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Abstract

Encoder-only transformer models have been001
successfully applied to different table under-002
standing tasks, as in TAPAS (Herzig et al.,003
2020). A major limitation of these ar-004
chitectures is that they are constrained to005
classification-like tasks such as cell selection006
or entailment detection. We present TABT5,007
an encoder-decoder model that generates natu-008
ral language text based on tables and textual in-009
puts. TABT5 overcomes the encoder-only lim-010
itation by incorporating a decoder component011
and leverages the input structure with table012
specific embeddings and pre-training. TABT5013
achieves new state-of-the-art results on several014
domains, including spreadsheet formula pre-015
diction with a 15% increase in sequence accu-016
racy, QA with a 2.5% increase in sequence ac-017
curacy and data-to-text generation with a 2.5%018
increase in BLEU.019

1 Introduction020

Large language models (LLMs) such as BERT (De-021

vlin et al., 2019) or T5 (Raffel et al., 2020) have022

shown impressive abilities to encode and gener-023

ate fluent and coherent natural language text (Lan024

et al., 2020; Gururangan et al., 2020; Conneau et al.,025

2020). However their representation and genera-026

tional capabilities are limited when it comes to027

structured or semi-structured domains like tables.028

This is mainly due to two reasons: (i) LLMs are029

only pre-trained on large amount of unstructured030

data (e.g., documents, news, etc.); (ii) their underly-031

ing model architecture lacks a way to fully leverage032

this structure information.033

Yet, structured and semi-structured data is ubiq-034

uitous on the web (e.g. web tables, database tables,035

PDF tables, spreadsheets store rich numerical in-036

formation and provide concise summaries of data),037

and widely studied in the academia (Chen et al.,038

2021; Cheng et al., 2022; Parikh et al., 2020; Wang039

et al., 2021) and the industry (e.g. formula predic-040

tion in Excel1 and Google Sheets2, or extracting 041

data from tables in Text-to-Speech Assistants). 042

Recently, several solutions propose to alleviate 043

aforementioned issue by introducing pre-training 044

or intermediate training strategies for tables. For 045

instance, Herzig et al. (2020) propose to use a 046

Masked Language Model (MLM) as pre-training 047

objective to improve the contextual representation 048

of BERT (Devlin et al., 2019) over table inputs. 049

To train their model, they introduce additional in- 050

put embeddings that help the model understand the 051

table structure. These pre-training models are de- 052

signed and evaluated on datasets where the answers 053

contain only table cells or aggregations of multi- 054

ple cells, and not full sentences. In this paper, we 055

tackle a set of distinct, complex tasks such as ques- 056

tion answering and formula prediction that require 057

full generation capabilities. 058

In particular, our contributions are as follows: 059

• We present an encoder-decoder based model 060

TABT5 (Table-and-Text-to-Text Transfer Trans- 061

former) that can be applied to data-to-text gener- 062

ation tasks by relying on special embeddings of 063

the input structure. 064

• We introduce different pre-training strategies 065

that leverage web data containing tables. 066

• We evaluate our approach on three different table 067

and text datasets in English and obtain state-of- 068

the-art performance on several domains. 069

2 Problem Definition 070

The objective of our model is to learn a conditional 071

sequence generator P (y|x) where x is endowed 072

with extra two-dimensional structure. To encode 073

said structure, each instance of x is as a variable 074

length sequence of tuples (ui, ti, ci, ri)
N
i=1 repre- 075

senting the components of x. In each component, 076

ui is a natural language utterance, ti is the discrete 077

1https://www.microsoft.com/excel
2https://www.google.com/sheets/about
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Figure 1: TABT5 linearizes the input table row by row and adds column and row embeddings to encode the
2-dimensional coordinates of each cell. The model is pretrained by randomly replacing 15% of cells by a <X>
marker and training the decoder to predict the hidden output in sequence.

type of the component (i.e. could be Question, Doc-078

ument Title, Table Caption, Table Header, Table079

Cell, etc.), and ci and ri represent the two dimen-080

sional column and row coordinates for this com-081

ponent. This approach is general to represent the082

information layout in web documents and in partic-083

ular tables where each table cell and each piece of084

metadata can map into a single component.085

3 Related Work086

Table language models. Several works use a087

common serialization where table contents are lin-088

earized row by row (Parikh et al., 2020; Wang et al.,089

2021; Iida et al., 2021; Eisenschlos et al., 2021;090

Herzig et al., 2020). Another design choice is to091

use structural positional encoding, in addition to092

1-D encoding, to represent two dimensional infor-093

mation such as the row and column positions of094

tokens (Herzig et al., 2020; Eisenschlos et al., 2021;095

Iida et al., 2021; Wang et al., 2021). An alterna-096

tive is the the use of a structure-aware attention, in097

contrast to a standard self-attention mechanism, to098

better leverage the table structure (Mueller et al.,099

2019; Yang et al., 2022). All of these models are100

encoder-only. Concurrent with our work Shi et al.101

(2022) propose a similar method to adapt to T5 to102

tabular data, however their pretraining approach103

relies on existing annotated datasets and focuses104

solely on QA applications.105

Table Pre-training. Most pretraining methods106

follow the Masked Language Modeling (MLM)107

scheme, where some percentage of input tokens are108

randomly masked and successively predicted in an109

encoder only setup (Herzig et al., 2020; Eisenschlos110

et al., 2021; Yang et al., 2022). Some approaches111

(Wang et al., 2021; Yin et al., 2020; Iida et al.,112

2021) apply the masking on a cell-level, where the113

full contents of a given cell is masked and then114

predicted. Our work differs in training the encoder115

and decoder jointly by using a de-noising scheme116

similar to the one used in T5 (Raffel et al., 2020).117

Table QA. Given an input table, the task consists in 118

producing an answer to a natural language question. 119

We focus on WIKISQL (Zhong et al., 2017), and 120

learn an encoder-decoder model with row/column 121

embeddings in the weakly supervised setting with- 122

out logical forms. Herzig et al. (2020) use a similar 123

approach with a BERT encoder-only model, while 124

Liu et al. (2022) use a BART encoder-decoder 125

model without extra embeddings. 126

Formula prediction. The task is to predict for- 127

mula conditioned on headers and other contextual 128

information, without an explicit natural language 129

question. Chen et al. (2021) propose to use a BERT- 130

based architecture to compute an input header and a 131

cell data vector that are fed to a two-step LSTM de- 132

coder. The decoder proposes a formula sketch and 133

refines it with cell ranges. Cheng et al. (2022) pro- 134

pose a similar approach where the representation 135

of the target cell output by a table encoder (Wang 136

et al., 2021) is an input to a two-step LSTM-based 137

decoder. Our approach is simpler as a single model 138

is used to solve the task end to end. 139

Data-to-Text. The task consists in generating a 140

natural language description given structured data 141

input. Parikh et al. (2020) employ an encoder- 142

decoder model where the encoder and decoder are 143

both initialized with BERT (Devlin et al., 2019). 144

Kale and Rastogi (2020) use a T5 model. In both, 145

tables are linearized with row/column separator to- 146

kens. Our work differs as we use row/column em- 147

beddings, and we employ two pretraining schemes. 148

4 TABT5 Model 149

TABT5 uses the T5 pre-trained language model as 150

a baseline architecture.We linearize the table into 151

a sequence of words, split words into word pieces 152

(tokens) and concatenate the question and table to- 153

kens to create the input sequence. We include in the 154

model row and column embeddings to encode table 155

structure (Herzig et al., 2020). We add them on top 156

of the token embeddings as model inputs and op- 157

2



timize them during training (Figure 1). The target158

sequence is a free-form answer. This can be an159

answer to a question for question-answering tasks,160

a table summary when no question is specified or a161

formula for the formula prediction tasks.162

5 Pre-training163

As a starting point, we use publicly available T5164

checkpoints released by Raffel et al. (2020). Next,165

we pre-train TABT5 on Wikipedia tables. We use166

the pre-training dataset proposed by Herzig et al.167

(2020) which contains 6.2M tables (3.3M of class168

Infobox3 and 2.9M of class WikiTable). We also169

extract related passages that caption the table. We170

define two pre-training strategies described below.171

5.1 Denoising172

We design a denoising strategy for table-like data,173

following the method used in T5 (Raffel et al.,174

2020), by training the model to predict a target175

sequence containing the missing or corrupted to-176

kens in the input table. The target consists of all of177

the dropped-out spans of tokens, delimited by the178

sentinel token used in the input sequence (Figure 1).179

We replace 15% of table cells and columns in the180

input with a mask token4. This helps the model cap-181

ture relationships between the neighbouring cells182

and between the related text.183

5.2 ToTTification184

We define another pre-training strategy using the185

same Wikipedia tables (Section 5.1) inspired by186

ToTTo (Parikh et al., 2020), to be used after denois-187

ing. For each table, we retrieve the statements that188

are in the same page as the table or link to the table189

page. We only keep statements that have an en-190

tity (Wikipedia URL, number or date) that matches191

the table, 4M in total. These statements become192

our target text. We add the matching entities in193

those statements as a (comma separated) plain text194

component of the input to guide the generation.195

6 Experiments196

6.1 Datasets197

WIKISQL (Zhong et al., 2017) is a Table-QA198

dataset containing 80.654 instances. To create199

the dataset, crowd workers paraphrase a template-200

based question into natural language. Two other201

3https://en.wikipedia.org/wiki/Help:Infobox
4Raffel et al. experimentally show that 15% corruption rate

works best. We use the same rate for our denoising objective.

crowd workers’ groups then verify and correct the 202

quality of the proposed paraphrases. We follow the 203

approach of Herzig et al. (2020) and generate the 204

reference answer from the reference SQL provided 205

using our own SQL implementation. 206

ENRON (Chen et al., 2021) is a dataset to eval- 207

uate formula prediction task containing over 17K 208

spreadsheets extracted from the Enron email corpus 209

that contains 218.798 instances. It focuses on for- 210

mula with referenced cells in a rectangular neigh- 211

bourhood region of the target cell and the headers. 212

We preprocess the data as described Appendix C. 213

TOTTO (Parikh et al., 2020) is a Table-to-Text 214

dataset containing 120.761 instances. It consists 215

of tables paired with table-grounded sentences as 216

natural language descriptions. Parikh et al. apply 217

several heuristics to sample tables and candidate 218

sentences from Wikipedia pages. They use crowd 219

worker annotators to highlight the corresponding 220

table cells and revise natural language descriptions. 221

6.2 Results 222

We discuss the experimental setup in the Ap- 223

pendix B. For TOTTO, we report the results in 224

Table 1. We follow Parikh et al.’s official script 225

to compute BLEU and PARENT as the evaluation 226

metrics. The Non-Overlap dev set features exam- 227

ples that are out-of-domain from the training set. 228

For the test set, we provide results from one run as 229

this is a laborious manual process requiring a sub- 230

mission of test files into an external source6. Note 231

that Parikh et al. do not provide development set 232

results in their paper and Kale and Rastogi do not 233

provide test set results for the base model. We ob- 234

serve that TABT5 outperforms SOTA models and 235

its performance is improved further by using the 236

TOTTIFY pre-training. Note that the base model 237

performs slightly better than the large model. We 238

believe that the large model requires more careful 239

hyperparameters tuning to achieve higher results. 240

For WIKISQL and ENRON, results are reported 241

in Table 2 and Table 3 respectively. Also, see the 242

Appendix C for additional results on the ENRON 243

dataset. We observe that TABT5 significantly im- 244

proves over SOTA performance for both WIKISQL 245

(> 30% of error reduction in the base variant) and 246

ENRON (35% error reduction in the base variant). 247

Note that TABT5 in the base variant (220M param- 248

eters) outperforms other models with substantially 249

6The details on submissions for the ToTTo test set can be
found in https://github.com/google-research-datasets/ToTTo
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Overall Non-Overlap

Model – Dev Set BLEU PARENT BLEU PARENT

Kale and Rastogi 47.70 57.10 39.60 52.60
T5-base5 47.00± 0.43 55.96± 0.31 38.50± 0.48 51.14± 0.33
TABT5-small 47.80± 0.26 56.89± 0.29 39.30± 0.26 51.93± 0.35
TABT5-base 49.00± 0.07 57.70± 0.11 40.90± 0.13 53.12± 0.18

+TOTTIFY 49.50 ± 0.07 57.95 ± 0.05 41.60 ± 0.05 53.65 ± 0.07
-DENOISING 47.50± 0.43 56.11± 0.40 39.00± 0.64 51.06± 0.51
-EMBEDDINGS 48.60± 0.17 57.12± 0.23 40.50± 0.26 52.71± 0.28

TABT5-large 48.50± 0.13 56.98± 0.25 41.05± 0.10 52.95± 0.24

Model – Test Set BLEU PARENT BLEU PARENT

Parikh et al. 44.00 52.60 35.10 46.80
T5-base 47.10 56.17 38.70 51.39
TABT5-base 48.80 57.60 40.70 53.20
+TOTTIFY 49.20 57.25 41.00 52.78

Table 1: Text generation results for TOTTO on development (dev) and test sets. The Non-Overlap set features
examples that are out-of-domain from the training set. TABT5 provides improvements over existing approaches
and TOTTIFY pretraining provides additional gains.

higher number of parameters (e.g. BERT used250

in Herzig et al. (2020) has 380M parameters and251

BARTlarge in Liu et al. (2022)∼ 418M). Addition-252

ally, TABT5 in the small variant (60M parameters)253

achieves high accuracy compared to SOTA for the254

ENRON dataset. When increasing the model size,255

we observe an increase in performance for both256

datasets. For WIKISQL the large variant (770M257

parameters) achieves exceptionally high sequence258

accuracy of 95% (53% error reduction wrt. to the259

baseline performance).260

Model Dev Test

Herzig et al. (2020) 85.1 83.6
Liu et al. (2022) 89.2 89.5
T5-base 85.29± 0.45 84.27± 0.39
TABT5-small 90.56± 0.15 89.15± 0.10
TABT5-base 92.55± 0.23 91.45± 0.21

+TOTTIFY 91.34± 0.17 90.06± 0.15
-DENOISING 88.87± 0.31 87.51± 0.19
-EMBEDDINGS 85.51± 0.23 84.39± 0.13

TABT5-large 94.92 ± 0.04 93.61 ± 0.09

Table 2: Table-QA results on WIKISQL in the weakly
supervised setting without logical forms. TABT5 pro-
vides gains over existing approaches even in a small
model variant. The large model gives the best results.

Ablation We perform the ablation study only on261

the base variant due to computational costs. For262

each experiment, we report two ablations runs: (i) -263

DENOISING indicates that we remove the denoising264

pre-training , and (ii) -EMBEDDINGS indicates runs265

without row and column embeddings. We observe266

that the performance of TABT5 deteriorates when267

removing either denoising or embeddings. This268

6The gap between T5-base and Kale and Rastogi comes
from using distinct versions of T5. We reproduced their results
using v1.0. We use v1.1 with the same set of hyperparameters.

Model Top-1

Chen et al. 42.51
Cheng et al. 56.30
T5-base 69.40± 0.33
TABT5-small 71.33± 0.24
TABT5-base 71.61± 0.27

+TOTTIFY 71.18± 0.22
-DENOISING 70.47± 0.28
-EMBEDDINGS 70.07± 0.36

TABT5-large 71.79 ± 0.20

Table 3: Formula prediction results on ENRON. The T5-
base baseline brings substantial improvements over ex-
isting approaches. TABT5 provides further gains, with
the large model variant obtaining the best results.

show they are crucial for all tasks. We also show 269

results for the TOTTIfication, which improves the 270

performance for TOTTO but it is detrimental for 271

the other tasks, compared to the denoising method. 272

Error analysis We manually annotate a random 273

sample of 80 errors made by TABT5. We find that 274

55% are paraphrases and 72.5% overall are accept- 275

able (correct content with some details missing). 276

We classify the remaining errors into grammatical 277

errors, hallucinations and wrong answers (see Ap- 278

pendix D). The results suggest a need for better 279

metrics for the data-to-text generation tasks that 280

capture the similarities. 281

7 Conclusions and Discussion 282

We introduced TABT5 a new T5-based encoder- 283

decoder model that achieves new SOTA results on 284

spreadsheet formula prediction, question answer- 285

ing and data-to-text generation. In future work, 286

we plan to use larger and task specific datasets for 287

pre-training (e.g. scrape tables from Web, sheets). 288
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Ethical Considerations289

As is true for existing works on generative archi-290

tectures based on large language models, there are291

potential risks and harms associated with using the292

output for downstream applications (Bender and293

Koller, 2020; Brown et al., 2020). Beyond the orig-294

inal pre-trained checkpoint from T5, we also used295

tables from Wikipedia for intermediate pre-training,296

which may contain additional undesirable biases.297
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A Appendix A. Hyperparameters436

Selection437

We run denoising pre-training for 1M steps and438

ToTTify pre-training for 100k steps on top of de-439

noising. We set each fine-tuning task for 50k train-440

ing steps. We run the evaluation on ENRON and441

WIKISQL using the default T5 hyper-parameters442

with an input sequence length of 1024 and output443

256. For the TOTTO dataset, we follow the ap-444

proach of Kale and Rastogi (2020) and keep the445

learning rate constant and equal to 1× 10−4 , an446

input and output sequence length is equal to 512447

and 256 respectively, and batch size is 256. Addi-448

tionally, we observe that TABT5 in the small and449

base variants overfit quickly. Thus, we decide to450

increase the dropout rate to 0.2 when using pre-451

training.452

B Appendix B. Experimental Setup453

We apply the standard T5 tokenizer and start pre-454

training from publicly available T5 checkpoints.455

Row and column embeddings are randomly ini-456

tialized. We run pre-training and fine-tuning on a457

setup of 16 Cloud TPU v3 cores with maximum458

sequence length of 1024. Pre-training takes around459

3, 8 and 13 days for small, base and large models.460

Fine-tuning takes around 2− 3 hours for each task.461

For each dataset, we run five independent runs and462

report median and standard deviation.463

C Appendix C. ENRON results.464

In this section, we present the results on the EN-465

RON dataset that contains all original data (i.e. all466

formulas in the tables). We find these results inter-467

esting as the ENRON contains real data collected468

by the company. Thus, we believe this scenario469

is realistic. We present the results in Table 4. We470

observe that our results are extremely high because471

in ENRON dataset over 70% of tables contain a472

target formula in the input table. Following the pre-473

vious approaches, we make the task harder. In the474

experimental section of the paper, we preprocess475

the datasety by removing all formulas from the in-476

put table cells. Additionally, we remove examples477

containing (i) erroneous formulas, and (ii) ranges478

from different tables in both input tables and target479

formulas.480

Model Top-1

T5-base 93.05± 0.98

TABT5-small 95.39± 0.17
TABT5-base 95.59 ± 0.08
+TOTTIFY 95.50± 0.05
-DENOISING 93.92± 0.16
-EMBEDDINGS 95.00± 0.16

Table 4: Formula prediction results on ENRON. In
this experiment, the model has to produce the target
formula having access to the formula used in the sur-
rounding cells. Results are higher wrt. to Table 3 as
the model is allowed to “copy” already used formulae
or part of them.

D Appendix D. Error analysis 481

We manually annotate 80 errors made by the 482

TABT5 and classify them in Figure 2. 35% of 483

the TABT5 output are exactly the same as T5’s 484

output where 55% are correct (paraphrases) and 485

72.5% acceptable answers. 486
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80 examples

72.5% 
Acceptable 27.5% Wrong

55% 
paraphrase

17.5% missing 
information

10% 
Hallucination

7.5% TABT5 
== T5

10% TABT5 != 
T5

31.25% TABT5 
== T5

23.75% TABT5 
!= T5

2.5% copy title 
bias

8.75% 
grammatical 

errors

6.25% TABT5 
== T5

3.75% TABT5 
!= T5

2.5% TABT5 
== T5

6.25% TABT5 
!= T5

5% missing 
important 

information
3.75% others

Figure 2: We manually annotate 80 errors made by TABT5. We find that 55% of predictions are paraphrases and
72.5% are acceptable. The classification of error types is given in Table 5.

.

Error type Definition Example

Paraphrase Express the same meaning as the ground truth using
either synonyms or the exact words in a different
order.

TABT5 output: Ina 2016, Alma Jodorowsky played Evelyn in
Kids in Love.

Ground Truth: Alma Jodorowsky had the role of Evelyn in 2016
film Kids in Love.

Acceptable
missing infor-
mation

The content is correct, but it is missing some details
that do not affect the answer’s meaning.

TABT5 output: The 500 Questions was aired in Germany on RTL
from July 4 to August 14, hosted by Günther Jauch. (year is
missing)
Ground Truth: In 2016, RTL television aired 500-DQA in germany
and was hosted by Gunther Jauch

Wrong missing
important infor-
mation

The content is missing some details that affect the
meaning of the answer or are essential for understand-
ing the answer.

TABT5 output: Putney railway station is in the Wandsworth bor-
ough and is in Zone 2. (missing zone 3 could be important infor-
mation)
Ground Truth: Putney railway station serves Putney in the London
borough of Wandsworth in southwest London and in zones 2 and
3

Hallucination Intrinsic – The generated output contradicts the
source content – or Extrinsic – The generated output
cannot be verified from the source content –

TABT5 output: In 1924, William Glackens received the Temple
Gold Medal for his work "Natural form". (We cannot verify the
work’s name)
Ground Truth: William Glackens won the 1924 award from Tem-
ple Gold Medal Nude.

Grammatical er-
rors

The sentence is grammatically incorrect TABT5 output: As of the census of 2000, there were 42,695 people
residing in the Watauga County.
Ground Truth: As of the census of 2000, there were 42,695 people
residing in Watauga county.

Wrong Other errors such as: wrong aggregation (counts,
sums, etc), swapped arguments that change the mean-
ing of the sentence.

TABT5 == T5 T5 and TABT5 have the same output –exact match–.

Table 5: Error types definition and examples.
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