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Abstract

Recommendation systems are an essential tool for present-
ing items to users, and hence they are subject to many fair-
ness considerations for users and items alike. Many post pro-
cessing algorithms exist to handle unfairness in recommender
systems; however, they can be very inefficient and not suit-
able to be used in real time as they need the whole data set
to be able to calibrate the recommender system’s output. We
develop the first model-based group-wise item fairness post-
processing algorithm for recommendation systems using a
neural network architecture which learns in a data-dependent
fashion. Our model adapts and refines itself based on the un-
derlying data without significantly compromising the origi-
nal utility during the training phase of the recommender sys-
tem. These performance guarantees are ensured by VC the-
ory and stochastic approximate analysis and we showcase our
method’s capabilities through experiments on synthetic data.

Introduction
The application of recommendation systems is undeniably
one of the most critical domains in modern machine learn-
ing. These systems have wide-ranging applications across
various sectors, including social networks, e-commerce, and
finance (Li et al. 2023). Recommendation systems play a
crucial role in delivering information to users, serving as the
primary gateway for content discovery. Ensuring fairness is
essential for these systems. To illustrate this, let’s consider
two scenarios: one highlighting user unfairness, and another
emphasizing item unfairness.

In the first scenario, imagine a recommendation system
that consistently suggests high-quality, popular content to a
particular demographic, while neglecting the interests and
preferences of another demographic. In this case, users from
the underrepresented demographic may experience unfair-
ness as they miss out on content tailored to their tastes and
needs.1 For the second scenario, consider a recommendation
system that promotes a specific type of content, such as cer-
tain political news, disproportionately more than other con-
tent categories. This could lead to an unfair advantage for the
promoted content, potentially influencing users’ opinions
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1For additional context, see Leonhardt, Anand, and Khosla
(2018), where user fairness was first introduced.

and perspectives in a biased manner. In high-stakes domains,
the consequences of item unfairness can be actively harmful.
In the U.S. financial space, a backdrop of lending discrimi-
nation has meant that Black and Latino borrowers have his-
torically been disproportionately recommended higher-cost,
higher-risk mortgages (Steil et al. 2017). In hiring domains,
candidate recommendation algorithms have been found to
discriminate against historically marginalized individuals–
for example, biasing against female candidates for technical
roles (Dastin 2018).

To address these fairness concerns, numerous research ef-
forts have emerged which tackle various definitions of fair-
ness (Chouldechova 2017; Steil et al. 2017; Awasthi et al.
2020; Wan et al. 2021; Castelnovo et al. 2022; Caton and
Haas 2020; d’Alessandro, O’Neil, and LaGatta 2017; Za-
far et al. 2019; Caton and Haas 2020; Mehrabi et al. 2021;
Li et al. 2023). These approaches employ several types of
methods, including pre-processing (Goh et al. 2016), in-
processing (Quadrianto and Sharmanska 2017), and post-
processing methods (Hardt, Price, and Srebro 2016).

In particular, post-processing methods mitigate unfairness
via transformations to the model output using an optimiza-
tion procedure. These methods have the advantage of being
model-agnostic and do not require retraining the recommen-
dation model (Li et al. 2023). However, it’s important to note
that post-processing methods also have limitations. Firstly,
the post-processing step usually involves sensitive informa-
tion and requires large-scale datasets to ensure proper de-
biasing, which can be a significant constraint since sharing
data with third party may raise privacy concern. Secondly,
for streaming data, the post-processing procedure must solve
optimization problems each time new data arrives, which
can be computationally expensive and unsuitable for time-
sensitive inference scenarios.

In order to overcome the limitations of post-processing
methods, we propose a “model-based” post-processing
method which works independently of the model that is
used to infer the initial outputs of the recommender sys-
tem. Hence our approach is still “model-agnostic.” Our
methodology involves training a debiaser to align the bi-
ased recommender system with specific fairness constraints.
Leveraging the capabilities of modern deep neural networks
(DNNs), our method seeks a balance between fairness con-
straints and the original utility function. The “model-based”



method is also capable of addressing limitations of standard
post-processing methods. Instead of directly sharing sensi-
tive data for post-processing, it suffices to share the debi-
aser with a third party, thereby alleviating privacy concerns.
Moreover, our post-processing debiaser is well-suited for
time-sensitive inference, as it avoids the need for optimiza-
tion with each new data arrival. Finally, our main theoretical
result is a sample complexity guarantees for our method.

Fairness Methods and Related Works

Fairness in recommender systems has previously been ex-
plored for a variety of fairness criterion (Wang et al. 2023; Li
et al. 2022). One such classification is on the target level, i.e.
group vs individual fairness. Whereas another classification
is based on the subject of the measurement, i.e. who is the
recommender system fair for? Is it the users of the recom-
mender system platform, the items (and the providers post-
ing those items) being recommended, or both? Both (Wang
et al. 2023) and (Li et al. 2022) survey recommender sys-
tem fairness and provide an overview of works in each of
these categories. In this paper we focus on group-wise item
fairness in recommendation systems.

Historically the methods used in recommender systems
to address unfairness concerns can be classified into three
categories: data-oriented methods, ranking methods, and re-
ranking methods. Each of these methods addresses one step
of the recommender system pipeline. Data-oriented meth-
ods seek to improve fairness by adjusting the training data.
Ranking methods modify the optimization target of the
model, while re-ranking methods post-process the output of
models before they are shown to the user. In this categoriza-
tion, our approach falls under re-ranking methods.

Re-ranking methods are further divided into three cat-
egories: slot-wise, user-wise and global-wise (see (Wang
et al. 2023) for a full comparison of the methods). Note that
in each of these methods, the fairness type can be both user
or item2. Global-wise methods re-rank multiple recommen-
dation lists at once, considering multiple users during the
allocation process. They usually allow for more control over
accuracy and fairness parameters but this comes at the cost
of higher computational complexity. A popular approach in
global-wise re-ranking algorithms is linear programming re-
laxations of the problem.

Our approach is designed to benefit from the advantages
of global-wise approaches while being applicable to “real
time inference”, for example without having to retrain the
post-processing model every time a new user emerges. To
the best of our knowledge there are no global-wise model-
based recommendation system re-ranking methods prior to
this work. However there are several works on more specific
fairness problems in recommender systems (Zhu et al. 2021;
Fu et al. 2020; Wu et al. 2021).

2the term “user-wise” must not be confused with “user-based”
recommendation systems.

Method
Preliminaries
We first define a few notations. Let x ∈ X ⊆ Rd be the
context input and y ∈ [m] denote an item where [m] is a
set of m distinct items. We assume data is generated from
some distribution z ≡ (x, y) ∼ D, where (x, y) is a user
context-item pair. A recommender system f : X → [m]k

maps user context x into a set of k item candidates. Let
∆m be an m-dimensional probability simplex. We denote
by η(x) : X → ∆m a conditional probability distribution
of item clicks for users characterized via context input x,
where η(x)j is the probability of item j being chosen by
user x. In the context of fairness metrics, we denote S as an
enumeration of a discrete and finite set of sensitive variables.
Clearly, S is a set of groups that partitions the input spaceX .
We denote x ∈ Xs when values of the set of sensitive vari-
ables match the value of s ∈ S. Throughout this section, ≲
and ≳ represent as shorthand for the ≤ and ≥ that ignores
universal constants.

Groupwise User-Item Fairness
Our group-wise fairness definition comes from natural
exposure-based fairness definitions (Li et al. 2023, 2021).
In particular, (Li et al. 2021) defines group-fairness in
a recommender system as follows: Let M(Wi) corre-
spond to the quality of the recommendation to user i.
(Li et al. 2021) seeks to minimize

∣∣ 1
|Z1|

∑
i∈Z1

M(Wi) −
1

|Z2|
∑

i∈Z2
M(Wi)

∣∣ for two user groups Z1 and Z2. Our
fairness measure is similar to that of (Li et al. 2021), how-
ever our methodology is very different. 3

Now we formally define our group fairness metric. Sup-
pose we partition X by enumeration of sensitive variables
[S]. A natural definition of group-wise item fairness similar
to that of (Li et al. 2021) is to measure the difference be-
tween the probability that an item is recommended to differ-
ent groups. In particular, given two groups s1, s2 ∈ S and
a recommender η(x), we define the following group-wise
item fairness constraint for item j :∣∣∣∣

∫
x∈s1

η(x)jp(x)dx∫
x∈s1

p(x)dx
−

∫
x∈s2

η(x)jp(x)dx∫
x∈s2

p(x)dx

∣∣∣∣ ≤ Cj (1)

where Cj represents tolerance quantity. Given Φ(·, ·) be a
uniformly bounded risk function, any “non-debiased” rec-
ommender ηU (x), we aim to “debias” ηU (x) to satisfy the
fairness constraints by solving a stochastic program:

min
η∈F

ExΦ(η
U (x), η(x))

s.t. ∀s, s′ ∈ [S], j ∈ [m],∫
x∈s

η(x)jp(x)dx∫
x∈s

p(x)dx
−

∫
x∈s′

η(x)jp(x)dx∫
x∈s′

p(x)dx
≤ Cj (2)

3(Li et al. 2021) takes a global-wise approach and writes an
integer program using parameters Si,j that correspond to the pref-
erence of user i to item j, and solves this integer program using
heuristics, outputting a list of recommendations for each user. Note
that this approach suffers from the typical shortcomings of global-
wise methods which use integer programming, described above.



Our goal is to obtain η̂ that approximates the solution of (2).
Informally, we call a η̂ ∈ F a (ϵ, δ)-optimal solution for (2)
if it approximates the objective up to additive error ϵ and it
obeys the constraints up to error ϵ. We provide formal defi-
nition in the Appendix.

Given sufficient amount of data, one can obtain (ε, δ)-
optimal solution, for some ε > 0, δ > 0, by solving the fol-
lowing sample averaged (empirical) version of Equation (2):

min
η∈F

1

n

∑
i∈[n]

Φ(ηU (xi), η(xi)) (3)

s.t. ∀s, s′ ∈ [S], j ∈ [m],

1

|x1:n

⋂
s|

∑
xi∈Xs

η(xi)
j − 1

|x1:n

⋂
s′|

∑
xi∈Xs′

η(xi)
j ≤ Cj

Where x1:n

⋂
s is the set of xi that belongs to the group

s ∈ S. Note that in this case the probability in Definition 1
is over the sample set.

Sample complexity analysis
We state our main result here. The definitions of cover-
ing number, VC-dimension, and pseudo-dimension can be
found in (Pollard 2012; Wellner et al. 2013; Mohri, Ros-
tamizadeh, and Talwalkar 2018) and we include them in the
appendix.

Assume our hypothesis class is Fm : {X → ∆m}, which
could be a family of neural networks with softmax output of
size m, mapping a user context x into m-dimensional prob-
ability simplex. In particularF1 denotes the family of neural
network with sigmoid output of size 1. Next we present our
main theorem.
Theorem 1 Let η∗(x) be optimal solution of problem in
(2). Let η̂(x) be the solution of Equation (3). If the hypothe-
sis class F has finite Pseudo dimension, is β−Lipschitz and
has B bounded risk, then the following holds: Given δ > 0,
with probability at least 1− δ over the sample set we have:

ExΦ(η̂(x), η
U (x)) ≲ ExΦ(η

∗(x), ηU (x)) (4)

+
(
log

(m|S|
δ

)
+ log

( n

mdP (F1)

))BmdP (F1)√
n

And ∀s, s′ ∈ [S], j ∈ [m],∫
x∈s

η̂jp(x)dx∫
x∈s

p(x)dx
−

∫
x∈t

η̂jp(x)dx∫
x∈t

p(x)dx
≲ Cj +

(
log

( m|S|n
mdP (F1)δ

))
·

max
{ 1√
|x1:n

⋂
Xs|

,
1√

|x1:n

⋂
Xs′ |

}
(5)

First note the assumptions made in Theorem 1 are stan-
dard in VC-theory and statistical learning. Furthermore,
note that if we set ϵ to be equal to the maximum of(
log

(m|S|
δ

)
+ log

(
n

mdP (F1)

))BmdP (F1)√
n

and
(
log

(m|S|
δ

)
+

log
(

n
mdP (F1)

))
·max

{
1√

|x1:n
⋂

Xs|
, 1√

|x1:n

⋂
Xs′ |

}
, Theo-

rem 1 proves that solving 3 indeed obtains a (ϵ, δ)-optimal
solution over the the sample set. It worth noting that the
sub-optimal gap ε characterized by quantity 1√

|x1:n
⋂

Xs|
,

decreases with n→∞, at a 1/
√
n rate.

Practical Algorithm: Progressive constrained
optimization
The sample average approximate program in Equation 3 can
be effectively solved as a convex program when Φ(·, ·) ex-
hibits convexity with respect to the parameter being opti-
mized. However, when H represents a family of neural net-
works, the convexity of Equation 3 may not hold.

To adapt Equation 3 to be compatible with deep learn-
ing techniques, we introduce an alternating minimization
approach. While previous research has addressed con-
strained problems using methods such as the Augmented La-
grangian method (Sangalli et al. 2021) and constraint com-
pletion (Donti, Rolnick, and Kolter 2021), none of these
approaches tackle problems involving constraints that span
multiple samples. We propose the following natural algo-
rithm for addressing the constrained training problem for
neural networks, sharing a similar spirit with the work pre-
sented in (Donti, Rolnick, and Kolter 2021).

Algorithm 1: Progressive Constrained Optimization

1: Input: Dataset An ⊂ Rd × {1, 2, · · · ,m}, loss func-
tion Φ (e.g., cross-entropy), learning rate η, number of
iterations max iter, Non-debiased model ηU (·)

2: η̂(·)← ηU (·)
3: Obtain Pseudo Label ŷ1:n by solving convex program:

min
y1:n∈{∆m}n

1

n

∑
i∈[n]

Φ(yi, η̂(xi)) (6)

s.t. ∀s, s′ ∈ S, j ∈ [m],

1

|x1:n

⋂
s|

∑
xi∈Xs

yji −
1

|x1:n

⋂
s′|

∑
xi∈Xs′

yji ≤ Cj

4: Train η̂(·) based using {(xi, ŷi)}1:n using uncon-
strained loss: η̂ := argminη∈F

1
n

∑n
i Φ(η(xi), ŷi).

5: Output: η̂(·)

Experiments
In this section, we study a toy example. The data consists
of non-sensitive variables x and sensitive variable s where
x and s are assumed to be independent of each other. We
first define ‘fair’ conditional probability ηF (x) ≜ P[y|x].
We use a mixture of Spherical Gaussians π = 0.5π1+0.5π2

in R2 where π1 ∼ N (µ1, σI) represents the distribution
for x under class y = 1 and π2 ∼ N (µ2, σI) for y =
−1. Their means are µ1 = [1, 0]T and µ2 = [−1, 0]T . The
prior probability is set equal for both classes. Let ϕ(x) =
1
2π exp(−xTx

2 ) be the density for 2-d standard Gaussian. We
define Γ(·)as follows:

Γ(x) =
ϕ(x− µ1)

ϕ(x− µ1) + ϕ(x− µ2)

Suppose ρ ∈ (0, 1], we have ηF (x) as follows:

ηF (x) = 1− Γ(x) + ρ
(
21

{
Γ(x) ≥ 1

2

}
− 1

)(
Γ(x)− 1

2

)2



Figure 1: In the top row, we show the non-sensitive variables with respect to the noisy labels, the ‘fair’ conditional probability,
and the ‘unfair’ conditional probability, respectively. In the bottom row, we show the ‘unfair’ conditional risk for values of each
of the non-sensitive variables with respect to the sensitive variables.

The ‘fair’ optimal classifier is thus f∗(x) = 2 1{ηF (x) ≥
1
2} − 1 = 2 1{x1 ≥ 0} − 1. Given the sensitive variable
s ∈ {0, 1}, we define ηS(s) ≜ P[y|s] = s. The observation
y is generated by Bernoulli with mixing parameter λ with

P[y|x, s] ≜ η∗(x, s) ≜ λ · ηF (x) + (1− λ) · ηS(s) (7)

In our experiments, we set λ = 0.5, ρ = 0.2, σ = 0.1, and
n = 500. We choose Cj to be half of the maximum empiri-
cal group difference 0.5

(
maxj [

1
|x1:n

⋂
s|
∑

xi∈Xs
η(xi)

j −
1

|x1:n
⋂

s′|
∑

xi∈Xs′
η(xi)

j ]
)
. In Step 1 of 1, we learn the

noisy labels with an MLP, using Binary Cross Entropy Loss.
We achieve good performance, but without high accuracy
with respect to the ground truth conditional probability. In
the second step, we perform convex optimization to learn
pseudo labels which correct for item-wise group differences
between the sensitive groups. We use cvxpy (Diamond and
Boyd 2016) to solve this convex constrained optimization.
Lastly, the same three layer MLP trains the noisy data on the
pseudo labels. Results and discussions are shown in Table1.

Conclusion
In this study, we introduce a post-processing framework for
addressing groupwise user-item fairness in recommender
systems. When provided with enough samples of the rec-
ommender outputs, our method is designed to learn a model
directly by incorporating all fairness constraints into the loss
function of the recommender. We provide an analysis of
sample complexity to ensure the generalization performance
of our model learned from finite data samples.

For a family of neural network-based recommenders, we
also present a heuristic algorithm to effectively solve the op-
timization problem while considering fairness constraints. In
our experimental evaluation, we demonstrate the effective-
ness of our proposed approach using synthetic data. There
are several future directions remain to explore including
• Convergence guarantee of Algorithm 1 It would be in-

teresting to investigate the convergence behavior of Al-

Non-debiased Optimization Debiased

Train. MGD 0.416 NaN 0.217
Valid. MGD 0.388 0.148 0.217
Train. Acc 0.750 NaN 0.716
Valid. Acc 0.740 0.548 0.738

Table 1: Let z ≜ (x, s, y), in the column Non-
debiased, we present the mean group difference (MGD)
as ∥

∑
z,s=1 η

U (x, s) −
∑

z,s=0 η
U (x, s)∥1. In the col-

umn Optimization, we report the mean group difference
as ∥

∑
z,s=1 ŷ −

∑
z,s=0 ŷ∥1. In the columns Debiasing,

we display mean group difference as ∥
∑

z,s=1 η̂(x, s) −∑
z,s=1 η̂(x, s)∥1. The training/testing accuracy follows

standard manner. It could be observed that: (1) The op-
timization step effectively mitigates group differences. (2)
During the debiasing step, the neural network leverages in-
formation from the ‘debiased label,’ resulting in fair outputs
that generalize well on testing data. (3) The decrease in test-
ing accuracy for the debiased model is at a benign level.

gorithm 1 and its sub-optimality w.r.t to population risk
and constraints in Equation 2.

• Realistic synthetic data In our current synthetic data ex-
periments, the relationship between the sensitive variable
and non-sensitive variables is not entirely representative
of real-world scenarios, which often involve more so-
phisticated problem structures. We are eager to explore
the use of more realistic synthetic data in our studies,
such as the synthetic data examined in (Chaudhari et al.
2022). This approach will enable us to better capture the
complexities of real-world situations in our research.

• Real world data. We look forward to more empiri-
cal study of Equation 3 and Algorithm 1 on real world
datasets. This will allow us to validate and extend our
findings to practical, real-world scenarios, providing
valuable insights into the applicability and performance
of our methods in real-world settings.
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Appendix
We begin by some definitions and then provide the proof of Theorem 1.

Definition 1 ((ε, δ)-optimal solution) Let η∗(x) be any solution of equation (2). We say an algorithm gives a (ε, δ)-optimal
solution for the problem in Equation (2) if with probability at least 1−δ, it outputs a η̂ ∈ F such that the following probabilities
hold:

ExΦ(η
U (x), η̂(x)) ≲ ExΦ(η

U (x), η∗(x)) + ε

s.t. ∀s, s′ ∈ [S], j ∈ [m],∫
x∈s

η̂(x)jp(x)dx∫
x∈s

p(x)dx
−

∫
x∈s′

η̂(x)jp(x)dx∫
x∈s′

p(x)dx
− Cj ≲ ε (8)

Assumption 1 Throughout the analysis, we make the following assumptions:

• Hypothesis class complexity: We assume that the family of recommenders is from hypothesis class F1 : {X → ∆1} with
finite Pseudo dimension dP (F1) <∞.

• β-Lipschitz and B bounded Risk: We assume risk function Φ(·, ·) : ∆m ×∆m → [0, B] is β–Lipschitz.

Definition 2 (L2-Covering Number) Let x1:n be set of points and let F : X → ∆m be a hypothesis class. A set U ⊆ Rn is an

ε-cover w.r.t L2-norm of F on x1:n, if ∀f ∈ F , ∃u ∈ U , s.t.
√

1
n

∑n
i=1 ∥[u]i − f(xi)∥22 ≤ ε, where [u]i is the i-th coordinate

of u. The covering number N2(ε,F , n) with 2-norm of size n on F is :

sup
x1:n∈Xn

min{|U |: U is an ε-cover of F on x1:n} (9)

Definition 3 (VC-dimension) The VC-dimension dVC(F) of a hypothesis class F = {f : X → {1,−1}} is the largest
cardinality of the set A ⊆ X such that ∀Ā ⊆ A, ∃f ∈ F:

f(x) =

{
1 if x ∈ Ā

−1 if x ∈ A \ Ā (10)

Definition 4 (Pseudo-dimension) The Pseudo-dimension dP (F1) of a real-valued hypothesis class F = {f : X → [a, b]} is
the VC-dimension of the hypothesis classH = {h : X × R→ {−1, 1}|h(x, t) = sign(f(x)− t), f ∈ F}.

Proof of Theorem 1. First we define some notation. Let An be the set of samples. Define ∥η1 − η2∥An
:=√

1
n

∑n
i=1 ∥η1(xi)− η2(xi)∥2 and ∥η1 − η2∥µ(x) :=

√
Ex[∥η1(x)− η2(x)∥2]. Let C be a γ/β-cover for hypothesis class

Fm projected on An for some γ that we define later. For any hypothesis f let c(η) be an element in C that covers η. In particu-
lar we have for any η there exists c(η) ∈ C such that ∥c(η)− η∥An ≤ γ/β. Clearly, for any η ∈ F that satisfies the constraints
in (3), we have

∑n
i=1 Φ(η̂(xi), η

U (xi)) ≤
∑n

i=1 Φ(η(xi), η
U (xi)). Moreover we can observe that γ/β-cover of F on An is

also a γ-cover of Φ(η, ηU ) for η ∈ F , projected on An. To see this:

∥Φ(η1, ηU )− Φ(c(η1), η
U )∥2An

=
1

n

n∑
i=1

(Φ(η1(xi), η
U (xi))− Φ(c(η1)(xi), η

U (xi)))
2

≤β2

n

n∑
i=1

∥η1(xi)− c(η1)(xi)∥2 (11)

≤γ2

Where in 11 we use the β-Lipschitz property of Φ. Since
n∑

i=1

Φ(η̂(xi), η
U (xi)) ≤

n∑
i=1

Φ(η∗(xi), η
U (xi)), (12)

we have
n∑

i=1

Φ(c(η̂(xi)), η
U (xi)) ≤

n∑
i=1

Φ(η∗(xi), η
U (xi)) + γ. (13)



We apply an empirical process argument, using a Hoeffding type inequality with symmetricity (Pollard 2012) and taking the
union bound on the covering set C. We have

PAn

[
sup
η∈F

{∣∣∣∣Ex

[
Φ(η(x), ηU (x))

]
− 1

n

n∑
i=1

Φ(η(xi), η
U (xi))

∣∣∣∣ ≥ γ

}]
≤ 2EAn [|C|]e(−

nγ2

2 ) (14)

The size of the γ/β-covering number of Fm could be bounded using Cartesian product of m cover of F1 with radius ,
γ/(β

√
m). The covering number of F1 could be bounded using the Pseudo-dimension using Theorem 2.6.4 in (Wellner et al.

2013). Formally: |C| ≤
{
c2dP (F1)c

dP (F1)
3

(
1

γm

)2dP (F1)}m

where c2, c3 <∞ are some universal constants. By setting

γ ≲

(
log

( n

mdP (F1)

)
+ log

(m|S|
δ

))BmdP (F1)√
n

,

we have EAn
[|C|]e(−

nγ2

2 ) ≲ δ
m|S|2 . Using inequality (14), we have that with probability at least 1− δ

m|S|2 :

Ex

[
Φ(η̂(x), ηU (x))

]
− 1

n

n∑
i=1

Φ(η̂(xi), η
U (xi)) ≤

(
log

(1
δ

)
+ log

( n

mdP (F1)

))BmdP (F1)√
n

1

n

n∑
i=1

Φ(η∗(xi), η
U (xi))− Ex

[
Φ(η∗(x), ηU (x))

]
≤

(
log

(1
δ

)
+ log

( n

mdP (F1)

))BmdP (F1)√
n

(15)

which gives (4). Next we show (5). Since S is a partition of X , one can view x1:n ∈ Xs as i.i.d samples, conditional on Xs.
Let ns ≡ |x1:n

⋂
Xs|, by similar arguments as that of (14) we have for any γ > 0:

P
[
sup
η∈F

{∣∣∣∣Ex

[
ηj(x)|x ∈ Xs

]
− 1

ns

∑
xi∈Xs

Φ(η(xi), η
U (xi))

∣∣∣∣ ≥ γ

}]
≤ 2EAn

[|C|]e(−
nsγ2

2 ) (16)

It suffices to pick γ ≲

(
log

(
ns

mdP (F1)

)
+ log

(m|S|
δ

))BmdP (F1)√
ns

, so that the R.H.S of (16) becomes δ
m|S|2 . Taking a union

bound on m items and |S|2−|S| groups for the constraints in (3), we have with probability at least 1−δ, for all j ∈ [m], s, s′ ∈
[S],

Ex

[
ηj(x)|x ∈ Xs

]
− 1

|ns|
∑

xi∈Xs

ηj(xi)− Ex

[
ηj(x)|x ∈ Xs′

]
+

1

|ns′ |
∑

xi∈Xs′

ηj(xi)

≲

(
log

( ns

mdP (F1)

)
+ log

(m|S|
δ

))BmdP (F1)
√
ns

+

(
log

( ns′

mdP (F1)

)
+ log

(m|S|
δ

))BmdP (F1)
√
ns′

(17)

This finishes the proof.


