RamPO: Retrieval-Augmented Monte Carlo Tree Search Preference
Optimization for Multi-Hop Question Answering

Anonymous ACL submission

Abstract

Large language models achieve impressive
performance on NLP tasks. Nevertheless,
multi-hop question answering (QA) requires
exploring a vast search space of possible rea-
soning, which leads to performance degrada-
tion. Recent methods often enhance multi-
hop reasoning relying on inference scaling
laws (e.g., performing multiple rollouts to
enhance reasoning), which significantly in-
creases latency; or retrieval-augmented gener-
ation (RAG), which requires additional valid
reasoning over the retrieved content. However,
real-time QA scenarios demand LLMs explore
the search space for valid reasoning within lim-
ited time budgets. In this work, we propose
Retrieval-Augmented Monte Carlo Tree Search
Preference Optimization (RamPQ), which in-
tegrates Monte Carlo Tree Search (MCTS) with
a comprehensive action sequence tailored for
RAG settings. By leveraging MCTS-guided
heuristic exploration to constrain the search
space and aligning with preference preferred
by MCTS in offline, RamPO provides a trade-
off between latency and reasoning accuacy
during search space exploration in online in-
ference. Experiments in three multi-hop QA
datasets show that RamPO achieves an aver-
age performance improvement of 12.3% com-
pared to recent top-notch methods, with up
to 156.2x faster than existing tree-like infer-
ence approaches. Our code is available at
https://github.com/NLPwang/RamPO.

1 Introduction

Recent advances in large language models (LLMs)
(Ouyang et al., 2022; Achiam et al., 2023; Touvron
et al., 2023) have demonstrated strong capabilities
in solving downstream tasks (Brown et al., 2020;
Raffel et al., 2020). However, multi-hop question
answering (QA) (Yang et al., 2018; Ho et al., 2020;
Press et al., 2022) remains particularly challenging,

o infocn
[J Training

' <
(2.Expansion) “ ppo

| NS \

Ta s

Collecting preference pairs and then Inference with|
tuning LLM via DPO. CoT

L——p(4.Backpropagation

Figure 1: An overview of RamPO, which leverages
MCTS with a comprehensive action sequence tailored
for RAG settings to guide heuristic exploration of search
space for the construction of preference pairs, and em-
ploys DPO to train LLMs.

as it requires LLMs to integrate and reconcile evi-
dence across reasoning steps and multiple sources
before arriving at a final answer.

Several efforts have sought to enhance multi-hop
reasoning relying on inference scaling laws (ISL)
(Wu et al., 2024) , where increased computational
resources or extended inference time are used to
boost reasoning quality (Yao et al., 2023a; Hao
et al., 2023; Feng et al., 2023; Zhang et al., 2024a).
ISL substantially raises latency, limiting its appli-
cability in real-time scenarios. To reduce inference
latency, recent work (Zhang et al., 2024c) attempts
to shift latency from inference to training via re-
inforcement learning (RL) (Rafailov et al., 2023;
Guan et al., 2025). However, data collected for
RL typically relies on tree-of-thought (ToT) (Yao
et al., 2023a) combined with BFS or DFS. Within
limited time budgets, it remains difficult to compre-
hensively explore the immense search space and
explore valid reasoning.

https://github.com/NLPwang/RamPO

Method Reasoning

Policy Inference Retrieval-Augmented

CoT (Wei et al., 2022b) CoT D
RQ-RAG (Chan et al., 2024) CoT Chain-Like ()
CPO (Zhang et al., 2024c) ToT L)
ToT (Yao et al., 2023a) ToT Tree-Like o
ReST-MCTS* (Zhang et al., 2024a) MCTS ! I
RamPO (Ours) MCTS Chain-Like ()

Table 1: Comparison between the related top-notch baseline methods and our proposed RamPO. @ : fully support,
@3 : partial support (i.e., performance may remain stable or even decline when adapting the standard RAG in the

follow-up experiment).

Some methods incorporate retrieval-augmented
generation (RAG) (Trivedi et al., 2023) into the
reasoning process, enabling LL.Ms to leverage ex-
ternal knowledge during QA. Rather than solely
relying on the initial query for retrieval, recent
work enhances query understanding by applying
preprocessing operations, enabling the retrieval of
more relevant documents (Chan et al., 2024; Zhang
et al., 2024b; Hu et al., 2025). However, exter-
nal knowledge introduces additional challenges:
models must not only identify relevant information
from multiple documents but also reason over it to
derive correct answers. Unguided and unstructured
exploration becomes highly challenging when the
search space of possible reasoning is immense.

To provide a heuristic and structured search
strategy for exploration, we propose Retrieval-
Augmented Monte Carlo Tree Search Preference
Optimization (RamPO), which integrates Monte
Carlo Tree Search (MCTS) with a comprehen-
sive action sequence tailored for RAG settings.
As shown in Figure 1, RamPO leverages MCTS
and answer correctness as reward signals to guide
heuristic exploration of search space for the con-
struction of preference pairs. A preference pair
respectively consists of the preferred step and the
dispreferred step, both of which share the same pre-
vious reasoning. Subsequently, RamPO employs
direct preference optimization (DPO) (Rafailov
et al., 2023) to train LLMs, aiming to align with
preference and shift the latency from inference to
training. As shown in Table 1 and Figure 2, com-
pared to previous methods, RamPO enables LLMs
to follow the MCTS-preferred reasoning through
a single rollout with CoT in inference, which pro-
vides a trade-off between latency and reasoning
accuacy during the search space exploration.

Our key insight is that much like strategic plan-
ning in games (e.g., chess) or navigating a maze,
MCTS simulates complete future reasoning based

Accuracy RamPO(ours)
ReST-MCTS*
cPO
ToT
- (o)
RQ-RAG
CoT
(o] Speed

Figure 2: RamPO provides a trade-off between latency
and reasoning accuacy during search space exploration
in online inference.

on the current steps before committing to the next

step, which provides heuristic and structured ex-

ploration of the search space, enabling informed
decision-making at each step rather than relying on
random or unstructured sampling.

RamPO exhibits exceptional performance across
three mainstream LLMs on three commonly used
complex multi-hop QA datasets. Compared to re-
cent top-notch methods, after preference optimiza-
tion, it achieves an average accuracy improvement
of up to 12.3% and a maximum improvement of
36.2%. While demonstrating comparable or su-
perior performance to tree-like inference methods,
RamPO also shows lower latency, being 156.2x
faster than tree-like inference methods.

Our contributions are as follows:

* We integrate MCTS with a comprehensive ac-
tion sequence for RAG settings into reasoning
for multi-hop QA, providing heuristic and struc-
tured exploration of the search space. RamPO
provides a trade-off between latency and reason-
ing accuacy during search space exploration in
online inference within limited time budgets.

* We provide empirical evidence that RamPO en-
hances the reliability and robustness of reasoning
in LLMs by heuristically exploring and evaluat-
ing the search space.

2 Related Work

Reasoning Augmentation for LLMs. Recent
advances in LLMs emphasize constructing reason-
ing chains to enhance problem-solving capabilities.
Chain-of-Thought (CoT) (Wei et al., 2022b) im-
proves reasoning by generating intermediate steps.
Building on this, Yao et al. (2023a) propose Tree-
of-Thought (ToT), which enables a more deliberate
reasoning process by exploring multiple branching
thoughts at each step. Subsequent work further
enhances the tree-like reasoning through advanced
tree-search algorithms such as Monte Carlo Tree
Search (MCTS) incorporating external reward mod-
els (Feng et al., 2023; Zhang et al., 2024a), which
still requires tree-like reasoning during the infer-
ence phase. To reduce ToT’s high latency, Tian et al.
(2024) distill ToT’s strategic depth into CoT by fine-
tuning LLMs using optimal reasoning identified by
ToT. Extending this, Zhang et al. (2024c) apply
Direct Preference Optimization (DPO) (Rafailov
et al., 2023) with paired preference thoughts gath-
ered in ToT, leveraging additional preference infor-
mation in dispreferred thoughts.

However, within limited time budgets, it re-
mains difficult to comprehensively explore the im-
mense search space relying on ToT with BFS or
DFS. Meanwhile, chain-like and tree-like reason-
ing is inherently static and blackboxed (Yao et al.,
2023Db), as it depends solely on internal represen-
tations without grounding in external knowledge,
limiting its adaptability in complex multi-hop ques-
tion answering.

Retrieval-Augmented Generation for LLMs.
RAG (Lewis et al., 2020) enhances LLMs in
knowledge-intensive tasks by integrating external
information into the generation process. Trivedi
et al. (2023) facilitate reasoning over retrieved
documents by integrating CoT reasoning. Chan
et al. (2024) focus on optimizing the retrieval phase
through query rewriting and decomposition. Fur-
thermore, recent research has explored combining
tree-like reasoning structures with RAG to further
enhance the flexibility of search space exploration
(Zhang et al., 2024b). Hu et al. (2025) integrates
MCTS’s reasoning and search capabilities with
adaptive retrieval mechanisms.

However, recent work typically employs in-
ference scaling laws (e.g., tree-like reasoning) to
achieve more deliberate reasoning in RAG scenar-
ios, which significantly increases latency and strug-

gles to meet real-time requirements.

In this work, our proposed RamPO uses answer
correctness as reward signals to explore the search
space guided by MCTS and construct preference
pairs. Subsequently, LLMs are trained to align with
preference via DPO, shifting the latency from infer-
ence to training. RamPO enables LLMs to follow
the MCTS-preferred reasoning through a single
rollout with CoT in inference by leveraging MCTS
to guide heuristic exploration. Meanwhile, RamPO
introduces a comprehensive action sequence frame-
work during MCTS for RAG scenarios. This facili-
tates the integration of the RAG mechanism with
the MCTS reasoning structure, thereby improving
adaptation to challenging multi-hop QA scenarios.

3 Preliminary

To facilitate a better understanding of our proposed
RamPO, we introduce the mechanism of Monte
Carlo Tree Search (MCTS) within this section.

MCTS (Browne et al., 2012) is a tree-based
decision-making algorithm widely used in complex
decision processes, which balances exploration and
exploitation. MCTS maintains a search tree that
explicitly records historical trajectories and associ-
ated statistical metrics, comprising four essential
phases:

* Selection: Traverse the existing search tree from
the root node, recursively selecting optimal child
nodes based on specific criteria (e.g., Upper Con-
fidence Bound applied to Trees, UCT). This
phase continues until it encounters either an ex-
pandable leaf node (a node that has not been fully
expanded) or a terminal node (e.g., terminating
at the maximum depth or arriving at the final
answer). The UCT is calculated as follows:

_ Qs

UCT(s, s) = log(NV.)

—or 8/ 1
N, +c N, (D

where ()5, and N, represent the estimated value
and the visit count of node s; respectively. While
N, denotes the visit count of the parent node s of
s;. c1s a constant that balances the trade-off be-
tween exploration and exploitation. Specifically,
cis set to v/2 in this work.

» Expansion: Expand the current node when reach-
ing an expandable leaf node rather than a terminal
node, by adding a feasible child node selected
based on the action of the current node.

Quer‘/
rephrasmg

Query
deccmposmon

Subques(mns
solvl ng

O Node on the selection path

The current path (
| Newly expanded node
'.@ e
I
1| A simulation answer Reward backpropagate)
| -
: @ Final answer Simulation path

|—(> Selection —> Expansion —(>S|muIatlon—bBackpropagatlonJ

Dccu ment
remeval
Dccu ment
analysus
Answe r
exlractlon

Step-Level Preference
Synthesis and Alignment

Retrieval-Augmented MCTS
Exploration

@

€0))

Figure 3: The framework of RamPO. (i) illustrates the exploration of the search space, guided by MCTS, utilizing
a comprehensive action sequence specifically designed for RAG settings. (ii) depicts the process of collecting
preference pairs and employing them to optimize the model. Nodes marked with a medal icon indicate preferred
reasoning path that lead to correct answers. After optimization, the model requires only a single rollout during
inference to obtain the preferred reasoning path, resulting in low-latency execution.

* Simulation: Perform simulations (namely roll-
outs) with a specific policy (e.g., random policy
in this work) to estimate the estimated value (),
of the newly expanded node, continuing until a
terminal node is reached.

* Backpropagation: Backpropagate the Simula-
tion result to the root along the path. The statisti-
cal metrics (visit counts NV, estimated values Q)
of all visited nodes along the path are updated
based on the reward of the simulation terminal
node (calculated by a custom reward function).

By iteratively executing these four phases,
MCTS effectively balances exploration and ex-
ploitation, thereby optimizing strategies in scenar-
i0s where the vast search space renders exhaustive
exploration impractical.

4 RamPO

As shown in Figure 3, RamPO consists of two
main components: Retrieval-Augmented MCTS
Heuristic Exploration for heuristic exploration of
search space in RAG scenarios under MCTS, and
Step-Level Preference Synthesis and Alignment for
gathering preference pairs and training LLMs to
align with preference using DPO.

4.1 Retrieval-Augmented MCTS Heuristic
Exploration

We establish a seamless integration between MCTS
in §3 and RAG. The step-wise exploration and gen-
eration process adheres to the standard phases of

MCTS, where each node in the search tree corre-
sponds to a solution step generated by the LLM,
conditioned on all previously generated steps along
the current reasoning. After the search tree is fully
constructed via iterative exploration, we extract
preference pairs from the resulting paths.The de-
tails are as follows:

Reasoning Action Sequence Under RAG. To
enhance the adaptability of the MCTS algorithm
with RAG, we design a comprehensive action se-
quence framework that systematically integrates
RAG concepts into the search tree construction
process, which comprises six distinct operational
actions:

& Ax:
& Ay
& Azt
& Ayt
& As:
¢ Ag:

Query rephrasing (Ma et al., 2023).
Query decomposition (Zhou et al., 2023).
Subquestions solving (Zhou et al., 2023).
Document retrieval (Ram et al., 2023).
Document analysis (Wei et al., 2022a).
Answer extraction (Wei et al., 2022a).

We define the action sequence:

S = (A1, Az, A3, Ay, As, As) 2
where A1, Ay are designed for query optimization,
aiming to enhance the comprehension of the query
and improve the accuracy of relevant document
retrieval. As, A5, Ag are actions for analysis and
reasoning built upon previous actions and retrieved
documents. A4 focuses on document retrieval.

At each step 72, MCTS selects and executes an
action a; following S. a; is used to prompt the
LLM to sample the child node s; based on the
current reasoning path 7 @ s1 B so B ... D s;_1,
where r represents the root, i.e., the user query, and
s;(1 < j < 1) denotes a reasoning step (node) gen-
erated by the LLM. More details on action-related
prompts can be found in Appendix B.

Reasoning Space Exploration with MCTS. We
iteratively explore the search space by carrying out
the MCTS process detailed in §3. Starting from
the root node (the user query), MCTS recursively
selects promising child nodes based on the UCT.
This selection phase continues until an expandable
leaf node s;_; is encountered. Once an action is
chosen based on S, a child node s; sampled by
the LLM is subsequently expanded. The estimated
value @) of the newly expanded node s; is then
estimated through a simulation, as described in the
following paragraph.

Reward Evaluation and Backpropagation. To
calculate the estimated value () of each node, we
adopt a method inspired by AlphaGo (Silver et al.,
2017), where each intermediate node is evaluated
based on its contribution to the final correct answer.
Specifically, actions that more frequently lead to
the correct answer are assigned higher scores, in-
creasing their likelihood of being selected during
the tree expansion process.

Following the expansion, a simulation is con-
ducted to estimate its initial estimated value and
the reward. The simulation leverages the LLM to
generate corresponding steps in accordance with S,
continuing until the final step Ag (Answer extrac-
tion) is reached. Subsequently, we employ Hard
Estimation to evaluate the reward r and assign
the initial estimated value Q%! to the newly ex-
panded node s;, as defined below:

o {L Asimulation =GT
Si —

initial __
S -

0, else)
where Ag;muiation denotes the answer generated
by the LLM with the steps from the root to the
newly expanded node s; in this round of simulation,
and G7T represents the ground truth answer for the
given problem.

The reward 7, is then backpropagated along
the reasoning path P =r @& s1 & so B ... B si—1 ,
such that the estimated value of each intermediate
node s; is updated as Qs; < Qs; + Ts;-

4.2 Step-Level Preference Synthesis and
Alignment

Preferences Synthesis. As shown in Figure 3(ii),
once the tree has been fully constructed through
iterative exploration, the nodes along the paths that
lead to the correct answer are identified as preferred
(i.e., winning) nodes. For each preferred node s;’,
corresponding dispreferred (i.e., losing) nodes sé
are derived. This is accomplished by first locating
the parent node s;” ;. Among the child nodes of
si” 1, those that are not marked as preferred are
considered candidates for the dispreferred nodes
si—, which naturally provides additional preference
information. Crucially, only preferred and dispre-
ferred nodes that share the same parent node s}’ ;
are eligible to form a valid preference pair (s¥, st).
To prevent external documents from introducing
noise during training, we deliberately remove the
original retrieved documents when constructing
preference pairs.

Preferences Alignment. Once we have obtained
the Step-Level preference pairs, we leverage re-
cent advances in reinforcement learning from hu-
man feedback (RLHF), particularly the Direct Pref-
erence Optimization (DPO) algorithm (Rafailov
etal., 2023), to align LLMs with the preference col-
lected in MCTS. Specificly, for the i-th step, given
the previous reasoning steps si’;_;, the probabili-
ties of generating the preferred reasoning step s;’
and the dispreferred reasoning step sé are denoted
mo(s¥|w, s%,) and my(sk|x, s,), respectively.
To optimize the LLM on this pair of preference
steps, we can directly substitute it into the DPO
framework:

7T9(8},U ‘27, ‘5;‘771)

Li(7p; Tret) = —10ga<ﬁlog
T,

ref(8} |, 817 1)

)
mo(st|z, 5 1))

—Blog — 27zl
7Tref(5£',|~ra sily)

where o is the logistic function, the hyperparameter
5 regulates the penalty imposed for the deviations
from the base reference model 7ps.

S Experiments

5.1 Datasets

We focus our research on three commonly used
multi-hop QA datasets: 1) Bamboogle (Press et al.,
2022), comprising complex questions that Google
answers incorrectly, assessing models’ composi-
tional reasoning across different domains. 2) Hot-

CoT RQ-RAG CPO ToT ReST-MCTS* RamPO (ours)
Acc.T Lat.l Acc.t Lat.] Acc.T Lat.] Acc.T Lat.| Acc.T Lat.| Acc.t Lat]
(%) (s/ins.) (%) (s/ins.) (%) (s/ins.) (%) (s/ins.) (%) (s/ins.) (%) (s/ins.)
LLaMA-3.2-3B-Ins
Bam. 30.42.97) 20 41.1 3.0 33900.1)) 3.1 34.3(0.2]) 764.6 41.5(1.9]) 6659 45.3* 5.0
Hot. 21.6(6.67) 2.3 24.9 29 28.54.27) 33 264(1.27) 802.3 34.1(3.2]) 7052 38.3* 5.2
2Wiki. 22.0(1.01) 2.3 13.5 33 2453B.47) 29 248(3.37) 832.1 32.7(0.2))* 7357 30.0 5.9
LLaMA-3.1-8B-Ins
Bam. 55.6(3.3]) 49 587 53 62.3(13.6]) 39 64.3(9.2]) 15349 82.8(3.5])* 1035.6 81.2 7.2
Hot. 28.4(5.87) 4.5 349 5.8 34.04.77) 47 31.4Q2.1]) 1762.6 40.6(1.8]) 1106.7 42.9* 7.6
2Wiki. 26.5(3.57) 5.8 26.7 64 29.2247) 41 29.7(1.0)) 1203.4 37.9(0.1))* 1099.5 36.5 8.3
Qwen-2.5-7B-Ins
Bam. 323(3.1]) 53 442 59 30.72.1}) 53 31.2(1.37) 1263.2 69.2(1.10)* 1146.1 68.5 8.2
Hot. 18.8(7.77) 52 325 5.1 16.2(7.57) 49 24.6(7.5]) 15969 38.9(0.8]) 1294.8 41.9* 8.0
2Wiki. 19.5(1.27) 5.0 255 48 328(1.17) 43 322(00.8]) 1128.0 36.4(3.8]) 1094.3 38.5* 7.9

Table 2: Overall performance comparison, the best results are marked with * and the best results among all chain-
like inference methods are underlined. For methods not designed for the RAG scenario, we additionally evaluate
their performance when combined with the standard RAG by appending the retrieved documents to the question.
Compared to without RAG, accuracy changes are denoted by | or | to indicate increase or decrease respectively.

potQA (Yang et al., 2018) and 3) 2WikiMulti-
HopQA (Ho et al., 2020), both demanding reason-
ing across multiple Wikipedia paragraphs.

5.2 Baselines

We evaluate our approach against a wide range of
baseline methods for comparison, categorized into
chain-like and tree-like inference baselines:

* Chain-Like Inference Baselines:

1) CoT (Wei et al., 2022b), which prompts the
LLM to generate a series of reasoning steps be-
fore producing the final answer. 2) RQ-RAG
(Chan et al., 2024), which involves query rewrit-
ing and subquestion decomposition. 3) CPO
(Zhang et al., 2024c), which generates the path
preferred by ToT using CoT by DPO.

* Tree-Like Inference Baselines:
1) ToT (Yao et al., 2023a), which requires the
LLM to explore multiple reasoning paths via tree
search. 2) ReST-MCTS* (Zhang et al., 2024a),
which training LL.Ms using model-based RL
training under MCTS.

Notably, for methods not originally designed
for RAG settings, we additionally evaluate their per-
formance when combined with the standard RAG
approach by appending the retrieved documents to
the question. Compared to without RAG, accuracy
changes are denoted by | or | to indicate increase
or decrease respectively.

We select three widely used LLMs, specifically
LLaMA-3.2-3B-Instruct, LLaMA-3.1-8B-Instruct
(Grattafiori et al., 2024) and Qwen-2.5-7B-Instruct
(Yang et al., 2024). Collect the supporting state-
ments for Bamboogle and the supporting docu-
ments for HotpotQA and 2WIKI, encode them into
dense vector representations using a mainstream
dense retriever (BGE-M3 (Chen et al., 2024)), and
then use FAISS (Douze et al., 2024) to maintain a
local vector database for retrieval. In all methods,
the number of retrieved documents per question is
fixed at 3 by default. Additional implementation
details are presented in Appendix A.

5.3 Main Results

Table 2 summarizes the performance across var-
ious multi-hop QA datasets, from where we can
conclude:

RamPO significantly enhances the capability of
the LLM in solving complex multi-hop questions
within the RAG scenario. As shown in Table 2,
RamPO consistently outperforms all chain-like in-
ference baselines across all datasets and models,
achieving an average improvement of 14.5% and a
maximum improvement of 36.2%. This indicates
that RamPO effectively enhances the capability of
the LLM to solve complex multi-hop questions
within RAG settings. Notably, RamPO achieves
these improvements without requiring additional
human-annotated data, which is particularly benefi-

cial in resource-constrained settings.

RamPO has a lower latency than tree-like in-
ference methods but comparable performance.
Although tree-like inference methods typically out-
perform chain-like inference methods, it suffers
from high inference latency. This is attributed to
the necessity of generating and evaluating multiple
reasoning paths at each step, which substantially in-
creases the number of generated tokens and, in turn,
leads to higher computational cost and latency. In
contrast, RamPO shifts the computational burden
to the training phase, preserving the low-latency
advantage of chain-like inference, which is 156.2x
faster than tree-like inference methods on average,
while offering comparable or superior performance.
This demonstrates that RamPO can enhance perfor-
mance without sacrificing efficiency.

5.4 The effectiveness of selection strategies of
dispreferred nodes

We investigate the effect of various methods for
selecting preference pairs on overall model per-
formance. As illustrated in Figure 4, we exper-
iment with four strategies based on the UCT of
each node: 1) Winners/ Losers, in which all nodes
on the reasoning paths with the correct answer are
designated as preferred, while all remaining nodes
are treated as dispreferred; 2) Winners/ Lowest,
where for each parent node, only the child node
with the lowest UCT leading to an incorrect answer
is designated as dispreferred; 3) Highest/ Losers,
where for each parent node, only the child node
with the highest UCT leading to the correct answer
is preferred; 4) Highest/ Lowest, wherein for each
parent node, only the child node with the highest
UCT leading to the correct answer is preferred and
the child node with the lowest UCT leading to an
incorrect answer is dispreferred. To ensure a fair
comparison, we maintained an equal number of
training questions across all strategies.

G) @ @ @ @) -

e TheUCT: 147 102 111 089

// \\\
s NOX': NOX': NOX': O
\

e/ 147 111 147 089 102 111 102 _ 089
/

e - XOX - KO)

102 111 089 147 \ 0.89 1.02 1.02

\
N y
Winners/ Lowest > > y
Do 147 089 102 102 #
~ P>
>, pv
- HO) -

D Winners/ Lowest

Figure 4: Different strategies for selecting dispreferred
nodes.

Strategy Acc.(%)
Winners/ Lowest 36.5
Highest/ Losers 35.8
Highest/ Lowest 35.0
Winners/ Losers 38.7*

Table 3: Comparison between the selection strategies of
dispreferred nodes on the model performance.

As shown in Table 3, the Winners/Losers strat-
egy, which generates the most preference pairs,
achieves the best performance, while the High-
est/Lowest strategy with the least generated prefer-
ence pairs performs the worst. This indicates that a
coarse-grained distinction between preferred and
dispreferred nodes is more effective than a finer-
grained differentiation. The greater the number of
preference pairs, the stronger the model’s ability to
distinguish preference relationships when choosing
a reasoning path.

5.5 The effectiveness of actions on the Recall
of Documents

To evaluate the effectiveness of action sequence in
RamPO for document retrieval in RAG scenarios,
we sequentially remove action A; and the combina-
tion of actions A and As, and measure the recall
rates of the gold-standard documents (supporting
facts) on HotpotQA retrieved under five settings:
1) use the complete action sequence, 2) disable ac-
tion Aj, 3) disable actions A, and As together, 4)
use intermediate steps from CoT, and 5) use the
query-only.

Complete Actions

764

742 Disable A1

Disable
A2A3

3 0 °

0 2, o
CoT: 57.0 35

Query

Disable A2 A3

(a) The recall rates of the sup- (b) Venn diagram of the over-
porting documents retrieved lap for questions with all sup-
under five settings porting documents recall

Figure 5: The Effectiveness of actions for the Recall of
Documents on HotpotQA, using the LLaMA-3.2-3B-Ins
as the base model.

Figure 5 shows that using the complete action
sequence yields the best document recall perfor-

mance. Removing actions leads to moderate perfor-
mance drops, while both still outperform the rest
settings baselines by a large margin. These find-
ings suggest that the designed action sequence in
RamPO plays a critical role in enabling recursive
evidence aggregation, effectively guiding the re-
trieval process through a structured reasoning path.
Each action contributes to progressively refining
the query context and identifying relevant support-
ing documents. In particular, the full sequence fa-
cilitates a multi-hop reasoning mechanism, which
allows the model to integrate and propagate infor-
mation across multiple intermediate steps, enhanc-
ing its ability to recall the correct supporting facts.

5.6 The effectiveness of training data quantity

To assess the effect of the quantity of training data
on the optimization of the model, we performed an
ablation study that systematically varies the number
of questions used to generate preference pairs, rang-
ing from 0 to 200. As depicted in Figure 6, model
performance initially deteriorates before showing
improvement as the number of training questions
increases. Specifically, when fewer instances are
utilized, model performance falls below that of
the untrained baseline, probably due to overfitting
(Azar et al., 2024) and compromised generalization.
However, with an increase to around 100 instances,
performance consistently improves, eventually ex-
ceeding that of the base model. When the number
of questions surpasses around 160, performance
stabilizes, suggesting the model has reached a suf-
ficient amount of data.

44.5 44.7

45

40

433

39.3
38.7
174 38.3 376 383

339 333

30.0
30 28.9

Bam.

25 24.6 237 Hot.

—o— 2Wiki.

0 40 80 120 160 200
Number of questions utilized

Figure 6: The effectiveness of the number of questions
in model optimization.

5.7 The effectiveness of preference modeling

We investigate the effectiveness of preference mod-
eling on model performance by conducting super-
vised fine-tuning (SFT) on the data without dispre-

DPO SFT
Acc.(%) Num./Ins. | Acc.(%) Num./Ins.
Bam. 45.3 66 43.5 20
Hot. 38.3 86 33.9 27
2Wiki. 30.3 40 28.6 16

Table 4: The Effectiveness of preference modeling,
where Num./Ins. refers to the average number of train-
ing data instances generated per question instance.

ferred counterparts. As shown in Table 4, the in-
clusion of dispreferred data enhances model perfor-
mance. This observation implies that dispreferred
nodes have a positive effect during optimization. It
underscores the importance of utilizing both pre-
ferred and dispreferred steps to bolster the model’s
reasoning capabilities.

In addition, incorporating dispreferred nodes
into preference pair construction can significantly
enhance the efficiency of the training data construc-
tion. Compared to only using preferred nodes as
training data, RamPO can generate an average of 43
more training instances per problem instance, rep-
resenting a 204% increase, suggesting that RamPO
requires only a small number of human annotated
samples by design. Constructing the reasoning tree
is a time-consuming process, RamPO offers a prac-
tical trade-off between efficiency and effectiveness,
allowing for efficient resource management while
still achieving significant improvements.

6 Conclusion

In this work, we introduced RamPO, a novel frame-
work that integrates MCTS with preference-based
optimization for multi-hop question answering in
the RAG setting. By leveraging MCTS-guided
heuristic exploration to constrain the search space
and aligning with preference preferred by MCTS
in offline, RamPO provides a trade-off between la-
tency and reasoning accuacy during search space
exploration in online inference.We provide empiri-
cal evidence that RamPO enhances the reliability
and robustness of reasoning in LLMs by heuris-
tically exploring and evaluating the search space.
Extensive experiments across diverse LL.Ms and
challenging multi-hop QA benchmarks validate the
effectiveness of RamPO, showing significant gains
in performance and substantial reductions in online
inference latency.

Limitations

Although our proposed RamPO framework lever-
ages MCTS to efficiently constrain the reasoning
search space, enabling the model to generate high-
quality reasoning chains during inference, there are
still limitations in the current sample granularity.
Specifically, we adopt a sequence-level sampling
strategy, where the order of actions within a rea-
soning chain is fixed during training and inference.
This design, while contributing to output stability,
limits the model’s flexibility in exploring diverse
reasoning paths.

A potential direction for future work is to el-
evate the sampling granularity from the sequence
level to the action level. This would allow the
model to dynamically sample and select the next
reasoning action at each step, guided by MCTS.
Such an approach could encourage the model to
learn to generate robust, high-quality reasoning
chains while adapting its actions to different in-
ference trajectories. This line of exploration may
further enhance the model’s generalizability and
interpretability in complex reasoning tasks.

Ethical Considerations

It is a widely held view that large language models
(LLMs) have the capacity to produce predictions
that may be biased. This concern gains particu-
lar significance when the input queries contain at-
tributes that are sensitive in nature. Given the po-
tential for bias and other related issues, this study
strongly recommends confining the use of such
models to research contexts. Extra caution is im-
perative when considering the application of these
models beyond research applications.

In this study, our use of existing artifacts is
consistent with their intended purposes. All the
datasets and models used in this work are publicly
available. Specifically, LLaMA-3.2-3B-Instruct
have Llama 3.2 Community License Agreement !.
LLaMA-3.1-8B-Instruct have Llama 3.1 Commu-
nity License Agreement 2. Qwen-2.5-7B-Instruct,
HotpotQA dataset, and 2WikiMultiHopQA (2Wiki)
dataset have Apache-2.0 license . Bamboogle
dataset has MIT License *.

1https://huggingface.co/meta—llama/Llama—3.
2-3B-Instruct/blob/main/LICENSE. txt
2https://huggingface.co/meta-1lama/Llama-3.
1-8B-Instruct/blob/main/LICENSE
3https://www.apache.org/licenses/LICENSE—Z.0
4https://opensource.org/license/MIT

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 tech-
nical report. arXiv preprint arXiv:2303.08774.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo,
Bilal Piot, Remi Munos, Mark Rowland, Michal
Valko, and Daniele Calandriello. 2024. A general
theoretical paradigm to understand learning from
human preferences. In International Conference
on Artificial Intelligence and Statistics, pages 4447—
4455. PMLR.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and 1 others. 2020. Language models are
few-shot learners. Advances in neural information
processing systems, 33:1877-1901.

Cameron B Browne, Edward Powley, Daniel White-
house, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyri-
don Samothrakis, and Simon Colton. 2012. A sur-
vey of monte carlo tree search methods. [EEE
Transactions on Computational Intelligence and Al
in games, 4(1):1-43.

Chi-Min Chan, Chunpu Xu, Ruibin Yuan, Hongyin Luo,
Wei Xue, Yike Guo, and Jie Fu. 2024. Rq-rag:
Learning to refine queries for retrieval augmented
generation. arXiv preprint arXiv:2404.00610.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu
Lian, and Zheng Liu. 2024. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity
text embeddings through self-knowledge distilla-
tion. arXiv preprint arXiv:2402.03216.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng,
Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé
Jégou. 2024. The faiss library. arXiv preprint
arXiv:2401.08281.

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Mar-
cus McAleer, Ying Wen, Weinan Zhang, and Jun
Wang. 2023. Alphazero-like tree-search can guide
large language model decoding and training. arXiv
preprint arXiv:2309.17179.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, and 1 others. 2024. The llama 3
herd of models. arXiv preprint arXiv:2407.21783.

Xinyan Guan, Jiali Zeng, Fandong Meng, Chunlei Xin,
Yaojie Lu, Hongyu Lin, Xianpei Han, Le Sun, and
Jie Zhou. 2025. Deeprag: Thinking to retrieval step
by step for large language models. arXiv preprint
arXiv:2502.01142.

https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct/blob/main/LICENSE.txt
https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct/blob/main/LICENSE.txt
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct/blob/main/LICENSE
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct/blob/main/LICENSE
https://www.apache.org/licenses/LICENSE-2.0
https://opensource.org/license/MIT

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong,
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023.
Reasoning with language model is planning with
world model. arXiv preprint arXiv:2305.14992.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020. Constructing a multi-hop
qa dataset for comprehensive evaluation of reason-
ing steps. arXiv preprint arXiv:2011.01060.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, and 1 others. 2022. Lora: Low-rank
adaptation of large language models. ICLR, 1(2):3.

Yunhai Hu, Yilun Zhao, Chen Zhao, and Arman Cohan.
2025. Mcts-rag: Enhancing retrieval-augmented
generation with monte carlo tree search. arXiv
preprint arXiv:2503.20757.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
tischel, and 1 others. 2020. Retrieval-augmented
generation for knowledge-intensive nlp tasks. Ad-

vances in neural information processing systems,
33:9459-9474.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao,
and Nan Duan. 2023. Query rewriting in retrieval-
augmented large language models. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 5303-5315,
Singapore. Association for Computational Linguis-
tics.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions
with human feedback. In Advances in Neural In-
formation Processing Systems, volume 35, pages
27730-27744. Curran Associates, Inc.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A Smith, and Mike Lewis. 2022. Measuring
and narrowing the compositionality gap in language
models. arXiv preprint arXiv:2210.03350.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea
Finn. 2023. Direct preference optimization: Your
language model is secretly a reward model. Ad-

vances in Neural Information Processing Systems,
36:53728-53741.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text

transformer. Journal of machine learning research,
21(140):1-67.

10

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay,
Amnon Shashua, Kevin Leyton-Brown, and Yoav
Shoham. 2023. In-context retrieval-augmented lan-
guage models. Transactions of the Association for
Computational Linguistics, 11:1316-1331.

David Silver, Thomas Hubert, Julian Schrittwieser,
Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran,
Thore Graepel, and 1 others. 2017. Mastering
chess and shogi by self-play with a general re-
inforcement learning algorithm. arXiv preprint
arXiv:1712.01815.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian
Yu, Lei Han, Haitao Mi, and Dong Yu. 2024. To-
ward self-improvement of llms via imagination,
searching, and criticizing. Advances in Neural In-
formation Processing Systems, 37:52723-52748.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, and 1 others. 2023. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2023. Interleaving retrieval
with chain-of-thought reasoning for knowledge-
intensive multi-step questions. In Proceedings of
the 61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 10014-10037, Toronto, Canada. Association
for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022a. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Sys-
tems, volume 35, pages 24824-24837. Curran As-
sociates, Inc.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022b. Chain-of-thought prompting
elicits reasoning in large language models. Ad-
vances in neural information processing systems,
35:24824-24837.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck,
and Yiming Yang. 2024. Inference scaling laws:
An empirical analysis of compute-optimal inference
for problem-solving with language models. arXiv
preprint arXiv:2408.00724.

An Yang, Baosong Yang, Beichen Zhang, Binyuan
Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Day-
iheng Liu, Fei Huang, Haoran Wei, and 1 others.
2024. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for

https://doi.org/10.18653/v1/2023.emnlp-main.322
https://doi.org/10.18653/v1/2023.emnlp-main.322
https://doi.org/10.18653/v1/2023.emnlp-main.322
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://doi.org/10.1162/tacl_a_00605
https://doi.org/10.1162/tacl_a_00605
https://doi.org/10.1162/tacl_a_00605
https://doi.org/10.18653/v1/2023.acl-long.557
https://doi.org/10.18653/v1/2023.acl-long.557
https://doi.org/10.18653/v1/2023.acl-long.557
https://doi.org/10.18653/v1/2023.acl-long.557
https://doi.org/10.18653/v1/2023.acl-long.557
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259

diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 2369-2380, Brussels, Belgium. Association
for Computational Linguistics.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2023a. Tree of thoughts: Deliberate problem solv-
ing with large language models. Advances in neural
information processing systems, 36:11809—-11822.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao.
2023b. React: Synergizing reasoning and act-
ing in language models, 2023. URL https://arxiv.
org/abs/2210.03629.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue,
Yuxiao Dong, and Jie Tang. 2024a. Rest-mcts*:
Llm self-training via process reward guided tree
search. Advances in Neural Information Processing

Systems, 37:64735-64772.

Jinghan Zhang, Xiting Wang, Weijieying Ren, Lu Jiang,
Dongjie Wang, and Kunpeng Liu. 2024b. Ratt:
A thought structure for coherent and correct 1lm
reasoning. Preprint, arXiv:2406.02746.

Xuan Zhang, Chao Du, Tianyu Pang, Qian Liu, Wei
Gao, and Min Lin. 2024c. Chain of preference opti-
mization: Improving chain-of-thought reasoning in
llms. Advances in Neural Information Processing
Systems, 37:333-356.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi.
2023. Least-to-most prompting enables complex
reasoning in large language models. Preprint,
arXiv:2205.10625.

11

A Implementation Appendix

In this work, we set the default configurations of
RamPO as follows:

Default Value

MCTS Configuration
MCTS Exploration Weight

Parameter

V2

Max Iteration 1000
Max Answer Candidates 40
Number of Samples 6
LLM Configuration
Temperature 0.4
Top-K 50
Top-P 1.0

Table 5: Default configurations of RamPO.

In the experiments, we used the following
datasets: Bamboogle , HotpotQA © and 2Wiki-
MultiHopQA 7. To maintain a reasonable budget,
especially given the high computational demand of
ToT, we limit each dataset to a maximum of 400
test samples through random sampling. The LLMs
employed are LLaMA-3.2-3B-Instruct ¥, LLaMA-
3.1-8B-Instruct ? and Qwen-2.5-7B-Instruct '°. For
all baseline methods, we set the model configura-
tions identical to those in Table 5. In the process of
MCTS, the exploration phase continues until either
the number of answer candidates reaches 40 or the
maximum number of iterations is achieved. For
efficient fine-tuning, we use Low-Rank Adaptation
(LoRA) adapters (Hu et al., 2022).The learning
rates for DPO and SFT are 5e-6 and 1e-5 respec-
tively. For LoRA, the rank is set to 8, and « is set
to 16. for DPO, 3 is set to 0.2.

B Prompt Examples

We construct a unified set of prompts for the three
datasets. For each action that requires generation
by the LLM, some demonstrations are provided in
the prompts. Specifically, the prompts for different
actions are presented below.

5https://github.com/ofirpress/self—ask/tree/
main

6https://hotpotqa.github.io

"https://github.com/Alab-NII/2wikimultihop

8https://huggingface.co/meta-1lama/Llama-3.
2-3B-Instruct

9https://huggingface.co/meta—llama/Llama—3.
1-8B-Instruct

10https://huggingface.co/Qwen/QwenZ.
5-7B-Instruct

https://doi.org/10.18653/v1/D18-1259
https://arxiv.org/abs/2406.02746
https://arxiv.org/abs/2406.02746
https://arxiv.org/abs/2406.02746
https://arxiv.org/abs/2406.02746
https://arxiv.org/abs/2406.02746
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625
https://github.com/ofirpress/self-ask/tree/main
https://github.com/ofirpress/self-ask/tree/main
https://hotpotqa.github.io
https://github.com/Alab-NII/2wikimultihop
https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct

: Query rephrasing

Given an input question, rephrase it into a more intuitive and easier-to-understand version.
The original question is enclosed within <Original Question> </Original Question> tags, and
the corresponding rephrased question is enclosed within <Rephrased Question> </Rephrased
Question> tags.

<Original Question>

In what school district is Governor John R. Rogers High School, named after John Rankin
Rogers, located?

</Original Question>

<Rephrased Question>

What school district is Governor John R. Rogers High School in?

</Rephrased Question>

<Original Question>

Which Australian racing driver won the 44-lap race for the Red Bull Racing team?
</Original Question>

<Rephrased Question>

Who is the Australian racing driver that won a 44-lap race for the Red Bull Racing team?
</Rephrased Question>

<Original Question>

What star of *Parks and Recreation* appeared in November?

</Original Question>

<Rephrased Question>

Which actor from *Parks and Recreation* made an appearance in November?
</Rephrased Question>

<Original Question>

Which genus of flowering plant is found in an environment further south, Crocosmia or
Cimicifuga?

</Original Question>

<Rephrased Question>

Between Crocosmia and Cimicifuga, which plant genus is typically found further south?
</Rephrased Question>

<Original Question>

In what year did the man who shot the Chris Stockley, of The Dingoes, die?

</Original Question>

<Rephrased Question>

What is the year of death for the man who shot Chris Stockley, of The Dingoes?
</Rephrased Question>

<Original Question>

{User Query}

</Original Question>

<Rephrased Question>

12

and : Query decomposition and Subquestions solving

Given an input question, decompose it into indivisible sub-questions and answer them
briefly. The original question will be enclosed in <Question> and </Question>.
<Question>

Who lived longer, Theodor Haecker or Harry Vaughan Watkins?

</Question>

<Subquestions_1>

When did Theodor Haecker die? Theodor Haecker was 65 years old when he died.
</Subquestions 1>

<Subquestions 2>

When did Harry Vaughan Watkins die? Harry Vaughan Watkins was 69 years old when he
died.

</Subquestions 2>

<Question>

Why did the founder of Versus die?

</Question>

<Subquestions_1>

Who is the funder of Versus? The founder of Versus was Gianni Versace.
</Subquestions 1>

<Subquestions 2>

Why did Gianni Versace die? Gianni Versace was shot and killed on the steps of his Miami
Beach mansion on July 15, 1997.

</Subquestions_2>

<Question>

Who is the grandchild of Dambar Shah?

</Question>

<Subquestions 1>

Who is the son of Dambar Shah? Dambar Shah (? - 1645) was the father of Krishna Shah.
</Subquestions 1>

<Subquestions 2>

Who is the son of Krishna Shah? Krishna Shah (? - 1661) was the father of Rudra Shah.
</Subquestions_2>

<Question>

{User Query}

</Question>

<Subquestions 1>

13

: Document analysis

Based on the given question, we retrieve some documents. Please extract and summarize the
content that is relevant to the question. If there is nothing relevant to the question in the
document, answer "None".

Question: Butautas tried to depose his uncle who between which years?

Document: <doc>Marinus (praetorian prefect): Marinus was one of the most trusted and
senior aides of the Byzantine emperor Anastasius I (r. 491-518). He served twice as
praetorian prefect of the East, supervised some of Anastasius's tax reforms, supported the
Emperor's pro-Monophysite policies and led the Byzantine navy in a crucial battle that ended
for good the rebellion of general Vitalian in Thrace. He survived into the regime of Justin [
(r. 518-527), when he held his second tenure as praetorian prefect, but was soon sidelined
from power.</doc> <doc>Nuclear energy policy of the United States: The nuclear energy
policy of the United States developed within two main periods, from 1954-1992 and
2005-2010. The first period saw the ongoing building of nuclear power plants, the
enactment of numerous pieces of legislation such as the Energy Reorganization Act of 1974,
and the implementation of countless policies which have guided the Nuclear Regulatory
Commission and the Department of Energy in the regulation and growth of nuclear energy
companies. This includes, but is not limited to, regulations of nuclear facilities, waste
storage, decommissioning of weapons-grade materials, uranium mining, and funding for
nuclear companies, along with an increase in power plant building. Both legislation and
bureaucratic regulations of nuclear energy in the United States have been shaped by
scientific research, private industries' wishes, and public opinion, which has shifted over
time and as a result of different nuclear disasters.</doc> <doc>Butautas: Butautas (baptized
"Henryk"; died on May 7, 1380 in Prague) was a son of Kestutis, Grand Duke of Lithuania.
He attempted to depose his uncle Algirdas and usurp power in Lithuania, but failed and was
forced into exile. He joined the court of the Holy Roman Emperor and even inspired a poem
about conversion to Christianity. Butautas is sometimes confused with his brother
Vaidotas.</doc>

Summary: 1. Butautas, son of Kestutis (Grand Duke of Lithuania), attempted to depose his
uncle Algirdas and usurp power in Lithuania. 2. The attempt failed, leading to his exile. 3.
The document does not specify the exact years of the attempted deposition. 4. Butautas
died in 1380.

...{2 x demonstrations}...

Question:{User Query}

Document: {Document}

Summary:

14

: Answer extraction

Task: Answer the given question step-by-step

Question: Who lived longer, Theodor Haecker or Harry Vaughan Watkins?

Step 1 Rephrased Question: Who had a longer lifespan, Theodor Haecker or Harry Vaughan
Watkins?

Step 2 Subquestions _1: When did Theodor Haecker die? Theodor Haecker was 65 years old
when he died.

Step 3 Subquestions 2: When did Harry Vaughan Watkins die? Harry Vaughan Watkins
was 69 years old when he died.

Step 4 Document: <doc>In what year was Stephen Hawking born? 1942</doc> <doc>What
is the birthdate of Ethan Hawke? November 6, 1970</doc> <doc>In what year was Ethan
Hawke born? 1970</doc>

Step 5 So the final answer is: Harry Vaughan Watkins

Question: Why did the founder of Versus die?

Step 1 Rephrased Question: What caused the founder of Versus to pass away?

Step 2 Subquestions_1: Who is the funder of Versus? The founder of Versus was Gianni
Versace.

Step 3 Subquestions 2: Why did Gianni Versace die? Gianni Versace was shot and killed on
the steps of his Miami Beach mansion on July 15, 1997.

Step 4 Document: <doc>What is the birthdate of Avicii? September 8, 1989</doc> <doc>In
what year was Avicii born? 1989</doc> <doc>What is the birthplace (country only) of
Leonardo da Vinci? Italy</doc>

Step 5 So the final answer is: Shot

Question: What is the capital of the birthplace of Edin Dzeko?

Step 1 Rephrased Question: What is the main city of the place where Edin Dzeko was born?
Step 2 Subquestions 1: Where was Edin Dzeko born? Edin Dzeko was born in Bosnia and
Herzegovina.

Step 3 Subquestions 2: What is the capital of Bosnia and Herzegovina? Sarajevo

Step 4 Document: <doc>What is the birthplace (country only) of Edin Dzeko? Bosnia And
Herzegovina</doc> <doc>What is the capital of Bosnia and Herzegovina? Sarajevo</doc>
Step 5 So the final answer is: Sarajevo

Question: {User Query}

15

	Introduction
	Related Work
	Preliminary
	RamPO
	Retrieval-Augmented MCTS Heuristic Exploration
	Step-Level Preference Synthesis and Alignment

	Experiments
	Datasets
	Baselines
	Main Results
	The effectiveness of selection strategies of dispreferred nodes
	The effectiveness of actions on the Recall of Documents
	The effectiveness of training data quantity
	The effectiveness of preference modeling

	Conclusion
	Implementation Appendix
	Prompt Examples

