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Abstract

Synergy models are useful tools for exploring drug combinatorial search space and1

identifying promising sub-spaces for in vitro/vivo experiments. Here, we report2

that distributional biases in the training-validation-test sets used for predictive3

modeling of drug synergy can explain much of the variability observed in model4

performances (up to 0.22 ∆AUPRC). We built 145 classification models spanning5

4,577 unique drugs and 75,276 pair-wise drug combinations extracted from Drug-6

Comb, and examined spurious correlations in both the input feature and output7

label spaces. We posit that some synergy datasets are easier to model than others8

due to factors such as synergy spread, class separation, chemical structural diversity,9

physicochemical diversity, combinatorial tests per drug, and combinatorial label10

entropy. We simulate distribution shifts for these dataset attributes and report that11

the drug-wise homogeneity of combinatorial labels most influences modelabil-12

ity (0.16± 0.06 ∆AUPRC). Our findings imply that seemingly high-performing13

drug synergy models may not generalize well to broader medicinal space. We14

caution that the synergy modeling community’s efforts may be better expended in15

examining data-specific artefacts and biases rigorously prior to model building.16

1 Introduction17

For complex, multifactorial diseases such as cancer, combination therapies offer the possibility of18

enhanced efficacies [19], with reduced effective doses and associated host toxicities [9], as well19

as a strategy for slowing the evolved drug resistance commonly observed in monotherapies [32].20

It is, however, more challenging to perform clinical trials for combination therapies [22] and the21

large number of possible drug combinations renders exhaustive testing by brute-force heuristics22

infeasible. Machine learning is a useful tool for exploring the vast drug combinatorial search space23

and identifying promising sub-spaces for in vitro/vivo experiments.24

Currently, research in the field of predictive modeling for drug synergy is largely focused on model25

generation and the optimization of performance metrics such as AUC (which overestimates model26

performance on imblanaced datasets [30, 15]), rather than the context in which models are generated27

and deployed. Model improvements are not reported in tandem with descriptive statistics characteriz-28

ing the quality and modelability of datasets. Nair et al. [18] proffer that a limitation of their dataset29

is that drug combination screens are generally discordant across independent studies. There is no30

consensus definition for drug synergy [17, 29] and the experimental endpoints modeled are often31

proxies of drug response that can be easily measured in a high-throughput fashion but lack clinical32

relevance or even reproducibility [20].33



Biases have been reported in datasets used for model generation in adjacent research fields, such as34

PDBBind and CASF for the prediction of ligand-protein binding affinities [27]. In a systematic review35

of 41 genomic machine learning studies, Barnett et al. [2] investigated which components of a study36

contributed to improvements in model performance and whether reported improvements represent a37

true improvement or an unaddressed bias inflating performance. They found that data leakage due38

to feature selection and the number of hyperparameter optimizations were significantly associated39

with an increase in reported model performance. In a review of 62 machine learning studies on the40

detection and prognostication of COVID-19 using chest radiographs and chest computed tomography41

images, Roberts et al. [26] found that none of the models identified were of potential clinical use due42

to biases in either the methodology or underlying data.43

Previous studies on drug synergy prediction have not examined artefacts and biases in dataset44

composition. To the best of our knowledge, no attempt has been made to quantify the sensitivity of45

synergy models to underlying distributions in either input feature or output label spaces. Alsherbiny46

et al. [1] note that the source of drug combination screening data, i.e. NCI-ALMANAC [8] versus47

ONEIL [21], has a more significant impact on model performance than feature engineering. Similarly,48

Rani et al. [25] note that synergy models built using NCI-ALMANAC tend to outperform those built49

using ONEIL. Here, we report that distributional biases in the datasets used for predictive modeling of50

drug synergy explain much of the variability observed in model performances (up to 0.22 ∆AUPRC).51

We built 145 binary classification models using drug combination screens extracted from DrugComb52

[35] spanning 4,577 unique drugs and 75,276 pair-wise drug combinations. We characterize the53

central tendencies and dispersions of various dataset attributes, and subsequently simulate distribution54

shifts to demonstrate that model performance can improve or deteriorate depending on the direction55

of attribute shift.56

2 Methodology57

2.1 Synergy Definition58

We use the Bliss Independence model [3], one of several synergy reference models [17, 29], to59

qualify and quantify the expected additive or null response of administering a drug combination.60

Operating under assumptions of statistical independence between drugs (i.e., the modes of action of61

constituent drugs in a combination differ), symmetry in drug interactions, no variability in responses,62

and continuous dose-response relationships, Bliss excess is defined mathematically as:63

EBliss = EAB − (EA + EB − EA × EB)

where EAB is the observed effect of the drug combination, and EA and EB are the observed64

individual effects of drugs A and B, respectively. EBliss = 0 is the threshold for additivity, while65

EBliss > 0 indicates synergy and EBliss < 0 indicates antagonism.66

2.2 Data Collection and Pre-Processing67

Drug pair synergy data targeting 142 cancer cell lines and 3 malarial parasites was extracted from68

DrugComb v1.5 [35]. Thirty-three percent of drug-drug-cell line tuples were replicate experiments,69

which we deduplicated by computing the geometric mean synergy score across replicate samples.70

Thirty-nine percent (N = 306,282) of the combination-cell line tuples were sourced from NCI-71

ALMANAC [8] and twenty-five percent (N = 198,722) were sourced from FRIEDMAN [12], with72

the remainder sourced from twenty-two other combination screens including ONEIL [21] (twelve73

percent; N = 92,208) and CLOUD [14] (five percent; N = 40,160). In total, 75,276 pair-wise drug74

combinations comprising 4,577 unique drugs were obtained for 145 cell-line synergy endpoints75

defined by the Bliss Independence model. We selected the top and bottom fifteen percent of each76

cell-line dataset’s distribution of Bliss synergy scores to obtain balanced classes after filtering out77

additive samples.78
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2.3 Dataset Attributes and Metrics79

Synergicity Synergicity measures the degree to which a given drug is associated with synergistic80

combinatorial labels: it is defined in this work, as in previous work [34], as the fraction of combi-81

nations for which individual drugs have been labelled synergistic as opposed to antagonistic. At82

the cell-line dataset level, the interquartile range or H-spread was used to capture the bimodality83

of synergicity distributions and test the hypothesis that cell-line datasets with drugs found pri-84

marily in antagonistic-only combinations (synergicity = 0) and synergistic-only combinations85

(synergicity = 1) are easier to model with higher AUPRC scores.86

Combinatorial Label Entropy Combinatorial label entropy measures the level of disorder or87

heterogeneity of combinatorial labels. It is defined mathematically as Shannon entropy:88

H(X) = −
n∑

i=1

P (xi) log2(P (xi))

where H(X) is the Shannon entropy of a discrete random variable X and P (xi) is the probability of89

outcome xi occurring in the system. The sum is taken over all n possible outcomes xi. In our case,90

H(X) has range [0, 1] and measures how homogeneous the combinatorial labels associated with a91

given drug are: if a drug occurs predominantly in drug combinations labelled synergistic-only or92

antagonistic-only, then its combinatorial label entropy is low (close to 0); if a drug occurs in drug93

combinations labelled synergistic approximately half of the time and antagonistic approximately half94

of the time, then its combinatorial label entropy is high (close to 1).95

Feature Similarity Feature similarity in chemical structural and physicochemical spaces was96

defined in two steps: cosine similarity computed pair-wise amongst all drugs tested per cell line,97

followed by the cell-line fraction of pair-wise similarities above 0.15. Mathematically, the cosine98

similarity between two feature vectors A and B is defined as:99

cosine_similarity(A,B) =
A ·B

∥A∥ · ∥B∥

Non-Additivity A drug’s tendency for non-additivity when combined was scored as the median100

absolute distance from Bliss additivity across combinations. This measure was used to test the101

hypothesis that a drug’s combinatorial label entropy decreases with its tendency for non-additivity102

in combinations. In other words, non-additivity thus defined was used to test whether the degree of103

synergism or antagonism achieved by a drug was associated with the consistency or homogeneity of104

its combinatorial labels.105

2.4 Model Generation and Evaluation106

We formulate drug synergy prediction as a supervised classification task: we construct one binary107

model per cell-line dataset, resulting in a total of 145 binary models, to predict synergistic versus108

antagonistic class labels for drug-drug pairs using the CRAN "randomForest" [13, 24] implementation109

of the traditional random forest learner by Breiman [4] under default hyperparameter optimizations.110

Given that the focus of this work is the influence of dataset composition on model performance,111

and not the influence of model architecture on model performance, we required a single learner112

to serve as our baseline before and after shifting attribute distributions. We deliberately chose a113

decision tree ensemble learner as our baseline due to its computational efficiency on high-dimensional114

data, adequate interpretability and explainability, as well as state-of-the-art model performance on115

balanced and minority classes [6]. We constructed two sets of drug features: structural 2048-bit116

Morgan fingerprints (with radius 3) and 43-element long physicochemical profiles of all available117

molecular descriptors on RDKit [11]. Feature vectors were concatenated for each drug-drug pair118

in both permutations. Our 80%-20% train-test split strategy was drug-pair–stratified with five-fold119

cross-validation. To evaluate model performance, we computed Area under the Precision-Recall120

curve (AUPRC), which is less sensitive to class imbalance and thus more practically relevant and121
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actionable than Area under the Receiver Operating Characteristic curve (AUROC) [30, 15]. The mean122

AUPRC across all models (n = 145) was 0.76 ± 0.09. For our categorical analyses, we categorized123

cell-line models with AUPRC greater than or equal to 0.8 as high-performing (n = 50), and cell-line124

models with AUPRC less than 0.8 as low-performing (n = 95).125

2.5 Simulating Distribution Shifts in Dataset Attributes126

We simulated distribution shifts in dataset attributes by sub-sampling each cell-line dataset. For127

originally high-performing models, we selected subsets of drugs with high combinatorial label128

entropy (upper 15%), few combinatorial tests per drug (lower 15%), low physicochemical similarity129

to other drugs (lower 15%), and low structural similarity to other drugs (lower 15%). Conversely, for130

originally low-performing models, we selected subsets of drugs with low combinatorial label entropy131

(lower 15%), many combinatorial tests per drug (upper 15%), high physicochemical similarity to132

other drugs (upper 15%), and high structural similarity to other drugs (upper 15%). This simulated133

shifts in attribute distributions such that high-performing models now resembled low-performing134

models, and vice versa. Cell-line models with insufficient drugs remaining were discarded, yielding135

103 models for structural similarity, 109 models for physicochemical similarity, 117 models for136

combinatorial tests per drug, and 91 models for combinatorial label entropy per drug. The simulations137

were run for each of the dataset attributes identified individually, as well as pair-wise, but the latter138

yielded datasets too small for model generation. To distinguish change in model performance due to139

shifting bias versus reduction in dataset size, models were trained, validated, and tested on shifted140

and non-shifted subsets of comparable size for each cell line.141

3 Results142

3.1 Synergy Spread and Class Separation143

We first analyzed the effect of dataset span, measured as standard deviation of Bliss synergy scores,144

and class separation, measured as difference in mean Bliss synergy scores of antagonistic vs synergis-145

tic classes, on cell-line model performance, measured as AUPRC. The results are shown in Figure 1.146

It can be seen that high-performing cell-line models tended to exhibit broader synergy spread with147

difference in means between high– and low–performing models of 15.4–24.1 (95% CI) Bliss synergy148

units (Welch’s two-sample t = 9.13, df = 71.3, p = 1.26e-13). This is consistent with the relationship149

between potency span and achievable model performance reported by Brown et al. [5] in the context150

of predicting binding affinity of small-molecule ligands for protein targets. High-performing cell-line151

models also tended to exhibit greater class separation in synergy space with difference in means152

between high– and low–performing models of 12.9–17.6 (95% CI) Bliss synergy units (Welch’s153

two-sample t = 13.1, df = 94.4, p < 2.20e-16). Easier class splits may inflate model performance,154

particularly on AUROC [30, 15] but also AUPRC: DeepSynergy, for instance, defined the top 10%155

of combinations as the synergistic or positive class and modeled the remainder as the negative class156

[23]. Our findings show that both synergy spread and class separation influence modelability.157

3.2 Synergicity and Entropy of Combinatorial Labels158

We then analyzed the effect of combinatorial label homogeneity on model performance (Sub-Figures159

2A-B). It can be seen that the cell-line H-spread of synergicity, defined as the fraction of combinations160

for which individual drugs have been labelled synergistic as opposed to antagonistic, is positively161

correlated with cell-line model performance, measured as AUPRC (Spearman’s ρ = 0.539, p =162

1.77e-10). Conversely, the cell-line arithmetic mean heterogeneity of combinatorial labels, measured163

as Shannon entropy for individual drugs, is negatively correlated with cell-line model performance,164

measured as AUPRC (Pearson’s r = −0.691, p < 2.20e-16). The more bimodal a cell line’s drug165

synergicity distribution, the more homogeneous its drug-wise combinatorial labels and the easier166

to predict combinations unseen during training with at least one seen-before drug. Our findings167

imply that cell lines comprising drugs with homogeneous combinatorial labels, i.e., drugs occurring168
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Figure 1: Panel A. Distribution of Bliss synergy scores for the best-performing cell-line model, A(i),
and the worst-performing cell-line model, A(ii). Panel B. Each barcode line in the violin
plots represents one cell-line model. Differences in synergy class means, B(i), and standard
deviations of overall synergy distributions, B(ii), for all cell-line models binned into high
versus low AUPRCs.

Figure 2: Panel A. Density and violin plots of cell-line H-spread of the fraction of combinations for
which individual drugs have been labelled synergistic (dubbed synergicity) and cell-line
model performance (Spearman’s ρ = 0.539). Panel B. Density and violin plots of cell-line
mean combinatorial label entropy and cell-line model performance (Pearson’s r = −0.691).
High-performing cell-line models exhibited lower diversity spanning 3.91%–13.8% (95%
CI) higher cosine similarity in structural space with Spearman’s ρ = 0.359 (Panel C) and
2.28%–12.9% (95% CI) higher cosine similarity in physicochemical space with Spearman’s
ρ = 0.327 (Panel D), as well as 17.1–31.0 (95% CI) more combinations tested per drug
with Pearson’s r = 0.504 (Panel E). Each dot in the density plots (upper panels) and each
barcode line in the violin plots (lower panels) represents one cell-line model.

primarily in antagonistic-only combinatorial labels and synergistic-only combinatorial labels, tend to169

be easier to model with higher AUPRC scores.170

3.3 Structural Diversity, Physicochemical Diversity, Combinatorial Tests Per Drug171

We then analyzed the effects of drug diversity in structural Morgan fingerprint and physicochemical172

spaces, both measured as fraction of drugs in a cell-line dataset with pair-wise cosine similarity173

above a defined threshold, on cell-line model performance, measured as AUPRC. Panel C of Figure 2174

shows that the dataset attribute, compound structural similarity, is positively correlated with model175
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performance (Spearman’s ρ = 0.359, p = 1.012e-05): high-performing cell-line models exhibited176

3.91%–13.8% (95% CI) higher pair-wise cosine similarity between drugs in Morgan fingerprint177

space than low-performing cell-line models (Welch’s two-sample t = 3.54, df = 132.64, p = 0.0005).178

Similarly, Panel D of Figure 2 shows that the dataset attribute, compound physicochemical similarity,179

is positively correlated with model performance (Spearman’s ρ = 0.327, p = 6.282e-05): high-180

performing cell-line models exhibited 2.28%–12.9% (95% CI) higher pair-wise cosine similarity181

between drugs in physicochemical space than low-performing cell-line models (Welch’s two-sample t182

= 2.83, df = 131.33, p = 0.005). Summarily, the breadth of compound structural and physicochemical183

spaces both appear to influence modelability, which one might expect as it is easier to model a smaller184

space with greater overlap between train and validation/test sets. We subsequently investigated the185

relationship between cell-line model performance, measured as AUPRC, and number of combinatorial186

tests per drug. It can be seen in Panel E of Figure 2 that this dataset attribute is positively correlated187

with model performance (Pearson’s r = 0.504, p = 1.24e-10). High-performing cell-line models188

comprized 17.1-31.0 (95% CI) more combinations tested per drug than low-performing cell-line189

models (Welch’s two-sample t = 6.86, df = 141.19, p = 1.99e-10), which one might expect as it190

is easier to model a smaller space with fewer distinct drugs tested in more combinations. These191

findings imply that seemingly high-performing drug synergy models do not generalize well to broader192

medicinal space.193

3.4 Simulating Distribution Shifts in Dataset Attributes194

To test whether the differences in model performance observed across cell lines was due to underlying195

data modelability versus biological variability, we simulated shifts in dataset attribute distributions196

and compared resulting changes in model performance (∆AUPRC). We selected subsets of drug-drug197

samples to shift distributions for low-performing cell-line models to resemble high-performing cell-198

line models, and vice versa. The simulations were run for each of the dataset attributes identified199

individually, as well as pair-wise, but the latter yielded datasets too small for model generation. The200

results are summarized in Figure 3.201

Figure 3: Change in model performance, ∆AUPRC, after simulating distribution shifts for each
dataset attribute individually. Attribute distributions for previously low-performing cell-line
models were shifted to resemble attribute distributions for high-performing cell-line models,
and vice versa. Performance improved for previously low-performing models (blue) under
all simulations, albeit to varying degrees (+0.06 ± 0.04 ∆AUPRC for physicochemical
diversity versus +0.18 ± 0.05 ∆AUPRC for combinatorial label entropy). Performance
deteriorated most noticeably for previously high-performing models (red) following shifts
in distributions for combinatorial label entropy (−0.10± 0.04 ∆AUPRC).

It can be seen that subsetting data points that result in greater class separation, broader synergy spread,202

lower structural diversity, lower physicochemical diversity, higher number of combinatorial tests per203

drug, and lower combinatorial label entropy generally increased model performance. Conversely,204

subsetting data points that result in smaller class separation, narrower synergy spread, lower number205

of combinatorial tests per drug, and higher combinatorial label entropy generally decreased model206
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performance. In other words, simulating shifts in attribute distributions tended to boost model207

performance for originally low-performing models, and tended to degrade model performance for208

originally high-performing models. This suggests that the differences observed in model performance209

across cell lines was likely due to differences in dataset composition and not due to inherent biological210

variation. Of the dataset attributes identified and manipulated, combinatorial label entropy most211

influenced modelability, increasing the performance of originally low-performing models by +0.18±212

0.05 ∆AUPRC, which is comparable to the original difference in mean performance between high–213

versus low–performers (0.15 ∆AUPRC). It is important to note that factors are not decoupled in these214

simulations as shifting one attribute distribution in isolation was not feasible; shifting one distribution215

simultaneously shifted other distributions to varying degrees since we must also consider how dataset216

attributes are correlated with each other. To contextualize these findings, we refer to improvements217

over state-of-the-art models reported in drug synergy literature, such as +0.04 ∆AUPRC by Preuer218

et al. [23] and Wang et al. [31].219

3.5 Synergy, Lipophilicity, and Model Performance220

We then analyzed whether mechanistic insights reported in drug synergy literature, particularly the221

relationship between synergicity and lipophilicity [34], influence modelability. Figure 4A shows222

that, for the well-characterized cell line MCF7, a drug’s lipophilicity (CrippenClogP) is positively223

correlated with its synergicity, measured as the fraction of combinations for which the drug has been224

experimentally labelled synergistic as opposed to antagonistic, particularly in the region most relevant225

for drug discovery, i.e., CrippenClogP interval (1,6]. Figure 4B shows the correlation between226

lipophilicity and synergicity for all cell lines plotted against model performance (Spearman’s ρ =227

−0.351, p = 1.575e-05): high-performing models evidently do not rely on the positive correlation228

between lipophilicity and synergicity reported here and in literature [34] for predictions.229

Figure 4: Panel A. A drug’s lipophilicity (CrippenClogP) is correlated with its synergicity in the
MCF7 cell-line dataset, particularly for drug-like molecules in CrippenClogP interval (1,6].
Panel B. Correlation between lipophilicity and synergicity plotted as a function of model
performance for all cell-line datasets. High-performing models evidently do not rely on
the correlation between lipophilicity and synergicity reported here and in literature for
predictions.

3.6 Non-Additivity, Combinatorial Label Homogeneity, Drug Similarity230

We considered the dependence of combinatorial label homogeneity, an output dataset attribute, on231

various input dataset attributes, such as drug similarity. It can be seen in Appendix Figure 7 that232

cell-line drug similarity in physicochemical (Pearson’s r = 0.480) and structural (Pearson’s r =233

0.514) spaces correlate with combinatorial label homogeneity. A drug is more likely to behave234

generally synergistically or generally antagonistically, or rather elicit mostly synergistic-only or235

antagonistic-only labels, when combined with similar drugs, since similar drugs hit similar pathways236

exhibiting homogeneous synergistic or antagonistic effect. Different drugs hit different pathways237

exhibiting heterogeneous synergistic and antagonistic effect: synergy with some drugs and antagonism238

with other drugs depending on pathway hit [16]. We then considered the relationship between a239

drug’s combinatorial label homogeneity and its tendency for non-additivity, defined in this work240
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as median absolute distance from Bliss additivity across combinations. The correlation between241

these attributes varied across cell-line models and tended to increase with dataset modelability or242

increasing model performance in AUPRC (Pearson’s r = 0.378, Figure 5A). High-performing cell-line243

models comprized drugs exhibiting a stronger correlation between combinatorial label homogeneity244

and non-additivity with a 95% CI [0.091,0.241] higher Pearson correlation coefficient (PCC) than245

low-performing cell-line models (Welch’s two-sample t = 4.39, df = 114.7, p < 0.00002). 19.4%246

of cell-line datasets exhibited PCCs between combinatorial label homogeneity and non-additivity247

≥ 0.5. Of these, 75% had model performances AUPRC ≥ 0.8. Figure 5B shows one such cell-line248

dataset, namely the skin epithelial-like cell line IST-MEL1, with AUPRC ≥ 0.9 and PCC between249

combinatorial label homogeneity and non-additivity r = 0.643. In other words, drugs that elicited250

close-to-additive effects when combined tended to have low combinatorial label homogeneity, while251

drugs that elicited highly synergistic or highly antagonistic effects when combined tended to have252

high combinatorial label homogeneity. These findings imply that combinatorial label homogeneity253

could function as a crude proxy for non-additivity in some contexts, yielding greater modelability.254

Figure 5: Panel A. Each dot in the density plot and each barcode line in the violin plot represents
one cell-line model. Panel A(i). Model performance (AUPRC) tended to increase with
increasing strength of correlation between combinatorial label homogeneity and degree
of non-additivity (Pearson’s r = 0.378). Panel A(ii). High-performing cell-line models
spanned drugs with a stronger correlation between combinatorial label homogeneity and
degree of non-additivity: 95% CI [0.091,0.241] difference in mean PCCs. Panel B.
Combinatorial label homogeneity versus degree of non-additivity for the IST-MEL1 cell
line with AUPRC ≥ 0.9 (Pearson’s r = 0.643).

4 Conclusions255

In this work, we qualify and quantify various synergy dataset attributes influencing modelability:256

synergy spread, class separation, chemical structural diversity, physicochemical diversity, combina-257

torial tests per drug, and combinatorial label entropy. We simulate shifts in distributions of these258

attributes and report that combinatorial label entropy improved and degraded model performance259

most, depending on the direction of attribute shift. It is important to note that the attributes were260

not decoupled in our simulations as shifting one attribute distribution in isolation was not feasible;261

shifting one distribution simultaneously shifted other distributions to varying degrees. Overall, our262

findings imply that model performance is highly sensitive to distributional biases in available data.263

We find that distributional biases in the training-validation-test sets used for predictive modeling of264

drug synergy can explain up to 0.22 ∆AUPRC of the difference observed in model performances.265

For comparison, we refer to performance improvements over state-of-the-art models reported in drug266

synergy literature, such as 0.04 ∆AUPRC by Preuer et al. [23] and Wang et al. [31]. We caution267

that the synergy modeling community’s efforts may be better expended in examining data-specific268

artefacts and biases rigorously prior to model building. We recommend that synergy modelers269

characterize the applicability domain wherein models can be expected to work reliably and report270

explicitly the statistical biases underlying datasets used for model generation.271
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5 Appendices364

Figure 6: AUPRC performances for all cell-line models investigated in this study.
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Figure 7: Drug similarity in physicochemical (upper) and structural (lower) spaces correlate with
combinatorial label homogeneity.
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