
RamPO: Retrieval-Augmented Monte Carlo Tree Search Preference
Optimization for Multi-Hop Question Answering

Anonymous ACL submission

Abstract001

Large language models achieve impressive002
performance on NLP tasks. Nevertheless,003
multi-hop question answering (QA) requires004
exploring a vast search space of possible rea-005
soning, which leads to performance degrada-006
tion. Recent methods often enhance multi-007
hop reasoning relying on inference scaling008
laws (e.g., performing multiple rollouts to009
enhance reasoning), which significantly in-010
creases latency; or retrieval-augmented gener-011
ation (RAG), which requires additional valid012
reasoning over the retrieved content. However,013
real-time QA scenarios demand LLMs explore014
the search space for valid reasoning within lim-015
ited time budgets. In this work, we propose016
Retrieval-Augmented Monte Carlo Tree Search017
Preference Optimization (RamPO), which in-018
tegrates Monte Carlo Tree Search (MCTS) with019
a comprehensive action sequence tailored for020
RAG settings. By leveraging MCTS-guided021
heuristic exploration to constrain the search022
space and aligning with preference preferred023
by MCTS in offline, RamPO provides a trade-024
off between latency and reasoning accuacy025
during search space exploration in online in-026
ference. Experiments in three multi-hop QA027
datasets show that RamPO achieves an aver-028
age performance improvement of 12.3% com-029
pared to recent top-notch methods, with up030
to 156.2× faster than existing tree-like infer-031
ence approaches. Our code is available at032
https://github.com/NLPwang/RamPO.033

1 Introduction034

Recent advances in large language models (LLMs)035

(Ouyang et al., 2022; Achiam et al., 2023; Touvron036

et al., 2023) have demonstrated strong capabilities037

in solving downstream tasks (Brown et al., 2020;038

Raffel et al., 2020). However, multi-hop question039

answering (QA) (Yang et al., 2018; Ho et al., 2020;040

Press et al., 2022) remains particularly challenging,041
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Figure 1: An overview of RamPO, which leverages
MCTS with a comprehensive action sequence tailored
for RAG settings to guide heuristic exploration of search
space for the construction of preference pairs, and em-
ploys DPO to train LLMs.

as it requires LLMs to integrate and reconcile evi- 042

dence across reasoning steps and multiple sources 043

before arriving at a final answer. 044

Several efforts have sought to enhance multi-hop 045

reasoning relying on inference scaling laws (ISL) 046

(Wu et al., 2024) , where increased computational 047

resources or extended inference time are used to 048

boost reasoning quality (Yao et al., 2023a; Hao 049

et al., 2023; Feng et al., 2023; Zhang et al., 2024a). 050

ISL substantially raises latency, limiting its appli- 051

cability in real-time scenarios. To reduce inference 052

latency, recent work (Zhang et al., 2024c) attempts 053

to shift latency from inference to training via re- 054

inforcement learning (RL) (Rafailov et al., 2023; 055

Guan et al., 2025). However, data collected for 056

RL typically relies on tree-of-thought (ToT) (Yao 057

et al., 2023a) combined with BFS or DFS. Within 058

limited time budgets, it remains difficult to compre- 059

hensively explore the immense search space and 060

explore valid reasoning. 061
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Method Reasoning Policy Inference Retrieval-Augmented

CoT (Wei et al., 2022b)
RQ-RAG (Chan et al., 2024)
CPO (Zhang et al., 2024c)

CoT
Chain-Like


CoT
ToT

ToT (Yao et al., 2023a)
ReST-MCTS* (Zhang et al., 2024a)

ToT Tree-Like
MCTS

RamPO (Ours) MCTS Chain-Like

Table 1: Comparison between the related top-notch baseline methods and our proposed RamPO.  : fully support,
 : partial support (i.e., performance may remain stable or even decline when adapting the standard RAG in the
follow-up experiment).

Some methods incorporate retrieval-augmented062

generation (RAG) (Trivedi et al., 2023) into the063

reasoning process, enabling LLMs to leverage ex-064

ternal knowledge during QA. Rather than solely065

relying on the initial query for retrieval, recent066

work enhances query understanding by applying067

preprocessing operations, enabling the retrieval of068

more relevant documents (Chan et al., 2024; Zhang069

et al., 2024b; Hu et al., 2025). However, exter-070

nal knowledge introduces additional challenges:071

models must not only identify relevant information072

from multiple documents but also reason over it to073

derive correct answers. Unguided and unstructured074

exploration becomes highly challenging when the075

search space of possible reasoning is immense.076

To provide a heuristic and structured search077

strategy for exploration, we propose Retrieval-078

Augmented Monte Carlo Tree Search Preference079

Optimization (RamPO), which integrates Monte080

Carlo Tree Search (MCTS) with a comprehen-081

sive action sequence tailored for RAG settings.082

As shown in Figure 1, RamPO leverages MCTS083

and answer correctness as reward signals to guide084

heuristic exploration of search space for the con-085

struction of preference pairs. A preference pair086

respectively consists of the preferred step and the087

dispreferred step, both of which share the same pre-088

vious reasoning. Subsequently, RamPO employs089

direct preference optimization (DPO) (Rafailov090

et al., 2023) to train LLMs, aiming to align with091

preference and shift the latency from inference to092

training. As shown in Table 1 and Figure 2, com-093

pared to previous methods, RamPO enables LLMs094

to follow the MCTS-preferred reasoning through095

a single rollout with CoT in inference, which pro-096

vides a trade-off between latency and reasoning097

accuacy during the search space exploration.098

Our key insight is that much like strategic plan-099

ning in games (e.g., chess) or navigating a maze,100

MCTS simulates complete future reasoning based101

RamPO(ours)

ToT CPO

RQ-RAG

CoT
Speed

ReST-MCTS*

Accuracy

Figure 2: RamPO provides a trade-off between latency
and reasoning accuacy during search space exploration
in online inference.

on the current steps before committing to the next 102

step, which provides heuristic and structured ex- 103

ploration of the search space, enabling informed 104

decision-making at each step rather than relying on 105

random or unstructured sampling. 106

RamPO exhibits exceptional performance across 107

three mainstream LLMs on three commonly used 108

complex multi-hop QA datasets. Compared to re- 109

cent top-notch methods, after preference optimiza- 110

tion, it achieves an average accuracy improvement 111

of up to 12.3% and a maximum improvement of 112

36.2%. While demonstrating comparable or su- 113

perior performance to tree-like inference methods, 114

RamPO also shows lower latency, being 156.2× 115

faster than tree-like inference methods. 116

Our contributions are as follows: 117

• We integrate MCTS with a comprehensive ac- 118

tion sequence for RAG settings into reasoning 119

for multi-hop QA, providing heuristic and struc- 120

tured exploration of the search space. RamPO 121

provides a trade-off between latency and reason- 122

ing accuacy during search space exploration in 123

online inference within limited time budgets. 124

• We provide empirical evidence that RamPO en- 125

hances the reliability and robustness of reasoning 126

in LLMs by heuristically exploring and evaluat- 127

ing the search space. 128
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2 Related Work129

Reasoning Augmentation for LLMs. Recent130

advances in LLMs emphasize constructing reason-131

ing chains to enhance problem-solving capabilities.132

Chain-of-Thought (CoT) (Wei et al., 2022b) im-133

proves reasoning by generating intermediate steps.134

Building on this, Yao et al. (2023a) propose Tree-135

of-Thought (ToT), which enables a more deliberate136

reasoning process by exploring multiple branching137

thoughts at each step. Subsequent work further138

enhances the tree-like reasoning through advanced139

tree-search algorithms such as Monte Carlo Tree140

Search (MCTS) incorporating external reward mod-141

els (Feng et al., 2023; Zhang et al., 2024a), which142

still requires tree-like reasoning during the infer-143

ence phase. To reduce ToT’s high latency, Tian et al.144

(2024) distill ToT’s strategic depth into CoT by fine-145

tuning LLMs using optimal reasoning identified by146

ToT. Extending this, Zhang et al. (2024c) apply147

Direct Preference Optimization (DPO) (Rafailov148

et al., 2023) with paired preference thoughts gath-149

ered in ToT, leveraging additional preference infor-150

mation in dispreferred thoughts.151

However, within limited time budgets, it re-152

mains difficult to comprehensively explore the im-153

mense search space relying on ToT with BFS or154

DFS. Meanwhile, chain-like and tree-like reason-155

ing is inherently static and blackboxed (Yao et al.,156

2023b), as it depends solely on internal represen-157

tations without grounding in external knowledge,158

limiting its adaptability in complex multi-hop ques-159

tion answering.160

Retrieval-Augmented Generation for LLMs.161

RAG (Lewis et al., 2020) enhances LLMs in162

knowledge-intensive tasks by integrating external163

information into the generation process. Trivedi164

et al. (2023) facilitate reasoning over retrieved165

documents by integrating CoT reasoning. Chan166

et al. (2024) focus on optimizing the retrieval phase167

through query rewriting and decomposition. Fur-168

thermore, recent research has explored combining169

tree-like reasoning structures with RAG to further170

enhance the flexibility of search space exploration171

(Zhang et al., 2024b). Hu et al. (2025) integrates172

MCTS’s reasoning and search capabilities with173

adaptive retrieval mechanisms.174

However, recent work typically employs in-175

ference scaling laws (e.g., tree-like reasoning) to176

achieve more deliberate reasoning in RAG scenar-177

ios, which significantly increases latency and strug-178

gles to meet real-time requirements. 179

In this work, our proposed RamPO uses answer 180

correctness as reward signals to explore the search 181

space guided by MCTS and construct preference 182

pairs. Subsequently, LLMs are trained to align with 183

preference via DPO, shifting the latency from infer- 184

ence to training. RamPO enables LLMs to follow 185

the MCTS-preferred reasoning through a single 186

rollout with CoT in inference by leveraging MCTS 187

to guide heuristic exploration. Meanwhile, RamPO 188

introduces a comprehensive action sequence frame- 189

work during MCTS for RAG scenarios. This facili- 190

tates the integration of the RAG mechanism with 191

the MCTS reasoning structure, thereby improving 192

adaptation to challenging multi-hop QA scenarios. 193

3 Preliminary 194

To facilitate a better understanding of our proposed 195

RamPO, we introduce the mechanism of Monte 196

Carlo Tree Search (MCTS) within this section. 197

MCTS (Browne et al., 2012) is a tree-based 198

decision-making algorithm widely used in complex 199

decision processes, which balances exploration and 200

exploitation. MCTS maintains a search tree that 201

explicitly records historical trajectories and associ- 202

ated statistical metrics, comprising four essential 203

phases: 204

• Selection: Traverse the existing search tree from 205

the root node, recursively selecting optimal child 206

nodes based on specific criteria (e.g., Upper Con- 207

fidence Bound applied to Trees, UCT). This 208

phase continues until it encounters either an ex- 209

pandable leaf node (a node that has not been fully 210

expanded) or a terminal node (e.g., terminating 211

at the maximum depth or arriving at the final 212

answer). The UCT is calculated as follows: 213

UCT(si, s) =
Qsi

Nsi

+ c

√
log(Ns)

Nsi

(1) 214

where Qsi and Nsi represent the estimated value 215

and the visit count of node si respectively. While 216

Ns denotes the visit count of the parent node s of 217

si. c is a constant that balances the trade-off be- 218

tween exploration and exploitation. Specifically, 219

c is set to
√
2 in this work. 220

• Expansion: Expand the current node when reach- 221

ing an expandable leaf node rather than a terminal 222

node, by adding a feasible child node selected 223

based on the action of the current node. 224
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Figure 3: The framework of RamPO. (i) illustrates the exploration of the search space, guided by MCTS, utilizing
a comprehensive action sequence specifically designed for RAG settings. (ii) depicts the process of collecting
preference pairs and employing them to optimize the model. Nodes marked with a medal icon indicate preferred
reasoning path that lead to correct answers. After optimization, the model requires only a single rollout during
inference to obtain the preferred reasoning path, resulting in low-latency execution.

• Simulation: Perform simulations (namely roll-225

outs) with a specific policy (e.g., random policy226

in this work) to estimate the estimated value Qsi227

of the newly expanded node, continuing until a228

terminal node is reached.229

• Backpropagation: Backpropagate the Simula-230

tion result to the root along the path. The statisti-231

cal metrics (visit counts N , estimated values Q)232

of all visited nodes along the path are updated233

based on the reward of the simulation terminal234

node (calculated by a custom reward function).235

By iteratively executing these four phases,236

MCTS effectively balances exploration and ex-237

ploitation, thereby optimizing strategies in scenar-238

ios where the vast search space renders exhaustive239

exploration impractical.240

4 RamPO241

As shown in Figure 3, RamPO consists of two242

main components: Retrieval-Augmented MCTS243

Heuristic Exploration for heuristic exploration of244

search space in RAG scenarios under MCTS, and245

Step-Level Preference Synthesis and Alignment for246

gathering preference pairs and training LLMs to247

align with preference using DPO.248

4.1 Retrieval-Augmented MCTS Heuristic249

Exploration250

We establish a seamless integration between MCTS251

in §3 and RAG. The step-wise exploration and gen-252

eration process adheres to the standard phases of253

MCTS, where each node in the search tree corre- 254

sponds to a solution step generated by the LLM, 255

conditioned on all previously generated steps along 256

the current reasoning. After the search tree is fully 257

constructed via iterative exploration, we extract 258

preference pairs from the resulting paths.The de- 259

tails are as follows: 260

Reasoning Action Sequence Under RAG. To 261

enhance the adaptability of the MCTS algorithm 262

with RAG, we design a comprehensive action se- 263

quence framework that systematically integrates 264

RAG concepts into the search tree construction 265

process, which comprises six distinct operational 266

actions: 267

♢ A1: Query rephrasing (Ma et al., 2023). 268

♢ A2: Query decomposition (Zhou et al., 2023). 269

♢ A3: Subquestions solving (Zhou et al., 2023). 270

♢ A4: Document retrieval (Ram et al., 2023). 271

♢ A5: Document analysis (Wei et al., 2022a). 272

♢ A6: Answer extraction (Wei et al., 2022a). 273

We define the action sequence: 274

S = (A1, A2, A3, A4, A5, A6) (2) 275

where A1, A2 are designed for query optimization, 276

aiming to enhance the comprehension of the query 277

and improve the accuracy of relevant document 278

retrieval. A3, A5, A6 are actions for analysis and 279

reasoning built upon previous actions and retrieved 280

documents. A4 focuses on document retrieval. 281
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At each step i, MCTS selects and executes an282

action ai following S. ai is used to prompt the283

LLM to sample the child node si based on the284

current reasoning path r ⊕ s1 ⊕ s2 ⊕ . . . ⊕ si−1,285

where r represents the root, i.e., the user query, and286

sj(1 ≤ j < i) denotes a reasoning step (node) gen-287

erated by the LLM. More details on action-related288

prompts can be found in Appendix B.289

Reasoning Space Exploration with MCTS. We290

iteratively explore the search space by carrying out291

the MCTS process detailed in §3. Starting from292

the root node (the user query), MCTS recursively293

selects promising child nodes based on the UCT.294

This selection phase continues until an expandable295

leaf node si−1 is encountered. Once an action is296

chosen based on S, a child node si sampled by297

the LLM is subsequently expanded. The estimated298

value Q of the newly expanded node si is then299

estimated through a simulation, as described in the300

following paragraph.301

Reward Evaluation and Backpropagation. To302

calculate the estimated value Q of each node, we303

adopt a method inspired by AlphaGo (Silver et al.,304

2017), where each intermediate node is evaluated305

based on its contribution to the final correct answer.306

Specifically, actions that more frequently lead to307

the correct answer are assigned higher scores, in-308

creasing their likelihood of being selected during309

the tree expansion process.310

Following the expansion, a simulation is con-311

ducted to estimate its initial estimated value and312

the reward. The simulation leverages the LLM to313

generate corresponding steps in accordance with S,314

continuing until the final step A6 (Answer extrac-315

tion) is reached. Subsequently, we employ Hard316

Estimation to evaluate the reward r and assign317

the initial estimated value Qinitial
si to the newly ex-318

panded node si, as defined below:319

Qinitial
si = rsi =

{
1, Asimulation = GT

0, else
(3)320

where Asimulation denotes the answer generated321

by the LLM with the steps from the root to the322

newly expanded node si in this round of simulation,323

and GT represents the ground truth answer for the324

given problem.325

The reward rsi is then backpropagated along326

the reasoning path P = r ⊕ s1 ⊕ s2 ⊕ ...⊕ si−1 ,327

such that the estimated value of each intermediate328

node sj is updated as Qsj ← Qsj + rsi .329

4.2 Step-Level Preference Synthesis and 330

Alignment 331

Preferences Synthesis. As shown in Figure 3(ii), 332

once the tree has been fully constructed through 333

iterative exploration, the nodes along the paths that 334

lead to the correct answer are identified as preferred 335

(i.e., winning) nodes. For each preferred node swi , 336

corresponding dispreferred (i.e., losing) nodes sli 337

are derived. This is accomplished by first locating 338

the parent node swi−1. Among the child nodes of 339

swi−1, those that are not marked as preferred are 340

considered candidates for the dispreferred nodes 341

sli, which naturally provides additional preference 342

information. Crucially, only preferred and dispre- 343

ferred nodes that share the same parent node swi−1 344

are eligible to form a valid preference pair (swi , s
l
i). 345

To prevent external documents from introducing 346

noise during training, we deliberately remove the 347

original retrieved documents when constructing 348

preference pairs. 349

Preferences Alignment. Once we have obtained 350

the Step-Level preference pairs, we leverage re- 351

cent advances in reinforcement learning from hu- 352

man feedback (RLHF), particularly the Direct Pref- 353

erence Optimization (DPO) algorithm (Rafailov 354

et al., 2023), to align LLMs with the preference col- 355

lected in MCTS. Specificly, for the i-th step, given 356

the previous reasoning steps sw1:i−1, the probabili- 357

ties of generating the preferred reasoning step swi 358

and the dispreferred reasoning step sli are denoted 359

πθ(s
w
i |x, sw1:i−1) and πθ(s

l
i|x, sw1:i−1), respectively. 360

To optimize the LLM on this pair of preference 361

steps, we can directly substitute it into the DPO 362

framework: 363

Li(πθ;πref) = − log σ

(
β log

πθ(s
w
i |x, swi−1)

πref(swi |x, swi−1)

−β log
πθ(s

l
i|x, swi−1)

πref(sli|x, swi−1)

) (4) 364

where σ is the logistic function, the hyperparameter 365

β regulates the penalty imposed for the deviations 366

from the base reference model πref. 367

5 Experiments 368

5.1 Datasets 369

We focus our research on three commonly used 370

multi-hop QA datasets: 1) Bamboogle (Press et al., 371

2022), comprising complex questions that Google 372

answers incorrectly, assessing models’ composi- 373

tional reasoning across different domains. 2) Hot- 374
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CoT RQ-RAG CPO ToT ReST-MCTS* RamPO (ours)

Acc.↑ Lat.↓ Acc.↑ Lat.↓ Acc.↑ Lat.↓ Acc.↑ Lat.↓ Acc.↑ Lat.↓ Acc.↑ Lat.↓
(%) (s/ins.) (%) (s/ins.) (%) (s/ins.) (%) (s/ins.) (%) (s/ins.) (%) (s/ins.)

LLaMA-3.2-3B-Ins

Bam. 30.4(2.9↑) 2.0 41.1 3.0 33.9(0.1↓) 3.1 34.3(0.2↓) 764.6 41.5(1.9↓) 665.9 45.3* 5.0
Hot. 21.6(6.6↑) 2.3 24.9 2.9 28.5(4.2↑) 3.3 26.4(1.2↑) 802.3 34.1(3.2↓) 705.2 38.3* 5.2
2Wiki. 22.0(1.0↓) 2.3 13.5 3.3 24.5(3.4↑) 2.9 24.8(3.3↑) 832.1 32.7(0.2↓)* 735.7 30.0 5.9

LLaMA-3.1-8B-Ins

Bam. 55.6(3.3↓) 4.9 58.7 5.3 62.3(13.6↓) 3.9 64.3(9.2↓) 1534.9 82.8(3.5↓)* 1035.6 81.2 7.2
Hot. 28.4(5.8↑) 4.5 34.9 5.8 34.0(4.7↑) 4.7 31.4(2.1↓) 1762.6 40.6(1.8↓) 1106.7 42.9* 7.6
2Wiki. 26.5(3.5↑) 5.8 26.7 6.4 29.2(2.4↑) 4.1 29.7(1.0↓) 1203.4 37.9(0.1↓)* 1099.5 36.5 8.3

Qwen-2.5-7B-Ins

Bam. 32.3(3.1↓) 5.3 44.2 5.9 30.7(2.1↓) 5.3 31.2(1.3↑) 1263.2 69.2(1.1↓)* 1146.1 68.5 8.2
Hot. 18.8(7.7↑) 5.2 32.5 5.1 16.2(7.5↑) 4.9 24.6(7.5↓) 1596.9 38.9(0.8↓) 1294.8 41.9* 8.0
2Wiki. 19.5(1.2↑) 5.0 25.5 4.8 32.8(1.1↑) 4.3 32.2(0.8↓) 1128.0 36.4(3.8↓) 1094.3 38.5* 7.9

Table 2: Overall performance comparison, the best results are marked with * and the best results among all chain-
like inference methods are underlined. For methods not designed for the RAG scenario, we additionally evaluate
their performance when combined with the standard RAG by appending the retrieved documents to the question.
Compared to without RAG, accuracy changes are denoted by ↑ or ↓ to indicate increase or decrease respectively.

potQA (Yang et al., 2018) and 3) 2WikiMulti-375

HopQA (Ho et al., 2020), both demanding reason-376

ing across multiple Wikipedia paragraphs.377

5.2 Baselines378

We evaluate our approach against a wide range of379

baseline methods for comparison, categorized into380

chain-like and tree-like inference baselines:381

• Chain-Like Inference Baselines:382

1) CoT (Wei et al., 2022b), which prompts the383

LLM to generate a series of reasoning steps be-384

fore producing the final answer. 2) RQ-RAG385

(Chan et al., 2024), which involves query rewrit-386

ing and subquestion decomposition. 3) CPO387

(Zhang et al., 2024c), which generates the path388

preferred by ToT using CoT by DPO.389

• Tree-Like Inference Baselines:390

1) ToT (Yao et al., 2023a), which requires the391

LLM to explore multiple reasoning paths via tree392

search. 2) ReST-MCTS* (Zhang et al., 2024a),393

which training LLMs using model-based RL394

training under MCTS.395

Notably, for methods not originally designed396

for RAG settings, we additionally evaluate their per-397

formance when combined with the standard RAG398

approach by appending the retrieved documents to399

the question. Compared to without RAG, accuracy400

changes are denoted by ↑ or ↓ to indicate increase401

or decrease respectively.402

We select three widely used LLMs, specifically 403

LLaMA-3.2-3B-Instruct, LLaMA-3.1-8B-Instruct 404

(Grattafiori et al., 2024) and Qwen-2.5-7B-Instruct 405

(Yang et al., 2024). Collect the supporting state- 406

ments for Bamboogle and the supporting docu- 407

ments for HotpotQA and 2WIKI, encode them into 408

dense vector representations using a mainstream 409

dense retriever (BGE-M3 (Chen et al., 2024)), and 410

then use FAISS (Douze et al., 2024) to maintain a 411

local vector database for retrieval. In all methods, 412

the number of retrieved documents per question is 413

fixed at 3 by default. Additional implementation 414

details are presented in Appendix A. 415

5.3 Main Results 416

Table 2 summarizes the performance across var- 417

ious multi-hop QA datasets, from where we can 418

conclude: 419

RamPO significantly enhances the capability of 420

the LLM in solving complex multi-hop questions 421

within the RAG scenario. As shown in Table 2, 422

RamPO consistently outperforms all chain-like in- 423

ference baselines across all datasets and models, 424

achieving an average improvement of 14.5% and a 425

maximum improvement of 36.2%. This indicates 426

that RamPO effectively enhances the capability of 427

the LLM to solve complex multi-hop questions 428

within RAG settings. Notably, RamPO achieves 429

these improvements without requiring additional 430

human-annotated data, which is particularly benefi- 431
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cial in resource-constrained settings.432

RamPO has a lower latency than tree-like in-433

ference methods but comparable performance.434

Although tree-like inference methods typically out-435

perform chain-like inference methods, it suffers436

from high inference latency. This is attributed to437

the necessity of generating and evaluating multiple438

reasoning paths at each step, which substantially in-439

creases the number of generated tokens and, in turn,440

leads to higher computational cost and latency. In441

contrast, RamPO shifts the computational burden442

to the training phase, preserving the low-latency443

advantage of chain-like inference, which is 156.2×444

faster than tree-like inference methods on average,445

while offering comparable or superior performance.446

This demonstrates that RamPO can enhance perfor-447

mance without sacrificing efficiency.448

5.4 The effectiveness of selection strategies of449

dispreferred nodes450

We investigate the effect of various methods for451

selecting preference pairs on overall model per-452

formance. As illustrated in Figure 4, we exper-453

iment with four strategies based on the UCT of454

each node: 1) Winners/ Losers, in which all nodes455

on the reasoning paths with the correct answer are456

designated as preferred, while all remaining nodes457

are treated as dispreferred; 2) Winners/ Lowest,458

where for each parent node, only the child node459

with the lowest UCT leading to an incorrect answer460

is designated as dispreferred; 3) Highest/ Losers,461

where for each parent node, only the child node462

with the highest UCT leading to the correct answer463

is preferred; 4) Highest/ Lowest, wherein for each464

parent node, only the child node with the highest465

UCT leading to the correct answer is preferred and466

the child node with the lowest UCT leading to an467

incorrect answer is dispreferred. To ensure a fair468

comparison, we maintained an equal number of469

training questions across all strategies.470
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Figure 4: Different strategies for selecting dispreferred
nodes.

Strategy Acc.(%)

Winners/ Lowest 36.5
Highest/ Losers 35.8
Highest/ Lowest 35.0

Winners/ Losers 38.7*

Table 3: Comparison between the selection strategies of
dispreferred nodes on the model performance.

As shown in Table 3, the Winners/Losers strat- 471

egy, which generates the most preference pairs, 472

achieves the best performance, while the High- 473

est/Lowest strategy with the least generated prefer- 474

ence pairs performs the worst. This indicates that a 475

coarse-grained distinction between preferred and 476

dispreferred nodes is more effective than a finer- 477

grained differentiation. The greater the number of 478

preference pairs, the stronger the model’s ability to 479

distinguish preference relationships when choosing 480

a reasoning path. 481

5.5 The effectiveness of actions on the Recall 482

of Documents 483

To evaluate the effectiveness of action sequence in 484

RamPO for document retrieval in RAG scenarios, 485

we sequentially remove action A1 and the combina- 486

tion of actions A2 and A3, and measure the recall 487

rates of the gold-standard documents (supporting 488

facts) on HotpotQA retrieved under five settings: 489

1) use the complete action sequence, 2) disable ac- 490

tion A1, 3) disable actions A2 and A3 together, 4) 491

use intermediate steps from CoT, and 5) use the 492

query-only. 493

55 60 65 70 75
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57.0

69.4

75.0

74.2

76.4

Disable
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Complete
Actions
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A2 A3

(a) The recall rates of the sup-
porting documents retrieved
under five settings

50
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0
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0

0

26
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00

3
0

32

138

202

Complete Actions
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(b) Venn diagram of the over-
lap for questions with all sup-
porting documents recall

Figure 5: The Effectiveness of actions for the Recall of
Documents on HotpotQA, using the LLaMA-3.2-3B-Ins
as the base model.

Figure 5 shows that using the complete action 494

sequence yields the best document recall perfor- 495

7



mance. Removing actions leads to moderate perfor-496

mance drops, while both still outperform the rest497

settings baselines by a large margin. These find-498

ings suggest that the designed action sequence in499

RamPO plays a critical role in enabling recursive500

evidence aggregation, effectively guiding the re-501

trieval process through a structured reasoning path.502

Each action contributes to progressively refining503

the query context and identifying relevant support-504

ing documents. In particular, the full sequence fa-505

cilitates a multi-hop reasoning mechanism, which506

allows the model to integrate and propagate infor-507

mation across multiple intermediate steps, enhanc-508

ing its ability to recall the correct supporting facts.509

5.6 The effectiveness of training data quantity510

To assess the effect of the quantity of training data511

on the optimization of the model, we performed an512

ablation study that systematically varies the number513

of questions used to generate preference pairs, rang-514

ing from 0 to 200. As depicted in Figure 6, model515

performance initially deteriorates before showing516

improvement as the number of training questions517

increases. Specifically, when fewer instances are518

utilized, model performance falls below that of519

the untrained baseline, probably due to overfitting520

(Azar et al., 2024) and compromised generalization.521

However, with an increase to around 100 instances,522

performance consistently improves, eventually ex-523

ceeding that of the base model. When the number524

of questions surpasses around 160, performance525

stabilizes, suggesting the model has reached a suf-526

ficient amount of data.527

0 40 80 120 160 200
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Figure 6: The effectiveness of the number of questions
in model optimization.

5.7 The effectiveness of preference modeling528

We investigate the effectiveness of preference mod-529

eling on model performance by conducting super-530

vised fine-tuning (SFT) on the data without dispre-531

DPO SFT

Acc.(%) Num./Ins. Acc.(%) Num./Ins.

Bam. 45.3 66 43.5 20
Hot. 38.3 86 33.9 27
2Wiki. 30.3 40 28.6 16

Table 4: The Effectiveness of preference modeling,
where Num./Ins. refers to the average number of train-
ing data instances generated per question instance.

ferred counterparts. As shown in Table 4, the in- 532

clusion of dispreferred data enhances model perfor- 533

mance. This observation implies that dispreferred 534

nodes have a positive effect during optimization. It 535

underscores the importance of utilizing both pre- 536

ferred and dispreferred steps to bolster the model’s 537

reasoning capabilities. 538

In addition, incorporating dispreferred nodes 539

into preference pair construction can significantly 540

enhance the efficiency of the training data construc- 541

tion. Compared to only using preferred nodes as 542

training data, RamPO can generate an average of 43 543

more training instances per problem instance, rep- 544

resenting a 204% increase, suggesting that RamPO 545

requires only a small number of human annotated 546

samples by design. Constructing the reasoning tree 547

is a time-consuming process, RamPO offers a prac- 548

tical trade-off between efficiency and effectiveness, 549

allowing for efficient resource management while 550

still achieving significant improvements. 551

6 Conclusion 552

In this work, we introduced RamPO, a novel frame- 553

work that integrates MCTS with preference-based 554

optimization for multi-hop question answering in 555

the RAG setting. By leveraging MCTS-guided 556

heuristic exploration to constrain the search space 557

and aligning with preference preferred by MCTS 558

in offline, RamPO provides a trade-off between la- 559

tency and reasoning accuacy during search space 560

exploration in online inference.We provide empiri- 561

cal evidence that RamPO enhances the reliability 562

and robustness of reasoning in LLMs by heuris- 563

tically exploring and evaluating the search space. 564

Extensive experiments across diverse LLMs and 565

challenging multi-hop QA benchmarks validate the 566

effectiveness of RamPO, showing significant gains 567

in performance and substantial reductions in online 568

inference latency. 569
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Limitations570

Although our proposed RamPO framework lever-571

ages MCTS to efficiently constrain the reasoning572

search space, enabling the model to generate high-573

quality reasoning chains during inference, there are574

still limitations in the current sample granularity.575

Specifically, we adopt a sequence-level sampling576

strategy, where the order of actions within a rea-577

soning chain is fixed during training and inference.578

This design, while contributing to output stability,579

limits the model’s flexibility in exploring diverse580

reasoning paths.581

A potential direction for future work is to el-582

evate the sampling granularity from the sequence583

level to the action level. This would allow the584

model to dynamically sample and select the next585

reasoning action at each step, guided by MCTS.586

Such an approach could encourage the model to587

learn to generate robust, high-quality reasoning588

chains while adapting its actions to different in-589

ference trajectories. This line of exploration may590

further enhance the model’s generalizability and591

interpretability in complex reasoning tasks.592

Ethical Considerations593

It is a widely held view that large language models594

(LLMs) have the capacity to produce predictions595

that may be biased. This concern gains particu-596

lar significance when the input queries contain at-597

tributes that are sensitive in nature. Given the po-598

tential for bias and other related issues, this study599

strongly recommends confining the use of such600

models to research contexts. Extra caution is im-601

perative when considering the application of these602

models beyond research applications.603

In this study, our use of existing artifacts is604

consistent with their intended purposes. All the605

datasets and models used in this work are publicly606

available. Specifically, LLaMA-3.2-3B-Instruct607

have Llama 3.2 Community License Agreement 1.608

LLaMA-3.1-8B-Instruct have Llama 3.1 Commu-609

nity License Agreement 2. Qwen-2.5-7B-Instruct,610

HotpotQA dataset, and 2WikiMultiHopQA (2Wiki)611

dataset have Apache-2.0 license 3. Bamboogle612

dataset has MIT License 4.613

1https://huggingface.co/meta-llama/Llama-3.
2-3B-Instruct/blob/main/LICENSE.txt

2https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct/blob/main/LICENSE

3https://www.apache.org/licenses/LICENSE-2.0
4https://opensource.org/license/MIT
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A Implementation Appendix 817

In this work, we set the default configurations of 818

RamPO as follows: 819

Parameter Default Value

MCTS Configuration
MCTS Exploration Weight

√
2

Max Iteration 1000
Max Answer Candidates 40
Number of Samples 6

LLM Configuration
Temperature 0.4
Top-K 50
Top-P 1.0

Table 5: Default configurations of RamPO.

In the experiments, we used the following 820

datasets: Bamboogle 5, HotpotQA 6 and 2Wiki- 821

MultiHopQA 7. To maintain a reasonable budget, 822

especially given the high computational demand of 823

ToT, we limit each dataset to a maximum of 400 824

test samples through random sampling. The LLMs 825

employed are LLaMA-3.2-3B-Instruct 8, LLaMA- 826

3.1-8B-Instruct 9 and Qwen-2.5-7B-Instruct 10. For 827

all baseline methods, we set the model configura- 828

tions identical to those in Table 5. In the process of 829

MCTS, the exploration phase continues until either 830

the number of answer candidates reaches 40 or the 831

maximum number of iterations is achieved. For 832

efficient fine-tuning, we use Low-Rank Adaptation 833

(LoRA) adapters (Hu et al., 2022).The learning 834

rates for DPO and SFT are 5e-6 and 1e-5 respec- 835

tively. For LoRA, the rank is set to 8, and α is set 836

to 16. for DPO, β is set to 0.2. 837

B Prompt Examples 838

We construct a unified set of prompts for the three 839

datasets. For each action that requires generation 840

by the LLM, some demonstrations are provided in 841

the prompts. Specifically, the prompts for different 842

actions are presented below. 843

5https://github.com/ofirpress/self-ask/tree/
main

6https://hotpotqa.github.io
7https://github.com/Alab-NII/2wikimultihop
8https://huggingface.co/meta-llama/Llama-3.

2-3B-Instruct
9https://huggingface.co/meta-llama/Llama-3.

1-8B-Instruct
10https://huggingface.co/Qwen/Qwen2.

5-7B-Instruct
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��：Query rephrasing

Given an input question, rephrase it into a more intuitive and easier-to-understand version.
The original question is enclosed within <Original Question> </Original Question> tags, and
the corresponding rephrased question is enclosed within <Rephrased Question> </Rephrased
Question> tags.
<Original Question>
In what school district is Governor John R. Rogers High School, named after John Rankin
Rogers, located?
</Original Question>
<Rephrased Question>
What school district is Governor John R. Rogers High School in?
</Rephrased Question>
<Original Question>
Which Australian racing driver won the 44-lap race for the Red Bull Racing team?
</Original Question>
<Rephrased Question>
Who is the Australian racing driver that won a 44-lap race for the Red Bull Racing team?
</Rephrased Question>
<Original Question>
What star of *Parks and Recreation* appeared in November?
</Original Question>
<Rephrased Question>
Which actor from *Parks and Recreation* made an appearance in November?
</Rephrased Question>
<Original Question>
Which genus of flowering plant is found in an environment further south, Crocosmia or
Cimicifuga?
</Original Question>
<Rephrased Question>
Between Crocosmia and Cimicifuga, which plant genus is typically found further south?
</Rephrased Question>
<Original Question>
In what year did the man who shot the Chris Stockley, of The Dingoes, die?
</Original Question>
<Rephrased Question>
What is the year of death for the man who shot Chris Stockley, of The Dingoes?
</Rephrased Question>
<Original Question>
{User Query}
</Original Question>
<Rephrased Question>
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�� and ��：Query decomposition and Subquestions solving

Given an input question, decompose it into indivisible sub-questions and answer them
briefly. The original question will be enclosed in <Question> and </Question>.
<Question>
Who lived longer, Theodor Haecker or Harry Vaughan Watkins?
</Question>
<Subquestions_1>
When did Theodor Haecker die? Theodor Haecker was 65 years old when he died.
</Subquestions_1>
<Subquestions_2>
When did Harry Vaughan Watkins die? Harry Vaughan Watkins was 69 years old when he
died.
</Subquestions_2>
<Question>
Why did the founder of Versus die?
</Question>
<Subquestions_1>
Who is the funder of Versus? The founder of Versus was Gianni Versace.
</Subquestions_1>
<Subquestions_2>
Why did Gianni Versace die? Gianni Versace was shot and killed on the steps of his Miami
Beach mansion on July 15, 1997.
</Subquestions_2>
<Question>
Who is the grandchild of Dambar Shah?
</Question>
<Subquestions_1>
Who is the son of Dambar Shah? Dambar Shah (? - 1645) was the father of Krishna Shah.
</Subquestions_1>
<Subquestions_2>
Who is the son of Krishna Shah? Krishna Shah (? - 1661) was the father of Rudra Shah.
</Subquestions_2>
<Question>
{User Query}
</Question>
<Subquestions_1>
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��：Document analysis

Based on the given question, we retrieve some documents. Please extract and summarize the
content that is relevant to the question. If there is nothing relevant to the question in the
document, answer "None".
Question: Butautas tried to depose his uncle who between which years?
Document: <doc>Marinus (praetorian prefect): Marinus was one of the most trusted and
senior aides of the Byzantine emperor Anastasius I (r. 491–518). He served twice as
praetorian prefect of the East, supervised some of Anastasius's tax reforms, supported the
Emperor's pro-Monophysite policies and led the Byzantine navy in a crucial battle that ended
for good the rebellion of general Vitalian in Thrace. He survived into the regime of Justin I
(r. 518–527), when he held his second tenure as praetorian prefect, but was soon sidelined
from power.</doc> <doc>Nuclear energy policy of the United States: The nuclear energy
policy of the United States developed within two main periods, from 1954–1992 and
2005–2010. The first period saw the ongoing building of nuclear power plants, the
enactment of numerous pieces of legislation such as the Energy Reorganization Act of 1974,
and the implementation of countless policies which have guided the Nuclear Regulatory
Commission and the Department of Energy in the regulation and growth of nuclear energy
companies. This includes, but is not limited to, regulations of nuclear facilities, waste
storage, decommissioning of weapons-grade materials, uranium mining, and funding for
nuclear companies, along with an increase in power plant building. Both legislation and
bureaucratic regulations of nuclear energy in the United States have been shaped by
scientific research, private industries' wishes, and public opinion, which has shifted over
time and as a result of different nuclear disasters.</doc> <doc>Butautas: Butautas (baptized
"Henryk"; died on May 7, 1380 in Prague) was a son of Kęstutis, Grand Duke of Lithuania.
He attempted to depose his uncle Algirdas and usurp power in Lithuania, but failed and was
forced into exile. He joined the court of the Holy Roman Emperor and even inspired a poem
about conversion to Christianity. Butautas is sometimes confused with his brother
Vaidotas.</doc>
Summary: 1. Butautas, son of Kęstutis (Grand Duke of Lithuania), attempted to depose his
uncle ​ Algirdas and usurp power in Lithuania. 2. The attempt failed, leading to his exile. 3.
The document does ​ not specify the exact years of the attempted deposition. 4. Butautas
died in 1380.
...{2 × demonstrations}...
Question:{User Query}
Document:{Document}
Summary:
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��：Answer extraction

Task: Answer the given question step-by-step
Question: Who lived longer, Theodor Haecker or Harry Vaughan Watkins?
Step 1 Rephrased Question: Who had a longer lifespan, Theodor Haecker or Harry Vaughan
Watkins?
Step 2 Subquestions_1: When did Theodor Haecker die? Theodor Haecker was 65 years old
when he died.
Step 3 Subquestions_2: When did Harry Vaughan Watkins die? Harry Vaughan Watkins
was 69 years old when he died.
Step 4 Document: <doc>In what year was Stephen Hawking born? 1942</doc> <doc>What
is the birthdate of Ethan Hawke? November 6, 1970</doc> <doc>In what year was Ethan
Hawke born? 1970</doc>
Step 5 So the final answer is: Harry Vaughan Watkins
Question: Why did the founder of Versus die?
Step 1 Rephrased Question: What caused the founder of Versus to pass away?
Step 2 Subquestions_1: Who is the funder of Versus? The founder of Versus was Gianni
Versace.
Step 3 Subquestions_2: Why did Gianni Versace die? Gianni Versace was shot and killed on
the steps of his Miami Beach mansion on July 15, 1997.
Step 4 Document: <doc>What is the birthdate of Avicii? September 8, 1989</doc> <doc>In
what year was Avicii born? 1989</doc> <doc>What is the birthplace (country only) of
Leonardo da Vinci? Italy</doc>
Step 5 So the final answer is: Shot
Question: What is the capital of the birthplace of Edin Dzeko?
Step 1 Rephrased Question: What is the main city of the place where Edin Dzeko was born?
Step 2 Subquestions_1: Where was Edin Dzeko born? Edin Dzeko was born in Bosnia and
Herzegovina.
Step 3 Subquestions_2: What is the capital of Bosnia and Herzegovina? Sarajevo
Step 4 Document: <doc>What is the birthplace (country only) of Edin Dzeko? Bosnia And
Herzegovina</doc> <doc>What is the capital of Bosnia and Herzegovina? Sarajevo</doc>
Step 5 So the final answer is: Sarajevo
Question: {User Query}
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