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ABSTRACT

Watermarking techniques have emerged as pivotal safeguards to defend the intel-
lectual property of deep neural networks against model extraction attacks. Most
existing watermarking methods rely on the identification of samples within ran-
domly selected trigger sets. However, this paradigm is inevitably disrupted by the
ambiguous points that exhibit poor discriminability, thus leading to the misiden-
tification between benign and stolen models. To tackle this issue, in this paper,
we propose a boundary-based watermarking method that enhances the discerni-
bility of trigger set, further improving the ability in distinguish benign and stolen
models. Specifically, we select trigger samples on the decision boundary of base
model and assigned them labels with the least probabilities, while providing a
tight bound based on the Lovász Local Lemma. This approach ensures the wa-
termark’s reliability in identifying stolen models by improving discriminability
of trigger samples. Meanwhile, we provide theoretical proof to demonstrate that
the watermark can be effectively guaranteed under the constraints guided by the
Lovász Local Lemma. Experimental results demonstrate that our method outper-
forms the state-of-the-art watermarking methods on CIFAR-10, CIFAR-100 and
ImageNet datasets. Code and data will be released publicly upon the paper accep-
tance.

1 INTRODUCTION

Deep learning methods have demonstrated remarkable success in innumerable industrial contexts,
such as computer vision (He et al., 2016; Dosovitskiy et al., 2020) and natural language process-
ing (Brown et al., 2020; Vaswani et al., 2017). However, deep neural networks (DNNs) entail
substantial costs, primarily due to two critical factors: the heavy reliance on extensive training
data (Halevy et al., 2009) and substantial computational resources (Floridi & Chiriatti, 2020). Train-
ing and deploying high-performing DNNs is both time-consuming and resource-intensive. Conse-
quently, it is crucial to protect the intellectual property of model providers, especially when users are
permitted to query and access the outputs of these valuable models deployed on the cloud platforms.

While model providers can protect their intellectual property by keeping model parameters confi-
dential, they are obligated to provide APIs for user access as service providers. This exposes the
model to potential threats from adversaries who can extract the functionality of DNN models using
black-box model extraction attacks (Tramèr et al., 2016; Orekondy et al., 2019). In this scenario, ad-
versaries engage in extensive querying of the victim model to acquire labels for a surrogate dataset,
which is then utilized to train their replica model, effortlessly creating a stolen copy of the original
model (Pal et al., 2019; Papernot et al., 2017). Since adversaries’ inputs are common and similar
to those of benign users, model providers struggle to differentiate between them. As a result, all
outputs are exposed to adversaries, making it challenging to prevent model extraction attacks solely
through the API interaction process.

To tackle model extraction attacks, researchers have introduced model watermarking tech-
niques (Kahng et al., 1998). Early works followed the parameter-embedding watermarking
paradigm (Uchida et al., 2017; Darvish Rouhani et al., 2019; Kuribayashi et al., 2021; Mehta et al.,
2022), where the watermark is embedded into the model parameters. However, these approaches
are limited to white-box scenarios, and it is impossible to verify the watermark if suspicious models
disclose their parameters. To this end, recent studies have shifted their focus to backdoor-based
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watermarking techniques (Adi et al., 2018; Zhang et al., 2018; Li et al., 2019; Namba & Sakuma,
2019; Zhang et al., 2020a;b; Chen et al., 2021; Yang et al., 2021; Jia et al., 2021; Maini et al., 2021;
Li et al., 2022; Bansal et al., 2022; Kim et al., 2023; Yu et al., 2023; Li et al., 2024; Pautov et al.,
2024) and have achieved promising results in black-box scenarios. In backdoor-based methods, de-
fenders select specific input-output pairs (x̃, ỹ) as the trigger set and train the model to overfit to this
trigger set. To claim ownership of the model, defenders query the suspicious model with these spe-
cific inputs x̃ and verify whether the returned results match the predefined set ỹ. By using different
backdoor algorithms, these studies successfully improve the ability of stolen models to recognize
trigger samples. Moreover, several certifiable watermarking techniques (Bansal et al., 2022; Jiang
et al., 2023; 2024) provide theoretical guarantees. These methods perturb the model parameters to
increase robustness, and the watermark is guaranteed to be effective unless adversaries change the
model parameters beyond a certain ℓ2 distance.

However, previous works predominantly rely on “random” configurations for trigger sets: they either
randomly sample instances (Kim et al., 2023), assign random labels to triggers (Zhang et al., 2018;
Yu et al., 2023), or combine both strategies (Zhang et al., 2018; Jia et al., 2021; Bansal et al., 2022;
Li et al., 2022). This approach may lead to the selection of low-quality points and makes it difficult
to accurately distinguish between benign models and stolen models. Specifically, randomly chosen
samples that cluster around central points, a common occurrence in dense clusters, can adversely
impact neighboring samples and consequently deteriorate the model’s performance. When the ran-
domly selected label aligns with the output of the benign models, it presents a hurdle in identifying
a stolen model. Additionally, in terms of theoretical guarantees, existing random smoothing-based
methods (Bansal et al., 2022; Jiang et al., 2023; 2024) impose constraints on all model parameters,
introducing calculations involving a multitude of extraneous parameters, consequently diminishing
the theoretical boundaries that can be assured. Furthermore, these assurances are tailored to random
smoothing techniques and do not offer a universal guarantee for alternative methodologies.

To address the above issues, we propose a boundary-based watermarking method that meticulously
selects boundary samples and their corresponding labels. Specifically, we dissect the identification
of whether a suspicious model is benign or stolen into two pivotal components: the discriminability
of the trigger set and the probability of (x̃, ỹ) in distinguishing between benign and stolen models.
Correspondingly, we devise a trigger set selection strategy based on this analysis to enhance both
components simultaneously. This strategy comprises two processes: Initially, we train a base model
and select samples near the decision boundary as trigger set. Subsequently, we perturb the base
model to simulate multiple independently trained models, then query these perturbed models and
select the least frequently occurring label for each trigger sample. This process ensures that the
resulting trigger set can tolerantly identify benign and stolen models. Furthermore, we provide a
tighter bound by constraining watermark-related parameters guided by the Lovász Local Lemma.
Under such constraints, the effectiveness of the watermark can be guaranteed by incorporating mul-
tiple watermarking pairs.

Our contributions are summarized as follows:

• We propose a boundary-based watermarking method that defends against model extrac-
tion attacks by meticulously selecting boundary samples as the trigger set and assigning
permissive labels.

• We provide a tighter theoretical bound under the guidance of the Lovász Local Lemma.
The watermark can be guaranteed by constraining the related parameters.

• We conduct extensive experimental evaluations on three public datasets to validate the ef-
fectiveness of the proposed method, obtaining state-of-the-art performance on both trigger
set accuracy and p-value.

2 RELATED WORK

2.1 WATERMARKS

Watermarking techniques aim to protect intellectual property against the theft of elaborate mod-
els (Kahng et al., 1998). Traditional deep learning based methods embedded the watermarks into
the parameters (Uchida et al., 2017; Chen et al., 2019; Darvish Rouhani et al., 2019), necessitating
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parameter access for watermark verification. However, given that the owners of suspicious mod-
els may not grant access to the parameters, hindering the use of white-box methods for ownership
identification, black-box scenarios emerge as a more desirable approach.

Due to the remarkable performance in ownership verification of stolen models, recent works fo-
cusing on backdoor-based watermarking have drawn much attention. These methods operate by
training the model to fit outlier input-output pairs exclusively known to the defender, which can
subsequently be utilized to assert ownership of the model. The backdoor-based work can be roughly
divided into two categories. One paradigm involves selecting random trigger sets and introducing
novel loss functions to enhance the robustness of classification on trigger samples, such as expand-
ing the trigger’s neighborhood (Kim et al., 2023) and entangling normal data with trigger data (Jia
et al., 2021). The other approaches focus on the selection of meticulously chosen triggers, primarily
derived from out-of-distribution (OOD) data (Zhang et al., 2018; Li et al., 2022; Yu et al., 2023).
Furthermore, MAT (Li et al., 2024) selects trigger sets from the decision boundary and assigns the
second probable class as classification labels. However, this selection approach exhibits a low toler-
ance for classification errors. Specifically, under various training settings (e.g. random initialization
or different optimization methods), the models can easily misclassify these samples as the category
that should originally have the second highest confidence, thus may be erroneously classified as
stolen models. Conversely, our method improves distinguishability of trigger set by selecting sam-
ples from the decision boundary and assigning labels that rarely appear in the predictions of benign
models. When a suspicious model exposes a small number of watermarked input-output pairs, the
defender can confidently assert ownership of this model.

In terms of theoretical proofs, various watermarking methods have been proposed to prove their cer-
tificates, with the majority relying on random smoothing technique (Goldberger et al., 2020; Bansal
et al., 2022; Jiang et al., 2023; 2024). Nevertheless, these methods necessitate the adherence of the
stolen model’s parameters to a fixed ℓ2 threshold, which can be easily circumvented by adversaries
through diverse tricks such as selecting random seeds, adapting optimizers, or even fine-tuning hy-
perparameters. In this paper, we alleviate this restriction by adapting Lovász Local Lemma into the
selection of trigger sets. And our watermark is guaranteed to be unremovable when the watermark-
related neurons satisfy the conditions of the Lovász Local Lemma and the size of the trigger set is
not small.

2.2 MODEL EXTRACTION ATTACK

Model extraction attack (Tramèr et al., 2016), as a functionality stealing method (Orekondy et al.,
2019), is currently considered the most powerful black-box attack (Lukas et al., 2022). In these
attacks, adversaries typically start by collecting or synthesizing an initially unlabeled surrogate
dataset. For example, Papernot et al. (2017) utilized Jacobian-based dataset augmentation to in-
crease the potency of attacks. Tramèr et al. (2016) proposed three techniques for uniform data
sampling. They assign labels for these samples by querying the original model and then use this
surrogate dataset to train a stolen copy of the victim model.

Watermarking techniques designed to combat such attacks intertwine the training of both the dataset
and the trigger set, facilitating the surrogate model in comprehending the watermarked decision
boundary. However, the presence of watermarked decision boundaries may impact the model’s per-
formance, leading to a trade-off in all approaches between the model’s practical utility for legitimate
users and the success of watermark transfer (Alabdulmohsin et al., 2014; Shukla, 2020; Lee et al.,
2019; Tramèr et al., 2016). Our approach mitigates this dilemma while ensuring the effective water-
marking by meticulously selecting boundary samples and assigning them permissive labels.

3 METHOD

In this section, we elaborate on our principal concepts for selecting trigger samples and assigning
corresponding labels, followed by presenting our watermarking algorithm and theoretical analysis.
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3.1 PRELIMINARIES

3.1.1 MODEL EXTRACTION AND TRIGGER SET-BASED WATERMARKING

We begin by introducing trigger set-based watermarking methods, which form the foundation of our
approach. In our work, we consider classification problem with K classes. Given a training dataset
D = {(xi, yi)}ni=1 where xi ∈ Rd and yi ∈ {1, · · · ,K}, we train a base model Mb to minimize the
empirical risk as:

L(D) =
1

|D|
∑

(x,y)∈D

ℓ (M(x)− y)

where ℓ is a loss function such as cross-entropy.

If the model lacks protective measures, an adversary can attempt to steal its functionality without
accessing the dataset D. Specifically, the adversary first queries the source model with a sample
x̂i, obtains source model’s output M(x̂i), and then trains a surrogate model M̂ to replicate the
functionality of the source model using the surrogate dataset D̂ = {(x̂i, ŷi)}mi=1 by minimizing the
loss function

min L̂(D̂) = min
1

|D̂|

∑
(x,y)∈D̂

ℓ̂
(
M(x)− M̂(x)

)
(1)

where ℓ̂ often uses the Kullback-Leibler divergence (Thomas & Joy, 2006). This model extraction
attack, as a special case of knowledge distillation (Hinton, 2015), allows the adversary to steal the
functionality of the model trained on D without direct access to D itself (Orekondy et al., 2019).

To protect intellectual property, the owner of the source model can embed a watermark into the
model and verify whether a suspicious model contains the same watermark. One method of water-
marking is to use a trigger set, which also forms the foundation of our approach. Specifically, the
owner of the source model randomly samples {(xi, yi)}mi=1 from D and replaces the original labels
yi with new labels ỹi ̸= yi, producing the trigger set D̃ = {(xi, ỹi)}. The training data is changed
from D to a combination of clean data Dc = D\{(xi, yi)}mi=1 and the trigger set D̃. The model
owner trains the watermarked model by minimizing the loss over both datasets:

minLc(Dc) + L̃(D̃)

where Lc and L̃ typically use different loss functions to fit the trigger set as closely as possible,
ensuring that the watermark is not removed as an outlier during model extraction attacks.

3.1.2 THE LOVÁSZ LOCAL LEMMA

The Lovász Local Lemma (Erdos & Lovász, 1975) is a powerful tool to non-constructively prove
the existence of combinatorial objects meeting a prescribed collection of criteria. Let A be a finite
collection of mutually independent events in a probability space. The probability that none of these
events happen is exactly

∏
Ai∈A(1 − Pr[Ai]). In particular, this probability is positive whenever

no event in A has probability 1. László Lovász’s famous Local Lemma (Erdos & Lovász, 1975)
relaxes the independence condition slightly: as long as the events are “mostly” independent, but
still concludes that with positive probability none of the events happen if the individual events have
bounded probability. Here is the lemma in a general form.

Theorem 1 (Erdos & Lovász (1975)). Let A be a finite set of events in a probability space. For
Ai ∈ A let Γ(Ai) be a subset of A satisfying that Ai is independent from the collection of events
A\(Ai ∪ Γ(Ai)). If there exists an assignment of reals α : A → (0, 1) such that

Pr[Ai] ≤ α(Ai)
∏

Aj∈Γ(Ai)

(1− α(Aj)) , ∀Ai ∈ A, (2)

then the probability of avoiding all events in A is positive, in particular

Pr
[
A1 ∧ · · · ∧An

]
≥

∏
i∈{1,··· ,n}

(1− α(Ai)) . (3)
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Figure 1: Illustration of the overall architecture of the proposed method. Given a base model, our
watermarking method selects trigger samples and assigns them labels according to a newly designed
selection strategy. Then the stolen model can be identified based on the predictions of the selected
trigger samples.

Our method proves a tight bound by constraining watermark-related parameters, guided by the
Lovász Local Lemma. Unlike random smoothing-based approaches (Bansal et al., 2022), which
preserve the watermark by limiting parameter modifications within a given ℓ2 distance across the
entire network, our approach constrains only the parameters activated by the watermark (Jia et al.,
2021). When these constraints are satisfied, the watermark can be embedded with a positive proba-
bility and differentiate between benign and stolen models, unless the size of trigger set is too small
(Corollary 2.1).

3.2 OUR WATERMARKING METHOD

Before presenting our method, we first decompose the overall probability of successfully determin-
ing whether a model M is benign or stolen into two components: ( 1) the accuracy of classifying the
trigger samples (Trigger set acc. in Table 1), and (2) the probability that (x̃, ỹ) can identify benign
or stolen models. The overall probability can be expressed as the product of these two factors:

Pr[M is stolen model] =
1

|D̃|

∑
(x̃,ỹ)∈D̃

1[M(x̃) = ỹ] · Pr[diff(x̃, ỹ)], (4)

where 1 is the indicator function, 1[M(x̃) = ỹ] indicates whether the model M correctly pre-
dicts the label ỹ for the trigger x̃ (Note that the trigger set accuracy is typically calculated as
1

|D̃|

∑
(x̃,ỹ)∈D̃ 1[M(x̃) = ỹ]). diff(x̃, ỹ) represents the event that (x̃, ỹ) successfully differenti-

ates between a benign model and a stolen one, and can be approximated by the probability where
M(x̃) ̸= ỹ within the predictions of the benign model M .

Here, we provide two examples to clarify why we split this probability into two components. In the
first instance, consider a trigger (x̃1, ỹ1). When querying 10,000 benign models for the same task
with x̃, 5,000 models yield ỹ1, while the remaining models output different results y′ ̸= ỹ1. Such
scenarios frequently occur near decision boundaries, resulting in Pr[diff(x̃1, ỹ1)] ≈ 0.5. In this
scenario, even though the accuracy of the trigger set improves when the suspicious model correctly
identifies the trigger, a probability of only 0.5 is insufficient to confidently indicate that the model
is stolen. In the second instance, consider a trigger (x̃2, ỹ2). When querying 10,000 benign models,
none of them output ỹ2, indicating that (x̃2, ỹ2) can effectively identify the benign and stolen models,
resulting in Pr[diff(x̃2, ỹ2)] ≈ 1. Subsequently, if both our watermarked model and the suspicious
model produce ỹ2, it strongly suggests that the suspicious model is stolen only based on (x̃2, ỹ2).

As illustrated in Figure 1, our method considers both components, improving trigger set accuracy
and enhancing the ability to identify benign and stolen models. First we focus on the selection

5
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Algorithm 1: Procedure of Generating Trigger Set
Input : Base model Mb, number of perturbed models s, perturbation range δ, boundary

thresholds a and b, size of trigger set m;
Output: Trigger set D̃ = {(x̃i, ỹi)};

1 for all j = 1, · · · , s do
2 Generate perturbed model M ;
3 if |para(Mb)− para(M)| ≤ δ then
4 Mbj = M ;

5 for all i = 1, · · · ,m do
6 Choose x̃i such that top-1 probability of Mb(x̃i) ≥ a and top-2 probability of Mb(x̃i) ≥ b ;
7 ỹij = Mbj (x̃i) for all j ∈ [s] ;

8 ỹi = argminy∈{1,··· ,K}

(∑s
j=1 1[ỹij = y]

)
;

9 D̃ = D̃ ∪ {(x̃i, ỹi)} ;

10 return Trigger set D̃ = {(x̃i, ỹi)};

of input samples for the trigger set. We initiate this process by training a base model, and select
samples located near the decision boundary generated by the base model to construct the trigger
set. This selection strategy is motivated by two key considerations: (1) When a sample is selected
as a trigger, it tends to exert influence on neighboring samples, thus preventing its dismissal as an
outlier. Notably, a substantial portion of the data clusters around the center, while samples near the
boundary are sparser. By utilizing these samples as triggers, we minimize their impact on overall
model accuracy. (2) Samples near the decision boundary exhibit labels that are more sensitive and
prone to change. Consequently, alterations to trigger set labels can be readily accepted by stolen
models, providing us with a strong criterion for identifying whether a model has been stolen.

Subsequently, we assign labels to the samples selected in the previous step. The labels we choose
are designed to sufficiently identify benign and stolen models, aiming for a high probability of
distinction, i.e., Pr[diff(x̃, ỹ)] ≈ 1. As illustrated in Algorithm 1, our method first perturbs the
parameters of the base model Mb within a certain range to create multiple variations Mb1 , · · · ,Mbs .
Then, we query these perturbed models with the selected sample x̃i to obtain ỹi1 , · · · , ỹis , and
choose the label ỹi that occurs least frequently among all predicted labels. This process can be
expressed as

ỹi = argmin
y∈{1,··· ,K}

 s∑
j=1

1
[
Mbj (x̃i) = y

] .

3.3 WATERMARK CERTIFICATION

In this section, we focus on certifying our proposed watermarking method. Rather than directly
constraining the model parameters as in random smoothing methods, our proof emphasizes the
activation of neurons associated with the watermark, allowing us to focus solely on watermark-
related neurons.

First, recall that the trigger set is defined as D̃ = {(x̃i, ỹi)}mi=1. We define the event of successfully
identifying the i-th watermark (x̃i, ỹi) as Wi. Consequently, Pr[Wi] indicates the probability that
the watermark (x̃i, ỹi) is detected in the suspicious model.

When a watermark is successfully detected, a specific subset of neurons of the network is activated.
We define the set of neurons activated by (x̃i, ỹi) as Γ(Wi) = {Wi,1, · · · ,Wi,s}, where Wi,j repre-
sents the j-th neuron activated in response to the i-th watermark. Additionally, Pr

[
Wi,j

]
represents

the probability that this neuron remains inactive.

Our method guarantees that if the neurons related to each watermark are not excessively likely to
remain inactive (Equation 5), the probability of successfully detecting the watermark will be positive
(Equation 6). Note that our proof focuses solely on the neurons associated with the watermark,
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enabling us to establish a tight bound by imposing more precise requirements on these parameters.
The main result is presented in the following theorem and see Appendix A for the complete proof.
Theorem 2. Let N be the set of all neurons related to the watermarks, i.e., N =

⋃m
i=1 Γ(Wi). If

there exists an assignment of reals α : N → [0, 1) such that

Pr
[
Wi,j

]
≤ α (Wi,j)

∏
Wi,j′∈Γ(Wi)\{Wi,j}

(1− α (Wi,j′)) , ∀Wi,j ∈ N , (5)

then the probability of avoiding all neurons remaining inactive is positive, in particular

Pr [Wi] = Pr

 ∧
Wi,j∈Γ(Wi)

Wi,j

 ≥
∏

Wi,j∈Γ(Wi)

(1− α (Wi,j)) , ∀i ∈ [m]. (6)

Furthermore, given that our method selects labels with the highest distinguishability, we can derive
insights into the size of the trigger set required to differentiate between benign and stolen models:
Corollary 2.1. If the size of trigger set m satisfy

m ≥
∏
Wi,j

(1− α (Wi,j))
−1

, (7)

then

Pr

[
m∨
i=1

Wi

]
≥ 1

and we can ensure with high probability that our watermark is guaranteed to be unremovable.

Due to the high distinguishability of our method, this establishes the minimum size requirement for
the trigger set. In our experiments, we use a generalized setting with m = 100 in our experiments.
For more details and proof in Appendix A.

For the parameter α, it represents the confidence in the successful transfer of the watermark, which
is determined by balancing the watermark embedding method and the adversarial attack intensity.
When the accuracy of the trigger set is high and the attack intensity is not strong, the corresponding
α is small; therefore, the probability that the neurons remain inactive is also small. For a general ap-
proach, the probability of neurons remaining inactive can be approximated through local simulations
of attacks, thereby assessing the probability of successful watermark transfer.

4 EXPERIMENTS

In this section, we evaluate our boundary-based watermarking method in comparison to several other
baseline approaches, demonstrating its robustness against model extraction attacks.

4.1 EXPERIMENTAL SETUP

Datasets. We use the CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009) datasets. Additionally,
our evaluation is broadened to ImageNet (Deng et al., 2009), a large-scale image dataset that chal-
lenges existing watermarking techniques. For CIFAR-10 and CIFAR-100, we split the training set
into a train set and a validation set.

Model Extraction Attack. Following prior work (Jia et al., 2021), we train a surrogate model M̂
on the surrogate dataset D̂ under the following three settings:

• Soft-label. In this setting, we train the stolen model M̂ as in Equation 1 where M(x) and
M̂(x) are K-dimensional vectors of class probabilities.

• Hard-label. Rather than using the K-dimensional vectors of class probabilities, we train
the stolen model M̂ as in Equation 1, where M(x) and M̂(x) are one-hot vectors, having
a value of 1 at the predicted label and 0 elsewhere.

7
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Method Metric Source model Surrogate models
Soft-label Hard-label RGT

DI (Maini et al., 2021)

CIFAR-10
acc. (%)

92.03 ± 0.25 92.50± 0.17 92.27± 0.38 92.23± 0.59
RS (Bansal et al., 2022) 84.17± 1.01 88.93± 1.18 89.62± 0.97 90.14± 0.08
MB (Kim et al., 2023) 87.81± 0.76 91.17± 0.76 91.88± 0.40 93.05± 0.20
MAT (Li et al., 2024) 86.10± 0.54 88.50± 1.02 85.40± 0.50 93.88± 0.35
Boundary-based (Ours) 87.86± 2.06 90.64± 0.44 90.63± 0.32 92.42± 0.52

DI (Maini et al., 2021)
p-value

10−3 10−2 10−2 10−2

MB (Kim et al., 2023) 10−12 10−8 10−8 10−8

Boundary-based (Ours) 10−15 10−11 10−9 10−8

RS (Bansal et al., 2022)
Trigger set
acc. (%)

95.67± 4.93 7.67± 4.04 6.33± 1.15 3.00± 0.00
MB (Kim et al., 2023) 100.00± 0.00 82.00± 1.00 51.33± 4.93 72.67± 6.66
MAT (Li et al., 2024) 96.88± 5.32 72.01± 3.53 50.13± 6.48 52.30± 3.05
Boundary-based (Ours) 100.00 ± 0.00 86.50 ± 1.81 54.30 ± 5.90 73.80 ± 8.58

Method Metric Source model Surrogate models
Soft-label Hard-label RGT

DI (Maini et al., 2021)

CIFAR-100
acc. (%)

70.97 ± 0.74 72.70± 0.26 71.33± 0.31 72.87± 0.59
RS (Bansal et al., 2022) 59.87± 2.78 65.66± 1.53 65.79± 0.39 64.99± 0.30
MB (Kim et al., 2023) 62.13± 4.36 67.66± 0.36 70.65± 0.49 70.24± 0.46
MAT (Li et al., 2024) 62.11± 1.67 59.00± 1.27 66.78± 1.00 72.73± 1.40
Boundary-based (Ours) 65.90± 6.52 68.52± 2.03 69.20± 0.55 71.85± 0.84

DI (Maini et al., 2021)
p-value

10−3 10−2 10−2 10−2

MB (Kim et al., 2023) 10−10 10−7 10−6 10−6

Boundary-based (Ours) 10−12 10−10 10−7 10−6

RS (Bansal et al., 2022)
Trigger set
acc. (%)

99.00± 1.73 2.67± 1.53 4.33± 4.16 2.00± 1.00
MB (Kim et al., 2023) 100.00± 0.00 70.67± 7.57 40.00± 8.89 62.66± 10.12
MAT (Li et al., 2024) 68.14± 10.16 72.98± 11.34 29.43± 6.58 35.73± 9.43
Boundary-based (Ours) 100.00 ± 0.00 75.80 ± 5.32 41.32 ± 2.68 62.68 ± 3.54

Table 1: Results for watermarking DNNs against model extraction attacks on CIFAR-10 and CIFAR-
100, where the scores for the best performance are bolded.

• Regularization with Ground Truth Label. We train the stolen model by simultaneously
minimizing the empirical loss on the training dataset Dc and the KL-divergence between
the outputs of the source model and the stolen model:

LRGT (Dc, D̂) = βL(Dc) + (1− β)L̂(D̂) (8)

where β ∈ [0, 1] is a hyperparameter to control the adversary’s preference. Since the
adversary has access to the ground truth labels, this attack method makes it easier to remove
the watermark embedded in the source model.

Baselines. We compare our method against the following baselines.

• Dataset Inference (DI) (Maini et al., 2021). This method calculates a proxy margin be-
tween each sample and the decision boundaries of each class to create a margin embedding.
The embedding is then used to train a binary classifier, and a t-test is finally performed on
the classifier’s confidence scores to verify the authenticity of the suspicious model.

• Multi-View Data (MAT) (Li et al., 2024). This paper presents an approach to trigger set-
based watermarking by leveraging multi-view data. MAT embeds watermarks in DNNs by
constructing a multi-view trigger set and using feature-based regularization during training.

• Randomized Smoothing (RS) (Bansal et al., 2022). It applies randomized smoothing to
the parameters of the source model, ensuring that watermarks cannot be removed through
small modifications to the model’s parameters.

• Margin-based Watermarking (MB) (Kim et al., 2023). It uses projected gradient descent
to maximize the margin of samples in the trigger set.

Metric. We measure the accuracy of the surrogate model on the trigger set D̃ to evaluate the per-
formance of the watermarking. Additionally, we compute the p-value from the t-test for statistical
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Method Source Model Soft-label Hard-label
ImageNet acc. (%) Trigger Set acc. (%) p-value Trigger Set acc. (%) p-value

MB (Kim et al., 2023) 64.00± 5.76 13.86± 0.56 10−2 5.76± 0.31 10−1

Boundary-based (Ours) 65.90 ± 13.31 18.16 ± 1.09 10−3 13.77 ± 0.86 10−3

Table 2: Results for watermarking DNNs against model extraction attacks on ImageNet, where the
scores for the best performance are bolded.

testing methods, where a small p-value indicates distinguishability between the stolen and benign
models.

Settings. We train base models using ResNet34 (He et al., 2016), achieving accuracies of 94.9% on
CIFAR-10 and 75% on CIFAR-100. Based on these models, we select m = 100 samples x̃i where
the highest and second-highest predicted probabilities were close. For simulating s = 100 inde-
pendently trained models, we perturb the parameters with the ℓ2 distance not exceeding 0.4 (Bansal
et al., 2022), resulting in worst-case accuracies of 82.7% and 59.1% for CIFAR-10 and CIFAR-100,
respectively. For selecting boundary samples x̃, we gradually adjust the top two probabilities in
Algorithm 1 until we precisely identify 100 samples. Finally, we select the labels ỹi with the lowest
occurrence probabilities to form the trigger set D̃ = {(x̃i, ỹi)}mi=1. We set the batch size of the
trigger set to 25 and introduce perturbations during training to prevent the watermark from being
removed as an outlier. ResNet34 is used for all the source and surrogate models, with each model
trained for 200 epochs, and β is set to 0.3 in Equation 8.

4.2 RESULTS ON FUNCTIONALITY STEALING

Table 1 shows quantitative comparison with state-of-the-art methods on CIFAR-10 and CIFAR-100
datasets. Our method achieves 100% trigger set accuracy in the source models, similar to the MB
method (Kim et al., 2023). Additionally, our source models achieve 87.86% and 65.90% accuracy on
CIFAR-10 and CIFAR-100 datasets, which demonstrates the effectiveness of the proposed selection
strategy.

As presented in Table 1, our method achieves an optimal balance between accuracy on CIFAR-10
/ CIFAR-100 and the trigger set, demonstrating that our approach enhances the discriminability of
the trigger set while maintaining model performance. Surrogate models trained with soft-label and
hard-label also exhibit significant improvements compared with the baseline methods. Moreover,
surrogate models trained with RGT exhibit performance similar to prior state-of-the-art techniques,
given the pivotal role of ground truth labels for the adversary in the context of trigger set evaluation.
Similarly, as shown in Table 2, our method achieves increased trigger set accuracy and a reduced
p-value on ImageNet, showcasing its scalability on large-scale datasets.

Our method also exhibits superior results in statistical testing experiments. It consistently produces
the smallest p-values across all attacks, indicating the effectiveness of our approach in distinguishing
benign and stolen models. Notably, each trigger sample in our design is based on the least probable
labels, enabling the identification of the model ownership with 95% confidence even if the suspect
model reveals only a few instances or a single watermark pattern.

4.3 HETEROGENEOUS SURROGATE DATASET & ARCHITECTURE

In this section, we explore a realistic scenario where the adversaries are unseen from either the train-
ing dataset Dc or the network architecture of the source model. We use the SVHN dataset (Netzer
et al., 2011) as the surrogate dataset and maintain consistent settings to train a surrogate model
through a model extraction attack employing the soft-label technique. For the model architecture,
we employ VGG11 (Simonyan & Zisserman, 2014) in the surrogate model and perform a soft-label
attack as the watermarked model trained on CIFAR-10.

Table 3 shows that our method outperforms the margin-based approach (Kim et al., 2023) in the
trigger set accuracy in both scenarios. Nonetheless, when comparing the trigger set accuracy with
that in Table 1, the accuracy decreases with the utilization of the new dataset and architecture,
indicating that it is challenging for the surrogate model to generalize to the trigger set. Hence,
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Method Source model Surrogate model
Clean acc. (%) Trigger set acc. (%) Trigger set acc. (%)

Surrogate Dataset with SVHN

MB (Kim et al., 2023) 87.81± 0.76 100.0± 0.00 72.00± 6.08

Boundary-based (Ours) 88.62± 2.10 100.0± 0.00 77.03± 5.32

Surrogate Model with VGG11

MB (Kim et al., 2023) 87.81± 0.76 100.0± 0.00 32.00± 7.21

Boundary-based (Ours) 89.63± 2.05 96.05± 0.35 35.74± 5.25

Table 3: Results for watermarking DNNs against model extraction attacks with different surrogate
datasets and architectures.

even if the accuracy does not reach its optimum, we can assert model ownership with over 95%
confidence.

4.4 ABLATION STUDIES

In this section, we provide ablation experiments on the effectiveness of our trigger set selection
strategy compared with alternative methods including center-oriented selection and random labeling
strategies.

Strategy Source Model Surrogate Model
Clean Trigger Acc. (%) Trigger Acc. (%)

Center 86.80 95.60 75.00
Ours 87.86 100.00 86.50

Table 4: Ablation study of different trigger set
selection strategies on the CIFAR-10 dataset.

Strategy Source Model Surrogate Model
Clean Trigger Acc. (%) p-value

Random 89.14 100.00 10−9

Ours 87.86 100.00 10−11

Table 5: Ablation study of different trigger set
labeling strategies on the CIFAR-10 dataset.

First, we compare our sample selection approach with the center-oriented strategy that focuses on
samples clustering around central points. As illustrated in Table 4, when compared with the center-
oriented strategy, our approach demonstrates superior performance in accuracy of both the clean
data and the trigger set.

Next, we delve into the commonly used strategy of assigning random labels to boundary samples.
As shown in Table 5, this approach results in ambiguous labels, making it more challenging to
distinguish benign and stolen models.

Finally, we train 50 base models using various seeds to evaluate the validity of the experimental setup
for generating perturbed models. The experimental results reveal that when employing randomly
assigned labels, the average accuracy reaches 7%, whereas our approach achieves only 1%. In
this context, lower accuracy signifies higher distinguishability, verifying that our watermark rarely
appears in benign models, rendering it highly effective at identifying benign and stolen models.

5 CONCLUSION

In this paper, we present a boundary-based watermarking method designed to defend against model
extraction attacks by carefully selecting boundary samples and assigning permissive labels. Our
approach dissects the identification of stolen models into two key components: trigger set discrim-
inability and the probability of distinguishing benign and stolen models. Accordingly, we propose
a trigger sample selection strategy to enhance both aspects. Furthermore, we establish a tight theo-
retical bound on watermarking models by constraining parameters using the Lovász Local Lemma,
ensuring reliable watermark detection in stolen models through the incorporation of multiple pairs
of watermarks. Extensive experiments on three public datasets demonstrate the superiority of our
method on ownership verification of stolen models.
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A PROOF OF CERTIFICATION WATERMARK

(Theorem 2). Let N be the set of all neurons related to the watermarks, i.e., N =
⋃m

i=1 Γ(Wi). If
there exists an assignment of reals α : N → [0, 1) such that

Pr
[
Wi,j

]
≤ α (Wi,j)

∏
Wi,j′∈Γ(Wi)\{Wi,j}

(1− α (Wi,j′)) , ∀Wi,j ∈ N ,

then the probability of avoiding all neurons remaining inactive is positive, in particular

Pr [Wi] = Pr

 ∧
Wi,j∈Γ(Wi)

Wi,j

 ≥
∏

Wi,j∈Γ(Wi)

(1− α (Wi,j)) , ∀i ∈ [m].

Proof. First, let Γ(Wi) = t and by chain rule, we have

Pr [Wi] =Pr

 t∧
j=1

Wi,j


=

t∏
j=1

Pr

Wi,j

∣∣∣∣∣ ∧
k<j

Wi,k


=

t∏
j=1

1− Pr

Wi,j

∣∣∣∣∣ ∧
k<j

Wi,k

 .

We use the Induction Hypothesis (I.H.) for the proof. And we perform induction on the number of
conditions ℓ: suppose that for any distinct events Wi,j ,Wi,j1 , · · · ,Wi,jℓ , the following hypothesis
holds:

Pr

[
Wi,j

∣∣∣∣∣Wi,j1 · · ·Wi,jℓ

]
≤ α(Wi,j). (9)

For the base case when ℓ = 1, we have

Pr
[
Wi,j

]
≤α (Wi,j)

∏
Wi,j′∈Γ(Wi)\{Wi,j}

(1− α (Wi,j′))

≤α (Wi,j)

where α(·) ∈ [0, 1).

Now, assume as the induction hypothesis that for ℓ − 1, the result holds. We will show that under
this assumption, the result also holds for a trigger set of size ℓ.

First, we divide Wi,j1 , · · · ,Wi,jℓ into two parts. Say Wi,j1 , · · · ,Wi,jν ∈ Γ(Wi,j) and
Wi,jν+1 , · · · ,Wi,jℓ /∈ Γ(Wi), i.e. Wi,j1 , · · · ,Wi,jν are the neurons activated in response to the
i-th watermark, while the remaining Wi,jν+1 , · · · ,Wi,jℓ are those that remain inactive.

For ν = 0, the case is trivial:

Pr

[
Wi,j

∣∣∣∣∣Wi,j1 · · ·Wi,jℓ

]
=Pr

[
Wi,j

]
≤α (Wi,j)

∏
Wi,j′∈Γ(Wi)\{Wi,j}

(1− α (Wi,j′))

≤α (Wi,j)

where the first equality holds because Wi,j1 , · · · ,Wi,jℓ /∈ Γ(Wi), which implies that Wi,j is inde-
pendent of Wi,j1 , · · · ,Wi,jℓ .
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For ν ≥ 1, we divide the conditions into two parts, neighbors and non-neighbors:

Pr

[
Wi,j

∣∣∣∣∣Wi,j1 · · ·Wi,jℓ

]
=Pr

[
Wi,j

∣∣∣∣∣Wi,j1 · · ·Wi,jνWi,jν+1
· · ·Wi,jℓ

]

=

Pr

[
Wi,jWi,j1 · · ·Wi,jν

∣∣∣∣∣Wi,jν+1
· · ·Wi,jℓ

]

Pr

[
Wi,j1 · · ·Wi,jν

∣∣∣∣∣Wi,jν+1
· · ·Wi,jℓ

] .

(10)

We compute the numerator and denominator in equation 10 separately. Let’s first consider the
numerator:

Pr

[
Wi,jWi,j1 · · ·Wi,jν

∣∣∣∣∣Wi,jν+1
· · ·Wi,jℓ

]
≤Pr

[
Wi,j

∣∣∣∣∣Wi,jν+1
· · ·Wi,jℓ

]
=Pr

[
Wi,j

]
≤α (Wi,j)

∏
Wi,j′∈Γ(Wi)\{Wi,j}

(1− α (Wi,j′))

(11)

where the last inequality applies the condition 5 of the theorem.

Then, consider the denominator in equation 10:

Pr

[
Wi,j1 · · ·Wi,jν

∣∣∣∣∣Wi,jν+1 · · ·Wi,jℓ

]
=

ν∏
r=1

Pr

[
Wi,jr

∣∣∣∣∣Wi,jν+1 · · ·Wi,jℓ

]

=

ν∏
r=1

(
1− Pr

[
Wi,jr

∣∣∣∣∣Wi,jν+1
· · ·Wi,jℓ

])

≥
ν∏

r=1

(1− α(Wi,jr ))

≥
∏

Wi,j′∈Γ(Wi)\{Wi,j}

(1− α (Wi,j′))

(12)

where the first inequality uses hypothesis 9, and the second inequality holds because
Wi,j1 · · ·Wi,jν ∈ Γ(Wi)\{Wi,j}.

Substituting Equation 11 and 12 into 10,

Pr

[
Wi,j

∣∣∣∣∣Wi,j1 · · ·Wi,jℓ

]
=

Pr

[
Wi,jWi,j1 · · ·Wi,jν

∣∣∣∣∣Wi,jν+1
· · ·Wi,jℓ

]

Pr

[
Wi,j1 · · ·Wi,jν

∣∣∣∣∣Wi,jν+1 · · ·Wi,jℓ

]

≤
α (Wi,j)

∏
Wi,j′∈Γ(Wi)\{Wi,j} (1− α (Wi,j′))∏

Wi,j′∈Γ(Wi)\{Wi,j} (1− α (Wi,j′))

≤α(Wi,j).

With all assumptions confirmed, the hypothesis holds:

Pr

[
Wi,j

∣∣∣∣∣Wi,j1 · · ·Wi,jℓ

]
≤ α(Wi,j).
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Thus we have

Pr [Wi] =

t∏
j=1

1− Pr

Wi,j

∣∣∣∣∣ ∧
k<j

Wi,k


≥

∏
Wi,j∈Γ(Wi)

(1− α (Wi,j))

completing the proof.

(Corollary 2.1). If the size of trigger set m satisfy

m ≥
∏
Wi,j

(1− α (Wi,j))
−1

,

then

Pr

[
m∨
i=1

Wi

]
≥ 1

and we can ensure with high probability that our watermark is guaranteed to be unremovable.

Proof. Since the total number of neurons N is significantly greater than the number of watermark-
related neurons, leading to N = O( 1

N ). Thus we have

Pr

[
m∨
i=1

Wi

]
=

m∑
i=1

Pr [Wi]

≥m ·min
i

 ∏
Wi,j∈Γ(Wi)

(1− α (Wi,j))


≥
∏
Wi,j

(1− α (Wi,j))
−1 ·min

i

 ∏
Wi,j∈Γ(Wi)

(1− α (Wi,j))


≥1

Thus, we can ensures the watermark’s reliability in detecting stolen models with a probability of
1−O( 1

N ), enabling model ownership identification with 95% confidence, even if the suspect model
reveals only a few instances or a single watermark pattern.
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