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ABSTRACT

Large language models (LLMs) have been used to generate formal proofs of
mathematical theorems in proofs assistants such as Lean. However, we often
want to optimize a formal proof with respect to various criteria, depending on its
downstream use. For example, we may want a proof to adhere to a certain style, or
to be declaratively structured, concise, or contain minimal dependencies. Having
suitably optimized proofs is also important for learning tasks, especially since
human-written proofs may not optimal for that purpose. To this end, we study a
new problem of automated proof optimization: rewriting a proof so that it is correct
and optimizes for an arbitrary criterion, such as length or declarativity. As a first
method for automated proof optimization, we present ImProver, a large-language-
model agent that rewrites proofs to optimize arbitrary user-defined metrics in Lean.
We find that naively applying LLMs to proof optimization falls short, and we
incorporate various improvements into ImProver, such as the use of symbolic
Lean context in a novel Chain-of-States technique, as well as error-correction and
retrieval. We test ImProver on rewriting real-world undergraduate, competition,
and research-level mathematics theorems, finding that ImProver is capable of
rewriting proofs so that they are substantially shorter and more declarative in
structure.

1 INTRODUCTION

The fundamental virtue of a mathematical proof is that it provides certainty: a deductive argument
shows that the assumptions of a mathematical statement logically guarantee the conclusion. In
practice, however, informal, natural-language proofs are prone to imprecision, ambiguity, and error.
Using a formal language such as Lean (Moura & Ullrich, 2021) removes such ambiguity and
imprecision and enables a proof assistant to verify correctness down to the primitives of a formal
axiomatic system.

Although any two correct formal proofs of a statement equally establish the validity of their conclusion,
there are various criteria on which one of them may be preferred over another. When an expert
formalizer finishes a proof, they always go back and revise it, aiming, for example, to improve
readability and robustness. Instructors show their students how to shorten their proofs and structure
them better, and the maintainers of Lean’s Mathlib (mathlib Community, 2020) demand revisions to
submissions to improve their robustness and adhere to style guidelines.

To this end, we study a new problem of automated proof optimization: rewriting a proof so that it
is correct and optimizes a user-specified criterion such as length or readability. To mathematicians
and formalizers, the ability to improve proofs automatically is invaluable to the maintenance and
development of libraries for research and pedagogy alike. For example, the development of Mathlib
as an evolving corpus maintained by hundreds of human formalizers requires strict guidelines to
ensure efficient and generalized theorems - a task that proof optimizers can excel at automating, in
order to generate proofs that rely on existing lemmas with concision and generalizability.

Moreover, automated proof optimization is not only useful in its own right, but also for the purposes of
improving AI that can find proof on its own. At the very least, it provides a form of data augmentation:
the limited amount of formal training data is currently a bottleneck for machine learning, and our
methods provide ways of generating additional data automatically. More interestingly, our methods
also provide a means of optimizing training data. For example, other work (Jiang et al., 2023)
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suggests that a promising means for generating formal proofs is to have an LLM sketch a high-level
outline of a proof that can be filled in by symbolic automated reasoning methods. For that purpose, it
is useful to have a corpus of proofs that are written in such a structured form. Our methods provide
means of generating such proofs from less structured ones.

Our work shows that naively applying LLMs to proof optimization falls short, often resulting in
incorrect or poorly optimized proofs. We develop various improvements that can be applied on top of
a black-box language model, including Chain-of-States prompting – an analogy to chain-of-thought
prompting (Wei et al., 2022) that shows intermediate proof states, contextual information, error-
correction, and retrieval. We incorporate these into ImProver: a large language model agent that
rewrites proofs to optimize arbitrary user-defined metrics in Lean. We test ImProver on rewriting
real-world undergraduate theorems, competition problems, and research-level mathematics, finding
that ImProver is capable of rewriting proofs so that they are substantially shorter and more declarative
in style.1

Original (human-written)
lemma lemma0 {α : Type} {p : α → α → Prop}

(h1 : ∀ x, ∃! y, p x y)
(h2 : ∀ x y, p x y ↔ p y x) :
∀ x, Classical.choose

(h1 (Classical.choose (h1
x).exists)).exists=x := by

-- PROOF START
intro x
obtain ⟨y, h1e, h1u⟩ := h1 x
have h2' : Classical.choose (h1 x).exists =

y :=
h1u _ (Classical.choose_spec (h1
x).exists)

rw [h2']
obtain ⟨w, h1e', h1u'⟩ := h1 y
have h4 := Classical.choose_spec (h1

y).exists
have hxw : x = w := by
apply h1u'
rw [h2]
exact h1e

rw [hxw]
exact h1u' _ h4

ImProver (length-optimized)
lemma lemma0 {α : Type} {p : α → α → Prop}

(h1 : ∀ x, ∃! y, p x y)
(h2 : ∀ x y, p x y ↔ p y x) :
∀ x, Classical.choose

(h1 (Classical.choose (h1
x).exists)).exists=x := by

-- PROOF START
intro x
obtain ⟨y, h1e, h1u⟩ := h1 x
rw [h1u _ (Classical.choose_spec _)]
obtain ⟨w, h1e', h1u'⟩ := h1 y
rw [h1u' _ ((h2 _ _).mpr h1e)]
exact h1u' _ (Classical.choose_spec _)

Figure 1: ImProver automatically rewrites formal proofs to optimize a criterion such as length or
readability while remaining correct. In this example, ImProver optimizes a human-written lemma
from the 2022 International Math Olympiad (Question 2, solution from Compfiles (David Renshaw,
2024)) for length. ImProver’s optimized proof is correct and more concise.

2 RELATED WORK

Recently there has been wide interest in automating theorem proving in interactive proof assistants;
see (Lu et al., 2023; Li et al., 2024) for surveys. Indeed, at a high level, proof assistants constitute a
sound verifier in a prover-verifier game (Anil et al., 2021), suggesting that a machine-learning based
prover that interfaces with such a verifier is a natural next step for formal reasoning systems.

A typical approach to developing machine learning provers (Polu & Sutskever, 2020) is to train
on a large corpus of mathematical proofs such as Lean’s Mathlib (mathlib Community, 2020; Han
et al., 2022; Polu et al., 2022; Lample et al., 2022; Yang et al., 2023; Hu et al., 2024). A model
learns from the distribution of proofs in the corpus, such as Mathlib-style proofs. Recently, the
AlphaProof (AlphaProof & Teams, 2024) system was shown to produce proofs with an arcane,
non-human structure and syntax. We consider the new problem of rewriting a proof to optimize a
metric, such as rewriting a proof into a more declarative or more concise one. Proof optimization is
more general than theorem proving, since we can also rewrite an empty proof to optimize correctness.
Finally, there is a rich literature on the varied styles of (human) formal proofs (e.g., (Autexier &
Dietrich, 2010; Wiedijk, 2004)). Our model, ImProver, builds on neural theorem proving techniques

1Code is available at [link removed for anonymity]
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including full proof generation (Jiang et al., 2023; First et al., 2023), conditioning on example
proofs (Jiang et al., 2023), retrieval (Yang et al., 2023; Thakur et al., 2024), and preceding file
context (First et al., 2023; Hu et al., 2024), as well as error correction (Madaan et al., 2023; Chen
et al., 2023) and documentation retrieval (Zhou et al., 2023) from code generation. ImProver brings
these code generation techniques, along with new Chain-of-States prompting and meta-programmed
contextual information, into a unified proof optimization agent.

3 AUTOMATED PROOF OPTIMIZATION WITH ImProver

Given a theorem statement x, additional context c, and an initial proof y0, proof optimization consists
of generating a new proof y that is correct and minimizes (or maximizes) a metric µ(x, c, y0, y) → R.

3.1 METRICS

By varying the metric, we can perform tasks such as shortening proofs, making them more declarative
in structure, or even automated proving. We consider 3 metrics:

Length Metric: The length metric measures the number of tactic invocations in the tactic proof,
aiming to reduce the proof’s length while ensuring its correctness. Note that shorter proofs often
represent more efficient proofs.

Declarative Metric: We aim to rewrite proofs to be written in a declarative style (Autexier & Dietrich,
2010; Wiedijk, 2004), which is related to the number of independent subproofs in a proof. Intuitively,
this corresponds with a sense of structure for the proof, and can be interpreted as being more readable,
explicit, or modular in style. Concretely, we evaluate declarativity using the ratio of number of
explicitly typed have tactics to total number of tactic invocations.

Completion Metric: The completion of a proof simply describes its correctness. This is a trivial
metric which measures the number of errors present. The completion metric is used for concretely
viewing proof optimization as a generalization of neural theorem proving.

Our goal here has been to provide a flexible means to optimize proofs with respect to any metric
that might prove useful. The particular metrics we use here are intentionally simplistic, in that they
are used only to test and evaluate the method. The task of designing metrics that correspond more
accurately to human criteria or are optimal for various training tasks is left to later work as what
defines a good metric are dependent on the use case.

Additionally, we note the possibility of degenerate solutions, as in, generations of proofs that score
highly on a certain metric, while not corresponding to the intuitive sense of that metric. For example,
overuse of have statements can greatly increase the declarativity of the proof, despite not being used
in the proof’s deductive process whatsoever. It is undesirable for a model to generate such degenerate
solutions, and to account for this, we guide the model with many human-written examples of each
metric in question, rather than requiring it to solely maximize a reward function. For more complex,
user-defined metrics, the possibilities for degenerate solutions only increases, and as such, guiding
models using concrete examples as well as using reward models rather than reward functions to score
metrics may mitigate the risks of such degenerate solutions.

3.2 IMPROVER

We develop several improvements that can be applied to a black-box LLM generator yout ∼ G(·|xin),
such as GPT-4 (OpenAI et al., 2024), and specify ImProver with respect to these parameters. The
explicit prompts and templates that are sent to the LLM can be found in (§A).

3.2.1 CHAIN-OF-STATES PROMPTING

Typical formal proofs are a sequence of tactics (akin to steps) and states that show the hypotheses
and goals at each step. The intermediate states often contain valuable information (e.g., an expression
after it has been simplified) that is not present in the tactics. To allow the model to reason about
these intermediate goals and hypotheses, we use tools from Lean metaprogramming to automatically
annotate each proof state as a comment prior to each tactic. We refer to this method as Chain-of-
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Without Chain-of-States
example : s ∩ t ∪ s ∩ u ⊆ s ∩ (t ∪ u) := by
rintro x (⟨xs, xt⟩ | ⟨xs, xu⟩)
· use xs; left; exact xt
. use xs; right; exact xu

With Chain-of-States
example : s ∩ t ∪ s ∩ u ⊆ s ∩ (t ∪ u) := by
rintro x (⟨xs, xt⟩ | ⟨xs, xu⟩)
/-
case inl.intro
α : Type u_1
s t u : Set α
x : α
xs : x ∈ s
xt : x ∈ t
⊢ x ∈ s ∩ (t ∪ u)
case inr.intro
α : Type u_1
s t u : Set α
x : α
xs : x ∈ s
xu : x ∈ u
⊢ x ∈ s ∩ (t ∪ u)
-/
· use xs; left; exact xt
/-
Goals Solved!
-/
. use xs; right; exact xu
/-
Goals Solved!
-/

Figure 2: A Lean proof (left) with Chain-of-States prompting annotations (right).

States (CoS) prompting since it makes intermediate states explicit, akin to how chain-of-thought
prompting (Wei et al., 2022) makes intermediate steps of a solution explicit.

These states are extracted directly and symbolically from the underlying Lean compilation steps using
Lean’s rich metaprogramming suite. The implementation of this extraction system is modeled from
the work (Kim Morrison, 2024). Specifically, in the compiler’s elaboration and evaluation stages
– where the parsed theorem code is first converted into concrete syntax trees (in practice, Syntax
objects) and abstract syntax trees (Expr objects) – we convert the CST and AST output objects
into the relevant proof data and proof states in the form of proof trees (Lean.Elab.InfoTree).
These proof trees contain detailed context and information on a tactic-by-tactic level relating to the
modification of the proof state, metavariable context, and proof correctness.

After state extraction is completed and cached for efficient future access, we annotate the proof text
itself to contain the intermediate states in the form as comments. Figure 2 shows an example.

This explicit reasoning aims to help the generator model construct more optimized proofs via
additional symbolic data.

3.2.2 OUTPUT FORMATTING.

LLM outputs often contain ancillary and syntactically invalid content, especially before and after
the actual proof. Additionally, by applying additional structure to the LLM outputs, we may hope
to generate more structured proofs. To analyze this hypothesis, we introduce two additional output
formats in addition to the standard string output: string list and string tree. The
former enforces the model output of a proof to be a tactic sequence represented as a list of strings,
and the latter enforces proofs to be written as proof trees, represented as a tree of strings.

3.2.3 SAMPLING METHOD

We also introduce different methods of sampling between many (sequential or parallel) LLM inference
calls, involving best-of-n and iterative refinement implementations, as well as combinations thereof.

Best-of-n. The best-of-n technique generates multiple (n) calls to the language model and selects the
“best” via a simple selection policy that first prioritizes output correctness, and secondly prioritizes
the evaluated metric delta score.

Using a temperature value of 1, we ensure that our n calls to the model are diverse, as the temperature
hyperparameter (ranging between 0 and 2) controls the randomness of the outputs. The default
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value of 1 ensures that outputs are sufficiently random without sacrificing accuracy and generating
unpredictable behavior. Moreover, this allows for sufficient variance that the best-of-n scoring
function has many distinct inputs to choose from.

More specifically, our scoring function is given by the 2-ary comparison function S, whose arguments
are output objects y, y′.

S(y, y′) =


max(y, y′, key: x 7→ µ(x)), E(y) = E(y′) = 0

y, E(y) = 0, E(y′) > 0

y′, E(y) > 0, E(y′) = 0

min(y, y′, key: x 7→ E(x)), E(y) = E(y′) > 0

Where µ(x) is the metric score of x, and E(x) is the number of errors in x. This comparison function
can be extended to evaluate the best output of any finite n via induction.

Error correction and Refinement. Inspired by self-debugging techniques in code genera-
tion (Madaan et al., 2023; Chen et al., 2023), ImProver identifies and corrects errors in the generated
proofs by iteratively refining its outputs. The refinement process relies on user-defined parameters n
and prev_num to specify the number of iterations and the number of previous iterations’ data to
forward, respectively. Each iteration carries information on the last prev_num iterations, including
input, output, metric score, correctness, and error messages.

Combination Sampling and Compound Prompt Functions. Compound prompt functions utilize
the curried nature of the back-end implementations of best-of-n and refinement to nest these techniques
within one another. For example:

best_of_n((refinement,m),n) is a compound sampling method that run a best-of-n, where
each call is a m-step refinement.

refinement((best_of_n,m),n) is a compound sampling method that runs a n-step refine-
ment, where each call is a best-of-m call to the LLM.

Note that with each of these compound prompt functions, there are always a total of mn iterations.

3.2.4 RETRIEVAL

ImProver uses MMR (Maximum Marginal Relevance)-based (Carbonell & Goldstein, 1998) retrieval-
augmented generation to select relevant examples and documents. More specifically, for a user-
specified k, example retrieval selects the k most relevant examples of proof optimization on a specific
metric. additionally, document retrieval extracts information using MMR from a pair of fixed (vector)
databases for the specified metric. The databases store syntactically chunked data from the Theorem
Proving in Lean (TPiL) handbook – containing syntax guides and tactic explanations – and the
Mathlib mathematics libary – containing thousands of theorems and lemmas.

The Mathlib retriever finds the top k documents that score the highest MMR score against the current
theorem, the TPiL retriever finds the top k documents that score the highest MMR score against the
current theorem in context and all current error messages. This retrieval process helps in generating
more contextually accurate prompts that allow the language model to better correct its own errors as
well as find useful lemmas to reference.

4 EXPERIMENTS

We test ImProver on rewriting real-world undergraduate theorems, competition problems, and
research-level mathematics and compare its results to those of the base GPT-4o and GPT-4o-mini
models. We examine the optimization capabilities of ImProver for the length and declarative metrics
- studying the effectiveness in maintaining the correctness of the tactic proof while making it more
concise as well as making it more declarative in style and structure.
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4.1 SETUP

Our experimentation is split into three distinct stages. We first perform ablation testing on the
ImProver model parameters (§3.2) to ensure that ImProver’s parameter specification is the optimal
one with respect to correctness and metric optimization score. We then evaluate this optimal parameter
combination on datasets of varying complexity and analyze the performance and results thereof.
Lastly, we note the performance of ImProver in NTP applications in comparison to the base GPT-4o
and GPT-4o-mini models.

Datasets. We evaluate ImProver on subsets of the Mathematics in Lean (MIL) (leanprover-
community, 2024), Compfiles (David Renshaw, 2024), and Mathlib (mathlib Community, 2020)
datasets. Details of the datasets used in each experiment is included in appendix B.1.

Models. Our base generator uses GPT-4o (OpenAI et al., 2024) (gpt-4o-2024-08-06). Since
no prior methods currently exist for automated proof optimization, we consider a prompted GPT-
4o without the improvements described in (§3.2) as our baseline. Additionally, the baseline and
ImProver both receive a prompt containing instructions to optimize for the given metric, with the
theorem statement, context, and initial proof. ImProver augments this prompt with the data from the
improvements described in §3.2. Additional input information is detailed in appendix A.

Performance metrics. Since proof optimization is a new task, we define four performance metrics
for measuring aspects of correctness and improvement.

First, we define improvement for length as percentage change in length, µlen(y0)−µlen(y)
µlen(y0)

× 100. For
readability, we use the difference, µread(y)− µread(yo). If no correct output is generated by the model
for a specific theorem, improvement is defined to be zero. We define nonempty improvement as the
improvement restricted to theorems for which some output has nonzero improvement. Intuitively,
improvement is the expected improvement in metric score from the input to output, accounting for
errors in the generation. The nonempty improvement score is the expected improvement in metric
score, given that there are no errors in the generation.

Additionally, the accuracy is the percentage of theorems in the dataset which the model was able to
generate a correct output for. The improved accuracy is the percentage of theorems in the dataset
which the model was able to generate a correct output for, as well as improve the metric to be nonzero.

4.1.1 ABLATIONS

When performing our ablation studies, we used a fixed dataset (MIL; see appendix B.1) and metric
(length) and varied the parameters of all the features to find the optimal combination. However, as
there are over 8640 possible combinations, rather than test all combinations, we evaluate using a
factorial testing method.

Testing Groups.

We define the following testing groups with the specified parameter combinations:

GPT-4o-mini/GPT-4o: This varies the GPT-4o model, outputting a string with no other features.

Output and CoS: We evaluate the effects of different output formatting styles (string, string
list, string tree) and CoS (True, False), with the model fixed as GPT-4o, with no other
features enabled.

Example Retrieval: We evaluate the effects of increasing the number of examples provided (multi-
shot prompting) in the range of 0, 3, 5, 7, and 10, with the model fixed as GPT-4o, CoS and output
formatting fixed as the best combination from the previous test, and no other features enabled.

Sampling Method: Here, we evaluate the effects of best-of-n and refinement for a fixed n = 5.
Additionally we test on the refinement cases if forwarding the most recent iteration result, or all
previous iteration results is the best, and if we should keep the best out of the iterations, or the most
recent. The model is fixed as GPT-4o, CoS, output formatting, and examples are fixed as the best
combination from the previous test, and no other features enabled.

n and Model: Here, we evaluate the effects of larger n values and different models. We test
n = 3, 5, 7, 10, 15 on GPT-4o and GPT-4o-mini, as well as n = 20 for GPT-4o-mini (as it is of a

6
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Table 1: Average Proof optimization results.
Metric Model Improvement Nonempty Improvement Accuracy Improved Acc.

Length GPT-4o 3.7 15.15 26.36% 8.31%
ImProver 20.96 55.29 100.0% 35.44%

Readability GPT-4o 2.21 8.02 18.75% 6.13 %
ImProver 9.34 30.53 100.0% 24.56%

Table 2: MIL Proof optimization results.
Metric Model Improvement Nonempty Improvement Accuracy Improved Acc.

Length GPT-4o 6.25 18.58 37.5% 14.42%
ImProver 30.54 56.56 100.0% 50.0%

Declarativity GPT-4o 4.18 14.48 28.85% 11.54%
ImProver 13.45 30.97 100.0% 34.21%

far lower token cost). CoS, output formatting, examples, and sampling method are fixed as the best
combination from the previous test, and no other features enabled.

Combos and RAG: We evaluate combination methods refinement(best_of_m',m) and
best_of_m'(refinement(m)), for m ̸= m′ with mm′ equal to the optimal value m from the
previous test. We also test the effect of enabling document retrieval. Model, CoS, output formatting,
examples, n, and sampling method are fixed as the best combination from the previous test.

Selection. For each testing group, we select the best parameter combination - which is then held as
constant for the testing of all future testing groups - based on the combination that has the maximal
improvement score. This improvement score represents the expected improvement in metric score,
accounting for possible errors in the generation; selecting the parameter combination with the highest
such score allows for rewarding both generation accuracy and large improvements in the metric score.

Comparing this with the other three performance metrics, accuracy is not prefered as a selection
heuristic, as by simply returning the initial input, we can get 100% accuracy. Improved accuracy
accounts for this by only counting theorems that has some positive improvement in metric score in
the calculation, but this does not reward larger improvements to metric score any differently than
smaller ones. Conversely, nonempty improvement ignores incorrect generations, so it is also not
preferable for selection. The improvement score accounts for all this, rewarding correct generations
and discouraging incorrect ones, and placing a higher weight to larger improvements in metric score.

Ablation datasets. We evaluate our ablations on a subset of MIL as detailed in appendix B.1.

4.2 RESULTS

ImProver is capable of optimizing proofs in all settings. From Table 2, Table 3, and Table 4,
we can see that ImProver is capable of optimizing proofs on all datasets for both the length and
declarative metrics. Furthermore, Table 1 shows that across all metrics, ImProver significantly
outperforms GPT-4o on proof optimization tasks on every experimental measure – aggregated from
all datasets. Additionally, from Table 2, Table 3, and Table 4, we can see that ImProver outperforms
GPT-4o on each dataset as well. We proceed to analyze this data and its implications.

Length optimization. First focusing on the length metric, we see that ImProver outperforms GPT-4o
with respect to the improvement score by 566% (aggregated over all datasets). Additionally, we are
guaranteed that ImProver produces a correct output, although that output may just be the same as the
input. However, 35.44% of the time, it generates a correct output that is not the same length as the
input, and in that case, we expect an average of a 55.29% reduction in length. Comparing this with
GPT-4o, we conclude that not only can ImProver optimize at a higher level on arbitrary theorems,
but its ability to generate nontrivial correct outputs is far greater in comparison to GPT-4o.

Declarativity optimization. Declarativity optimization is similar, with ImProver outperforming
GPT-4o by 423%. Moreover, the accuracy, improved accuracy, and nonempty improvement disparities
for declarativity parallel those of the length tests. However, it should be noted that for both GPT-4o
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Table 3: Compfiles Proof optimization results.
Metric Model Improvement Nonempty Improvement Accuracy Improved Acc.

Length GPT-4o 2.75 30.7 11.54% 5.13%
ImProver 18.86 54.48 100.0% 34.62%

Declarativity GPT-4o 0.39 3.38 14.1% 1.28%
ImProver 5.74 24.89 100.0% 19.23%

Table 4: Mathlib Proof optimization results.
Metric Model Improvement Nonempty Improvement Accuracy Improved Acc.

Length GPT-4o 0.0 0.0 16.67% 0.0%
ImProver 6.19 53.65 100.0% 11.54%

Declarativity GPT-4o 0.0 0.0 4.65% 0.0%
ImProver 4.63 33.19 100.0% 11.63%

and ImProver, the accuracy and improved accuracy scores were markedly smaller for declarativity
than length optimization. This suggests that for both models, it was generally more “difficult” to
generate a correct output, and moreover, generate a correct output with a better metric score than
the input, for declarativity optimization than length optimization. In other words, optimizing for
declarativity is more difficult for the underlying generator than optimizing for length. However, we
speculate with higher-quality prompts and metrics, this disparity can be minimized. Regardless, we
note that different metrics can be less likely to be correctly optimized, and that model performance is
correlated with the metric it seeks to optimize – both for GPT-4o and ImProver.

Optimization varies based on dataset difficulty. Additionally noting Table 2, Table 3, and Table 4,
we observe that the improvement score for both metrics for both GPT-4o and ImProver is highest for
the MIL dataset, lower for Compfiles, and the lowest on the Mathlib theorems. This suggests that the
expected improvement in metric score decreases with higher difficultly – with undergraduate-level
theorems having a significantly higher expected improvement than research-level theorems. However,
it should be noted that for both metrics, the nonempty improvement of ImProver stayed consistent,
whereas for GPT-4o, it followed the aforementioned trend of decreasing with difficulty. Similarly, the
accuracy and improved accuracy scores for both metrics and models decreased with higher difficulty
datasets (disregarding ImProver’s accuracy scores, as they are ensured to be 100%). This suggests
that although the base GPT-4o generator is less likely to generate a correct output for higher difficulty
datasets, the improvements that ImProver makes to the base generator allows it to maintain its
improvement in the metric score whenever a correct output is generated. As such, we can speculate
that the bottleneck in the improvement score is not the model’s ability to optimize the proof for a
metric, but rather its ability to generate a new correct proof at all. As such, we conjecture that with
more capable generator models, the accuracy – and thus, the improvement score – in optimization
tasks will continue to increase, until the improvement scores match the nonempty improvement.

Overall, we conclude that although the performance of both ImProver and GPT-4o decreases on
length and declarativity optimization on more difficult datasets, ImProver significantly outperforms
GPT-4o on all datasets for length and declarativity optimization.

4.2.1 ABLATION TESTING

We perform ablation studies using a subset of the MIL dataset as discussed in §4.1.1. The results
of this factorial study are aggregated in Table 5. We measure the baseline results from the GPT-
4o and GPT-4o-mini models, noting that GPT-4o is the better-scoring model (with respect to the
improvement score). Thus, fixing this model, we vary the output formatting type and if CoS is enabled,
and determine that outputting string list with CoS enabled maximizes the improvement score.
Fixing these parameters, we now vary the number of examples retrieved, noting that prompting
with 10 examples maximizes the improvement score. Fixing this parameter, we vary the sampling
methods (excluding compound methods and fixing n = 5) and observe that best-of-n is the best
parameter combination. Now, as GPT-4o-mini is significantly less computationally expensive than
its GPT-4o counterpart, we test both models with the sample method fixed to best-of-n, and vary
n = 1, 3, 5, 7, 10, 15, and for GPT-4o-mini, also n = 20. We conclude that GPT-4o with n = 15 is

8
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Table 5: Ablation results. Each cell in the ablation tests shows best / worst, which are the best
and worst parameter combinations in the test group.

Improvement Nonempty Improve. Accuracy Improved Acc.

GPT-4o-mini 0 0 3.62% 0%
GPT-4o 7.03 19.67 35.77% 15.33%
+ Output and CoS 8.04 / 6.31 12.38 / 14.17 64.96% / 44.53% 21.17% / 16.06%
+ Example Retrieval 9.34 / 5.67 14.7 / 8.44 63.5% / 67.15% 21.9% / 16.79%
+ Sampling Method 15.35 / 9.34 18.44 / 14.7 83.21% / 63.5% 36.5% / 21.9%
+ n and Model 23.51 / 3.65 26.28 / 4.63 89.47% / 78.95% 45.61% / 8.77%
+ Combos and RAG 34.88 / 28.25 57.56 / 33.48 60.61% / 84.38% 54.55% / 53.12%

ImProver 34.88 57.56 100% 54.55%

Table 6: CoS Declarativity Ablation results.
Improvement Nonempty Improve. Accuracy Improved Acc.

GPT-4o 4.97 15.89 37.5% 12.5%
ImProver, CoS Disabled 9.23 24.61 100.0% 28.12%
ImProver 16.69 31.42 100.0% 46.88%

the most effective. Fixing these parameters, we consider all mixed compound sampling methods with
and without document retrieval enabled, concluding that a 5-step refinement with best-of-3 on each
iteration, with RAG enabled, is the optimal combination.

Thus, as we can see from Table 5, the optimal parameter combination comes from gpt-4o outputting
as a string list with CoS, RAG, 10 examples, 5-step refinement with each iteration being a
best-of-3 evaluation. Changing any one of these parameters them leads to a reduction in performance.
Additional ablation data can be found at (§B.2).

Declarativity and Chain-of-States (CoS) Ablation. We additionally examine the effects of dis-
abling CoS on declarativity optimization tasks, as we speculate that CoS has a high impact on the
performance of declarativity optimization tasks, as the proof states that are embedded due to CoS
seem to be a critical aspect to generating the explicit declarations that the declarative metric measures.

We confirm this result by considering Table 6 and observe that enabling CoS nearly doubles the
improvement score, and significantly improves the nonempty improvement score, suggesting that CoS
has a large impact on optimizing for the declarative metric, as conjectured. However, we also note a
significant increase in improved accuracy, which suggests that embedding the chain of states also
improves the ability of the model to generate nontrivial correct outputs, implying that the symbolic
information contained in the states are critical to effectively making a proof more declarative.

Syntax Guidance Ablation. We examine the effects of syntax guidance on ImProver’s performance.
To test this, we consider a subset of MIL (B.1), and optimize for length with and without error
message forwarding. Considering the results of this ablation in Table 7, we observe that without
syntax guidance and error forwarding, the ability of the model to improve the metric score is
approximately unchanged, but there is a significant 13% spike in improved accuracy. This signifies
that the syntax guidance improves the model’s ability to generate correct results – as is expected – but
does not improve the model’s ability to optimize proofs assuming correct generations. This ensures
that the large improvement in performance compared to GPT-4o is not solely due to simple syntax
guidance, but moreso caused by improvements like CoS, example retrieval, retrieval, etc.

4.2.2 NEURAL THEOREM PROVING EVALUATION

We evaluate ImProver’s neural theorem proving (NTP) performance using the completion metric on
a subset from MIL with empty input proofs (B.1).Table 8 shows the accuracy on the dataset split by
topic for both ImProver and GPT-4o. ImProver substantially outperforms GPT-4o across all topics,
with an 80% increase in accuracy compared to the base model, showing that proof optimization
systems do indeed generalize NTP systems.

9
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Table 7: Syntax Guidance Ablation results.
Improvement Nonempty Improve. Accuracy Improved Acc.

GPT-4o 11.00 25.94 42.42% 21.21%
ImProver, No Syntax Guidance 23.42 49.97 100.0% 46.88%
ImProver 28.94 48.74 100.0% 59.38%

Table 8: Proof generation results. Each cell shows percent accuracy.
MIL Set Theory Group Theory Overall

GPT-4o 18.18% 25% 21.73%
ImProver 45.45% 33.33% 39.13%

4.3 QUALITATIVE RESULTS

Next, we discuss qualitative examples showing the improvements from ImProver in proof optimiza-
tion. Additional examples can be found in §B.3.

Compfiles Length Optimization. Consider Figure 1, a lemma from the 2022 IMO Question 2
(Compfiles) that we optimize for length. ImProver halves thr proof from 12 tactics to 6. Here,
ImProver makes multiple nontrivial optimizations, such as eliminating the h2’ and h4 and hxw
hypotheses, as well as fully generating proof terms for specific rewrites and other tactics.

MIL Declarativity Optimization. Consider Figure 3, a result from MIL that we optimize for
the declarative metric. This original proof carried a score of 0, as it has no have statements. In
comparison, after applying ImProver, the model explicitly defines hypotheses for use in the latter
half of the proof; these hypotheses can easily be converted into standalone lemmas for reuse.

Original (human-written)
def iso1 [Fintype G] (h : Disjoint H K) (h' :

card G = card H * card K)
: K ≃* G / H := by

apply MulEquiv.ofBijective
((QuotientGroup.mk' H).restrict K)

rw [bijective_iff_injective_and_card]
constructor
· rw [← ker_eq_bot_iff, (QuotientGroup.mk'

H).ker_restrict K]
simp [h]

· symm
exact aux_card_eq h'

ImProver (declarativity-optimized)
def iso1 [Fintype G] (h : Disjoint H K) (h' :

card G = card H * card K)
: K ≃* G / H := by
have injectivity : Function.Injective

((QuotientGroup.mk' H).restrict K) := by
rw [← ker_eq_bot_iff, (QuotientGroup.mk'
H).ker_restrict K]
simp [h]

have card_eq : card (G / H) = card K := by
exact aux_card_eq h'

apply MulEquiv.ofBijective
((QuotientGroup.mk' H).restrict K)

rw [bijective_iff_injective_and_card]
constructor
exact injectivity
symm
exact card_eq

Figure 3: Optimizing a group-theoretic result from MIL Chapter 8 Section 1 for declarativity.

5 CONCLUSION

In this paper, we introduced ImProver, a novel agent-based tool for automated proof optimization
in Lean. By incorporating CoS, RAG, and other features, ImProver significantly outperforms base
language models in proof optimization over undergraduate, competition, and research-level problems.

However, ImProver is limited by its high cost and slow runtime, which is exacerbated by its reliance
on black-box LLM’s. We intend to address this inefficiency in future work by applying fine-tuning
and RL on a smaller model to match performance at a lower cost.

ImProver demonstrates its ability to generate substantially shorter and more declarative proofs while
maintaining correctness. As such, we believe that ImProver sets the stage for further work on proof
optimization to advance the study and use of AI in mathematics.

10
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A PROMPTS

In this appendix, we note the prompts used by ImProver both for general LLM prompting, as well as
the metric-specific prompts.

A.1 TEMPLATE

For the main prompt sent to the LLM on each sample, we build a prompt string using a chat prompt
template that is then invoked at runtime to fill in the variables.

Namely, these variables include the set of metric prompts, previous results, input theorem, context, a
syntax documents, Mathlib documents, and examples.

The prompt template is a conversation of the format:

Placeholder: All metric prompts with a ‘System’ role
System: You will be given the proof context (i.e. the lean file contents/imports leading up
to the theorem declaration) wrapped by <CONTEXT>...</CONTEXT>.
You will be given the previous num_prev input/output pairs as well as their metric (met-
ric.name) score and correctness score, as well as any error messages, for your reference to
improve upon. Each of these previous results will be wrapped with <PREV I=0></PREV
I=0>,...,<PREV I=num_prev-1></PREV I=num_prev-1>, with I=num_prev-1 being the most
recent result.
Remember to use lean 4 syntax, which has significant changes from the lean 3 syntax. To
assist with the syntax relating to the current theorem and current error messages, you will be
given num_syntax_docs documents to refer to for fixing these syntax issues. Each of these
documents will be wrapped with <SYNTAX_DOC>...</SYNTAX_DOC>.
You will also receive num_mathlib_docs documents relevant to the current theorem to
help with formulating your modified proof. Each of these will be wrapped with <CON-
TENT_DOC>...</CONTENT_DOC>
You will also receive num_examples examples of input-output pairs of proofs that
were optimized for the metric metric. Each of these will be wrapped with <EXAM-
PLE>...</EXAMPLE>
You will be given the tactic states as comments for reference. The current theorem will be
wrapped in <CURRENT>...</CURRENT>
System: Output format instructions
Placeholder: All retrieved syntax documentation
Placeholder: All retrieved mathlib documentation
Placeholder: All retrieved examples
User: <CONTEXT> context </CONTEXT>
Placeholder: Previous results and inputs/outputs
Placeholder: All metric prompts with a ‘User’ role
User: <CURRENT> theorem </CURRENT>

This prompt is then invoked and sent to the language model by filling in all the variables and
placeholders. Notably, when we invoke the chain given by chain|llm|parser, we throttle the
invocation with a randomized exponential rate limit throttling to account for API rate limits, especially
in highly-parallelized requests like when benchmarking over a large number of theorems.

A.2 METRIC PROMPTS

Length Metric

System: You are an AI assistant who shortens Lean 4 proofs while ensuring their correctness.
You will aim to reduce the number of lines of the tactic proof while ensuring that it properly
compiles in Lean 4.
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User: Shorten the current theorem (wrapped in <CURRENT>...</CURRENT>) to be as
short in length—measured in the number of lines of the proof—as possible, while also
ensuring that the output is still syntactically correct."

Declarativity Metric

System: You are an AI assistant who rewrites Lean 4 proofs to be more readable while
ensuring their correctness. We measure readablity by considering the ratio of the number
of explicitly typed have tactics against the total number of tactics in the proof, as this is
proportional to whether a proof is declarative in style, and thus, readable.

User: Rewrite the current theorem (wrapped in <CURRENT>...</CURRENT>) so it is
more readable and declarative and modular.

Completion Metric

System: You are an AI assistant who automatically solves Lean 4 proofs (as in, generates
the tactic proof) and ensures its correctness. You will receive a Lean 4 proof you must
modify to eliminate any errors so that it compiles correctly and eliminate any “sorry”s with
full proofs.

User: Rewrite the current theorem (wrapped in <CURRENT>...</CURRENT>) so it is a
formal, complete, and correct Lean 4 proof by filling in its tactic proof.

A.3 METRIC EXAMPLES

In this section, we illustrate side-by-side examples of metric optimization. These examples are part
of a larger set of examples provided to the model as described in §A.1.

Length Metric As shown in Figure 4, we provide the model an example of using more advanced
tactics like rintro and inlining apply statements to shorten the proof from 5 tactics to 2.

Suboptimal
example : (P → Q) ∧ (Q → R) → P → R := by
intro h p
rcases h with ⟨a,b⟩
apply b
apply a
exact p

Length Optimized
example : (P → Q) ∧ (Q → R) → P → R := by
rintro (⟨hpq,hqr⟩) hp
exact hqr (hpq hp)

Figure 4: A human-written example of length optimization.

Declarative Metric

As shown in Figure 5, we provide the model an example of adding an intermediate result hp_nq with
an explicitly written type of P → ¬Q. Additionally, we show the model an example of simplifying
tactics and external lemmas and dependencies to solve the problem in a more direct, declarative, and
readable manner.

Suboptimal
example (h : ¬ (P ∧ Q)) : ¬ P ∨ ¬ Q := by
push_neg at h
exact not_or_of_imp h

Declarativity Optimized
example (h : ¬ (P ∧ Q)) : ¬ P ∨ ¬ Q := by
have hp_nq : P → ¬ Q := by
intro p q
exact h ⟨p,q⟩

by_cases hp:P
. right
exact hp_nq hp

. left
exact hp

Figure 5: A human-written example of declarativity optimization.

Completion Metric
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As shown in Figure 6, we provide the model an example of showing a property about Set’s, an
externally defined datastructure, using simple tactics and forward reasoning, without external lemmas.

Suboptimal
example {α : Type*} (s : Set α) : s ∩ s = s

:= by
sorry

Completion Optimized
example {α : Type*} (s : Set α) : s ∩ s = s

:= by
ext x
constructor
. intro h

rcases h with ⟨hs,_⟩
exact hs

. intro h
constructor
. exact h
. exact h

Figure 6: A human-written example of proof completion.

B ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide more detailed information on the experimental setup and results used to
evaluate ImProver.

B.1 DATASET DETAILS

Main Datasets We evaluate our experiments on subsets of the following datasets:

Mathematics in Lean (MIL) (leanprover-community, 2024): this dataset contains pedagogical
solutions of common undergraduate-level exercises, and as such contains many declarative, yet
verbose and inefficient proofs. We use exercise solutions from set theory, elementary number theory,
group theory, topology, differential calculus, and integration & measure theory. This dataset contains
theorems at an undergraduate-level of complexity. For our main results, we evaluated on 72 theorems
from exercise solutions from MIL chapters 4, 5, 8, 9, and 10.

Compfiles (David Renshaw, 2024): Solutions of International Mathematics Olympiad (IMO) and
American Mathematics Olympiad (USAMO) competition problems from 2016 to 2024. This is a
dataset of internationally-renowned competitive math problems, many of which are readable and
declarative, yet quite verbose. This dataset contains theorems of a competitive format, and although
they contain concepts only at a high-school level, the logical complexity of internationally-renowned
competition results is far above that. For our main results, we used all 26 theorems and lemmas from
the Compfiles database of complete solutions to the International Mathematics Olympiad (IMO) and
the American Mathematics Olympiad (USAMO) from 2016-2024.

Mathlib (mathlib Community, 2020): Mathlib contains many advanced results at the forefront of
mathematics, and has been at the center of research-level formalizations. These proofs are concise
and generalized - which often comes at the cost of readability, declarativity, and understandability.
These results and theorems often are at the cutting edge of research and a highest level of complexity
compared the the other two datasets.

For our main results, we evaluated our methods on 43 advanced research-level proofs from
Mathlib/AlgebraicTopology/FundamentalGroupoid. This is the most difficult dataset.

Ablation Datasets

We evaluate our ablations on a subset of MIL. Additional details on this subset is included in appendix
B.1.However, due to the increase in model calls for larger n values, we switch a representative sample
of this subset for some test groups. Namely,

GPT-4o-mini, GPT-4o, Output and Cos, Example Retrieval, and Sampling Method are tested
on the 133 theorems in the solutions of C03_Logic, C04_Sets_and_Functions, and
C05_Elementary_Number_Theory.
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n and Model are tested on 55 theorems from a representative sample of the aforementioned, and
Combos and RAG are tested on a representative sample of 32 theorems from the aforementioned.

Additionally, we note that both the Declarativity/CoS ablation and the Syntax Guidance ablation are
performed on the same 32 theorems sample as mentioned above.

Completion Datasets

We evaluate our completion/NTP dataset on 23 exercises from Mathematics in Lean. Namely, we
consider a representative sample of 12 exercises in group theory (Chapter 8), 11 exercises in set
theory (Chapter 4). Moreover, we ensure that all these theorems have an empty proof.

This experiment is intended to be an initial evaluation to show that automated proof optimization
systems can generalize neural theorem proving, however, future work will explore the ability of
ImProver to perform neural theorem proving on more real-world datasets and compete against
specialized NTP models.

B.2 ABLATION DETAILS

We now proceed to show detailed results from our ablation testing.

Table 9: Output and Chain-of-States Ablations
Output Format CoS Improvement Nonempty Improve. Accuracy Improved Acc.

string True 7.53 16.12 46.72% 16.79%
string False 7.03 19.67 35.77% 15.33%
string list True 8.04 12.38 64.96% 21.17%
string list False 7.04 13.58 51.82% 18.98%
string tree True 7.62 15.34 49.64% 18.25%
string tree False 6.31 14.17 44.53% 16.06%

By Table 9, we see that the optimal combination in this testing group is a string list output
format with CoS enabled. Fix these values for all future tests.

Table 10: Example Retrieval Ablations
Examples Improvement Nonempty Improve. Accuracy Improved Acc.

0 5.67 8.44 67.15% 16.79%
3 8.49 13.68 62.04% 19.71%
5 8.38 12.9 64.96% 21.17%
7 7.56 12.04 62.77% 19.71%
10 9.34 14.7 63.5% 21.9%

With the previous optimal parameters fixed, run the ablation on the number of examples. By Table 10,
we see that the optimal combination in this testing group is 10 examples. Fix this value for all future
tests.

Table 11: Sampling Method Ablations
Method Forward Keep Best Improvement Nonempty Improve. Accuracy Improved Acc.

None N/A N/A 9.34 14.7 63.5% 21.9%
refinement 1 False 14.76 30.63 48.18% 30.66%
refinement 5 False 12.5 20.88 59.85% 30.66%
refinement 1 True 14.95 14.95 100.0% 30.66%
refinement 5 True 13.15 13.15 100.0% 29.93%
best-of-n N/A N/A 15.35 18.44 83.21% 36.5%

Note that forward and keep-best values are parameters for refinement of how many previous iterations
to forward, and whether to keep the most recent or the best iteration in subsequent refinement steps.
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Now, with the previous optimal parameters fixed, run the ablation on the sample method. By Table 11,
we see that the optimal combination in this testing group is best-of-n. Fix this value for all future
tests.

Table 12: Model and n Ablations
Model n Improvement Nonempty Improve. Accuracy Improved Acc.

gpt-4o 3 19.66 24.36 80.7% 38.6%
gpt-4o 5 20.12 24.97 80.56% 36.11%
gpt-4o 7 22.44 27.21 82.46% 42.11%
gpt-4o 10 21.73 25.28 85.96% 40.35%
gpt-4o 15 23.51 26.28 89.47% 45.61%
gpt-4o-mini 3 3.65 4.63 78.95% 8.77%
gpt-4o-mini 5 5.12 6.21 82.46% 10.53%
gpt-4o-mini 7 3.65 4.34 84.21% 8.77%
gpt-4o-mini 10 4.99 5.69 87.72% 12.28%
gpt-4o-mini 15 4.35 5.06 85.96% 12.28%
gpt-4o-mini 20 4.87 5.56 87.72% 14.04%

With the previous optimal parameters fixed, run the ablation on the value of n and model. By Table 12,
we see that the optimal combination in this testing group is GPT-4o with n = 15. Fix this value for
all future tests.

Table 13: RAG and Combination Sampling Method Ablations
Combination m m′ RAG Improvement Nonempty Improve. Accuracy Improved Acc.

best-of-n(refinement) 3 5 True 33.78 33.78 100.0% 50.0%
best-of-n(refinement) 3 5 False 31.23 31.23 100.0% 46.88%
best-of-n(refinement) 5 3 True 31.85 31.85 100.0% 50.0%
best-of-n(refinement) 5 3 False 31.35 31.35 100.0% 50.0%
refinement(best-of-n) 3 5 True 32.66 51.32 63.64% 48.48%
refinement(best-of-n) 3 5 False 32.88 50.1 65.62% 53.12%
refinement(best-of-n) 5 3 True 34.88 57.56 60.61% 54.55%
refinement(best-of-n) 5 3 False 29.54 49.75 59.38% 43.75%
best-of-n N/A 15 True 29.64 32.71 90.62% 56.25%
best-of-n N/A 15 False 28.25 33.48 84.38% 53.12%

With the previous optimal parameters fixed, run the ablation on the combination methods and if
RAG is enabled. By Table 13, we see that the optimal combination in this testing group is a 5-step
refinement with each iteration being a best-of-3 call, with RAG enabled.

B.3 ADDITIONAL QUALITATIVE EXAMPLES

In this section, we provide additional qualitative examples demonstrating the improvements ImProver
achieves in proof optimization.

Compfiles: Length Optimization See (§4.3)

Compfiles: Declarativity Optimization Consider Figure 7, in which a lemma from the 2019
IMO problem 1 (from the Compfiles dataset) is optimized for declarativity. This introduces multiple
new hypotheses, which generalize a linear_property of the functions, and then reuses and
instantiates that (and others, too) hypothesis throughout the proof, creating a significantly more
declarative proof.

MIL: Length Optimization Consider Figure 8, which optimizes an exercise solution from MIL
Chapter 8, Section 1 (Group theory) for length, eliminating simp calls and introducing proof terms
into the structure of the proof to shorten it from 9 tactic invocations to 7.
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Original (human-written)
lemma additive_to_int_linear (f : Z → Z) (h:

∀ (x y : Z), f (x + y) = f x + f y):
∃ c, ∀ a, f a = c * a := by
let g := AddMonoidHom.toIntLinearMap <|

AddMonoidHom.mk' f h
refine ⟨f 1, fun a => ?_⟩
change g a = g 1 * a
rw [mul_comm, ← smul_eq_mul, ←

LinearMap.map_smul, smul_eq_mul, mul_one]

ImProver (declarativity-optimized)
lemma additive_to_int_linear (f : Z → Z) (h:

∀ (x y : Z), f (x + y) = f x + f y):
∃ c, ∀ a, f a = c * a := by

let g := AddMonoidHom.toIntLinearMap <|
AddMonoidHom.mk' f h

have linear_property : ∀ a, f a = g a := by
intro a
rfl

have g_smul : ∀ a, g a = g 1 * a := by
intro a
rw [mul_comm, ← smul_eq_mul, ←
LinearMap.map_smul, smul_eq_mul, mul_one]

refine ⟨f 1, fun a => ?_⟩
have f_eq_g : f a = g a := linear_property a
have g_a_eq : g a = g 1 * a := g_smul a
rw [f_eq_g, linear_property 1, g_a_eq]

Figure 7: Optimizing a lemma from IMO 2019 P1 for declarativity

Original (human-written)
example (φ : G →* H) (ψ : H →* K) (S :

Subgroup G) :
map (ψ.comp φ) S = map ψ (S.map φ) := by

ext x
simp only [mem_map]
constructor
· rintro ⟨y, y_in, hy⟩
exact ⟨φ y, ⟨y, y_in, rfl⟩, hy⟩

· rintro ⟨y, ⟨z, z_in, hz⟩, hy⟩
use z, z_in
calc ψ.comp φ z = ψ (φ z) := rfl
_ = ψ y := by congr

ImProver (length-optimized)

example (φ : G →* H) (ψ : H →* K) (S :
Subgroup G) :
map (ψ.comp φ) S = map ψ (S.map φ) :=
by

ext x
simp only [mem_map]
constructor
rintro ⟨y, y_in, hy⟩; exact ⟨φ y, ⟨y, y_in,

rfl⟩, hy⟩
rintro ⟨y, ⟨z, z_in, hz⟩, hy⟩; exact ⟨z,

z_in, (congr_arg ψ hz).trans hy⟩

Figure 8: Optimizing a lemma from the solutions of MIL CH08 S01 for length

MIL: Length Optimization 2 Consider Figure 8, which optimizes an exercise solution from MIL
Chapter 8, Section 1 (Group theory) for length, converting a full tactic proof into a single proof term
to shorten it from 28 tactic invocations to 1. Note that the model does not have access to the Lean
commands that symbolically generate proof terms, and therefore generates and estimates the proof
term entirely by itself.

Original (human-written)
example : s \ t ∪ t \ s = (s ∪ t) \ (s ∩ t)

:= by
ext x; constructor
· rintro (⟨xs, xnt⟩ | ⟨xt, xns⟩)
· constructor
left
exact xs
rintro ⟨_, xt⟩
contradiction

. constructor
right
exact xt
rintro ⟨xs, _⟩
contradiction

rintro ⟨xs | xt, nxst⟩
· left
use xs
intro xt
apply nxst
constructor <;> assumption

. right; use xt; intro xs
apply nxst
constructor <;> assumption

ImProver (length-optimized)
example : s \ t ∪ t \ s = (s ∪ t) \ (s ∩ t)

:= by
exact Set.ext fun x => ⟨fun h => h.elim

(fun ⟨xs, xnt⟩ => ⟨Or.inl xs, fun ⟨_, xt⟩ =
> xnt xt⟩) (fun ⟨xt, xns⟩ => ⟨Or.inr xt,
fun ⟨xs, _⟩ => xns xs⟩),

fun ⟨h, nxst⟩ => h.elim (fun xs => Or.inl ⟨
xs, fun xt => nxst ⟨xs, xt⟩⟩) (fun xt =>
Or.inr ⟨xt, fun xs => nxst ⟨xs, xt⟩⟩)⟩

Figure 9: Optimizing a lemma from MIL CH04 S01 solution for length

MIL: Declarativity Optimization See (§4.3)
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Mathlib: Length Optimization Consider Figure 10, which optimizes a theorem in algebraic
topology from mathlib for length, eliminating simp calls and combining tactics to shorten it from 3
tactic invocations to 1.

Original (human-written)
/-- If `f(p(t) = g(q(t))` for two paths `p`

and `q`, then the induced path homotopy
classes

`f(p)` and `g(p)` are the same as well,
despite having a priori different types
-/

theorem heq_path_of_eq_image : HEq ((πm

f).map JpK) ((πm g).map JqK) := by
simp only [map_eq, ←

Path.Homotopic.map_lift]; apply
Path.Homotopic.hpath_hext; exact hfg

ImProver (length-optimized)

/-- If `f(p(t) = g(q(t))` for two paths `p`
and `q`, then the induced path homotopy
classes

`f(p)` and `g(p)` are the same as well,
despite having a priori different types
-/

theorem heq_path_of_eq_image : HEq ((πm

f).map JpK) ((πm g).map JqK) := by
exact Path.Homotopic.hpath_hext hfg

Figure 10: Optimizing a theorem from Mathlib/FundamentalGroupoid/InducedMaps
for length

Mathlib: Declarativity Optimization Consider Figure 11, a theorem from Mathlib that we
optimize for declarativity.

This original proof carried a score of 0, as it does not contain any declarative statements. It is concise
and efficient, however, it is difficult to understand and read.

After optimizing for declarativity, we see that the model did not change the structure of the proof.
Rather, it added an intermediate declaration so that users can better understand the state after the
convert. This intermediate tactic greatly helps in the understandability and clarity of the proof.

Original (human-written)
/-- Another version of

`simply_connected_iff_paths_homotopic` -/
theorem simply_connected_iff_paths_homotopic'

{Y : Type*} [TopologicalSpace Y] :
SimplyConnectedSpace Y ↔
PathConnectedSpace Y ∧ ∀ {x y : Y} (p1

p2 : Path x y), Path.Homotopic p1 p2 :=
by

convert
simply_connected_iff_paths_homotopic (Y
:= Y)

simp [Path.Homotopic.Quotient,
Setoid.eq_top_iff]; rfl

ImProver (declarativity-optimized)
/-- Another version of

`simply_connected_iff_paths_homotopic` -/
theorem simply_connected_iff_paths_homotopic'

{Y : Type*} [TopologicalSpace Y] :
SimplyConnectedSpace Y ↔
PathConnectedSpace Y ∧ ∀ {x y : Y} (p1

p2 : Path x y), Path.Homotopic p1 p2 :=
by

convert
simply_connected_iff_paths_homotopic (Y
:= Y)

have h1 : ∀ x y : Y, Subsingleton
(Path.Homotopic.Quotient x y) ↔ ∀ {p1 p2

: Path x y}, Path.Homotopic p1 p2 := by
intro x y
simp [Path.Homotopic.Quotient,
Setoid.eq_top_iff]
rfl

simp only [h1]

Figure 11: Optimizing a theorem from Mathlib/FundamentalGroupoid/SimplyConnected
for declarativity

Full Proof Generation. We analyze the application of ImProver to neural theorem proving in
the MIL example from Figure 12. This theorem relating to group theory originally has no proof,
however, ImProver generates one from scratch. This generated proof is verified to be correct by
Lean, utilizing all the included hypotheses as well as a retrieved mathlib theorem.

Original (human-written)
example (φ : G →* H) (S T : Subgroup H) (hST

: S ≤ T) : comap φ S ≤ comap φ T := by
sorry

ImProver (completeness-optimized)
example (φ : G →* H) (S T : Subgroup H) (hST

: S ≤ T) : comap φ S ≤ comap φ T := by
intro g
simp only [mem_comap]
intro hS
exact hST hS

Figure 12: Solving a group theorem exercise from MIL Chapter 8 Section 1 for declarativity.
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