capable of optimizing proofs in all settings. From Table 2, Table 3, and Table 4,
we can see that ImProver is capable of optimizing proofs on all datasets for both the length and
declarative metrics. Furthermore, Table 1 shows that across all metrics, ImProver significantly
outperforms GPT-4o on proof optimization tasks on every experimental measure – aggregated from
all datasets. Additionally, from Table 2, Table 3, and Table 4, we can see that ImProver outperforms
GPT-4o on each dataset as well. We proceed to analyze this data and its implications.

Length optimization. First focusing on the length metric, we see that ImProver outperforms GPT-4o
with respect to the improvement score by 566% (aggregated over all datasets). Additionally, we are
guaranteed that ImProver produces a correct output, although that output may just be the same as the
input. However, 35.44% of the time, it generates a correct output that is not the same length as the
input, and in that case, we expect an average of a 55.29% reduction in length. Comparing this with
GPT-4o, we conclude that not only can ImProver optimize at a higher level on arbitrary theorems,
but its ability to generate nontrivial correct outputs is far greater in comparison to GPT-4o.

Declarativity optimization. Declarativity optimization is similar, with ImProver outperforming
GPT-4o by 423%. Moreover, the accuracy, improved accuracy, and nonempty improvement disparities
for declarativity parallel those of the length tests. However, it should be noted that for both GPT-4o

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Compfiles Proof optimization results.
Metric Model Improvement Nonempty Improvement Accuracy Improved Acc.

Length GPT-4o 2.75 30.7 11.54% 5.13%
ImProver 18.86 54.48 100.0% 34.62%

Declarativity GPT-4o 0.39 3.38 14.1% 1.28%
ImProver 5.74 24.89 100.0% 19.23%

Table 4: Mathlib Proof optimization results.
Metric Model Improvement Nonempty Improvement Accuracy Improved Acc.

Length GPT-4o 0.0 0.0 16.67% 0.0%
ImProver 6.19 53.65 100.0% 11.54%

Declarativity GPT-4o 0.0 0.0 4.65% 0.0%
ImProver 4.63 33.19 100.0% 11.63%

and ImProver, the accuracy and improved accuracy scores were markedly smaller for declarativity
than length optimization. This suggests that for both models, it was generally more “difficult” to
generate a correct output, and moreover, generate a correct output with a better metric score than
the input, for declarativity optimization than length optimization. In other words, optimizing for
declarativity is more difficult for the underlying generator than optimizing for length. However, we
speculate with higher-quality prompts and metrics, this disparity can be minimized. Regardless, we
note that different metrics can be less likely to be correctly optimized, and that model performance is
correlated with the metric it seeks to optimize – both for GPT-4o and ImProver.

Optimization varies based on dataset difficulty. Additionally noting Table 2, Table 3, and Table 4,
we observe that the improvement score for both metrics for both GPT-4o and ImProver is highest for
the MIL dataset, lower for Compfiles, and the lowest on the Mathlib theorems. This suggests that the
expected improvement in metric score decreases with higher difficultly – with undergraduate-level
theorems having a significantly higher expected improvement than research-level theorems. However,
it should be noted that for both metrics, the nonempty improvement of ImProver stayed consistent,
whereas for GPT-4o, it followed the aforementioned trend of decreasing with difficulty. Similarly, the
accuracy and improved accuracy scores for both metrics and models decreased with higher difficulty
datasets (disregarding ImProver’s accuracy scores, as they are ensured to be 100%). This suggests
that although the base GPT-4o generator is less likely to generate a correct output for higher difficulty
datasets, the improvements that ImProver makes to the base generator allows it to maintain its
improvement in the metric score whenever a correct output is generated. As such, we can speculate
that the bottleneck in the improvement score is not the model’s ability to optimize the proof for a
metric, but rather its ability to generate a new correct proof at all. As such, we conjecture that with
more capable generator models, the accuracy – and thus, the improvement score – in optimization
tasks will continue to increase, until the improvement scores match the nonempty improvement.

Overall, we conclude that although the performance of both ImProver and GPT-4o decreases on
length and declarativity optimization on more difficult datasets, ImProver significantly outperforms
GPT-4o on all datasets for length and declarativity optimization.

4.2.1 ABLATION TESTING

We perform ablation studies using a subset of the MIL dataset as discussed in §4.1.1. The results
of this factorial study are aggregated in Table 5. We measure the baseline results from the GPT-
4o and GPT-4o-mini models, noting that GPT-4o is the better-scoring model (with respect to the
improvement score). Thus, fixing this model, we vary the output formatting type and if CoS is enabled,
and determine that outputting string list with CoS enabled maximizes the improvement score.
Fixing these parameters, we now vary the number of examples retrieved, noting that prompting
with 10 examples maximizes the improvement score. Fixing this parameter, we vary the sampling
methods (excluding compound methods and fixing n = 5) and observe that best-of-n is the best
parameter combination. Now, as GPT-4o-mini is significantly less computationally expensive than
its GPT-4o counterpart, we test both models with the sample method fixed to best-of-n, and vary
n = 1, 3, 5, 7, 10, 15, and for GPT-4o-mini, also n = 20. We conclude that GPT-4o with n = 15 is

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Ablation results. Each cell in the ablation tests shows best / worst, which are the best
and worst parameter combinations in the test group.

Improvement Nonempty Improve. Accuracy Improved Acc.

GPT-4o-mini 0 0 3.62% 0%
GPT-4o 7.03 19.67 35.77% 15.33%
+ Output and CoS 8.04 / 6.31 12.38 / 14.17 64.96% / 44.53% 21.17% / 16.06%
+ Example Retrieval 9.34 / 5.67 14.7 / 8.44 63.5% / 67.15% 21.9% / 16.79%
+ Sampling Method 15.35 / 9.34 18.44 / 14.7 83.21% / 63.5% 36.5% / 21.9%
+ n and Model 23.51 / 3.65 26.28 / 4.63 89.47% / 78.95% 45.61% / 8.77%
+ Combos and RAG 34.88 / 28.25 57.56 / 33.48 60.61% / 84.38% 54.55% / 53.12%

ImProver 34.88 57.56 100% 54.55%

Table 6: CoS Declarativity Ablation results.
Improvement Nonempty Improve. Accuracy Improved Acc.

GPT-4o 4.97 15.89 37.5% 12.5%
ImProver, CoS Disabled 9.23 24.61 100.0% 28.12%
ImProver 16.69 31.42 100.0% 46.88%

the most effective. Fixing these parameters, we consider all mixed compound sampling methods with
and without document retrieval enabled, concluding that a 5-step refinement with best-of-3 on each
iteration, with RAG enabled, is the optimal combination.

Thus, as we can see from Table 5, the optimal parameter combination comes from gpt-4o outputting
as a string list with CoS, RAG, 10 examples, 5-step refinement with each iteration being a
best-of-3 evaluation. Changing any one of these parameters them leads to a reduction in performance.
Additional ablation data can be found at (§B.2).

Declarativity and Chain-of-States (CoS) Ablation. We additionally examine the effects of dis-
abling CoS on declarativity optimization tasks, as we speculate that CoS has a high impact on the
performance of declarativity optimization tasks, as the proof states that are embedded due to CoS
seem to be a critical aspect to generating the explicit declarations that the declarative metric measures.

We confirm this result by considering Table 6 and observe that enabling CoS nearly doubles the
improvement score, and significantly improves the nonempty improvement score, suggesting that CoS
has a large impact on optimizing for the declarative metric, as conjectured. However, we also note a
significant increase in improved accuracy, which suggests that embedding the chain of states also
improves the ability of the model to generate nontrivial correct outputs, implying that the symbolic
information contained in the states are critical to effectively making a proof more declarative.

Syntax Guidance Ablation. We examine the effects of syntax guidance on ImProver’s performance.
To test this, we consider a subset of MIL (B.1), and optimize for length with and without error
message forwarding. Considering the results of this ablation in Table 7, we observe that without
syntax guidance and error forwarding, the ability of the model to improve the metric score is
approximately unchanged, but there is a significant 13% spike in improved accuracy. This signifies
that the syntax guidance improves the model’s ability to generate correct results – as is expected – but
does not improve the model’s ability to optimize proofs assuming correct generations. This ensures
that the large improvement in performance compared to GPT-4o is not solely due to simple syntax
guidance, but moreso caused by improvements like CoS, example retrieval, retrieval, etc.

4.2.2 NEURAL THEOREM PROVING EVALUATION

We evaluate ImProver’s neural theorem proving (NTP) performance using the completion metric on
a subset from MIL with empty input proofs (B.1).Table 8 shows the accuracy on the dataset split by
topic for both ImProver and GPT-4o. ImProver substantially outperforms GPT-4o across all topics,
with an 80% increase in accuracy compared to the base model, showing that proof optimization
systems do indeed generalize NTP systems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 7: Syntax Guidance Ablation results.
Improvement Nonempty Improve. Accuracy Improved Acc.

GPT-4o 11.00 25.94 42.42% 21.21%
ImProver, No Syntax Guidance 23.42 49.97 100.0% 46.88%
ImProver 28.94 48.74 100.0% 59.38%

Table 8: Proof generation results. Each cell shows percent accuracy.
MIL Set Theory Group Theory Overall

GPT-4o 18.18% 25% 21.73%
ImProver 45.45% 33.33% 39.13%

4.3 QUALITATIVE RESULTS

Next, we discuss qualitative examples showing the improvements from ImProver in proof optimiza-
tion. Additional examples can be found in §B.3.

Compfiles Length Optimization. Consider Figure 1, a lemma from the 2022 IMO Question 2
(Compfiles) that we optimize for length. ImProver halves thr proof from 12 tactics to 6. Here,
ImProver makes multiple nontrivial optimizations, such as eliminating the h2’ and h4 and hxw
hypotheses, as well as fully generating proof terms for specific rewrites and other tactics.

MIL Declarativity Optimization. Consider Figure 3, a result from MIL that we optimize for
the declarative metric. This original proof carried a score of 0, as it has no have statements. In
comparison, after applying ImProver, the model explicitly defines hypotheses for use in the latter
half of the proof; these hypotheses can easily be converted into standalone lemmas for reuse.

Original (human-written)
def iso1 [Fintype G] (h : Disjoint H K) (h' :

card G = card H * card K)
: K ≃* G / H := by

apply MulEquiv.ofBijective
((QuotientGroup.mk' H).restrict K)

rw [bijective_iff_injective_and_card]
constructor
· rw [← ker_eq_bot_iff, (QuotientGroup.mk'

H).ker_restrict K]
simp [h]

· symm
exact aux_card_eq h'

ImProver (declarativity-optimized)
def iso1 [Fintype G] (h : Disjoint H K) (h' :

card G = card H * card K)
: K ≃* G / H := by
have injectivity : Function.Injective

((QuotientGroup.mk' H).restrict K) := by
rw [← ker_eq_bot_iff, (QuotientGroup.mk'
H).ker_restrict K]
simp [h]

have card_eq : card (G / H) = card K := by
exact aux_card_eq h'

apply MulEquiv.ofBijective
((QuotientGroup.mk' H).restrict K)

rw [bijective_iff_injective_and_card]
constructor
exact injectivity
symm
exact card_eq

Figure 3: Optimizing a group-theoretic result from MIL Chapter 8 Section 1 for declarativity.

5 CONCLUSION

In this paper, we introduced ImProver, a novel agent-based tool for automated proof optimization
in Lean. By incorporating CoS, RAG, and other features, ImProver significantly outperforms base
language models in proof optimization over undergraduate, competition, and research-level problems.

However, ImProver is limited by its high cost and slow runtime, which is exacerbated by its reliance
on black-box LLM’s. We intend to address this inefficiency in future work by applying fine-tuning
and RL on a smaller model to match performance at a lower cost.

ImProver demonstrates its ability to generate substantially shorter and more declarative proofs while
maintaining correctness. As such, we believe that ImProver sets the stage for further work on proof
optimization to advance the study and use of AI in mathematics.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

AlphaProof and AlphaGeometry Teams. AI achieves silver-medal standard solving interna-
tional mathematical olympiad problems. https://deepmind.google/discover/blog/
ai-solves-imo-problems-at-silver-medal-level/, 2024.

Cem Anil, Guodong Zhang, Yuhuai Wu, and Roger Grosse. Learning to give checkable answers with
prover-verifier games, 2021. URL https://arxiv.org/abs/2108.12099.

Serge Autexier and Dominik Dietrich. A tactic language for declarative proofs. In Matt Kaufmann
and Lawrence C. Paulson (eds.), Interactive Theorem Proving, pp. 99–114, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

Jaime Carbonell and Jade Goldstein. The use of mmr, diversity-based reranking for reordering
documents and producing summaries. In Proceedings of the 21st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’98, pp. 335–336,
New York, NY, USA, 1998. Association for Computing Machinery. ISBN 1581130155. doi:
10.1145/290941.291025. URL https://doi.org/10.1145/290941.291025.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug, 2023. URL https://arxiv.org/abs/2304.05128.

David Renshaw. compfiles. https://github.com/dwrensha/compfiles, 2024.

Emily First, Markus N. Rabe, Talia Ringer, and Yuriy Brun. Baldur: Whole-proof generation and
repair with large language models, 2023.

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward Ayers, and Stanislas Polu. Proof artifact co-
training for theorem proving with language models. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=rpxJc9j04U.

Jiewen Hu, Thomas Zhu, and Sean Welleck. minictx: Neural theorem proving with (long-)contexts,
2024. URL https://arxiv.org/abs/2408.03350.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou, Timothee Lacroix, Jiacheng Liu, Wenda Li,
Mateja Jamnik, Guillaume Lample, and Yuhuai Wu. Draft, sketch, and prove: Guiding formal
theorem provers with informal proofs. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=SMa9EAovKMC.

Kim Morrison. lean-training-data. https://github.com/kim-em/
lean-training-data, 2024.

Guillaume Lample, Timothee Lacroix, Marie anne Lachaux, Aurelien Rodriguez, Amaury Hayat,
Thibaut Lavril, Gabriel Ebner, and Xavier Martinet. Hypertree proof search for neural theorem
proving. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances
in Neural Information Processing Systems, 2022. URL https://openreview.net/forum?
id=J4pX8Q8cxHH.

leanprover-community. mathematics_in_lean. https://github.com/
leanprover-community/mathematics_in_lean, 2024.

Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, and Xujie
Si. A survey on deep learning for theorem proving, 2024.

Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, and Kai-Wei Chang. A survey of deep learning
for mathematical reasoning. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.),
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 14605–14631, Toronto, Canada, July 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.acl-long.817. URL https://aclanthology.org/
2023.acl-long.817.

11

https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://arxiv.org/abs/2108.12099
https://doi.org/10.1145/290941.291025
https://arxiv.org/abs/2304.05128
https://github.com/dwrensha/compfiles
https://openreview.net/forum?id=rpxJc9j04U
https://arxiv.org/abs/2408.03350
https://openreview.net/forum?id=SMa9EAovKMC
https://github.com/kim-em/lean-training-data
https://github.com/kim-em/lean-training-data
https://openreview.net/forum?id=J4pX8Q8cxHH
https://openreview.net/forum?id=J4pX8Q8cxHH
https://github.com/leanprover-community/mathematics_in_lean
https://github.com/leanprover-community/mathematics_in_lean
https://aclanthology.org/2023.acl-long.817
https://aclanthology.org/2023.acl-long.817

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative
refinement with self-feedback. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=S37hOerQLB.

The mathlib Community. The lean mathematical library. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, POPL ’20. ACM, January 2020. doi:
10.1145/3372885.3373824. URL http://dx.doi.org/10.1145/3372885.3373824.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language. In
Automated Deduction – CADE 28: 28th International Conference on Automated Deduction, Virtual
Event, July 12–15, 2021, Proceedings, pp. 625–635, Berlin, Heidelberg, 2021. Springer-Verlag.
ISBN 978-3-030-79875-8. doi: 10.1007/978-3-030-79876-5_37. URL https://doi.org/
10.1007/978-3-030-79876-5_37.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte,
Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike
Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich,
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,
Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon
Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie
Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun
Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang,
Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian
Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren
Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming

12

https://openreview.net/forum?id=S37hOerQLB
http://dx.doi.org/10.1145/3372885.3373824
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving,
2020.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya
Sutskever. Formal mathematics statement curriculum learning, 2022.

Amitayush Thakur, George Tsoukalas, Yeming Wen, Jimmy Xin, and Swarat Chaudhuri. An
in-context learning agent for formal theorem-proving, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V
Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?
id=_VjQlMeSB_J.

Freek Wiedijk. Formal proof sketches. In Stefano Berardi, Mario Coppo, and Ferruccio Damiani
(eds.), Types for Proofs and Programs, pp. 378–393, Berlin, Heidelberg, 2004. Springer Berlin
Heidelberg. ISBN 978-3-540-24849-1.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil, Ryan
Prenger, and Anima Anandkumar. LeanDojo: Theorem proving with retrieval-augmented language
models. In Neural Information Processing Systems (NeurIPS), 2023.

Shuyan Zhou, Uri Alon, Frank F. Xu, Zhengbao Jiang, and Graham Neubig. Docprompting: Gen-
erating code by retrieving the docs. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=ZTCxT2t2Ru.

13

https://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=ZTCxT2t2Ru

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PROMPTS

In this appendix, we note the prompts used by ImProver both for general LLM prompting, as well as
the metric-specific prompts.

A.1 TEMPLATE

For the main prompt sent to the LLM on each sample, we build a prompt string using a chat prompt
template that is then invoked at runtime to fill in the variables.

Namely, these variables include the set of metric prompts, previous results, input theorem, context, a
syntax documents, Mathlib documents, and examples.

The prompt template is a conversation of the format:

Placeholder: All metric prompts with a ‘System’ role
System: You will be given the proof context (i.e. the lean file contents/imports leading up
to the theorem declaration) wrapped by <CONTEXT>...</CONTEXT>.
You will be given the previous num_prev input/output pairs as well as their metric (met-
ric.name) score and correctness score, as well as any error messages, for your reference to
improve upon. Each of these previous results will be wrapped with <PREV I=0></PREV
I=0>,...,<PREV I=num_prev-1></PREV I=num_prev-1>, with I=num_prev-1 being the most
recent result.
Remember to use lean 4 syntax, which has significant changes from the lean 3 syntax. To
assist with the syntax relating to the current theorem and current error messages, you will be
given num_syntax_docs documents to refer to for fixing these syntax issues. Each of these
documents will be wrapped with <SYNTAX_DOC>...</SYNTAX_DOC>.
You will also receive num_mathlib_docs documents relevant to the current theorem to
help with formulating your modified proof. Each of these will be wrapped with <CON-
TENT_DOC>...</CONTENT_DOC>
You will also receive num_examples examples of input-output pairs of proofs that
were optimized for the metric metric. Each of these will be wrapped with <EXAM-
PLE>...</EXAMPLE>
You will be given the tactic states as comments for reference. The current theorem will be
wrapped in <CURRENT>...</CURRENT>
System: Output format instructions
Placeholder: All retrieved syntax documentation
Placeholder: All retrieved mathlib documentation
Placeholder: All retrieved examples
User: <CONTEXT> context </CONTEXT>
Placeholder: Previous results and inputs/outputs
Placeholder: All metric prompts with a ‘User’ role
User: <CURRENT> theorem </CURRENT>

This prompt is then invoked and sent to the language model by filling in all the variables and
placeholders. Notably, when we invoke the chain given by chain|llm|parser, we throttle the
invocation with a randomized exponential rate limit throttling to account for API rate limits, especially
in highly-parallelized requests like when benchmarking over a large number of theorems.

A.2 METRIC PROMPTS

Length Metric

System: You are an AI assistant who shortens Lean 4 proofs while ensuring their correctness.
You will aim to reduce the number of lines of the tactic proof while ensuring that it properly
compiles in Lean 4.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

User: Shorten the current theorem (wrapped in <CURRENT>...</CURRENT>) to be as
short in length—measured in the number of lines of the proof—as possible, while also
ensuring that the output is still syntactically correct."

Declarativity Metric

System: You are an AI assistant who rewrites Lean 4 proofs to be more readable while
ensuring their correctness. We measure readablity by considering the ratio of the number
of explicitly typed have tactics against the total number of tactics in the proof, as this is
proportional to whether a proof is declarative in style, and thus, readable.

User: Rewrite the current theorem (wrapped in <CURRENT>...</CURRENT>) so it is
more readable and declarative and modular.

Completion Metric

System: You are an AI assistant who automatically solves Lean 4 proofs (as in, generates
the tactic proof) and ensures its correctness. You will receive a Lean 4 proof you must
modify to eliminate any errors so that it compiles correctly and eliminate any “sorry”s with
full proofs.

User: Rewrite the current theorem (wrapped in <CURRENT>...</CURRENT>) so it is a
formal, complete, and correct Lean 4 proof by filling in its tactic proof.

A.3 METRIC EXAMPLES

In this section, we illustrate side-by-side examples of metric optimization. These examples are part
of a larger set of examples provided to the model as described in §A.1.

Length Metric As shown in Figure 4, we provide the model an example of using more advanced
tactics like rintro and inlining apply statements to shorten the proof from 5 tactics to 2.

Suboptimal
example : (P → Q) ∧ (Q → R) → P → R := by
intro h p
rcases h with ⟨a,b⟩
apply b
apply a
exact p

Length Optimized
example : (P → Q) ∧ (Q → R) → P → R := by
rintro (⟨hpq,hqr⟩) hp
exact hqr (hpq hp)

Figure 4: A human-written example of length optimization.

Declarative Metric

As shown in Figure 5, we provide the model an example of adding an intermediate result hp_nq with
an explicitly written type of P → ¬Q. Additionally, we show the model an example of simplifying
tactics and external lemmas and dependencies to solve the problem in a more direct, declarative, and
readable manner.

Suboptimal
example (h : ¬ (P ∧ Q)) : ¬ P ∨ ¬ Q := by
push_neg at h
exact not_or_of_imp h

Declarativity Optimized
example (h : ¬ (P ∧ Q)) : ¬ P ∨ ¬ Q := by
have hp_nq : P → ¬ Q := by
intro p q
exact h ⟨p,q⟩

by_cases hp:P
. right
exact hp_nq hp

. left
exact hp

Figure 5: A human-written example of declarativity optimization.

Completion Metric

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

As shown in Figure 6, we provide the model an example of showing a property about Set’s, an
externally defined datastructure, using simple tactics and forward reasoning, without external lemmas.

Suboptimal
example {α : Type*} (s : Set α) : s ∩ s = s

:= by
sorry

Completion Optimized
example {α : Type*} (s : Set α) : s ∩ s = s

:= by
ext x
constructor
. intro h

rcases h with ⟨hs,_⟩
exact hs

. intro h
constructor
. exact h
. exact h

Figure 6: A human-written example of proof completion.

B ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide more detailed information on the experimental setup and results used to
evaluate ImProver.

B.1 DATASET DETAILS

Main Datasets We evaluate our experiments on subsets of the following datasets:

Mathematics in Lean (MIL) (leanprover-community, 2024): this dataset contains pedagogical
solutions of common undergraduate-level exercises, and as such contains many declarative, yet
verbose and inefficient proofs. We use exercise solutions from set theory, elementary number theory,
group theory, topology, differential calculus, and integration & measure theory. This dataset contains
theorems at an undergraduate-level of complexity. For our main results, we evaluated on 72 theorems
from exercise solutions from MIL chapters 4, 5, 8, 9, and 10.

Compfiles (David Renshaw, 2024): Solutions of International Mathematics Olympiad (IMO) and
American Mathematics Olympiad (USAMO) competition problems from 2016 to 2024. This is a
dataset of internationally-renowned competitive math problems, many of which are readable and
declarative, yet quite verbose. This dataset contains theorems of a competitive format, and although
they contain concepts only at a high-school level, the logical complexity of internationally-renowned
competition results is far above that. For our main results, we used all 26 theorems and lemmas from
the Compfiles database of complete solutions to the International Mathematics Olympiad (IMO) and
the American Mathematics Olympiad (USAMO) from 2016-2024.

Mathlib (mathlib Community, 2020): Mathlib contains many advanced results at the forefront of
mathematics, and has been at the center of research-level formalizations. These proofs are concise
and generalized - which often comes at the cost of readability, declarativity, and understandability.
These results and theorems often are at the cutting edge of research and a highest level of complexity
compared the the other two datasets.

For our main results, we evaluated our methods on 43 advanced research-level proofs from
Mathlib/AlgebraicTopology/FundamentalGroupoid. This is the most difficult dataset.

Ablation Datasets

We evaluate our ablations on a subset of MIL. Additional details on this subset is included in appendix
B.1.However, due to the increase in model calls for larger n values, we switch a representative sample
of this subset for some test groups. Namely,

GPT-4o-mini, GPT-4o, Output and Cos, Example Retrieval, and Sampling Method are tested
on the 133 theorems in the solutions of C03_Logic, C04_Sets_and_Functions, and
C05_Elementary_Number_Theory.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

n and Model are tested on 55 theorems from a representative sample of the aforementioned, and
Combos and RAG are tested on a representative sample of 32 theorems from the aforementioned.

Additionally, we note that both the Declarativity/CoS ablation and the Syntax Guidance ablation are
performed on the same 32 theorems sample as mentioned above.

Completion Datasets

We evaluate our completion/NTP dataset on 23 exercises from Mathematics in Lean. Namely, we
consider a representative sample of 12 exercises in group theory (Chapter 8), 11 exercises in set
theory (Chapter 4). Moreover, we ensure that all these theorems have an empty proof.

This experiment is intended to be an initial evaluation to show that automated proof optimization
systems can generalize neural theorem proving, however, future work will explore the ability of
ImProver to perform neural theorem proving on more real-world datasets and compete against
specialized NTP models.

B.2 ABLATION DETAILS

We now proceed to show detailed results from our ablation testing.

Table 9: Output and Chain-of-States Ablations
Output Format CoS Improvement Nonempty Improve. Accuracy Improved Acc.

string True 7.53 16.12 46.72% 16.79%
string False 7.03 19.67 35.77% 15.33%
string list True 8.04 12.38 64.96% 21.17%
string list False 7.04 13.58 51.82% 18.98%
string tree True 7.62 15.34 49.64% 18.25%
string tree False 6.31 14.17 44.53% 16.06%

By Table 9, we see that the optimal combination in this testing group is a string list output
format with CoS enabled. Fix these values for all future tests.

Table 10: Example Retrieval Ablations
Examples Improvement Nonempty Improve. Accuracy Improved Acc.

0 5.67 8.44 67.15% 16.79%
3 8.49 13.68 62.04% 19.71%
5 8.38 12.9 64.96% 21.17%
7 7.56 12.04 62.77% 19.71%
10 9.34 14.7 63.5% 21.9%

With the previous optimal parameters fixed, run the ablation on the number of examples. By Table 10,
we see that the optimal combination in this testing group is 10 examples. Fix this value for all future
tests.

Table 11: Sampling Method Ablations
Method Forward Keep Best Improvement Nonempty Improve. Accuracy Improved Acc.

None N/A N/A 9.34 14.7 63.5% 21.9%
refinement 1 False 14.76 30.63 48.18% 30.66%
refinement 5 False 12.5 20.88 59.85% 30.66%
refinement 1 True 14.95 14.95 100.0% 30.66%
refinement 5 True 13.15 13.15 100.0% 29.93%
best-of-n N/A N/A 15.35 18.44 83.21% 36.5%

Note that forward and keep-best values are parameters for refinement of how many previous iterations
to forward, and whether to keep the most recent or the best iteration in subsequent refinement steps.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Now, with the previous optimal parameters fixed, run the ablation on the sample method. By Table 11,
we see that the optimal combination in this testing group is best-of-n. Fix this value for all future
tests.

Table 12: Model and n Ablations
Model n Improvement Nonempty Improve. Accuracy Improved Acc.

gpt-4o 3 19.66 24.36 80.7% 38.6%
gpt-4o 5 20.12 24.97 80.56% 36.11%
gpt-4o 7 22.44 27.21 82.46% 42.11%
gpt-4o 10 21.73 25.28 85.96% 40.35%
gpt-4o 15 23.51 26.28 89.47% 45.61%
gpt-4o-mini 3 3.65 4.63 78.95% 8.77%
gpt-4o-mini 5 5.12 6.21 82.46% 10.53%
gpt-4o-mini 7 3.65 4.34 84.21% 8.77%
gpt-4o-mini 10 4.99 5.69 87.72% 12.28%
gpt-4o-mini 15 4.35 5.06 85.96% 12.28%
gpt-4o-mini 20 4.87 5.56 87.72% 14.04%

With the previous optimal parameters fixed, run the ablation on the value of n and model. By Table 12,
we see that the optimal combination in this testing group is GPT-4o with n = 15. Fix this value for
all future tests.

Table 13: RAG and Combination Sampling Method Ablations
Combination m m′ RAG Improvement Nonempty Improve. Accuracy Improved Acc.

best-of-n(refinement) 3 5 True 33.78 33.78 100.0% 50.0%
best-of-n(refinement) 3 5 False 31.23 31.23 100.0% 46.88%
best-of-n(refinement) 5 3 True 31.85 31.85 100.0% 50.0%
best-of-n(refinement) 5 3 False 31.35 31.35 100.0% 50.0%
refinement(best-of-n) 3 5 True 32.66 51.32 63.64% 48.48%
refinement(best-of-n) 3 5 False 32.88 50.1 65.62% 53.12%
refinement(best-of-n) 5 3 True 34.88 57.56 60.61% 54.55%
refinement(best-of-n) 5 3 False 29.54 49.75 59.38% 43.75%
best-of-n N/A 15 True 29.64 32.71 90.62% 56.25%
best-of-n N/A 15 False 28.25 33.48 84.38% 53.12%

With the previous optimal parameters fixed, run the ablation on the combination methods and if
RAG is enabled. By Table 13, we see that the optimal combination in this testing group is a 5-step
refinement with each iteration being a best-of-3 call, with RAG enabled.

B.3 ADDITIONAL QUALITATIVE EXAMPLES

In this section, we provide additional qualitative examples demonstrating the improvements ImProver
achieves in proof optimization.

Compfiles: Length Optimization See (§4.3)

Compfiles: Declarativity Optimization Consider Figure 7, in which a lemma from the 2019
IMO problem 1 (from the Compfiles dataset) is optimized for declarativity. This introduces multiple
new hypotheses, which generalize a linear_property of the functions, and then reuses and
instantiates that (and others, too) hypothesis throughout the proof, creating a significantly more
declarative proof.

MIL: Length Optimization Consider Figure 8, which optimizes an exercise solution from MIL
Chapter 8, Section 1 (Group theory) for length, eliminating simp calls and introducing proof terms
into the structure of the proof to shorten it from 9 tactic invocations to 7.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Original (human-written)
lemma additive_to_int_linear (f : Z → Z) (h:

∀ (x y : Z), f (x + y) = f x + f y):
∃ c, ∀ a, f a = c * a := by
let g := AddMonoidHom.toIntLinearMap <|

AddMonoidHom.mk' f h
refine ⟨f 1, fun a => ?_⟩
change g a = g 1 * a
rw [mul_comm, ← smul_eq_mul, ←

LinearMap.map_smul, smul_eq_mul, mul_one]

ImProver (declarativity-optimized)
lemma additive_to_int_linear (f : Z → Z) (h:

∀ (x y : Z), f (x + y) = f x + f y):
∃ c, ∀ a, f a = c * a := by

let g := AddMonoidHom.toIntLinearMap <|
AddMonoidHom.mk' f h

have linear_property : ∀ a, f a = g a := by
intro a
rfl

have g_smul : ∀ a, g a = g 1 * a := by
intro a
rw [mul_comm, ← smul_eq_mul, ←
LinearMap.map_smul, smul_eq_mul, mul_one]

refine ⟨f 1, fun a => ?_⟩
have f_eq_g : f a = g a := linear_property a
have g_a_eq : g a = g 1 * a := g_smul a
rw [f_eq_g, linear_property 1, g_a_eq]

Figure 7: Optimizing a lemma from IMO 2019 P1 for declarativity

Original (human-written)
example (φ : G →* H) (ψ : H →* K) (S :

Subgroup G) :
map (ψ.comp φ) S = map ψ (S.map φ) := by

ext x
simp only [mem_map]
constructor
· rintro ⟨y, y_in, hy⟩
exact ⟨φ y, ⟨y, y_in, rfl⟩, hy⟩

· rintro ⟨y, ⟨z, z_in, hz⟩, hy⟩
use z, z_in
calc ψ.comp φ z = ψ (φ z) := rfl
_ = ψ y := by congr

ImProver (length-optimized)

example (φ : G →* H) (ψ : H →* K) (S :
Subgroup G) :
map (ψ.comp φ) S = map ψ (S.map φ) :=
by

ext x
simp only [mem_map]
constructor
rintro ⟨y, y_in, hy⟩; exact ⟨φ y, ⟨y, y_in,

rfl⟩, hy⟩
rintro ⟨y, ⟨z, z_in, hz⟩, hy⟩; exact ⟨z,

z_in, (congr_arg ψ hz).trans hy⟩

Figure 8: Optimizing a lemma from the solutions of MIL CH08 S01 for length

MIL: Length Optimization 2 Consider Figure 8, which optimizes an exercise solution from MIL
Chapter 8, Section 1 (Group theory) for length, converting a full tactic proof into a single proof term
to shorten it from 28 tactic invocations to 1. Note that the model does not have access to the Lean
commands that symbolically generate proof terms, and therefore generates and estimates the proof
term entirely by itself.

Original (human-written)
example : s \ t ∪ t \ s = (s ∪ t) \ (s ∩ t)

:= by
ext x; constructor
· rintro (⟨xs, xnt⟩ | ⟨xt, xns⟩)
· constructor
left
exact xs
rintro ⟨_, xt⟩
contradiction

. constructor
right
exact xt
rintro ⟨xs, _⟩
contradiction

rintro ⟨xs | xt, nxst⟩
· left
use xs
intro xt
apply nxst
constructor <;> assumption

. right; use xt; intro xs
apply nxst
constructor <;> assumption

ImProver (length-optimized)
example : s \ t ∪ t \ s = (s ∪ t) \ (s ∩ t)

:= by
exact Set.ext fun x => ⟨fun h => h.elim

(fun ⟨xs, xnt⟩ => ⟨Or.inl xs, fun ⟨_, xt⟩ =
> xnt xt⟩) (fun ⟨xt, xns⟩ => ⟨Or.inr xt,
fun ⟨xs, _⟩ => xns xs⟩),

fun ⟨h, nxst⟩ => h.elim (fun xs => Or.inl ⟨
xs, fun xt => nxst ⟨xs, xt⟩⟩) (fun xt =>
Or.inr ⟨xt, fun xs => nxst ⟨xs, xt⟩⟩)⟩

Figure 9: Optimizing a lemma from MIL CH04 S01 solution for length

MIL: Declarativity Optimization See (§4.3)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Mathlib: Length Optimization Consider Figure 10, which optimizes a theorem in algebraic
topology from mathlib for length, eliminating simp calls and combining tactics to shorten it from 3
tactic invocations to 1.

Original (human-written)
/-- If `f(p(t) = g(q(t))` for two paths `p`

and `q`, then the induced path homotopy
classes

`f(p)` and `g(p)` are the same as well,
despite having a priori different types
-/

theorem heq_path_of_eq_image : HEq ((πm

f).map JpK) ((πm g).map JqK) := by
simp only [map_eq, ←

Path.Homotopic.map_lift]; apply
Path.Homotopic.hpath_hext; exact hfg

ImProver (length-optimized)

/-- If `f(p(t) = g(q(t))` for two paths `p`
and `q`, then the induced path homotopy
classes

`f(p)` and `g(p)` are the same as well,
despite having a priori different types
-/

theorem heq_path_of_eq_image : HEq ((πm

f).map JpK) ((πm g).map JqK) := by
exact Path.Homotopic.hpath_hext hfg

Figure 10: Optimizing a theorem from Mathlib/FundamentalGroupoid/InducedMaps
for length

Mathlib: Declarativity Optimization Consider Figure 11, a theorem from Mathlib that we
optimize for declarativity.

This original proof carried a score of 0, as it does not contain any declarative statements. It is concise
and efficient, however, it is difficult to understand and read.

After optimizing for declarativity, we see that the model did not change the structure of the proof.
Rather, it added an intermediate declaration so that users can better understand the state after the
convert. This intermediate tactic greatly helps in the understandability and clarity of the proof.

Original (human-written)
/-- Another version of

`simply_connected_iff_paths_homotopic` -/
theorem simply_connected_iff_paths_homotopic'

{Y : Type*} [TopologicalSpace Y] :
SimplyConnectedSpace Y ↔
PathConnectedSpace Y ∧ ∀ {x y : Y} (p1

p2 : Path x y), Path.Homotopic p1 p2 :=
by

convert
simply_connected_iff_paths_homotopic (Y
:= Y)

simp [Path.Homotopic.Quotient,
Setoid.eq_top_iff]; rfl

ImProver (declarativity-optimized)
/-- Another version of

`simply_connected_iff_paths_homotopic` -/
theorem simply_connected_iff_paths_homotopic'

{Y : Type*} [TopologicalSpace Y] :
SimplyConnectedSpace Y ↔
PathConnectedSpace Y ∧ ∀ {x y : Y} (p1

p2 : Path x y), Path.Homotopic p1 p2 :=
by

convert
simply_connected_iff_paths_homotopic (Y
:= Y)

have h1 : ∀ x y : Y, Subsingleton
(Path.Homotopic.Quotient x y) ↔ ∀ {p1 p2

: Path x y}, Path.Homotopic p1 p2 := by
intro x y
simp [Path.Homotopic.Quotient,
Setoid.eq_top_iff]
rfl

simp only [h1]

Figure 11: Optimizing a theorem from Mathlib/FundamentalGroupoid/SimplyConnected
for declarativity

Full Proof Generation. We analyze the application of ImProver to neural theorem proving in
the MIL example from Figure 12. This theorem relating to group theory originally has no proof,
however, ImProver generates one from scratch. This generated proof is verified to be correct by
Lean, utilizing all the included hypotheses as well as a retrieved mathlib theorem.

Original (human-written)
example (φ : G →* H) (S T : Subgroup H) (hST

: S ≤ T) : comap φ S ≤ comap φ T := by
sorry

ImProver (completeness-optimized)
example (φ : G →* H) (S T : Subgroup H) (hST

: S ≤ T) : comap φ S ≤ comap φ T := by
intro g
simp only [mem_comap]
intro hS
exact hST hS

Figure 12: Solving a group theorem exercise from MIL Chapter 8 Section 1 for declarativity.

20

	Introduction
	Related work
	Automated Proof Optimization with ImProver
	Metrics
	Improver
	Chain-of-States Prompting
	Output formatting.
	Sampling Method
	Retrieval

	Experiments
	Setup
	Ablations

	Results
	Ablation Testing
	Neural Theorem Proving Evaluation

	Qualitative Results

	Conclusion
	Prompts
	Template
	Metric Prompts
	Metric Examples

	Additional Experimental Results
	Dataset Details
	Ablation Details
	Additional Qualitative Examples

