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ABSTRACT

Recent test-time adaptation methods heavily rely on nuanced adjustments of batch
normalization (BN) parameters. However, one critical assumption often goes
overlooked: that of independently and identically distributed (i.i.d.) test batches
with respect to unknown labels. This oversight leads to skewed BN statistics
and undermines the reliability of the model under non-i.i.d. scenarios. To tackle
this challenge, this paper presents a novel method termed ‘Un-Mixing Test-Time
Normalization Statistics’ (UnMix-TNS). Our method re-calibrates the statistics for
each instance within a test batch by mixing it with multiple distinct statistics compo-
nents, thus inherently simulating the i.i.d. scenario. The core of this method hinges
on a distinctive online unmixing procedure that continuously updates these statistics
components by incorporating the most similar instances from new test batches. Re-
markably generic in its design, UnMix-TNS seamlessly integrates with a wide range
of leading test-time adaptation methods and pre-trained architectures equipped
with BN layers. Empirical evaluations corroborate the robustness of UnMix-TNS
under varied scenarios—ranging from single to continual and mixed domain shifts,
particularly excelling with temporally correlated test data and corrupted non-i.i.d.
real-world streams. This adaptability is maintained even with very small batch
sizes or single instances. Our results highlight UnMix-TNS’s capacity to markedly
enhance stability and performance across various benchmarks. Our code is publicly
available at https://github.com/devavratTomar/unmixtns.

1 INTRODUCTION

Deep neural networks (DNNs), when deployed in real-world test environments, often face the
pervasive challenge of domain shift, potentially undermining their performance. Addressing this,
the research community has advanced towards the forefront of online test-time adaptation (TTA).
This involves a myriad of methodologies aimed at recalibrating the batch normalization (BN) layers
(Ioffe & Szegedy, 2015), a cornerstone of deep learning architectures informed by real-time test data.
BN layers play a critical role in stabilizing the training process and enhancing model generalization.
These TTA approaches function by either re-estimating normalization statistics based on the present
test batch (Nado et al., 2020; Schneider et al., 2020; Benz et al., 2021) or additionally fine-tuning
the BN parameters to minimize test-time losses, such as those resulting from entropy minimization
(Wang et al., 2020). Specifically, the former has concentrated on addressing the performance decline
observed in conventional BN when subjected to domain shifts during testing. This diminution in
model efficacy on previously unseen test data is primarily ascribed to shifts in the statistical properties
of intermediate layers relative to those conserved from the source training dataset. Intrinsically, BN
marginalizes inconsequential instance-wise variations by decorrelating feature sets across batches,
assuming that these batches are uniformly populated with samples from diverse categories. If
test batches are also uniformly sampled from different categories, employing TTA methods that
renormalize features based on immediate statistics from the current test batch can counteract the
domain-induced distribution shifts.

Nevertheless, these methods come with their own set of challenges and assumptions. Typically,
they operate under the assumption of large test batch sizes and a singular, static distribution shift.

∗denotes equal contribution.
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Moreover, these methods generally presume that the test batches are independently and identically
distributed (i.i.d.) concerning their true labels. This i.i.d. assumption, though useful for simplification,
frequently does not hold true under real-world scenarios. Take the case of autonomous driving,
where a variety of diverse and unpredictable factors makes it improbable for incoming test batches to
conform to an i.i.d. distribution. In such contexts, conventional BN-based TTA methods fall short,
producing unstable and unreliable adaptations. To overcome this issue, recent methods (Gong et al.,
2022; Yuan et al., 2023) have introduced the concept of a balanced, pseudo-label-based memory
bank. This memory bank serves as a repository for test images, facilitating the online estimation of
unbiased BN statistics and the integration of instance-level feature statistics with those derived from
source data. While promising, their utility is often limited to particular situations. Notably, they falter
in scenarios where privacy concerns curtail data retention. Furthermore, choosing the optimal weight
hyperparameter for merging instance-level statistics with pre-existing batch statistics can introduce a
layer of computational overhead post-deployment, complicating the model’s adaptability. In contrast,
methodologies such as (Niu et al., 2023) and (Marsden et al., 2024) have advocated for instance-level
normalization techniques, such as (Ba et al., 2016) as viable alternatives to BN for training on source
data. Other alternatives exhibit increased robustness to varying batch size and long-tailed distribution
via group normalization (Wu & He, 2018), Compound Batch Normalization (Cheng et al., 2022), and
Mixture Normalization (Kalayeh & Shah, 2019).

In this paper, we thoroughly revisit BN for test-time adaptation, targeting temporally correlated
(non-i.i.d.), distributionally shifted test batches. In our approach, we interpret the instance-wise input
features of BN layers pertaining to the present test batch as samples drawn in non-i.i.d. manner
from K distinct distributions over time, reflecting temporal correlation. Consequently, we unmix the
initially stored batch normalization statistics into K distinctive components, each reflecting statistics
from similar test inputs. This unveils a strategy for real-time adaptation of these statistics to the
streaming test batches. Drawing inspiration from sequential clustering paradigms, our method aims
to update the K statistics components using the closest instances from the streaming test data in a
dynamic online setting. In summary, our contributions are as follows:

• We introduce a novel test-time normalization scheme (UnMix-TNS) designed to withstand the
challenges posed by label temporal correlation of test data streams.

• UnMix-TNS demonstrates robustness across various test-time distribution shifts such as single
domain, and continual domain. While not primarily designed for mixed domain settings, it offers
a level of adaptability in these scenarios. Additionally, the method excels with small batch sizes,
even down to individual samples.

• UnMix-TNS layers, with negligible inference latency, seamlessly integrate into pre-trained neural
network architectures, fortified with BN layers, boosting test-time adaptation capabilities while
incurring minimal overhead.

• Our results demonstrate notable enhancements in TTA methods under non-i.i.d. conditions when
augmented with UnMix-TNS, as evidenced on datasets involving corruptions and natural shifts. We
also unveil ImageNet-VID-C and LaSOT-C video datasets, corrupted versions of ImageNet-VID
and LaSOT, for realistic domain shift analysis in video classification.

2 METHODOLOGY

2.1 PRELIMINARIES

Batch normalization in TTA. In addressing the challenges of covariate shifts at test time, test-
time BN (TBN) employs the current batch’s statistics rather than relying on stored source statistics.
Consider a batch of feature maps being input into the BN layer. We can represent this batch as
z ∈ RB×C×L, where B stands for the batch size, C signifies the number of channels, and L denotes
the dimensions of each feature map. The BN layer normalizes the feature maps using the current batch
statistics, denoted as (µt, σt) ∈ RC . Following this, it employs the affine parameters (γ, β) ∈ RC to
produce normalized feature maps ẑ that are both scaled and shifted, as follows:

ẑ:,c,: = γc ·
z:,c,: − µt

c

σt
c

+ βc, µt
c =

1

BL

∑
b,l

zb,c,l, σt
c =

√
1

BL
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(zb,c,l − µt
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2, (1)

2



Published as a conference paper at ICLR 2024

Figure 1: Test-Time BN (TBN) vs. UnMix-TNS. (a) TBN recalibrates its intermediate features when
test batches are i.i.d. sampled over time t, accommodating distribution shifts. (b) However, TBN fails
for non-i.i.d. label-based test batch sampling, leading to skewed batch statistics. (c) UnMix-TNS
overcomes this failure by estimating unbiased batch statistics through its K statistics components.

Test-time adaptation under label temporal correlation. Let fθ : X → Y denote a neural network
parameterized by θ, mapping image space X to label space, Y . This network, featuring BN layers,
has been trained on the source data distribution PS(x, y). Given a stream of covariate shifted test
images xt sampled at time t from an arbitrary test distribution PT (x, y|t) with temporally correlated
labels, the goal is to continuously adapt fθ to new data xt, as it arrives, even without access to the
corresponding true label yt.

2.2 UNMIXING TEST-TIME NORMALIZATION STATISTICS

In Figure 1, a toy example clearly elucidates a crucial point: when dealing with covariate-shifted
target test images that bear temporal correlations, there’s an intrinsic bias in estimating online batch
normalization statistics, as depicted in Figure 1(b). This bias is in sharp contrast to the more stable
dynamics of batch normalization statistics sourced from i.i.d. batches of well-shuffled data, as
visualized in Figure 1(a). This variance can lead to substantial failures in many test-time adaptation
methods, particularly when test images from the target domain exhibit temporal correlations tied to
their true labels.

This section introduces UnMix-TNS, our proposed normalization paradigm tailored for the non-i.i.d.
streams of test images. As illustrated in Figure 1(c), at the heart of the UnMix-TNS layer is a process
that deftly decomposes the stored BN statistics into K components. Then, all K statistics components
are updated based on their alignment with the test batch’s instance-wise statistics. Components that
align more closely undergo more substantial updates, while others reflect statistics from previously
encountered, less similar features, simulating an ideal i.i.d. environment. The genius lies in the
end result: the statistics computed by UnMix-TNS with its K components in non-i.i.d. conditions,
align seamlessly with those generated by TBN in i.i.d. conditions (see Appendix A.3 for theoretical
analysis).

In the subsequent Section 2.2.1, we formulate the distribution of K UnMix-TNS components and
describe how to compute the label unbiased normalization statistics at a temporal instance t, utilizing
only the statistics derived from the K components in conjunction with the current statistics of the non-
i.i.d. test batch. In Section 2.2.2, we explain the process of initializing the K statistics components
of the UnMix-TNS layer, leveraging the batch normalization statistics stored within the provided
pre-trained model. In Section 2.2.3, we outline the methodology for deriving current statistics from
these K statistics components. This process is crucial for both normalizing the input test features and
their dynamic online adaptation.
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Figure 2: An Overview of UnMix-TNS. Given a batch of non-i.i.d test features zt ∈ RB×C×L at
a temporal instance t, we mix the instance-wise statistics (µ̃t, σ̃t) ∈ RB×C with K UnMix-TNS
components. The alignment of each sample in the batch with the UnMix-TNS components is
quantified through similarity-derived assignment probabilities ptk. This aids both the mixing process
and subsequent component updates for time t+ 1.

2.2.1 DISTRIBUTION OF K UNMIX-TNS COMPONENTS MIXTURE

Let [µt
1, . . . , µ

t
K ] and [σt

1, . . . , σ
t
K ] denote the statistics of the K components within the UnMix-TNS

layer at a given temporal instance t, where each µt
k, σ

t
k ∈ RC . We articulate the distribution ht

Z(z)
of instance-wise test features z ∈ RC marginalized over all labels at a temporal instance t using the
K components:
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label unbiased normalization test statistics (µ̄t, σ̄t) at time t (see Appendix A.1) as follows:
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Subsequent sections will delve into the initialization scheme for the K UnMix-TNS components and
elucidate the process of updating their individual statistics (µt

k, σ
t
k) at temporal instance t.

2.2.2 INITIALIZING UNMIX-TNS COMPONENTS

Consider the pair (µ, σ) ∈ RC , which stands as the stored means and standard deviation of the
features in a given BN layer of fθ, derived from the source training dataset before adaptation. We
initialize statistics (µt

k, σ
t
k) of K components of UnMix-TNS at t = 0, as delineated in Equation (5).

µ0
k,c = µc + σc

√
α ·K
K − 1

· ζk,c, σ0
k,c =

√
1− α · σc, ζk,c ∼ N (0, 1) (5)

where ζk,c is sampled from the standard normal distribution N (0, 1), and α ∈ (0, 1) is a hyperpa-
rameter that controls the extent to which the means of the UnMix-TNS components deviate from the
stored means of BN layer during initialization. Note that the initial normalization statistics (µ̄0, σ̄0)
estimated from (µ0

k, σ
0
k) have an expected value equal to the stored statistics of the BN layer, i.e.,

E[µ̄0
k] = µ and E[(σ̄0

k)
2] = σ2 for all values of α. Further insights into this relationship are detailed

in Appendix A.2.

2.2.3 REDEFINING FEATURE NORMALIZATION THROUGH UNMIX-TNS

Considering the current batch of temporally correlated features zt ∈ RB×C×L, we commence by
calculating the instance-wise means and standard deviation (µ̃t, σ̃t) ∈ RB×C , mirroring the Instance
Normalization Ulyanov et al. (2016), i.e.:
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To gauge the likeness between UnMix-TNS components and current test features, we compute the
cosine similarity stb,k of the current instance-wise means µ̃t

b,: with that of K BN components {µt
k}

K

k=1
as follows:

stb,k = sim
(
µ̃t
b,:, µ

t
k

)
, (7)

where sim(u,v) = uTv
∥u∥∥v∥ denote the dot product between l2 normalized u and v ∈ RC . We

proceed to derive the refined feature statistics, denoted as (µ̄t, σ̄t) ∈ RB×C for each instance. This
is accomplished by a weighted mixing of the current instance statistics, (µ̃t, σ̃t), harmoniously
blended with the K BN statistics components, (µt

k, σ
t
k)

K
k=1. This mixing strategy unfolds similar to

Equation (3) as:
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µ̂t
b,k,c = (1− ptb,k) · µt
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2, (10)

In this formulation, ptb,k =
exp(stb,k/τ)∑
κ exp(stb,k/τ)

represents the assignment probability of the bth instance’s

statistics in the batch belonging to the kth statistics component. Note that, ptb,k ≈ 1 if bth instance
exhibits a greater affinity to the kth component, and vice-versa. We employ the refined feature
statistics (µ̄t, σ̄t) to normalize zt, yielding normalized features ẑt elaborated upon below:

ẑtb,c,: = γc ·
ztb,c,: − µ̄t

b,c

σ̄t
b,c

+ βc, (11)

In the concluding steps, all K BN statistics components undergo refinement. This is achieved by
updating them based on the weighted average difference between the current instance statistics, with
weights drawn from the corresponding assignment probabilities across the batch:
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where λ is the momentum hyperparameter and is set based on the principles of momentum batch
normalization as proposed by (Yong et al., 2020) (see Appendix A.4). The more a statistic component
is closely aligned with the instance-wise statistics in the test batch (precisely when ptb,k ≈ 1), the
more it undergoes a substantial update.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

To maintain fairness in comparison with baselines, our experiments are carried out using the open-
source online TTA repository (Marsden et al., 2024), which amasses source codes and configurations
of state-of-the-art TTA methods. Implementation details are elaborated in Appendix B.1.

Datasets and models. To examine the repercussions of common corruption, we use the Robust-
Bench benchmark (Hendrycks & Dietterich, 2019). This benchmark encapsulates the CIFAR10-C,
CIFAR100-C, and large-scale ImageNet-C datasets, offering a comprehensive view of 15 diverse
corruption types, each implemented at five distinct severity levels—applied to the corresponding clean
test datasets. Our chosen backbone models consist of WideResNet-28 (Zagoruyko & Komodakis,
2016), ResNeXt-29 (Xie et al., 2017), and ResNet-50 (He et al., 2016), each trained on CIFAR10,
CIFAR100, and ImageNet, respectively. To assess the robustness of our method to natural domain
shifts, we utilize the subset of the DomainNet dataset (Peng et al., 2019), renowned for its pronounced
domain shifts, focusing on classification tasks. Given the presence of noisy labels in the original
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DomainNet dataset, we adopt the approach from (Chen et al., 2022) and utilize a refined subset,
DomainNet-126 (Peng et al., 2019), which features 126 classes across four distinct domains: Real,
Sketch, Clipart, and Painting. For every domain, a single ResNet-101 model is trained following the
(Chen et al., 2022) and, subsequently, evaluated against the remaining three domains. Furthermore,
to evaluate our model’s resilience in non-i.i.d. video frame-wise classification contexts, we introduce
corrupted versions of ImageNet-VID (Russakovsky et al., 2015) and LaSOT (Dave et al., 2020),
named ImageNet-VID-C and LaSOT-C, respectively. Each dataset is modified with three types of
corruptions: Gaussian noise, artificial snow, and rain, to challenge the models further. As a backbone,
we use ResNet-50 pre-trained on an original, uncorrupted training set of ImageNet.

Baselines. In our evaluation, we have benchmarked UnMix-TNS against a diverse range of other test-
time normalization methods. Our comparative analysis includes test-time BN recalibration approach
(TBN) (Nado et al., 2020), α-BN (You et al., 2021), the Instance Aware BN (IABN) layer introduced
in NOTE (Gong et al., 2022), and the Robust BN (RBN) layer proposed in RoTTA (Yuan et al.,
2023). Beyond this, we investigate the advantages of pairing UnMix-TNS with different test-time
optimization methods, comparing it to standard BN layer usage. In our assessment, we explore
several TTA methods, including TENT (Wang et al., 2020), which leverages entropy minimization to
fine-tune BN affine parameters, and CoTTA (Wang et al., 2022), which optimally employs the Mean
teacher method. Additionally, we examine the parameter-free strategy, LAME (Boudiaf et al., 2022),
which adjusts model outputs based on batch predictions. As for TTA methods utilizing memory
banks to simulate i.i.d. samples, we assess NOTE (Gong et al., 2022) and RoTTA (Yuan et al., 2023).
We also explore the more recent universal TTA method, ROID (Marsden et al., 2024), incorporating
various regularization techniques, including diversity weighting.

Evaluation protocols. All experiments are conducted in an online non-i.i.d TTA setting, with
immediate evaluations of predictions. Following the non-i.i.d protocols outlined in (Marsden et al.,
2024), we first explore the single domain adaptation scenario, wherein the model sequentially adapts
to each domain, with a reset in weights upon switching domains. Next, we examine the continual
domain adaptation scenario, allowing the model to adapt sequentially across all domains without
weight reset. Lastly, we assess the mixed domain adaptation scenario, evaluating performance with
test batches composed of examples from multiple domains. This approach enables a concise yet
comprehensive analysis of model adaptability in diverse domains.

3.2 RESULTS

Tables 1 and 2 present the average online classification error rates for our method and baselines
on corruption and natural shift benchmarks, following three outlined evaluation protocols. Key
observations include:

Table 1: Non-i.i.d. test-time adaptation on corruption benchmarks. Averaged online classification
error rate (in %) across 15 corruptions at severity level 5 on CIFAR10-C, CIFAR100-C, and ImageNet-
C, comparing single, continual, and mixed domain adaptation. Averaged over three runs.

SINGLE DOMAIN CONTINUAL DOMAIN MIXED DOMAIN
Dataset CIFAR10-C CIFAR100-C ImageNet-C Mean CIFAR10-C CIFAR100-C ImageNet-C Mean CIFAR10-C CIFAR100-C ImageNet-C Mean
Source 43.5 46.5 82.0 57.3 43.5 46.5 82.0 57.3 43.5 46.5 82.0 57.3

TEST-TIME NORMALIZATION
TBN 76.0 81.6 83.2 80.3 76.0 81.6 83.2 80.3 79.2 94.3 96.6 90.0
α-BN 44.4 50.7 75.7 56.9 44.4 50.7 75.7 56.9 53.0 64.4 86.7 68.0
IABN 29.1 55.7 85.0 56.6 29.1 55.7 85.0 56.6 29.1 55.7 85.0 56.6
RBN 54.3 44.6 71.3 56.7 54.7 44.9 71.3 57.0 77.3 82.4 91.1 83.6
UnMix-TNS 27.0 39.2 70.6 45.6 26.8 39.2 70.4 45.5 41.9 50.1 84.3 58.8

TEST-TIME ADAPTATION
TENT 76.0 81.6 82.6 80.1 75.9 81.9 82.0 79.9 79.1 94.7 97.6 90.5
(+UnMix-TNS) 27.0 (-49.0) 38.7 (-42.9) 69.5 (-13.1) 45.1 (-35.0) 26.6 (-49.3) 37.7 (-44.2) 88.2 (+6.2) 50.8 (-29.1) 38.4 (-40.7) 51.2 (-43.5) 95.0 (-2.6) 61.5 (-29.0)
CoTTA 77.2 80.9 82.7 80.3 77.8 81.2 82.6 80.5 81.4 94.3 96.7 90.8
(+UnMix-TNS) 49.1 (-28.1) 50.1 (-30.8) 70.7 (-12.0) 56.6 (-23.7) 44.6 (-33.2) 50.4 (-30.8) 71.4 (-11.2) 55.5 (-25.0) 72.1 (-9.3) 66.6 (-27.7) 85.6 (-11.1) 74.8 (-16.0)
LAME 30.6 35.2 79.3 48.4 30.6 35.2 79.3 48.4 16.1 3.8 65.0 28.3
(+UnMix-TNS) 5.4 (-25.2) 31.7 (-3.5) 64.1 (-15.2) 33.7 (-14.7) 8.0 (-22.6) 30.6 (-4.6) 63.8 (-15.5) 34.1 (-14.3) 8.0 (-8.1) 4.2 (+0.4) 68.5 (+3.5) 26.9 (-1.4)
NOTE 26.0 53.4 81.7 53.7 26.7 53.8 81.8 54.1 36.1 57.0 85.6 59.6
(+UnMix-TNS) 26.7 (+0.7) 38.3 (-15.1) 70.9 (-10.8) 45.3 (-8.4) 26.7 (+0.0) 38.5 (-15.3) 70.8 (-11.0) 45.3 (-8.8) 52.6 (+16.5) 53.8 (-3.2) 84.6 (-1.0) 63.7 (+4.1)
RoTTA 27.7 43.5 70.2 47.1 27.9 44.3 68.9 47.0 64.0 65.0 86.7 71.9
(+UnMix-TNS) 26.8 (-0.9) 39.4 (-4.1) 70.8 (+0.6) 45.7 (-1.4) 26.8 (-1.1) 38.9 (-5.4) 69.6 (+0.7) 45.1 (-1.9) 45.4 (-18.6) 53.2 (-11.8) 83.9 (-2.8) 60.8 (-11.1)
ROID 73.4 77.7 82.4 77.8 73.4 77.7 82.4 77.8 77.3 93.5 96.5 89.1
(+UnMix-TNS) 15.3 (-58.1) 14.0 (-63.7) 66.6 (-15.8) 32.0 (-45.8) 15.5 (-57.9) 13.4 (-64.3) 66.4 (-16.0) 31.8 (-46.0) 32.6 (-44.7) 12.3 (-81.2) 77.5 (-19.0) 40.8 (-48.3)

UnMix-TNS exemplifies resilience under non-i.i.d. test-time adaptation. Our observation reveals
that, in comparison to other test-time normalization-based methods, UnMix-TNS stands superior,
delivering exceptional average classification performance in both single and continual domain
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Table 2: Non-i.i.d. test-time adaptation on natural shift benchmark (DomainNet-126). Online
classification error rate (in %) depicted for each source domain, averaged across the other target
domains. A comparative analysis between single, continual, and mixed domain adaptation is presented.
Averaged over three runs.

SINGLE DOMAIN CONTINUAL DOMAIN MIXED DOMAIN
Source domain clipart painting real sketch Mean clipart painting real sketch Mean clipart painting real sketch Mean
Source 49.5 41.6 45.2 45.3 45.4 49.5 41.6 45.2 45.3 45.4 49.5 41.6 45.2 45.3 45.4

TEST-TIME NORMALIZATION
TBN 89.2 87.7 85.8 87.4 87.5 89.2 87.7 85.8 87.4 87.5 93.7 93.0 89.9 92.9 92.4
α-BN 60.7 53.9 58.1 55.4 57.0 60.7 53.9 58.1 55.4 57.0 64.7 60.5 61.7 59.5 61.6
IABN 69.2 62.9 67.2 65.3 66.2 69.2 62.9 67.2 65.3 66.2 69.2 62.9 67.2 65.3 66.2
RBN 66.6 61.1 61.2 59.9 62.2 66.6 61.2 61.2 59.9 62.2 79.9 76.6 71.3 76.3 76.0
UnMix-TNS 48.9 42.9 48.8 41.5 45.5 48.0 41.6 47.7 40.6 44.5 48.7 41.6 47.6 39.5 44.4

TEST-TIME ADAPTATION
TENT 89.2 87.7 85.8 87.4 87.5 89.2 87.7 85.9 87.4 87.5 93.7 93.1 89.9 92.9 92.4
(+UnMix-TNS) 48.8 (-40.4) 42.7 (-45.0) 48.7 (-37.1) 41.5 (-45.9) 45.4 (-42.1) 47.9 (-41.3) 41.5 (-46.2) 47.5 (-38.4) 40.6 (-46.8) 44.4 (-43.1) 48.1 (-45.6) 41.5 (-51.6) 47.0 (-42.9) 39.2 (-53.7) 43.9 (-48.5)
CoTTA 89.2 87.7 85.8 87.4 87.5 89.2 87.7 85.8 87.4 87.5 93.7 93.1 89.9 92.9 92.4
(+UnMix-TNS) 49.2 (-40.0) 43.0 (-44.7) 49.0 (-36.8) 41.8 (-45.6) 45.8 (-41.7) 49.0 (-40.2) 41.8 (-45.9) 47.9 (-37.9) 41.5 (-45.9) 45.0 (-42.5) 49.0 (-44.7) 42.0 (-51.1) 47.5 (-42.4) 39.9 (-53.0) 44.6 (-47.8)
LAME 32.2 29.1 28.0 32.5 30.5 32.2 29.1 28.0 32.5 30.5 21.4 10.2 11.6 17.9 15.3
(+UnMix-TNS) 27.7 (-4.5) 24.7 (-4.4) 27.9 (-0.1) 26.2 (-6.3) 26.6 (-3.9) 27.1 (-5.1) 24.0 (-5.1) 26.7 (-1.3) 25.6 (-6.9) 25.9 (-4.6) 16.7 (-4.7) 9.3 (-0.9) 11.6 (+0.0) 12.9 (-5.0) 12.6 (-2.7)
NOTE 61.0 57.1 59.1 54.8 58.0 60.8 56.8 58.7 54.4 57.6 63.8 60.2 60.9 57.6 60.6
(+UnMix-TNS) 50.9 (-10.1) 44.6 (-12.5) 49.4 (-9.7) 42.7 (-12.1) 46.9 (-11.1) 50.6 (-10.2) 44.1 (-12.7) 48.9 (-9.8) 42.3 (-12.1) 46.5 (-11.1) 49.0 (-14.8) 43.1 (-17.1) 50.0 (-10.9) 39.9 (-17.7) 45.5 (-15.1)
RoTTA 57.5 50.9 53.8 49.7 53.0 57.1 50.7 53.4 49.1 52.6 65.6 61.2 60.2 59.6 61.7
(+UnMix-TNS) 50.5 (-7.0) 44.1 (-6.8) 49.3 (-4.5) 43.0 (-6.7) 46.7 (-6.3) 50.4 (-6.7) 43.6 (-7.1) 49.0 (-4.4) 43.0 (-6.1) 46.5 (-6.1) 49.3 (-16.3) 42.9 (-18.3) 49.8 (-10.4) 40.1 (-19.5) 45.5 (-16.2)
ROID 88.4 86.7 85.1 86.2 86.6 88.4 86.7 85.1 86.2 86.6 93.2 92.3 89.3 92.3 91.8
(+UnMix-TNS) 30.3 (-58.1) 22.4 (-64.3) 31.7 (-53.4) 21.6 (-64.6) 26.5 (-60.1) 29.7 (-58.7) 21.5 (-65.2) 30.7 (-54.4) 21.2 (-65.0) 25.8 (-60.8) 21.0 (-72.2) 11.3 (-81.0) 20.1 (-69.2) 13.7 (-78.6) 16.5 (-75.3)

Table 3: Non-i.i.d. test-time adaptation on corrupted video datasets. We adapt the ResNet-50
backbone trained on ImageNet on the sequential frames of ImageNet-VID-C and LaSOT-C and report
classification error rates (%). † denotes methods using UnMix-TNS layers.

Dataset Corruption Source TBN α-BN UnMix-TNS TENT TENT† LAME LAME†

ImageNet-VID-C
Gauss. Noise 79.6 92.4 78.1 74.1 92.4 76.3 (-16.1) 78.0 71.2 (-6.8)
Rain 82.4 92.4 83.0 80.0 92.4 80.8 (-11.6) 80.4 76.8 (-3.6)
Snow 49.2 91.4 61.9 51.8 91.4 54.8 (-36.6) 45.7 46.4 (+0.7)
Mean 70.4 92.0 74.4 68.6 92.0 70.6 (-21.4) 68.0 64.8 (-3.2)

LaSOT-C
Gauss. Noise 84.3 97.2 86.7 82.9 97.2 82.7 (-14.5) 82.6 80.2 (-2.4)
Rain 89.5 97.1 89.5 88.6 97.1 88.4 (-8.7) 87.5 87.3 (-0.2)
Snow 71.2 96.1 78.4 71.9 96.1 72.1 (-24.0) 66.5 66.8 (+0.3)
Mean 81.7 96.8 84.8 81.1 96.8 81.0 (-15.8) 78.9 78.1 (-0.8)

adaptation, spanning corruption and natural shift benchmarks. More explicitly, our method shows an
increase in accuracy by 11.0% and 11.1% averaged over three datasets on the corruption benchmark,
surpassing the second-best baseline. The merit is accentuated in DomainNet-126; the improvement
rises to 11.5% and 12.5%, corresponding to scenarios where the domain discrepancy is notably
profound. In realms of mixed domain adaptation, UnMix-TNS outperforms its closest competitor by
5.6% and 2.6% on CIFAR100-C and ImageNet-C, respectively. This is supported by a remarkable
reduction in the error rate by 17.2%, surpassing the next best method on mixed domain adaptation on
DomainNet-126. The insights derived from our experiments are particularly enlightening for non-i.i.d
scenarios, suggesting that the update of multiple distinct statistics components achieves superiority
over the continuous adaptation of a singular component as in RBN or blending source statistics with
the incoming batch/instance (α-BN/IABN) target statistics.

Elevating TTA methods with UnMix-TNS. In Tables 1 and 2, we benchmark against the fore-
front TTA strategies, both standalone and when integrated with UnMix-TNS. We note significant
performance reductions for TENT, CoTTA, and ROID when operated solely across corruption and
natural shift benchmarks, observing error rates escalating to a minimum of 73.4% across every
dataset and evaluation scenario. We posit that the reliance of the methods on TBN explains the
substantial drops in performance when exposed to non-i.i.d. testing. However, when combined with
UnMix-TNS, these methods experience a remarkable performance improvement. Notably, ROID
achieves gains of at least 45.8% on corruption datasets and 60.1% on DomainNet-126 domains,
ultimately achieving the best mean results in both single and continual domain adaptation for both
benchmarks. Conversely, methods like NOTE and RoTTA use memory banks to simulate i.i.d.-like
conditions, improving test-time accuracy in single and continual domain adaptation scenarios only
on corruption benchmarks. Regardless, they face challenges when dealing with mixed domain or
larger domain shifts, as exemplified by DomainNet-126. Instead, we demonstrate that the integration
of UnMix-TNS consistently elevates their performance, highlighting the advanced efficacy of our
normalization layers compared to the IABN and RBN employed by these methods. Among the TTA
methods, only LAME, which propagates labels within a batch, exhibits remarkably low error rates in
both test scenarios. Nonetheless, UnMix-TNS advances its overall performance further, except in the
case of mixed domain adaptation scenarios for CIFAR100-C and ImageNet-C.
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Evaluating UnMix-TNS for corrupted video datasets. In Table 3, we assess how a ResNet-50
model, initially trained on ImageNet, adapts at test time using corrupted versions of ImageNet-
VID and LaSOT video datasets. UnMix-TNS consistently surpasses the test-time normalization
schemes of TBN by 23.4/15.7% and α-BN by 5.8/3.7% on ImageNet-VID/LaSOT, respectively.
It also demonstrates an overall improvement of 21.4/15.8% and 3.2/0.8% for TENT and LAME,
respectively. Moreover, UnMix-TNS proves to be more robust than other test-time normalization
schemes, predominantly improving upon the baseline source accuracy, especially in scenarios affected
by covariate-shifted video frames, where others may experience a noticeable decline in source model
performance.

3.3 ABLATION STUDIES

Deciphering test sample correlation impact. This study, aligned with (Yuan et al., 2023), adopts
the Dirichlet distribution, synthesizing correlatively sampled test streams through the concentration
parameter δ to investigate their impact on domain adaptation under continual, and mixed domain
adaptation. A decrease in δ results in heightened correlation among test samples and category
aggregation, depicted by different δ values in Figure 3 (a) on the CIFAR100-C dataset. Concurrently,
this decrease triggers a pronounced decline in the performance of TBN, α-BN, and RBN, owing
to their indifference to the rising correlation among test samples. Notably, UnMix-TNS exhibits
more resilience regarding various values of δ, demonstrating its effectiveness in the above-mentioned
non-i.i.d. test-time scenarios. Further ablation studies concerning single domain adaptation, along
with experiments on CIFAR10-C, are provided in Appendix C.

Effect of batch size. While our experiments are primarily conducted with a batch size of 64, we
also explore the effect of varying batch sizes, from 1 to 256, on temporally correlated streams within
continual and mixed domain adaptation to address potential curiosities regarding batch size influence.
As illustrated in Figure 3 (b), we observe consistent decrement in the error rate for TBN and RBN as
batch size increases, while α-BN’s error rate first increases with batch size and then reduces afterward.
This occurrence reflects the premise that an increased batch size facilitates the incorporation of more
categories within each batch, thereby diminishing the label correlation therein. For α-BN, a batch size
of 1 corresponds to the computation of normalization statistics on an instance-wise basis, utilizing
a blend of stored and current statistics, a method which, intriguingly, yields the best performance.
Distinctly, UnMix-TNS remains robust to batch size variations, consistently delivering superior
results across adaptation scenarios over a wide range of batch sizes. Additional results for single
domain adaptation, along with experiments on CIFAR10-C, are provided in Appendix C.

UnMix-TNS introduces minimal computational overhead. To accurately assess the efficiency
of the UnMix-TNS, we execute precise computations of the inference time over the 15 corruptions
of CIFAR10-C. These calculations are uniformly performed under consistent running environ-
ments—utilizing an NVIDIA GeForce RTX 3080 GPU and maintaining the same batch size of 64
and K=16. Despite the negligible additional inference time cost—a mere extra 0.15ms per image
compared to vanilla source inference—the integration of the proposed UnMix-TNS results in a
substantial enhancement of 16.5% in average accuracy. When integrated into a method like TENT,
the inference rate slightly increases by 0.58ms per image for a significant average accuracy gain of
49.0%.

In Appendix C, we provide supplementary ablation studies and experiments, focusing on the effect
of the depth of UnMix-TNS layers in neural networks and the number of components, denoted as K.

4 RELATED WORK

Online Test-Time Adaptation. Prominent TTA methods, such as self-supervised tuning (Sun
et al., 2020; Liu et al., 2021), batch normalization recalibration (Nado et al., 2020; Wang et al.,
2020), and test-time data augmentation (Chen et al., 2022; Tomar et al., 2023), are often limited to
specific experimental setups. These methods assume a single stationary distribution shift, large batch
sizes, and consistent labels within test batches, leading to suboptimal performance in diverse testing
scenarios. Hence, recent efforts have focused on extending to more practical testing scenarios. For
instance, CoTTA (Wang et al., 2022) focuses on adapting to evolving target environments but relies
on i.i.d. test data. They employ dual utilization of weight and augmentation-averaged predictions,
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Figure 3: Ablation study on the impact of (a) Dirichlet parameter, δ, and (b) batch size on CIFAR100-
C, comparing several test-time normalization methods including TBN, α-BN, RBN, and UnMix-TNS.

resulting in substantial model updates and computational overhead. LAME (Boudiaf et al., 2022)
suggests non-i.i.d. test-time adaptation based on batch predictions, but it may be sensitive to batch
size fluctuations. NOTE (Gong et al., 2022) and RoTTA (Yuan et al., 2023) use a memory bank for
category-balanced data, effective under non-i.i.d. and non-stationary contexts but with high memory
requirements. ROID (Marsden et al., 2024) introduces universal test-time adaptation with various
protocols, benefiting from strategies like diversity weighting and normalization layers like group or
layer normalization for improved resilience to correlated data. However, its effectiveness diminishes
in non-i.i.d. scenarios with BN layers in the backbone.

Normalization in Test Time. Test-time BN adaptation methods have emerged that utilize test
batch statistics for standardization (Nado et al., 2020) or blending source and test batch statistics
(Schneider et al., 2020) to counteract the intermediate covariate shift adeptly. Similarly, methods
like α-BN (You et al., 2021) and AugBN (Khurana et al., 2021) integrate both statistics through
the use of predetermined hyperparameters. Other methods modify statistics via a moving average
while augmenting the input to create a virtual test batch (Hu et al., 2021; Mirza et al., 2022). For
instance, the MixNorm (Hu et al., 2021) uses training statistics as global statistics, updated through
an exponential moving average of online test samples, even for a single sample. InstCal (Zou et al.,
2022) introduces an instance-specific BN calibration for test-time adaptation, bypassing extensive
test-time parameter fine-tuning. NOTE (Gong et al., 2022) has presented instance-aware BN (IABN)
to correct normalization of out-of-distribution samples. In another concurrent work, RoTTA (Yuan
et al., 2023) suggests robust BN (RBN), which estimates global statistics via exponential moving
average. Recently, TTN (Lim et al., 2023) introduced a test-time normalization layer that merges
source and test batch statistics, leveraging interpolating channel-wise weights to seamlessly adapt to
new target domains while accounting for domain shift sensitivity. However, it is essential to highlight
that TTN relies on prior knowledge of the source data, representing a slight departure from traditional
test-time adaptation methods.

5 CONCLUSION

This paper proposes UnMix-TNS, a novel test-time normalization layer meticulously designed to
counteract the label temporal correlation, particularly in the context of non-i.i.d. distributionally
shifted streaming test batches. UnMix-TNS, inherently versatile, integrates seamlessly with existing
test-time adaptation techniques and BN-equipped architectures. Through rigorous empirical testing
on various benchmarks—including both corruption and natural shift benchmarks of classification, as
well as newly introduced corrupted real-world video datasets, we provide compelling evidence of
robustness across varied test-time adaptation protocols and the significant performance enhancements
achievable by leading TTA methods when paired with UnMix-TNS in non-i.i.d. environments.
Limitations. Future work will concentrate on two main areas: firstly, adapting to scenarios where
test batches include a wide range of diverse or outlier instances; secondly, applying our method to
BN-based segmentation models during test-time adaptation to enhance its adaptability. Additionally,
determining the ideal number of UnMix-TNS components will be explored further, as different
datasets and adaptation scenarios may require varied optimal values.
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Robert A Marsden, Mario Döbler, and Bin Yang. Universal test-time adaptation through weight
ensembling, diversity weighting, and prior correction. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp. 2555–2565, 2024.

10



Published as a conference paper at ICLR 2024

M Jehanzeb Mirza, Jakub Micorek, Horst Possegger, and Horst Bischof. The norm must go on:
Dynamic unsupervised domain adaptation by normalization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 14765–14775, 2022.

Zachary Nado, Shreyas Padhy, D Sculley, Alexander D’Amour, Balaji Lakshminarayanan, and Jasper
Snoek. Evaluating prediction-time batch normalization for robustness under covariate shift. arXiv
preprint arXiv:2006.10963, 2020.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen, Yaofo Chen, Peilin Zhao, and Mingkui
Tan. Towards stable test-time adaptation in dynamic wild world. In Internetional Conference on
Learning Representations, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 1406–1415, 2019.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115:211–252, 2015.

Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias
Bethge. Improving robustness against common corruptions by covariate shift adaptation. Advances
in neural information processing systems, 33:11539–11551, 2020.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time training
with self-supervision for generalization under distribution shifts. In International conference on
machine learning, pp. 9229–9248. PMLR, 2020.

Devavrat Tomar, Guillaume Vray, Behzad Bozorgtabar, and Jean-Philippe Thiran. Tesla: Test-
time self-learning with automatic adversarial augmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 20341–20350, 2023.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing
ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully test-
time adaptation by entropy minimization. In International Conference on Learning Representations,
2020.

Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual test-time domain adaptation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7201–7211, 2022.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on
computer vision (ECCV), pp. 3–19, 2018.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1492–1500, 2017.

Hongwei Yong, Jianqiang Huang, Deyu Meng, Xiansheng Hua, and Lei Zhang. Momentum batch
normalization for deep learning with small batch size. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XII 16, pp. 224–240.
Springer, 2020.

Fuming You, Jingjing Li, and Zhou Zhao. Test-time batch statistics calibration for covariate shift.
arXiv preprint arXiv:2110.04065, 2021.

11



Published as a conference paper at ICLR 2024

Longhui Yuan, Binhui Xie, and Shuang Li. Robust test-time adaptation in dynamic scenarios.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
15922–15932, 2023.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision
Conference 2016. British Machine Vision Association, 2016.

Yuliang Zou, Zizhao Zhang, Chun-Liang Li, Han Zhang, Tomas Pfister, and Jia-Bin Huang. Learning
instance-specific adaptation for cross-domain segmentation. In European Conference on Computer
Vision, pp. 459–476. Springer, 2022.

12



Published as a conference paper at ICLR 2024

A APPENDIX: PROPERTIES OF UNMIX-TNS COMPONENTS

This section provides supplemental material for Sections 2.2.1 and 2.2.2.

A.1 STATISTICS OF K COMPONENT MIXTURE DISTRIBUTION

Let fX(x) =
∑

k wk · fk
X(x) be the probability distribution of a random variable X ∈ R, which is

a linear sum of K distinct probability distributions, such that wk ≥ 0 and
∑

k wk = 1. Also, let
µk =

∫
x · fk

X(x) dx, and σ2
k =
∫
(x − µk)

2 · fk
X(x) dx. The mean µ and variance σ2 of random

variable X under the distribution fX(x), are computed as:

µ =

∫
x · fX(x) dx =

∫
x ·
(∑

k

wk · fk
X(x)

)
dx =

∑
k

wk

∫
x · fk

X(x) dx =
∑
k

wkµk, (14)

σ2 =

∫
(x− µ)2 · fX(x) dx =

∫
(x− µ)2 ·

(∑
k

wk · fk
X(x)

)
dx

=
∑
k

wk

(∫
x2 · fk

X(x) dx+ µ2

∫
fk
X(x) dx− 2µ

∫
x · fk

X(x) dx

)
=
∑
k

wk

(
(σ2

k + µ2
k) + µ2 − 2µ · µk

)
=
∑
k

wk · σ2
k +

∑
k

wk · µ2
k −

(∑
k

wkµk

)2
.

A.2 INITIALIZING INDIVIDUAL STATISTICS OF K UNMIX-TNS COMPONENTS

Let us initialize the means and standard deviations (µt
k, σ

t
k) at time t = 0 of the individual components

of the UnMix-TNS layer, such that, in expectation, the statistics of their mixture distribution are equal
to the stored statistics (µ, σ) in the corresponding BN layer. For simplification in notation, we drop t
and c, and represent the mixture distribution from Section 2.2.1 at t = 0 and arbitrary channel c as
follows:

hZ(z) =
1

K

∑
k

N (µk, σk) (15)

where we define µk = µ+ ζk and σk = ρ, where ζk ∼ N (0, ϵ). Then, by applying Equations (14)
and (15), the expected value (µ̄, σ̄2) of the mean and variance of mixture distribution can be expressed
as follows:

E[µ̄] = E

[
1

K

∑
k

(µ+ ζk)

]
= µ, (16)

E[σ̄2] = E

[
ρ2 +

1

K

∑
k

(µ+ ζk)
2 − 1

K2

(∑
k

(µ+ ζk)
)2]

= ρ2 +
(
1− 1

K

)
ϵ2. (17)

Note that the right-hand side of the above equation remains constant. Consequently, at initialization,
creating more diverse components (high ϵ) necessitates lower individual variance of the components,
ρ2. Thus, the maximum value of ϵ2 is established as ϵ2max = K

K−1 σ̄
2 and minimum value as

ϵ2min = 0. Hence, we proportionally scale ϵ between
(
0,
√

K
K−1 · σ̄

)
utilizing the hyperparameter α,

i.e. ϵ =
√

α·K
K−1 · σ̄

)
.
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A.3 ADAPTING UNMIX-TNS TO TEMPORALLY CORRELATED TEST DATA: A THEORETICAL
PERSPECTIVE

Let h(z) be the true distribution of the test domain features. We assume that h(z) can be decomposed
as a mixture of K Gaussian distributions {hk(z)}Kk=1, such that h(z) = 1

K

∑
k hk(z). Additionally,

we postulate the existence of a perfect classifier F : Z → (Y,K) that deterministically assigns each
feature z to its corresponding label y and component k, expressed as (y, k) = F (z).

In the context of independent and identically distributed (i.i.d.) features, each z is uniformly sampled
over time with respect to its corresponding label y (unknown to the learner), and thus the expected
value of the mean (utilized for normalization) of the current batch can be calculated as follows:

E[µbatch] = µ∗ =
∑
y,k

∫
z · h(z, y, k)dz =

∑
y,k

∫
z · h(z|k)h(y|z, k)h(k)dz (18)

where h(z, y, k) represents the joint distribution of the features z, labels y and the component k. The
term h(z|k) = hk(z) denotes the probability distribution of the features given a particular component
k, while h(k) = 1

K implies that each component is equally likely. Furthermore, h(y|z, k) is the
conditional probability distribution of the labels given the features z and the component k. Since
the perfect classifier F allows for the deterministic determination of y, k from z, it follows that∑

y h(y|z, k) = 1. This can be rearticulated in the above equation for estimating the expected mean
µ∗ as follows:

µ∗ =
1

K

∑
y,k

∫
z · hk(z)h(y|z, k)dz =

1

K

∑
k

∫
z · hk(z)dz =

1

K

∑
k

µ∗
k. (19)

where µ∗
k is the mean of the kth component of the true distribution of the test domain features.

In a non-i.i.d. scenario, we sample the features z to ensure a temporal correlation with their
corresponding labels y. As a result, the true test domain distribution h(z) at a given time t is
approximated as ĥt(z) = 1

K

∑
k ĥ

t
k(z), where the distribution of the kth component hk(z) is

approximated as ĥt
k(z). This leads to the estimation of an unbiased normalization mean at time t

using ĥt(z), as expressed in the following equation:

µUnMix-TNS(t) =
1

K

∑
k

∫
z · ĥt

k(z)dz. (20)

Furthermore, the bias ∆UnMix-TNS(t) between the mean of the true test-domain distribution µ∗ and
the estimated mean µUnMix-TNS(t) at time t can be recorded as:

∆UnMix-TNS(t) =
1

K

∑
k

∫
z · (hk(z)− ĥt

k(z))dz =
1

K

∑
k

(µ∗
k − µ̂t

k) (21)

where µ̂t
k is the estimated mean of the same kth component at time t. Note that as time progresses and

t increases, µ̂t
k → µ∗

k, as we update µ̂t
k using exponential moving average mechanism (Equations 12 &

13 in the paper). Thus, UnMix-TNS can help mitigate the bias introduced in the estimation of feature
normalization statistics, which arises due to the time-correlated feature distribution. Conversely, the
expected value of the normalization mean estimated using the current batch (TBN) for the non-i.i.d.
scenario can be defined as:

µTBN(t) =
∑
y,k

∫
z · ht(z, y, k)dz =

∑
y,k

∫
z · h(z|k)h(y|z, k)ht(k)dz =

∑
k

∫
z · hk(z)h

t(k)dz

where ht(k) represents non-i.i.d. characteristics of the test data stream. In this case, the bias is
obtained as follows:

∆TBN(t) = µ∗ −
∑
k

ht(k)µ∗
k (22)

This equation indicates that if the test samples are uniformly distributed over time (i.e., in an i.i.d.
manner), where ht(k) = 1/K, the estimation of normalization statistics will not be biased. However,
in situations where ht(k) smoothly varies with time, favoring the selection of a few components over
others, TBN will introduce a non-zero bias in the estimation.
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A.4 OPTIMIZING MOMENTUM: INSIGHTS FROM MOMENTUM BATCH NORMALIZATION

Our approach to setting the optimal value of the hyperparameter λ for momentum draws inspiration
from the concept of Momentum BN (MBN) (Yong et al., 2020). The effectiveness of BN has
traditionally been attributed to its ability to reduce internal covariate shifts. However, MBN (Yong
et al., 2020) has provided an additional perspective by demonstrating that BN layers inherently
introduce a certain level of noise in the sample mean and variance, acting as a regularization
mechanism during the training phase. A key insight from MBN is the relationship between the
amount of noise and the batch size, and smaller batch sizes introduce relatively larger noise, leading
to a less stable training process. The rationale behind MBN is to standardize this noise level across
different batch sizes, particularly making the noise level with a small batch size comparable to that
with a larger batch size by the end of the training stage. To achieve this, MBN modifies the standard
BN approach: instead of directly using the batch means and variances in the BN layer, MBN utilizes
their momentum equivalents as follows:

µt+1
c = (1− λ)µt

c + λµB = µt
c + λ(µB − µt

c) (23)

(σt+1
c )2 = (1− λ)(σt

c)
2 + λ(σB)

2 = (σt
c)

2 + λ((σB)
2 − (σt

c)
2) (24)

Here, t denotes the tth iteration, µt
c and σt

c represent historical means and variances, µB and σB

represent the current batch means and variances, and λ is the momentum hyperparameter. MBN
introduces additive noise ξµ ∼ N (0, λ

B ) and multiplicative noise ξσ with a Generalized-Chi-squared
distribution with expectation E[ξσ] = B−1

B and V ar[ξσ] =
λ

2−λ
2(B−1)

B2 . These formulas show that
smaller batch sizes lead to increased noise but also reveal that the noise level can be moderated by
the momentum hyperparameter λ. Based on this insight, MBN proposed a formula to determine a
robust λ given the batch size B:

λ = 1− (1− λ0)
B/B0 (25)

where λ0 and B0 represent the ideal momentum parameter and ideal batch size, respectively. In-
tuitively, a smaller batch size leads to a lower λ, thereby reducing noise generation. Given that
Equations (12) and (13) in our method are similar to those in the MBN approach Equations (23)
and (24), we posit that our method might also encounter significant noise with small batch sizes. To
address this and ensure stability across varying batch sizes, we adopt the hyperparameter λ following
Equation (25), using B0 = 64 and λ0 = 0.1, aligning with (Yong et al., 2020).

B APPENDIX: FOR REPRODUCIBILITY

B.1 IMPLEMENTATION DETAILS

All experiments were performed using PyTorch 1.13 (Paszke et al., 2019) on an NVIDIA GeForce
RTX 3080 GPU. For the CIFAR10-C and CIFAR100-C, we optimize the model parameters of the
test-time adaptation methods utilizing both BN and UnMix-TNS layers with the Adam optimizer with
a learning rate of 1e-5, no weight decay, and a batch size of 64. For the DomainNet-126, ImageNet-C,
ImageNet-VID-C, and LaSOT-C datasets, we use the SGD optimizer with a learning rate of 2.5e-6,
momentum of 0.9, and no weight decay, with a batch size of 64 for DomainNet-126 and 16 for the
remaining datasets.

In implementing our method, we set α to 0.5 in all our experiments. As for the number of UnMix-TNS
components K, we set 16 for single and continual test-time adaptation on CIFAR10-C, CIFAR100-C,
DomainNet126-C, and ImageNet-C, while setting K to 128 for mixed domain test-time adaptation.
For mixed domain adaptation, K is increased to 128 to aptly represent a diversity of domain features
within the neural network and is further adjusted to 256 for ImageNet-VID-C and LaSOT-C. This
higher K value is pertinent to accommodate the heterogeneous domain features inherent in mixed
domain adaptation.

The δ parameter controlling non-i.i.d. shift of the Dirichlet sampling distribution is set to 0.1 for
CIFAR10-C and adjusted to 0.01 for CIFAR100-C, ImageNet-C, and DomainNet-126.
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B.2 PSEUDOCODE

We provide PyTorch-friendly (Paszke et al., 2019) pseudocode for the implementation of the UnMix-
TNS layer, referenced as Algorithm 1.

Algorithm 1: PyTorch-friendly pseudocode for the UnMix-TNS layer
class UnMixTNS:

def init (γ, β, source mean , source var , momentum, K):
# initialization
self.γ = γ, self.β = β, self.momentum = momentum
# choose α = 0.5, C is number of channels
α = 0.5, C = source mean.size()
# initialize K random UnMix-TNS components
noise = torch.sqrt(α * K/(K-1)) * torch.randn(K, C) # shape:(K,C)
self.component means = torch.tensor([noise[i] * source mean for i in range(K)]) #
shape:(K,C)

self.component vars = torch.tensor([(1-α) * source var for in range(K)]) #
shape:(K,C)

def forward(x):
# x has shape:(B,C,H,W)
instance mean, instance var = torch.var mean(x, dim=[2, 3]) # shape:(B,C)
# compute assignment probabilities
with torch.no grad(): # no gradients

sim = cosine sim(instance mean, self.component means.T) # shape:(B,K)
p = torch.softmax(sim / 0.07, dim=1).unsqueeze(-1) # shape:(B,K,1)

# mix the instance statistics with K components’ statistics
hat mean = (1-p)*self.component means.unsqueeze(0) + p*instance mean.unsqueeze(1) #
shape: (B,K,C)

hat var = (1-p)*self.component vars.unsqueeze(0) + p*instance var.unsqueeze(1) #
shape: (B,K,C)

# compute instance-wise normalization statistics
µ = torch.mean(hat mean, dim=1)
σ2 = torch.mean(hat var, dim=1) + torch.mean(hat mean∗∗2, dim=1) - µ∗∗2
# update K component’s statistics
with torch.no grad(): # no gradients

# update K components’ means
self.component means = self.component means + self.momentum *
(torch.mean(hat mean, dim=0) - self.component means)

# update K components’ vars
self.component vars = self.component vars + self.momentum * (torch.mean(hat var,
dim=0) - self.component vars)

# normalize features : x
x norm = (x - µ) / torch.sqrt(σ2 + 1e-6)
return x norm * self.γ + self.β

C APPENDIX: ABLATION STUDIES AND ADDITIONAL EXPERIMENTAL
RESULTS

C.1 EXPLORING UNMIX-TNS INFLUENCE ACROSS THE VARIED DEPTHS OF NEURAL
NETWORK LAYERS

Figure 4 (a)-(b) illustrate the effect of replacing the BN layer with UnMix-TNS layers in the early or
deeper segment of the neural network, respectively. The incorporation of UnMix-TNS proves to be
essential for the early and intermediary layers of the neural network for combating the challenges
posed by non-i.i.d. test streams. However, in the deeper layers, employing the BN layer synchronized
with initial source statistics is discerned to yield superior results.

C.2 HYPERPARAMETERS SENSITIVITY

In this section, we present supplementary results of our hyperparameter sensitivity analysis, which
serves to complement our analysis of the impact of test sample correlation and batch size on the
performance of test-time normalization-based methods, UnMix-TNS included. Furthermore, we
delve into the sensitivity of UnMix-TNS concerning the number of its components K.

Impact of sample correlation and batch size. The resilience of UnMix-TNS, along with other
normalization layers, in response to variations in the concentration parameter δ and batch size, is
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(a) (b)

Figure 4: Exploration of UnMix-TNS influence at varied depths within the neural network. (a)
Represents the average classification error rate when only the BN layers subsequent to the layer
index are replaced by UnMix-TNS layers. (b) Shows the average classification error rate when solely
the BN layers preceding the layer index are exchanged by UnMix-TNS layers. A layer index of
0 corresponds to the first layer. The depicted experiments focus on non-i.i.d. continual test-time
domain adaptation on the CIFAR10-C.

depicted in Figure 5. Furthermore, in Figure 6, we provide additional insights into our sensitivity
analysis for CIFAR10-C and CIFAR100-C, showcasing results for single test-time domain adaptation.
In summary, these additional observations corroborate the analysis in our main paper, underscoring
that UnMix-TNS maintains remarkable stability against alterations in batch size and δ, consistently
surpassing the average performance of baseline methods.

Influence of the Number of UNMIX-TNS components K. In Figures 7 and 8, we explore the
influence of the hyperparameter K on UnMix-TNS when used both independently and in conjunction
with state-of-the-art TTA methods. Our results indicate that for both single domain and continual
domain adaptation, K = 16 yields the best performance. However, increasing the value of K results
in higher error rates on CIFAR10-C, while the performance remains stable on CIFAR100-C. This
discrepancy can presumably be attributed to the limited class range in CIFAR10-C, implicating
lesser feature diversification. On the other hand, when it comes to mixed domain adaptation, our
findings demonstrate that a higher value of K is beneficial for UnMix-TNS. Mixed domain adaptation
scenarios typically involve more class-wise feature diversity within a batch, which can be effectively
handled by increasing the value of K.
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Figure 5: Ablation study on the impact of the (a) concentration parameter δ, and (b) batch size
on CIFAR10-C for several test-time normalization methods including TBN, α-BN, RBN, and our
proposed UnMix-TNS.

C.3 EXPLORATION OF AUGMENTATION TYPES

In the post-training phase, we leverage data augmentation as a means to simulate potential domain
shifts, with the primary objective being to subject the model to a spectrum of input domains similar
to the corruption benchmark. This simulation is pivotal, allowing an in-depth analysis of the model
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Figure 6: Ablation study on the impact of the (a) concentration parameter δ, and (b) batch size
on CIFAR10-C and CIFAR100-C for single domain adaptation. We compare several test-time
normalization methods, including TBN, α-BN, RBN, and our proposed UnMix-TNS.

4 16 64 256 1024
k

0

20

40

60

80

Er
ro

r 
ra

te
 (

%)

SINGLE DOMAIN

4 16 64 256 1024
k

CONTINUAL DOMAIN

4 16 64 256 1024
k

MIXED DOMAIN

TENT CoTTA LAME NOTE RoTTA ROID UnMix-TNS

Figure 7: Ablation study on the impact of the number of UnMix-TNS components K on CIFAR10-C.
The symbol † denotes indicates the employment of UnMix-TNS in the method.

influenced by any discrepancies between shifted and original domains. It is crucial to understand
that the essence of this examination is not in the final domain to which the input is altered but in the
alteration of the domain itself. This is demonstrated through the ablation study of augmentation types
applied on CIFAR10 and CIFAR100 using pre-trained WideResNet-28 and ResNeXt-29 in Table 4.

For this ablation study, color jittering is employed as the base augmentation, and we sequentially
incorporated random grayscale, Gaussian blur, and random horizontal flip—each augmentative
step reflective, though not identically aligned, with the corruption types present in our corruption
benchmark. Our observations reveal that UnMix-TNS consistently maintains a lower average error
rate across all augmentations, aligning closely with the source model and even surpassing it in
instances such as Gaussian blur. These findings are supported by corresponding non-i.i.d. test-time
adaptations on corruption benchmarks, detailed in Table 1, substantiating the versatile efficacy of
UnMix-TNS in navigating diverse domain alterations while preserving the accuracy of the model.

C.4 UNMIX-TNS SAFEGUARDS THE KNOWLEDGE SOURCED FROM THE ORIGINAL DOMAIN

In practical scenarios, data originating from the source domain may resurface during test time. For
this purpose, we employed clean domain test data from CIFAR10 and CIFAR100 datasets in a single
domain non-i.i.d. adaptation scenario to demonstrate how UnMix-TNS and other test-time normal-
ization methods acclimate to previously encountered source domain data, albeit unseen instances.
As depicted in Table 5, all baseline strategies employing test-time normalization layers exhibit a
decrement in performance, regardless of the expansion in batch sizes. This leads us to infer that
relying on source statistics amassed from extensive training data is still preferable to depending solely
on current input statistics. However, UnMix-TNS distinguishes itself by continuously refining the
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Figure 8: Ablation study on the impact of the number of UnMix-TNS components K on CIFAR100-
C. The symbol † denotes indicates the employment of UnMix-TNS in the method.

Table 4: Robustness to data augmentation. The error rate (↓) on augmented CIFAR10 and
CIFAR100 using pre-trained WideResNet-28 and ResNeXt-29, respectively. +X denotes the augmen-
tation X is added sequentially to color jittering in the transformation function.

Dataset CIFAR10 CIFAR100
Augmentation color jitter +grayscale +gaussian blur +horizontal flip color jitter +grayscale +gaussian blur +horizontal flip

Source 7.3 11.9 55.3 7.1 27.0 53.2 49.6 27.5
TBN 72.0 73.2 76.5 71.8 80.0 84.9 82.4 79.8
α-BN 18.2 23.6 56.0 17.8 40.1 57.9 55.7 40.5
RBN 43.0 47.0 60.7 43.0 38.6 57.5 50.6 39.1

UnMix-TNS 10.8 16.0 43.0 10.7 31.4 52.1 46.2 32.1

statistics components of the normalization layer, initialized from source statistics, whilst concurrently
utilizing the current input. This strategy facilitates enhanced preservation of source knowledge, as
demonstrated by a more moderate decline in performance compared to the source model, particularly
on the CIFAR100 dataset. Moreover, UnMix-TNS manifests stability in a non-i.i.d. adaptation
scenario and exhibits robustness to variations in batch size. This contrasts with other normalization
methods, which necessitate larger batch sizes to produce reliable statistics.

Table 5: Non-i.i.d adaptation in source domain. The error rate (↓) on CIFAR10 and CIFAR100
using WideResNet-28 and ResNeXt-29, respectively.

Method Source TBN α-BN RBN UnMix-TNS
Batch size - 64 16 4 64 16 4 64 16 4 64 16 4
CIFAR10 5.2 70.8 74.2 76.0 15.0 15.0 13.0 40.7 63.4 71.8 8.6 8.9 8.9

CIFAR100 21.1 77.9 89.0 92.2 34.2 39.3 37.7 32.7 50.3 73.9 25.4 25.6 25.7
Avg. 13.2 74.4 81.6 84.1 24.6 27.2 25.4 36.7 56.9 72.9 17.0 17.3 17.3

C.5 CORRUPTION-SPECIFIC RESULTS

In Tables 6 to 8, we provide a comprehensive set of results for CIFAR10-C, CIFAR100-C, and
ImageNet-C, focusing on single, continual, and mixed domain adaptation. More precisely, we
delineate error rates for each individual corruption within the benchmark. In the case of continual
domain adaptation, the corruptions are ordered based on the test timestamps. These results reinforce
our prior analysis from the main paper, offering a more granular examination of the corruption level.
In particular, for single domain adaptation, we consistently outperform test-time normalization-based
methods in 14 out of 15 corruption types across all datasets. Within the realm of continual domain
adaptation, our approach experiences slightly higher error rates on a few corruptions, those of motion,
defocus, fog, and contrast with IABN for CIFAR10/100-C. Nonetheless, we sustain a superior
stance in terms of overall performance. As for ImageNet-C, UnMix-TNS mirrors the outcomes of
RBN in the presence of noisy data but consistently outperforms RBN when subjected to alternative
corruptions. These elaborate findings robustly validate the proficiency of UnMix-TNS amidst varying
circumstances and corruption types.

19



Published as a conference paper at ICLR 2024

Table 6: Corruption-specific error rates under three non-i.i.d. test-time adaptation scenarios.
The depicted error rates correspond to the adaptation from CIFAR10 to CIFAR10-C on temporally
correlated samples by class labels using Dirichlet distribution with δ = 0.1 and corruption severity of
5. Methods marked with † denote the integration of our proposed UnMix-TNS with the respective
TTA method. Averaged over three runs.

(a) Single domain non-i.i.d. test-time adaptation.
METHOD GAUSS SHOT IMPUL. DEFOC. GLASS MOTION ZOOM SNOW FROST FOG BRIGH. CONTR. ELAST. PIXEL JPEG AVG.

Source 72.3 65.7 72.9 47.0 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.5 30.3 43.5
TEST TIME NORMALIZATION

TBN 77.8 77.2 80.1 73.9 80.6 74.2 74.2 75.5 74.3 73.5 72.0 73.6 77.7 76.7 78.7 76.0
α-BN 60.7 56.3 66.5 41.8 58.0 38.0 40.0 35.4 39.8 31.6 19.2 38.6 41.5 54.0 44.3 44.4
IABN 43.5 40.7 51.2 20.6 48.6 19.5 21.8 22.0 24.0 21.2 11.3 10.9 34.1 30.5 36.6 29.1
RBN 59.8 58.1 65.2 49.2 65.4 50.1 48.7 52.3 51.6 49.4 43.4 48.2 57.7 55.2 60.0 54.3
UnMix-TNS 38.9 35.9 46.6 20.4 41.4 19.1 20.1 21.4 22.9 19.1 11.1 16.7 30.4 27.8 33.9 27.0

TEST TIME OPTIMIZATION
TENT 77.8 77.2 80.1 73.8 80.6 74.2 74.2 75.5 74.3 73.4 72.0 73.5 77.7 76.7 78.8 76.0
TENT† 38.7 35.8 46.5 20.3 41.4 19.1 20.0 21.3 22.8 19.0 11.0 16.6 30.4 27.8 33.9 27.0
CoTTA 77.8 77.1 80.1 76.1 80.9 76.7 75.9 76.5 75.5 75.1 74.2 78.4 78.3 77.1 78.0 77.2
CoTTA† 68.1 63.8 72.7 37.7 73.1 35.1 38.9 43.0 42.4 35.0 16.2 34.6 60.2 52.6 62.6 49.1
LAME 77.8 67.4 63.0 25.4 42.2 12.4 14.2 9.3 26.2 11.2 4.6 39.5 5.9 53.0 6.3 30.6
LAME† 7.8 7.4 11.4 4.2 5.1 4.1 4.0 4.4 4.9 4.8 3.8 5.2 4.8 5.3 4.3 5.4
NOTE 37.9 35.3 44.6 18.2 44.4 17.2 19.7 20.1 21.0 18.7 10.6 9.3 31.6 27.7 34.1 26.0
NOTE† 37.5 35.2 46.1 19.1 42.0 18.9 18.8 21.6 22.8 19.8 11.3 16.4 30.3 26.4 34.4 26.7
RoTTA 37.9 35.6 46.1 18.5 46.2 19.4 17.8 23.2 23.7 20.5 10.9 20.7 31.5 27.6 35.9 27.7
RoTTA† 37.7 35.1 46.2 19.2 42.1 18.9 18.8 21.5 23.0 19.9 11.3 16.5 30.5 26.7 34.4 26.8
ROID 75.6 74.9 78.7 70.7 79.2 71.1 71.1 72.7 71.2 70.0 68.5 70.2 75.7 74.2 76.8 73.4
ROID† 24.4 22.5 32.3 8.4 27.9 7.7 7.6 10.3 11.2 9.4 3.9 7.3 17.1 17.7 21.7 15.3

(b) Continual domain non-i.i.d. test-time adaptation.
t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

METHOD GAUSS SHOT IMPUL. DEFOC. GLASS MOTION ZOOM SNOW FROST FOG BRIGH. CONTR. ELAST. PIXEL JPEG AVG.

Source 72.3 65.7 72.9 47.0 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.5 30.3 43.5
TEST TIME NORMALIZATION

TBN 77.8 77.2 80.1 73.9 80.6 74.2 74.2 75.5 74.3 73.5 72.0 73.6 77.7 76.7 78.7 76.0
α-BN 60.7 56.3 66.5 41.8 58.0 38.0 40.0 35.4 39.8 31.6 19.2 38.6 41.5 54.0 44.3 44.4
IABN 43.5 40.7 51.2 20.6 48.6 19.5 21.8 22.0 24.0 21.2 11.3 10.9 34.1 30.5 36.6 29.1
RBN 59.8 57.6 64.8 51.4 65.6 50.8 48.9 52.8 51.7 50.0 44.0 48.9 58.1 55.7 60.4 54.7
UnMix-TNS 38.9 30.8 41.1 36.0 41.0 21.4 15.3 20.1 18.8 22.2 9.9 18.4 31.2 23.8 33.5 26.8

TEST TIME OPTIMIZATION
TENT 77.8 77.2 80.1 73.8 80.6 74.2 74.2 75.4 74.2 73.4 71.9 73.3 77.7 76.5 78.7 75.9
TENT† 38.7 30.5 40.9 35.8 41.2 21.2 15.1 20.2 18.6 21.7 9.9 18.2 30.8 23.5 33.1 26.6
CoTTA 77.8 77.2 80.1 76.3 81.0 77.4 76.5 77.0 76.5 76.0 75.3 79.4 79.2 78.2 79.2 77.8
CoTTA† 68.1 58.8 71.6 50.8 69.3 32.4 23.8 28.7 26.5 32.9 12.6 43.0 50.8 40.9 58.8 44.6
LAME 77.8 67.4 63.0 25.4 42.2 12.4 14.2 9.3 26.2 11.2 4.6 39.5 5.9 53.0 6.3 30.6
LAME† 7.8 4.9 6.8 14.9 7.2 6.7 6.1 8.0 8.3 8.2 5.4 9.6 10.1 7.4 8.7 8.0
NOTE 37.9 30.8 41.6 24.1 45.1 18.4 20.1 20.3 19.7 19.3 12.6 9.4 33.0 33.2 34.3 26.7
NOTE† 37.5 30.4 41.9 30.7 42.4 21.1 15.5 20.5 19.7 21.4 10.5 19.6 29.5 25.7 33.4 26.7
RoTTA 37.9 33.3 44.1 25.0 46.5 20.7 16.1 22.5 22.2 21.9 10.6 20.6 33.1 27.7 35.7 27.9
RoTTA† 37.7 30.4 41.7 30.0 42.8 20.9 15.9 20.8 19.7 21.6 10.8 20.8 30.7 25.3 33.4 26.8
ROID 75.6 74.8 78.6 70.7 79.2 71.1 71.1 72.7 71.2 70.0 68.5 70.2 75.7 74.2 76.8 73.4
ROID† 24.4 18.3 28.8 15.9 30.1 8.8 6.1 10.3 9.6 9.9 4.0 10.5 16.8 18.0 21.0 15.5

(c) Mixed domain non-i.i.d. test-time adaptation.
METHOD GAUSS SHOT IMPUL. DEFOC. GLASS MOTION ZOOM SNOW FROST FOG BRIGH. CONTR. ELAST. PIXEL JPEG AVG.

Source 72.3 65.7 72.9 47.0 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.5 30.3 43.5
TEST TIME NORMALIZATION

TBN 90.5 88.4 97.6 80.3 90.9 77.0 77.2 70.1 70.5 73.8 43.4 74.6 84.6 85.0 83.6 79.2
α-BN 76.6 71.1 85.4 57.8 64.7 45.6 52.8 33.8 45.4 35.0 14.7 56.2 42.7 67.6 46.0 53.0
IABN 43.5 40.7 51.2 20.6 48.6 19.5 21.8 22.0 24.0 21.2 11.3 10.9 34.1 30.5 36.6 29.1
RBN 88.9 86.6 96.7 78.5 89.2 74.8 75.4 67.5 68.1 71.3 41.2 73.3 82.1 84.1 81.2 77.3
UnMix-TNS 60.4 55.9 71.5 45.9 49.6 36.2 43.2 25.0 26.8 26.2 12.6 34.4 41.1 59.7 40.1 41.9

TEST TIME OPTIMIZATION
TENT 89.9 87.8 97.4 80.7 90.6 77.4 77.5 69.9 70.3 73.9 43.1 74.8 84.5 85.0 83.4 79.1
TENT† 60.3 55.0 68.7 39.3 46.1 31.3 37.0 21.6 24.6 21.9 10.9 30.8 34.7 58.5 35.0 38.4
CoTTA 91.9 89.8 96.6 82.1 90.7 80.1 78.3 73.3 73.3 81.4 50.0 90.9 83.7 80.2 78.9 81.4
CoTTA† 85.6 83.1 92.0 71.4 82.4 68.1 68.4 62.2 63.8 67.8 40.2 77.9 73.5 76.1 69.4 72.1
LAME 36.1 31.5 29.9 12.4 18.7 9.8 11.6 6.9 16.2 6.8 2.5 14.4 5.8 30.6 7.7 16.1
LAME† 15.4 13.1 16.6 6.9 6.5 5.3 7.1 2.7 3.9 3.2 1.2 6.0 5.8 20.4 5.3 8.0
NOTE 47.8 45.5 54.7 29.0 55.7 26.3 30.9 28.8 28.0 27.8 16.5 14.3 44.4 45.8 45.3 36.1
NOTE† 67.8 63.7 79.9 60.5 60.9 50.6 56.2 33.9 35.8 39.6 18.5 52.3 52.8 66.1 50.2 52.6
RoTTA 76.6 73.9 88.1 67.3 77.0 63.2 64.1 49.7 49.9 56.1 26.2 61.0 68.3 74.5 63.7 64.0
RoTTA† 66.0 61.8 73.8 50.1 53.1 40.9 46.4 27.1 29.5 30.2 13.6 39.9 44.7 61.5 42.1 45.4
ROID 89.3 87.0 97.1 78.2 89.8 74.8 75.1 67.2 68.0 71.7 40.2 72.6 82.7 83.7 81.4 77.3
ROID† 53.7 49.9 61.4 29.6 40.5 24.6 28.0 18.9 22.4 19.6 8.6 24.4 28.8 49.1 30.2 32.6

20



Published as a conference paper at ICLR 2024

Table 7: Corruption-specific error rates under three non-i.i.d. test-time adaptation scenarios.
The depicted error rates correspond to the adaptation from CIFAR100 to CIFAR100-C on temporally
correlated samples by class labels using Dirichlet distribution with δ = 0.01 and corruption severity
of 5. Methods marked with † denote the integration of our proposed UnMix-TNS with the respective
TTA method. Averaged over three runs.

(a) Single domain non-i.i.d. test-time adaptation.
METHOD GAUSS SHOT IMPUL. DEFOC. GLASS MOTION ZOOM SNOW FROST FOG BRIGH. CONTR. ELAST. PIXEL JPEG AVG.

Source 73.0 68.0 39.4 29.3 54.1 30.8 28.8 39.5 45.8 50.3 29.5 55.1 37.2 74.7 41.3 46.5
TEST TIME NORMALIZATION

TBN 83.4 82.9 83.5 79.3 83.9 79.8 79.3 81.7 81.2 83.3 79.2 80.5 82.3 80.8 83.5 81.6
α-BN 64.0 61.4 50.7 40.5 57.4 42.1 40.3 48.6 49.2 56.1 38.9 49.4 48.8 59.7 52.8 50.7
IABN 65.6 64.2 65.9 47.5 66.2 47.5 47.0 52.5 53.0 64.2 43.4 38.1 59.4 57.3 63.9 55.7
RBN 51.3 49.7 51.3 36.9 50.6 38.7 37.2 44.3 43.9 51.2 35.5 39.7 45.2 42.4 50.3 44.6
UnMix-TNS 48.3 46.1 44.0 31.5 46.6 32.0 31.0 35.9 35.9 46.9 27.6 36.4 40.5 40.5 44.9 39.2

TEST TIME OPTIMIZATION
TENT 83.4 82.8 83.5 79.3 83.9 79.8 79.3 81.7 81.2 83.3 79.3 80.6 82.2 80.8 83.6 81.6
TENT † 47.7 45.5 43.2 30.9 46.2 31.4 30.6 35.7 35.6 46.3 27.4 36.0 40.0 39.6 44.3 38.7
CoTTA 81.9 81.5 82.1 79.5 82.7 79.7 79.2 81.1 80.4 82.9 78.9 80.9 81.7 79.5 81.9 80.9
CoTTA† 57.4 55.8 56.9 41.8 57.3 41.9 41.0 49.5 49.2 58.8 35.4 49.0 53.3 49.0 55.0 50.1
LAME 67.3 56.9 20.0 18.4 34.3 20.0 18.7 29.4 32.8 33.7 19.1 46.1 26.6 76.3 28.7 35.2
LAME† 36.4 35.8 33.9 28.1 34.7 27.9 28.0 31.6 30.9 34.7 24.5 28.5 33.0 33.7 33.8 31.7
NOTE 64.1 62.0 62.4 45.2 63.0 45.6 45.1 51.4 50.9 60.8 42.6 37.7 56.7 53.8 60.3 53.4
NOTE† 46.3 44.5 43.3 30.4 45.4 31.3 30.4 35.4 35.5 45.7 26.8 38.6 39.5 37.6 43.9 38.3
RoTTA 51.3 50.0 50.5 33.3 48.9 35.1 32.9 41.4 45.5 46.1 31.7 52.6 43.1 40.6 48.9 43.5
RoTTA† 48.0 45.9 44.6 31.2 46.4 32.2 31.3 35.8 36.1 46.4 27.1 40.0 40.5 39.3 45.4 39.4
ROID 80.4 79.7 80.5 74.3 81.1 75.0 74.2 77.8 77.0 80.4 74.2 75.7 78.6 76.6 80.4 77.7
ROID† 21.2 18.8 16.2 8.3 18.8 8.6 8.7 11.0 10.9 18.9 6.7 12.9 13.6 16.2 18.5 14.0

(b) Continual domain non-i.i.d. test-time adaptation.
t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

METHOD GAUSS SHOT IMPUL. DEFOC. GLASS MOTION ZOOM SNOW FROST FOG BRIGH. CONTR. ELAST. PIXEL JPEG AVG.

Source 73.0 68.0 39.4 29.3 54.1 30.8 28.8 39.5 45.8 50.3 29.5 55.1 37.2 74.7 41.3 46.5
TEST TIME NORMALIZATION

TBN 83.4 82.9 83.5 79.3 83.9 79.8 79.3 81.7 81.2 83.3 79.2 80.5 82.3 80.8 83.5 81.6
α-BN 64.0 61.4 50.7 40.5 57.4 42.1 40.3 48.6 49.2 56.1 38.9 49.4 48.8 59.7 52.8 50.7
IABN 65.6 64.2 65.9 47.5 66.2 47.5 47.0 52.5 53.0 64.2 43.4 38.1 59.4 57.3 63.9 55.7
RBN 51.3 49.6 51.7 38.1 51.1 38.9 37.3 44.6 44.0 51.7 35.7 40.0 45.5 42.8 50.6 44.9
UnMix-TNS 48.3 43.8 43.8 34.0 47.5 32.4 29.7 34.8 35.5 46.8 27.4 38.5 43.1 38.7 43.3 39.2

TEST TIME OPTIMIZATION
TENT 83.4 82.7 83.4 79.6 83.8 80.1 79.5 82.0 81.5 83.6 79.8 81.4 82.7 81.4 83.9 81.9
TENT† 47.7 41.9 41.3 32.0 46.4 30.4 28.0 34.2 34.3 44.6 27.3 36.2 41.5 37.3 41.7 37.7
CoTTA 81.9 81.5 82.2 79.5 82.9 79.9 79.4 81.5 80.8 83.4 79.4 81.6 82.2 80.0 82.3 81.2
CoTTA† 57.4 56.4 57.4 41.5 57.1 40.9 38.9 49.1 49.3 59.7 35.2 53.4 54.1 49.5 55.8 50.4
LAME 67.3 56.9 20.0 18.4 34.3 20.0 18.7 29.4 32.8 33.7 19.1 46.1 26.6 76.3 28.7 35.2
LAME† 36.4 33.7 33.5 27.6 34.7 26.6 25.7 29.9 30.3 33.3 22.6 27.1 32.6 32.0 32.1 30.6
NOTE 64.1 58.5 59.2 48.4 62.9 46.5 45.0 52.5 49.8 59.6 44.8 40.4 57.3 57.0 61.6 53.8
NOTE† 46.3 41.4 41.5 31.3 45.2 30.5 28.5 35.1 36.0 45.3 28.5 40.6 41.9 39.8 44.9 38.5
RoTTA 51.3 51.2 52.3 36.0 50.9 35.6 32.8 41.0 44.7 49.2 30.3 53.1 47.5 42.2 46.5 44.3
RoTTA† 48.0 44.5 44.5 33.7 46.7 31.9 29.7 35.3 36.2 44.9 26.9 40.6 40.2 37.1 43.0 38.9
ROID 80.4 79.7 80.5 74.2 81.1 75.0 74.2 77.8 76.9 80.4 74.1 75.7 78.5 76.5 80.4 77.7
ROID† 21.2 16.6 15.8 9.6 19.1 8.2 7.7 10.6 10.7 17.3 6.4 13.5 13.0 15.0 16.2 13.4

(c) Mixed domain non-i.i.d. test-time adaptation.
t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

METHOD GAUSS SHOT IMPUL. DEFOC. GLASS MOTION ZOOM SNOW FROST FOG BRIGH. CONTR. ELAST. PIXEL JPEG AVG.

Source 73.0 68.0 39.4 29.3 54.1 30.8 28.8 39.5 45.8 50.3 29.5 55.1 37.2 74.7 41.3 46.5
TEST TIME NORMALIZATION

TBN 97.9 97.9 96.0 90.7 96.8 91.0 90.4 93.3 93.5 97.2 85.6 94.2 95.9 98.3 96.3 94.3
α-BN 83.8 80.4 59.1 47.3 70.9 48.9 47.7 60.6 63.3 73.2 46.2 72.7 60.4 87.6 64.1 64.4
IABN 65.6 64.2 65.9 47.5 66.2 47.5 47.0 52.5 53.0 64.2 43.4 38.1 59.4 57.3 63.9 55.7
RBN 90.9 90.2 83.6 74.9 86.7 75.2 74.4 79.9 79.3 87.7 67.9 83.0 83.3 93.6 85.0 82.4
UnMix-TNS 70.1 67.8 44.3 39.8 53.7 39.3 38.7 42.2 43.6 53.8 32.6 49.4 45.3 79.3 51.8 50.1

TEST TIME OPTIMIZATION
TENT 98.1 98.0 96.6 91.3 97.0 91.6 90.9 93.6 94.2 97.5 86.0 95.5 95.9 98.5 96.3 94.7
TENT† 75.0 72.0 50.5 34.8 58.9 35.7 34.2 42.0 46.2 53.9 32.2 54.2 42.8 86.5 49.7 51.2
CoTTA 97.2 97.1 97.5 91.2 96.2 91.4 90.1 93.9 93.1 97.4 88.3 97.9 95.2 93.2 94.7 94.3
CoTTA† 81.7 80.7 71.8 56.8 71.2 57.2 54.9 62.8 63.0 72.9 50.3 74.7 63.8 71.1 65.6 66.6
LAME 4.7 4.4 3.2 3.2 3.8 3.4 3.4 3.8 3.7 3.9 3.4 3.7 3.6 4.9 3.7 3.8
LAME† 4.3 4.5 4.0 4.0 4.2 4.0 4.0 4.3 4.0 4.3 4.0 4.2 4.3 4.5 4.3 4.2
NOTE 68.0 66.3 65.0 50.1 65.8 50.3 49.6 54.2 52.5 63.3 46.0 40.4 58.1 62.3 63.5 57.0
NOTE† 73.8 71.2 51.8 39.9 57.8 40.5 39.3 44.6 48.5 58.8 35.2 65.6 46.3 82.1 51.9 53.8
RoTTA 80.7 80.6 68.7 57.3 71.3 57.1 56.5 57.5 54.0 69.6 41.2 60.4 65.5 84.7 69.2 65.0
RoTTA† 72.8 71.3 49.3 44.1 56.3 43.1 42.5 44.6 45.8 56.5 33.5 52.8 48.7 81.5 55.4 53.2
ROID 97.5 97.5 95.4 89.6 96.3 90.0 89.3 92.4 92.6 96.7 84.0 93.4 95.2 97.9 95.5 93.5
ROID† 25.5 23.3 9.4 7.2 12.1 6.8 6.6 7.8 8.8 10.1 5.2 10.0 8.1 32.6 11.6 12.3
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Table 8: Corruption-specific error rates under three non-i.i.d. test-time adaptation scenarios.
The depicted error rates correspond to the adaptation from ImageNet to ImageNet-C on temporally
correlated samples by class labels using Dirichlet distribution with δ = 0.01 and corruption severity
of 5. Methods marked with † denote the integration of our proposed UnMix-TNS with the respective
TTA method. Averaged over three runs.

(a) Single domain non-i.i.d. test-time adaptation.
METHOD GAUSS SHOT IMPUL. DEFOC. GLASS MOTION ZOOM SNOW FROST FOG BRIGH. CONTR. ELAST. PIXEL JPEG AVG.

Source 97.8 97.1 98.2 81.7 89.8 85.2 77.9 83.5 77.1 75.9 41.3 94.5 82.5 79.3 68.6 82.0
TEST TIME NORMALIZATION

TBN 91.9 91.5 91.7 92.6 92.3 86.4 80.2 81.3 81.8 74.0 62.8 91.1 76.7 74.4 79.0 83.2
α-BN 89.3 88.7 88.2 81.6 85.7 81.2 74.1 75.4 71.5 65.6 44.0 88.3 70.1 67.5 64.8 75.7
IABN 94.8 94.8 94.3 94.0 94.3 86.5 87.3 80.9 81.2 77.0 60.1 85.5 81.2 80.0 82.9 85.0
RBN 86.3 85.7 85.8 86.5 86.2 76.4 65.1 68.6 69.6 56.0 39.3 85.2 59.5 55.2 63.7 71.3
UnMix-TNS 87.2 85.7 86.3 85.5 85.1 74.1 64.4 65.9 68.3 54.7 36.7 89.3 58.2 53.6 63.5 70.6

TEST TIME OPTIMIZATION
TENT 91.4 90.9 91.2 92.1 91.9 85.8 79.6 80.8 81.3 73.2 62.8 90.5 76.1 73.7 78.2 82.6
TENT† 86.6 85.1 85.7 84.4 84.1 72.7 63.1 64.5 67.5 52.9 36.2 89.7 57.2 51.8 61.7 69.5
CoTTA 91.1 90.7 90.8 92.1 91.6 86.1 79.9 81.0 81.6 73.6 62.8 90.9 76.4 74.1 78.5 82.7
CoTTA† 89.2 87.6 88.9 87.3 86.7 73.5 63.5 65.0 67.8 53.6 36.4 88.3 57.7 52.7 62.6 70.7
LAME 98.6 97.8 98.8 77.9 88.9 83.0 73.0 81.8 72.7 72.8 30.9 93.9 82.1 75.4 61.9 79.3
LAME† 85.5 83.5 84.3 82.6 82.0 67.6 55.1 57.6 61.1 43.6 25.7 87.6 48.6 42.4 54.3 64.1
NOTE 92.6 92.3 91.9 93.5 93.6 84.4 82.6 77.1 78.0 71.5 56.3 82.8 75.9 73.7 79.6 81.7
NOTE† 87.1 85.9 86.3 85.8 85.3 74.7 64.8 66.3 68.6 54.9 37.2 89.2 58.9 54.1 64.2 70.9
RoTTA 86.2 85.5 84.8 87.1 87.1 76.8 63.3 67.2 69.2 52.9 35.6 86.7 57.0 52.1 61.0 70.2
RoTTA† 86.9 85.5 86.2 85.9 85.4 74.5 64.9 66.1 68.8 54.5 37.0 90.1 58.6 53.9 63.6 70.8
ROID 91.5 91.1 91.3 92.2 92.0 85.9 79.5 80.5 81.1 72.6 61.1 90.5 75.7 73.2 78.0 82.4
ROID† 87.2 85.5 86.5 83.8 83.9 70.7 59.3 60.3 63.9 45.8 26.5 88.7 52.6 46.4 57.1 66.5

(b) Continual domain non-i.i.d. test-time adaptation.
t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

METHOD GAUSS SHOT IMPUL. DEFOC. GLASS MOTION ZOOM SNOW FROST FOG BRIGH. CONTR. ELAST. PIXEL JPEG AVG.

Source 97.8 97.1 98.2 81.7 89.8 85.2 77.9 83.5 77.1 75.9 41.3 94.5 82.5 79.3 68.6 82.0
TEST TIME NORMALIZATION

TBN 91.9 91.5 91.7 92.6 92.3 86.4 80.2 81.3 81.8 74.0 62.8 91.1 76.7 74.4 79.0 83.2
α-BN 89.3 88.7 88.2 81.6 85.7 81.2 74.1 75.4 71.5 65.6 44.0 88.3 70.1 67.5 64.8 75.7
IABN 94.8 94.8 94.3 94.0 94.3 86.5 87.3 80.9 81.2 77.0 60.1 85.5 81.2 80.0 82.9 85.0
RBN 86.3 85.7 85.7 86.7 86.2 76.4 65.1 68.6 69.6 56.1 39.3 85.2 59.5 55.2 63.7 71.3
UnMix-TNS 87.2 85.4 85.7 85.6 84.7 73.6 64.2 65.7 68.1 54.4 36.6 88.9 58.3 53.9 63.7 70.4

TEST TIME OPTIMIZATION
TENT 91.4 90.0 89.6 90.8 90.0 84.0 78.4 80.2 80.4 73.8 65.4 88.3 75.9 74.3 77.7 82.0
TENT† 86.6 84.9 86.4 87.2 87.7 82.3 81.3 84.7 88.4 87.6 80.2 98.4 94.2 95.5 97.3 88.2
CoTTA 91.1 90.5 90.6 92.0 91.4 85.8 79.6 80.9 81.3 73.3 62.8 90.5 76.3 73.9 78.2 82.6
CoTTA† 89.2 87.3 88.5 88.5 88.1 78.5 66.7 64.8 67.0 53.2 36.4 90.0 57.5 52.6 62.1 71.4
LAME 98.6 97.8 98.8 77.9 88.9 83.0 73.0 81.8 72.7 72.8 30.9 93.9 82.1 75.4 61.9 79.3
LAME† 85.5 83.2 83.6 82.6 81.5 66.8 54.7 57.3 60.5 43.4 25.7 87.0 48.5 42.4 54.4 63.8
NOTE 92.6 92.3 92.0 93.7 93.7 84.6 82.6 77.2 78.1 71.6 56.6 82.7 76.2 73.8 79.7 81.8
NOTE† 87.1 85.6 86.0 85.6 85.4 74.6 64.9 66.2 68.2 55.1 37.2 88.0 58.8 54.5 64.2 70.8
RoTTA 86.2 85.5 84.3 85.8 87.5 75.6 62.2 66.5 67.6 51.8 35.0 80.9 55.5 50.9 58.1 68.9
RoTTA† 86.9 85.5 85.3 85.2 85.0 73.6 64.3 65.4 68.1 53.4 36.4 82.5 57.7 53.5 61.5 69.6
ROID 91.5 91.1 91.3 92.2 92.0 85.8 79.4 80.5 81.1 72.6 61.1 90.5 75.7 73.2 78.0 82.4
ROID† 87.2 85.1 85.7 83.8 84.1 71.0 59.4 60.2 63.7 45.7 26.6 87.2 52.6 45.9 57.4 66.4

(c) Mixed domain non-i.i.d. test-time adaptation.
METHOD GAUSS SHOT IMPUL. DEFOC. GLASS MOTION ZOOM SNOW FROST FOG BRIGH. CONTR. ELAST. PIXEL JPEG AVG.

Source 97.8 97.1 98.2 81.7 89.8 85.2 77.9 83.5 77.1 75.9 41.3 94.5 82.5 79.3 68.6 82.0
TEST TIME NORMALIZATION

TBN 99.4 99.1 99.3 98.6 99.0 98.2 97.1 96.9 96.5 96.3 81.9 99.2 97.3 95.4 94.2 96.6
α-BN 96.7 96.2 96.4 89.3 93.8 91.2 85.1 88.3 84.9 82.7 52.5 97.0 89.6 81.7 75.4 86.7
IABN 94.8 94.8 94.3 94.0 94.3 86.5 87.3 80.9 81.2 77.0 60.1 85.5 81.2 80.0 82.9 85.0
RBN 97.8 96.9 97.6 95.3 96.0 94.9 91.5 91.2 90.3 89.6 64.3 97.4 92.5 87.1 84.0 91.1
UnMix-TNS 96.7 95.6 96.4 90.6 90.5 87.1 81.3 82.3 82.2 78.0 48.3 94.2 83.4 83.0 75.0 84.3

TEST TIME OPTIMIZATION
TENT 99.8 99.6 99.8 99.2 99.4 99.0 97.9 97.9 97.6 98.0 82.2 99.7 98.5 98.2 97.6 97.6
TENT† 99.8 99.7 99.8 97.6 96.6 95.3 92.8 94.3 94.0 91.6 77.3 99.2 94.5 97.0 95.8 95.0
CoTTA 99.6 99.4 99.5 98.8 98.9 98.3 97.1 96.9 96.6 96.4 81.4 99.3 97.3 95.9 94.7 96.7
CoTTA† 99.6 99.3 99.6 91.2 90.7 87.2 81.4 82.2 81.9 78.5 47.7 95.3 83.3 86.7 78.6 85.6
LAME 85.9 85.4 86.9 58.6 70.0 65.5 58.9 65.7 59.2 57.8 29.0 74.5 66.6 60.8 50.3 65.0
LAME† 85.1 83.4 84.4 73.2 72.8 69.3 63.3 64.2 65.1 60.3 35.3 80.5 66.2 67.3 57.5 68.5
NOTE 93.2 93.8 92.5 95.7 94.7 88.3 89.5 81.6 81.5 76.0 65.4 85.0 82.0 81.0 83.8 85.6
NOTE† 96.9 95.9 96.7 90.9 90.7 87.4 81.6 82.8 82.5 78.4 49.0 94.3 83.8 83.2 75.7 84.6
RoTTA 94.8 94.3 94.7 92.5 93.9 93.2 88.2 88.2 86.1 87.0 50.6 96.6 88.3 79.5 72.3 86.7
RoTTA† 96.8 96.1 96.5 90.3 90.5 87.2 81.7 82.4 81.9 78.1 44.7 94.8 83.0 81.3 72.7 83.9
ROID 99.4 99.1 99.3 98.6 98.9 98.3 97.0 96.8 96.5 96.2 81.4 99.2 97.2 95.5 94.2 96.5
ROID† 92.5 91.0 91.8 83.2 84.1 78.8 71.9 75.3 74.9 68.4 40.6 87.4 76.0 77.9 69.3 77.5
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