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Abstract

We introduce a method for learning landmark detectors
from unlabelled video frames and unpaired labels. This al-
lows us to learn a detector from a large collection of raw
videos given only a few example annotations harvested from
existing data or motion capture. We achieve this by formu-
lating the landmark detection task as one of image trans-
lation, learning to map an image of the object to an im-
age of its landmarks, represented as a skeleton. The ad-
vantage is that this translation problem can then be tackled
by CycleGAN. However, we show that a naive application
of CycleGAN confounds appearance and pose information,
with suboptimal keypoint detection performance. We solve
this problem by introducing an analytical and differentiable
renderer for the skeleton image so that no appearance in-
formation can be leaked in the skeleton. Then, since cy-
cle consistency requires to reconstruct the input image from
the skeleton, we supply the appearance information thus
removed by conditioning the generator with a second im-
age of the same object (e.g. another frame from a video).
Furthermore, while CycleGAN uses two cycle consistency
constraints, we show that the second one is detrimental in
this application and we discard it, significantly simplifying
the model. We show that these modifications improve the
quality of the learned detector leading to state-of-the-art
unsupervised landmark detection performance in a num-
ber of challenging human pose and facial landmark detec-
tion benchmarks. Project page: http://www.robots.

ox.ac.uk/˜vgg/research/unsupervised_pose/

1. Introduction
Modern machine learning methods can solve complex

image labelling tasks such as pose recognition with good ac-
curacy, but at the cost of collecting large annotated datasets
for training. The cost of these manual annotations is a major
obstacle to deploying machine learning to new tasks. Re-
moving the annotation bottleneck is thus one of the key ob-
jectives of current research in computer vision.

… , …
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Figure 1. Learning landmark detectors from unaligned data.
We learn to estimate object landmarks from a collection of unla-
belled videos given only prior information on the distribution of
human poses, which may be harvested independently from syn-
thetic data, motion capture or small amounts of manually anno-
tations. We demonstrate our approach outperforms recent meth-
ods [59, 76] for unsupervised landmark localisation for human
pose and faces across a number of benchmarks (section 5).

Recent advances in unsupervised representation learn-
ing [32, 46, 74] have focussed on learning generic feature
extractors via pretext tasks. These features can then be
transferred to an end task such as pose recognition, but this
requires to finetune the model using manually-sourced la-
bels. Very few works have attempted to solve a task such as
ego-pose (and depth) from unlabelled data directly [40].

In this paper, we introduce a method that can learn to
recognize pose from a large collection of unlabelled images
given only unpaired annotations. We build our approach on
the success of recent image-to-image translation methods
such as CycleGAN [79]. Following [79], we cast image la-
belling as the problem of translating a natural image into
an image of the corresponding label. For pose recognition,
the label image thus look like a rendering of a skeleton with
the same pose as the provided input image (see fig. 1). For
other objects such as faces, the rendering may look instead
as a collection of 2D keypoints (fig. 2 and section 5). Ei-
ther way, CycleGAN can learn such a mapping given only
unpaired samples from each domain, so that none of the ex-
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ample images supplied to the network for training needs to
be labelled.

However, a limitation of CycleGAN is that the mappings
between domains are assumed to be one-to-one, which is
not the case for most image labelling tasks. In fact, while
there is a single plausible mapping from an image of a per-
son to its skeleton, the same skeleton can be mapped to
many different people. In order to remove this ambiguity,
a naive application of CylceGAN introduces in the skele-
ton subtle artefacts that leak appearance information along
with pose. This phenomenon, discussed in detail in [11]
and visualised in fig. 2, was found to hinder the ability of
CycleGAN to extract robust pose information from images
(see section 5.3).

To address this issue, we propose two important en-
hancements. First, we introduce a tight bottleneck in the
part of the model that generates the label image, preventing
undesired “leakage” of appearance information in the label.
The bottleneck is designed to extract the location of a cer-
tain number of 2D object keypoints, which are then used
to re-render the skeleton image using an hand-crafted dif-
ferentiable function. The small dimensionality of the space
used to represent pose (2D keypoints) and the absence of
learnable parameters in the rendering function makes it very
difficult to leak appearance information in the label image,
thus better factoring appearance and geometry.

The downside of this “clean” label is that reconstruct-
ing an image from it becomes much more ambiguous. To
address this issue, we further modify CycleGAN to use a
conditional image generator. This generator combines the
geometric information contained in the label with appear-
ance information extracted from another image of the same
object. Crucially, we ensure that this auxiliary image has
the same appearance of the first, but a different pose, which
further contributes to factor geometry and appearance infor-
mation. Such image pairs can be cheaply obtained as frames
in a video.

We show empirically that the resulting approach can dis-
entangle appearance and geometry given only videos of
people or faces. We can thus achieve excellent performance
in pose recognition without any manual annotations for the
video frames used to train the model, achieving state-of-the-
art pose recognition performance from unlabelled images
on standard benchmarks such as Human3.6M or 300-W, and
significantly outperform the previous methods.

Note that our method still requires the use of some pose
annotations to learn the space of possible configurations of
the landmarks. However, such a prior can be partially or
fully hand-crafted, and, if learned, it can be extracted from
a different dataset. In the face experiments, for example,
we show that we can train the model from a complex but
unlabelled dataset of video faces (VoxCeleb) using a prior
on keypoints extracted from a much simpler and smaller

Figure 2. Appearance leakage. From left to right: input im-
age, reconstruction, pose represented as the image of a skeleton
or keypoints, local-contrast normalised (LCN) pose image (in log
scale). In order to satisfy the cycle-consistency constraint, Cycle-
GAN [79] must reconstruct the input image from the pose image,
and thus leaks appearance information in the latter [11], reducing
pose recognition performance (section 5.3). The visually imper-
ceptible leaked information is highlighted in the LCN pose images
as artifacts. We avoid this via conditional image generation and a
tight bottleneck (section 3), learning a better keypoint detector.

dataset (MultiPIE) to achieve state-of-the-art keypoint de-
tection performance on a third dataset (300-W), demonstrat-
ing the very strong generalization capabilities of our tech-
nique (fig. 6).

2. Related work
Supervised pose estimation. Estimation of articulated
human limbs from a single image is a well established prob-
lem in computer vision, explored primarily in the super-
vised setting, i.e., where images and corresponding ground-
truth annotations (e.g., joint locations) are available. Early
methods [3, 45, 48, 49, 55, 72] cast this as inference in tree-
structured graphical models with priors connecting limbs
under the pictorial structures framework [13]. Toshev et
al. [62] propose to directly regress keypoint coordinates
from deep CNN features [31].

Tompson et al. [61] and Chen et al. [10] regress spatial
confidence heatmaps for joint locations instead, and model
geometric relationships between joint locations. Recent
works use multi-stage, very deep networks for sequentially
refining the heatmaps in both single [4, 7, 9, 44, 47, 60, 68]
and multiple person settings [8, 20]. The success of these
methods however heavily rely on large annotated datasets
such as MS COCO Keypoints [35], Human3.6M [21],
MPII [2] and LSP [25]. We instead focus on a more chal-
lenging case and propose to learn only from unlabeled im-
ages containing humans, and a separate unaligned set of an-
thropomorphically plausible human pose skeletons which
can simply be harvested from human joint-limit datasets
(e.g., PosePrior [1]), as also explored by Kanazawa et
al. [26] for lifting 2D keypoints to 3D.

Weakly supervised pose estimation. Recently several
works [26, 53, 63, 71] have emerged in the literature that
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Figure 3. Model architecture. Our model learns to regress pose parameters p (keypoint coordinates) given only video frames x,x′ and
unpaired skeleton images ȳ. It a function Φ : X → Y mapping image to skeletons and a second function Ψ : Y × X → X mapping
skeletons to images, conditioned on a second style image x′ form the same video. To suppress leakage of appearance information through
the generated skeleton image y, we introduce a tight bottleneck as a skeleton auto-encoder. The latter is formed by a pre-trained encoder
η mapping skeleton images to pose coordinates p, and an analytical skeleton image renderer β that does the opposite. The key difference
with respect to methods such as CycleGAN are highlighted with coloured backgrounds (see section 3).

propose to learn pose estimation from coarser or reduced
labels. The concurrent works [26, 63, 71] propose weakly
supervised pose neural networks that learn to reconstruct a
full 3D mesh of human body from a single RGB image and
2D joint locations by incorporating feedback from a dis-
criminator to match distribution of predictions with ground-
truth factors. Similar to ours, these methods use unpaired
training data, 2D joint positions and 3D meshes, however,
our method does not require any manual annotations for 2D
pose estimation. Ronchi et al. [53] make use of less de-
tailed annotations, human annotated relative depth informa-
tion from images to learn 3D human pose estimation. Liu
and Ferrari [36] propose an active learning approach for hu-
man pose estimation with the goal of maximising perfor-
mance while minimising annotation effort.

Unsupervised pose estimation. There are also unsuper-
vised pose estimation techniques [27, 52, 58, 59, 69] that
leverage the relative transformation between different in-
stances of same object as supervisory signal to learn 2D
pose estimation. WarpNet [27] and geometric matching net-
works [52] learn to match object pairs by predicting relative
transformations between them. Thewlis et al. [58, 59] ex-
ploit the principle of equivariance and distinctiveness to fac-
torise viewpoint and deformation changes and to learn ob-
ject structure via landmarks [59] and dense labelling [58].
Sundermeyer et al. [57] propose a self-supervised 3D object
pose estimator for rigid objects by training it only on syn-
thetic views of a 3D model. Similar to ours, at test time the
method finds the most similar synthetic image to the given
real 2D image to determine its pose. However, our method
does not require realistic renderings of synthetic images in
contrast to [57]. Three recent works by Zhang et al. [76],
Wiles et al. [69], and Jakab et al. [23] propose using con-
ditional image generation to learn landmark prediction in a
unsupervised manner. Concretely, Wiles et al. [69] learn a

dense deformation field for faces. Zhang et al. [76] develop
an autoencoding formulation to discover landmarks as ex-
plicit structural representations for a given image and use
them to reconstruct the original image. Jakab et al. [23] pro-
pose using frame pairs that differ by a viewpoint or defor-
mation change to factorise appearance and geometry while
conditionally generating one frame from another one. The
authors show that the discovered landmarks can be further
fed into a regressor to learn semantic ones. As a matter of
fact, our method also relies on conditional image genera-
tion. However, ours differs from [23, 76] significantly. Un-
like [23, 76], we learn to generate cross-modal examples i.e.
from RGB to skeleton image and skeleton to RGB image.
Thus our method can be used to directly go from an RGB
image to pose configuration without requiring any further
training of a regressor. We demonstrate that our method
outperforms prior works [23, 76] in 2D landmark detection.

Adversarial learning from unaligned data. Adversar-
ial learning methods are shown to be effective for image
labelling tasks [15, 18, 19, 64, 65] and generation tasks
[17, 79] in the presence of domain shift between different
domains and between generated and real images. Ganin and
Lempitsky [15] and Tzeng et al. [64] concurrently propose
using a confusion loss with the goal that feature statistics
of multiple domains are similar. The Generative Adversar-
ial Network (GAN) [17] proposes an adversarial loss to en-
courage the network to generate realistic images by captur-
ing the data distribution from real images. Isola et al. [22]
propose an image-to-image translation framework that can
learn the mapping from input image to output image, but
requires paired data. Most related to ours, CycleGAN [79]
relax the requirement of aligned image pairs and learn the
mapping between input and output images from unaligned
pairs. As a matter of fact, we build our method on Cycle-
GAN, however we extend it in a significant way. CycleGAN
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Figure 4. Training data flow. Data flowing through our model (fig. 3) during training on the Human3.6M (human pose) and VoxCeleb
(face) datasets. Two types of skeleton images (y) are visualised: stick-figures for human pose and keypoints for faces. ygt (g.t.) refers to
ground-truth pose; y,y∗ are our predictions.

suffers ambiguity in the generation process when there are
multiple possible mappings from one domain to another.
For instance, while a skeleton sketch can be mapped to gen-
erate different identities. Therefore we condition the gen-
eration on an embedding extracted from the given person
image.

3. Method

Our aim is to learn a function that maps an image of an
object x ∈ X = R3×H×W to the object’s pose parame-
ters p, represented as K 2D keypoints p = (p1, . . . , pK) ∈
ΩK = R2×K . We wish to learn this function given only
pairs of example images {(xi,x

′
i)}Ni=1 that show the same

object with different poses, such as frames in a video. We
also assume to have examples {pj}Mj=1 of the pose parame-
ters, but, importantly, these are unaligned, in the sense that
they are not annotations of the training images. The practi-
cal advantage is that these pose annotations can be fully or
partly synthesized and/or ported from one dataset to another
for free.

Inspired by CycleGAN [79], we propose to formulate
the unaligned learning problem as an unsupervised image-
to-image translation task [37, 38, 79] after representing the
2D keypoints as a skeleton image y ∈ Y = RH×W .
CycleGAN then learns two mappings between domains:
Φ : X → Y , translating an image into its skeleton, and
its inverse Ψ : Y → X .

In order to learn from unaligned data samples x and y,
CycleGAN uses two ideas. The first is that functions Φ and
Ψ should transform the data distributors p(x) and p(y) one
into the other. This is achieved by letting Φ and Ψ compete
against adversarial discriminators DY and DX [17], ensur-
ing that the distributions of generated samples Φ(x) and
Ψ(y) match the distributions real samples y and x, respec-
tively. However, this alone does not guarantee that individ-
ual samples are translated in a meaningful way. Hence, the
second idea is to encourage the mappings to be one-to-one

by enforcing the cycle-consistency conditions Ψ◦Φ(x) ≈ x
and Φ ◦Ψ(y) ≈ y.

Unfortunately, in our case the cycle consistency condi-
tion Ψ ◦ Φ(x) ≈ x cannot be satisfied as there are many
images x that have the same skeleton y (section 6). Enforc-
ing this condition causes CycleGAN to encode appearance
in the skeleton image y [11], leading to sub-optimal pose
detection (see fig. 2 and section 5.3).

We overcome this issue by means of three innovations
(fig. 3). First, we avoid leaking appearance in the skele-
ton image by passing it through a tight bottleneck (sec-
tion 3.1), implemented using an analytical differentiable
renderer. Second, we supplant the lack of appearance in-
formation in the skeleton by extending the image generator
Ψ to take as input a second conditioning image x′, which
has the same appearance but different pose from the input
x — usually x and x′ are two frames from a video (sec-
tion 3.2). Third, while the other cycle consistency condi-
tion Φ ◦Ψ(y) ≈ y is applicable to our case, we show that it
is not only redundant but also detrimental to accurate land-
mark detection (sections 4 and 5.3), hence we dispense with
it, simplifying the model considerably.

We give details of the various model components be-
low and in fig. 3. Unless otherwise specified, all such
components are implemented as convolutional neural net-
works [33].

3.1. Skeleton bottleneck

The skeleton bottleneck is a mechanism that maps the
skeleton image to interpretable 2D keypoint coordinates
(or pose parameters) and prevents leaking appearance in-
formation in the skeleton images. The bottleneck is im-
plemented as an autoencoder comprising the skeleton en-
coder η : Y → ΩK , which maps a skeleton image y to
its pose parameters p = η(y), and the skeleton generator
β : ΩK → Y , which does the opposite.

Crucially, the generator β is not learned as a neural net-
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Figure 5. Comparison with unsupervised methods. Unsupervised landmark detectors [23, 59, 76] (green) learn to discover landmarks
using unlabelled images. However, such landmarks are not aligned with standard labels. In order to align them, they need to learn a map
(red) from the unsupervised (discovered) keypoints to those labelled by humans using paired supervised samples (image, annotation). In
contrast, our method (blue) can learn to directly predict landmarks requiring only unlabelled images and unpaired annotations.

work, but is handcrafted to be a differentiable function that
renders the skeleton y from the joint coordinates p. Let E
be a set of keypoint pairs (i, j) connected by a skeleton edge
and let u ∈ {1, . . . ,H} × {1, . . . ,W} be an image pixel.
Then,

β(p)u = exp

(
−γ min

(i,j)∈E,r∈[0,1]
‖u− rpi − (1− r)pj‖2

)
(1)

is the an exponentially-weighted version of the distance
transform of the skeleton. This renderer is appropriate for
objects such as human bodies. For others such as human
faces, we render the “skeleton” as a set of 2D blobs repre-
senting keypoints:

β(p)u =

K∑
i=1

exp

(
− 1

2σ2
‖u− pi‖2

)
. (2)

The skeleton generator is used to pre-train the encoder η in-
dependently from the image autoencoder, using the recon-
struction constraint η(β(p)) = p from unaligned pose data,

Figure 6. Unaligned transfer. We leverage the small number
(≈ 4000) of landmark annotations, without using corresponding
images, in the MultiPIE dataset [56] [top] and unlabelled im-
ages from the the large-scale VoxCeleb [43] [middle] (32 million
frames, 1300 identities) to train a detector that we test on the 300-
W dataset [54] [bottom] (predictions in green) with state-of-the-
art results (table 3). More qualitative results can be found in the
supplementary.

e.g. from synthetic or motion-capture datasets. It is also
used to introduce a tight bottleneck in the image autoencod-
ing process, discussed next.

3.2. Conditional image autoencoder

The cycle consistency constraint Ψ ◦ Φ(x) ≈ x in Cy-
cleGAN can be viewed as an autoencoder for the images,
where the image code Φ(x) is a skeleton. Our modification
retains the encoder Φ : X → Y as a map from image x to
skeleton y, but the decoder Ψ : Y × X → X now recon-
structs the input image x given the skeleton image y as well
as a second conditioning image x′, supplanting the appear-
ance information which is missing in the skeleton due to the
bottleneck.

Since the generator performs the inverse operation of
the encoder, for a pair of images (x,x′) differing only by
pose, the two functions satisfy the modified cycle consis-
tency constraint:

Ψ(Φ(x),x′) = x. (3)

The encoder is learned by competing against an adversarial
discriminator DY , whose purpose is to distinguish between
the generated skeleton images {y = Φ(x)} and samples
{y} of real skeleton images obtained from unaligned pose
data [17]. Note that neither constraint (3) nor the discrimi-
nator require to label images with pose information; instead,
they only require unlabelled images and unaligned skele-
tons.

The bottleneck of section 3.1 is introduced in the autoen-
coder (3) as follows:

Ψ(β ◦ η ◦ Φ(x),x′) = x. (4)

In this equation, the skeleton autoencoder (η, β) is pre-
trained and remains fixed as the rest of the model is learned.
Together with the fact that the skeleton generator is hand-
crafted, this prevents the image encoder Φ from leaking any
appearance information through the skeleton image. In par-
ticular, the skeleton autoencoder β ◦ η = 1 acts as the iden-
tity if the input is a proper skeleton image y; however, when
y = Φ(x) is imperfect because it is produced by the image
encoder, then β ◦ η effectively reprojects y to a “clean” ver-
sion of skeleton y∗ = β(η(y)).
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Figure 7. Human pose predictions. 2D Keypoint predictions (visualised as connected limbs) on the simplified [76] (with no background),
full Human3.6M [21], and PennAction [75] test sets. Our method detects keypoints in complex poses, however, it might not always disam-
biguate between the left and right sides due to bilateral symmetry of the human body. More samples are included in the supplementary.

We employ eq. (4) as the primary signal for learning our
model, as explained in the next section.

3.3. Learning objective

Equation (4) is enforced via a perceptual loss [6, 12, 16,
24] Lperc(x̂,x) where x̂ = Ψ(β ◦ η ◦Φ(x),x′) is the result
of the conditional autoencoding process. In addition to the
perceptual loss, we employ an adversarial loss to align the
distributions of skeletons y = Φ(x) generated by the image
encoder and of genuine skeletons ȳ, utilising discriminator
networkDY . We use the squared difference adversarial loss
as proposed in [41]:

Ldisc(y, ȳ) = E
ȳ∼Y

[(1−DY(ȳ))2] + E
x∼X

[DY(Φ(x))2].

(5)
An iteration of training the model consists of first sam-

pling two frames (x,x′) ∼ p(x,x′) from the same video
as well as a random skeleton image ȳ ∼ p(y). Then, the
autoencoders are evaluated to obtain y = Φ(x), y∗ =
β(η(y)), and x̂ = Ψ(y∗,x′). Losses are combined in the
following joint objective:

Lperc(x̂,x) + λLdisc(y, ȳ). (6)

4. Implementation details
Our model comprises the image encoder Φ, the image

decoder Ψ, skeleton encoder η, the keypoint encoder β and
the skeleton discriminator β (see fig. 3). These are imple-
mented using the neural network modules described below
(see also fig. 3 and the supplementary material for further
details). The source code and models will be made avail-
able.

Modules. The downsampling module takes an image (e.g.
skeleton / appearance image) and encodes it as a tensor with
1
8 the spatial resolution. The module consists of 4 convolu-
tional blocks with stride 2, each followed by batch normal-
ization and ReLU layers. All the convolutional layers con-
tain 3×3 kernels except for the first one which is 7×7. The
blocks are then followed by 1× 1 convolution. The number
of filters is set to start with 32 and doubled at each block.

The upsampling module takes a code tensor and outputs a
higher spatial resolution tensor (i.e. skeleton or image). It
consists of 4 blocks, each containing two convolutional lay-
ers with 3×3 filters. All but the first block start by doubling
the resolution of the input using bilinear upsampling. The
first block halves the number of feature channels and only
the very last outputs the desired number of channels — 1
for the skeleton and 3 for an image.

Components. The image encoder Φ takes an image x as
input and returns skeleton image y. It contains a downsam-
pling and upsampling module.

The image generator Ψ takes clean skeleton y∗ and
an image x′ as input and generates image x̂. It contains
two downsampling and one upsampling module. The first
downsampling module takes x′ and the second one y∗.
Their outputs are then concatenated and fed into the upsam-
pling module.

The skeleton encoder η uses the downsampling mod-
ule to take in a generated skeleton image and outputting K
heatmaps. The locations of keypoints are further obtained
as in [23] by converting each heatmap into a 2D probability
distribution. The expectation of this probability distribution
corresponds to the location of the keypoints. The skeleton
generator β takes K 2D keypoints from the output of η and
generates a clean skeleton image. The spatial coordinates
are normalised to the [−1, 1] range; correspondingly, we use
γ = 1

0.04 and σ = 0.02 in eqs. (1) and (2) respectively. As
explained in section 3.1, this function does not contain any
learnable parameters. It is differentiable and thus we can
backpropagate the error signal through this function during
training of the complete model.

The skeleton discriminator DY follows the discrimina-
tor architecture of [79]. It takes a set of generated and real
skeleton images ȳ and Φ(x), aims to distinguish between
them and outputs a scalar score for each image. We use
three such discriminators each for a different scale of the
input image. We resize the input images by 1, 1

2 , and 1
4

factors.



method all wait pose greet direct discuss walk eat phone purchase sit
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hourglass [44] 20.22 16.42 14.55 17.58 16.70 20.92 14.11 15.47 19.31 20.45 26.18 40.93 19.68 23.13 22.43 15.41
19.52 15.53 13.88 17.14 15.81 19.55 13.74 15.33 18.81 19.88 25.85 39.07 19.40 22.24 21.58 14.96

ours 22.30 19.24 21.19 20.23 18.09 22.64 21.69 17.81 22.01 22.32 24.49 28.66 22.83 23.17 26.81 26.36

su
pe

rv
is

ed

19.35 16.12 16.31 16.69 15.66 19.17 13.94 16.41 20.47 19.43 23.86 26.32 20.96 21.99 21.78 18.57

ours 26.62 22.74 24.74 23.84 23.03 22.03 24.19 22.20 25.43 28.69 29.10 45.99 25.80 27.20 26.02 28.35
3DHP skeletons 21.41 18.87 18.71 19.39 18.40 19.26 18.06 17.89 21.35 23.37 24.84 34.03 21.25 23.18 22.47 20.00

ours 23.32 18.81 15.17 17.98 14.90 18.26 21.69 20.83 25.53 19.96 32.98 42.24 23.55 23.57 23.83 25.19
H3.6M skeletons 17.61 14.16 11.88 13.78 12.62 16.44 17.88 14.50 17.56 18.31 24.05 33.36 17.65 20.10 20.42 14.01

Table 1. 2D Human landmark detection. Comparison on the full Human3.6M test set with supervised baselines — (1) Stacked Hour-
glass [44], and (2) our model trained with supervision. We report the MSE in pixels for each activity. Shaded rows show error for the
original predictions of the model (no flip in section 5.1), while unshaded rows represent the minimum of the errors obtained with and
without flipping the predictions against the axis of bilateral symmetry (with flips in section 5.1). We highlight the minimum error across all
models in bold.

Second cycle constraint and discriminator. CycleGAN
enforces two cycle constraints Ψ ◦ Φ(x) ≈ x and Φ ◦
Ψ(y) ≈ y. Our model implements a conditional ver-
sion (4) of the first, while the second can be written as
Φ(Ψ(ȳ,x′)) ≈ ȳ. CycleGAN also utilizes a discrimina-
tor DX on images Ψ̂(y) generated from skeletons to match
their distribution to images x; the same discriminator ap-
plies here, except that images are generated conditionally
Ψ(ȳ,x′) and they are tested against the distribution of im-
ages x from the same video, so DX (Ψ(ȳ,x′),x′) is con-
ditional too. The architecture of the discriminator is based
on [28] and detailed in the supplementary. We found the
additional cycle constraint and discriminator to bring negli-
gible performance benefit, while increasing the complexity
of the model significantly, so we do not include them in our
“gold-standard” version of the model. However, we ablate
these components in the experiments.

Training details. We first train the skeleton encoder η in
an offline step using unpaired keypoints and correspond-
ing synthetically generated pose images through an `2-loss
regression loss on the keypoints. The learning rate is de-
creased once by a factor of 10 when the error plateaus. Once
the skeleton encoder (η) is trained, we freeze its parameters
and incorporate the skeleton auto-encoder (β ◦ η) into our
model to train the mappings between images and pose im-
ages (Φ,Ψ) by minimising the objective in eq. (6) (λ = 10).
For both the stages, we use the Adam optimiser [30] with
a learning rate of 2e-4, β1 = 0.5 and β2 = 0.999; batch
size is set to 16 and the norm of the gradients is clipped to
1.0 for stability. We train for 3 million iterations for hu-
man pose experiments and 300k for faces. All the network
parameters are trained from scratch.

5. Experiments
We evaluate our method on the task of 2D landmark de-

tection for human pose (section 5.1) and faces (section 5.2),
and outperform the state-of-the-art methods (tables 1 to 3)

for both. Finally, we examine the relative contribution of
various components of our model in a detailed ablation
study (section 5.3).

5.1. Human pose

Datasets. Human3.6M [21] is a large-scale dataset that
contains 3.6M accurate 2D and 3D human pose annotations
for human subjects doing 17 different activities, imaged un-
der 4 different viewpoints and a static background. For
training, we use subjects 1, 5, 6, 7, and 8, and subjects 9 and
11 for evaluation, as in [67]. Simplified Human3.6M intro-
duced by Zhang et al. [76] for evaluating unsupervised pose
recognition, contains 6 activities in which human bodies
are mostly upright; it comprises 800k training and 90k test-
ing images. PennAction [75] contains 2k challenging con-
sumer videos of 15 sports categories. MPI-INF-3DHP [42]
contains videos from 8 subjects performing 8 activities in
complex exercise poses and covers a wider range of poses
than the Human3.6M dataset. There are 28 joints annotated.

We split datasets into two disjoint parts for sampling im-
age pairs (x,x′) (cropped to the provided bounding-boxes),
and keypoints (ȳ) respectively to ensure that the data does
not contain labels corresponding to the training images. For
Human3.6M datasets, we split the videos in half, while for
PennAction, we split in half the set of videos from each ac-
tion category. In some experiments, we use skeletons from
MPI-INF-3DHP dataset as the only source of a skeleton
prior.

Evaluation. We report 2D landmark detection perfor-
mance on the full and simplified Human3.6M datasets. For
full Human3.6M, we follow the standard protocol and re-
port the mean error in pixels over 17 of the 32 joints (but the
model estimates all 32 joints). For simplified Human3.6M
we follow [76] and report the error for all 32 joints nor-
malized by the image size. To demonstrate learning from
unaligned labels, we consider two settings for sourcing the
images and unpaired landmarks – (1) different datasets: im-



method all wait pose greet direct discuss walk
supervised

hourglass [44] 2.16 1.88 1.92 2.15 1.62 1.88 2.21
unsupervised + supervised linear regression (with flips)

Thewlis et al. [59] 7.51 7.54 8.56 7.26 6.47 7.93 5.40
Zhang et al. [76] 4.14 5.01 4.61 4.76 4.45 4.91 4.61
ours no flips 7.52 6.86 7.96 7.29 8.34 7.25 7.44

with flips 2.91 2.92 2.60 2.96 2.54 2.45 3.99
Table 2. Simplified 2D human landmark detection. Compari-
son with state-of-the-art methods for 2D human landmark detec-
tion on the Simplified Human3.6 dataset [76]. We report %-MSE
normalised by image size for each activity. no flips / with flips rep-
resent errors with and without taking the minimum across the axis
of bilateral symmetry (see section 5.1).

ages from the full Human3.6M and landmarks from MPI-
INF-3DHP. (2) same datasets: images and landmarks are
sampled from a disjoint split (as explained above) of the
Human3.6M datasets. When using MPI-INF-3DHP dataset
as the source of skeletons, we predict 28 joints, but use 17
joints that are common with Human3.6M for evaluation.
We train our method from scratch and compare its perfor-
mance with both supervised and unsupervised methods.

Results. Table 1 summarises results on the full Hu-
man3.6M test set. As noted in [23, 76], for unsupervised
methods it may be difficult to distinguish the frontal and
dorsal views of a person. Hence, following Zhang et al. [76]
we also report the minimum error between the estimate ob-
tained by the model and its symmetric version (labelled
with flips). We compare against supervised baselines — (1)
the state-of-the-art Stacked Hourglass [44] (using 1-stack),
and (2) our model architecture trained with labelled data.
With flips, our unsupervised model outperforms the base-
lines overall, however, is worse on challenging activities
like sitting and walking. Notably, due to limited variabil-
ity in the dataset, the supervised baselines overfit on the
training set, while our method does not, the training / test
error (with flips) are — supervised hourglass: 14.61 / 19.52,
ours supervised: 9.67 / 19.35, ours unsupervised : 18.00 /
17.61. When training with different sources of skeletons
(MPI-INF-3DHP) and images (full Human3.6M), the er-
ror is marginally (≈4 MSE points) higher: 21.41 (w/ flip),
26.62 (no flip). This is due to the domain gap between the
two datasets.

Table 2 summarises results on the Simplified Hu-
man3.6M. Our model significantly outperforms previous
methods [59, 76] on all activities, even without any super-
vised linear regression as required by them (see fig. 5).

5.2. Human faces

Datasets. VoxCeleb [43] is a large-scale audio-visual
dataset consisting of 100k short clips of human speech, ob-
tained from interview videos uploaded to YouTube. Mul-
tiPIE [56] is a dataset of 750k facial images of 337 peo-

method 300-W

supervised
LBF [51] 6.32
CFSS [80] 5.76
cGPRT [34] 5.71
DDN [73] 5.65
TCDCN [77] 5.54
RAR [70] 4.94
Wing Loss [14] 4.04

self-supervised + supervised regression
Thewlis et al. [58] 9.30
Thewlis et al. [59] 7.97
Wiles et al. [69] 5.71

ours
unaligned (VoxCeleb / MultiPIE) 9.85

+ supervised regression 5.56
unaligned (VoxCeleb / VoxCeleb) 7.86

+ supervised regression 5.37

Table 3. Facial landmark detection. Comparison with state-of-
the-art methods on 2D facial landmark detection. We report the
inter-ocular distance normalised keypoint localisation error [77]
(in %; ↓ is better) on the 300-W test set. Datasets in parenthesis
refer to the source of unaligned examples of (images / landmarks)
respectively.

ple under 15 viewpoints and 19 illumination conditions. It
contains 68 labelled facial landmarks for 6k images. 300-
W [54] is a challenging dataset of facial images obtained
by combining multiple datasets [5, 50, 78] as described
in [51, 59]. As in MultiPIE, 300-W contains 68 annotated
facial landmarks. We keep 300-W as our test dataset and
follow the evaluation protocol in [51].

Results. As for human pose, we study two scenarios
for generating a training set with unpaired face and land-
mark images. In the first, images and facial landmarks
are sourced from different datasets, VoxCeleb and Multi-
PIE (6k landmarks) respectively (fig. 6). In the second, we
source from both from VoxCeleb but from different identi-
ties. For VoxCeleb, pseudo-labels were obtained by running
the dlib facial landmark detector [29]. We train our method
from scratch for each case and report its performance on
300-W in table 3. Our method performs well even with-
out any fine-tuning on the target 300-W. As expected, our
method performs better when the unpaired images come
from a single dataset, where we also outperform the unsu-
pervised methods of [58, 59]. When we learn a supervised
linear regressor (on 300-W training set) as also in [69], we
outperform all the unsupervised and even supervised meth-
ods except [14, 70]. Table 4 demonstrates that a very small
number (=50) of unpaired landmarks are sufficient to retain
the performance of our method.



# unaligned samples 6k 1k 500 50

300-W error 9.85 10.10 10.28 10.31

Table 4. Varying # of unaligned MultiPIE annotation samples.
We train our method using varying numbers of MultiPIE annota-
tions and evaluate the performance on 300-W dataset. We show
that decreasing the number of annotations to 50 does not result in
significatly worse performance.

5.3. Ablation study

We study the relative contribution of each of the pro-
posed components, (1) conditional image generator Ψ,
(2) skeleton bottleneck β ◦ η, and (3) removing the sec-
ond cycle-consistency constraint, for both human pose and
facial landmark detection, and report the results in table 5.
We train our model on simplified Human3.6M [76] for hu-
man pose and on VoxCeleb/MultiPIE (see table 3) data for
faces (no fine-tuning on test sets).

We start from CycleGAN as our base model and mod-
ify it by conditioning its image generator on a second ap-
pearance image. This conditioning partially ameliorates ap-
pearance leakage through the skeleton image (fig. 2) and re-
duces landmark detection error rate for humans from 4.39%
to 4.07%. Next, adding the skeleton bottleneck further de-
couples appearance from pose, resulting in a significant im-
provement for both for humans (3.01% vs. 4.39% Cycle-
GAN) and faces (10.10% vs. 18.51% CycleGAN).

Finally, we remove the second cycle-consistency con-
straint which simplifies the network architecture and the
training procedure drastically. This simplification again re-
sults in a marked for both: ∆ = 0.1% for humans, and
∆ = 0.25% for faces. This is because the second cycle im-
poses a contrariant task — generating the appearance iden-
tity in the pose represented in the independently sampled
landmarks image, such that the landmarks can be recovered
from the generated image. Since the landmarks encode the
facial shape, they are not perfectly decoupled from identity,
making this difficult. Abandoning the reconstruction con-
straint relieves the model from this distress.

method humans faces

CycleGAN 4.39 18.51
+ conditional generator 4.07 –

+ skeleton-bottleneck 3.01 10.10
− 2nd cycle = ours 2.91 9.85

Table 5. Ablation study. We start with the CycleGAN [79] model
and sequentially augment it with — (1) conditional image genera-
tor (Ψ), (2) skeleton bottleneck (β ◦ η), and (3) remove the second
cycle-constraint (see section 4) resulting in our proposed model.
We report 2D landmark detection error (↓ is better) on the simpli-
fied Human3.6M (with flips; see section 5.1) for human pose, and
on the 300-W (section 5.2) for faces.

6. Conclusion

We presented an unsupervised method that can learn
to predict pose from unaligned pairs of human and skele-
ton/keypoint images. We showed that recent unsupervised
image-to-image translation techniques such as CycleGAN
are not well suited to pose estimation problem where the
mapping from a skeleton to a human image is not unique.
To this end, we proposed multiple technical innovations
including a conditioning technique and an analytical and
differentiable bottleneck that enables an decouples the ap-
pearance and style information. Our method achieves the
best landmark detection accuracy on multiple benchmarks
and narrows down the gap between supervised and unsu-
pervised methods.
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Appendix
This supplementary material provides further technical details, illustrations and analysis Here we first detail how our

method factorizes appearance and geometry (appendix A). We also show how this property can be used for style transfer and
keypoint-conditioned image editing. We then provide extended version of qualitative results on facial landmarks detection
(appendix B) and human pose estimation (appendix C). We show training progression over multiple checkpoints in terms
of both keypoint estimation and conditioned image generation (appendix D). Finally, detailed description of the network
architectures is provided (appendix E).

We also provide additional test results on facial landmarks detection, human pose estimation, and keypoint-conditioned
image editing in the form of videos contained in videos folder accompanying this supplementary material.
File human36m.mp4 shows results on Human3.6M test set, voxceleb.mp4 results on VoxCeleb test set for the model trained
using unpaired landmarks from MultiPIE dataset, and editing.mp4 contains keypoint-driven animated image editing.

A. Appearance and geometry factorization
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Figure 8. Disentangling appearance and geometry. During test time, the target image x and the style image x′ contain different identity
and viewpoint. The reconstructed image x̂ then inherits the geometry (pose) from the target image x and appearance from the style image
x′. More examples shown in fig. 9.

The conditional image generator Ψ : (y∗,x′) 7→ x̂ is tasked with generating a colour image (x̂) from the clean pose (y∗)
and a second appearance image (x′). Due to our skeleton bottleneck (β ◦ η), the pose image is devoid of any appearance
information. Hence, the generator learns to pool the appearance information from the conditioning image, thereby factorising
geometry (pose) and appearance.

While the image pairs (x,x′) are selected from same videos during training, here we sample the image pair (x,x′) with
different appearances (e.g. from different videos) to better demonstrate the factorization of pose and appearance and show
successful transfer of appearance from one to another (see fig. 8). Note, this also demonstrates significant generalisation over
the training setting where the image pairs have the same appearance, i.e. are sampled from the same video. Figure 9 visualises
this swapping. In fig. 10, we further leverage the disentanglement of geometry and appearance, and show fine-grained control
of image generation through the pose keypoints.
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Figure 9. Factorization of appearance and geometry. Reconstructed image inherits appearance from the style image and geometry from
the target image. [top]: human pose samples from Human3.6M. [bottom]: face samples from VoxCeleb.
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Figure 10. Image editing using detected landmarks. We show fine-grained control over the generated image by manipulating the co-
ordinates of detected landmarks (manip. kpts). For example, we pick landmarks corresponding to an eye and move them down [second
column], or open the mouth [last column] (note, the generator fills in the teeth absent in the input images). The resulting changes are
localised and allow for fine-grained control. Apart from demonstrating successful disentanglement of appearance and geometry, this also
suggests that the model assigns correct semantics to the detected landmarks. We provide further animations in videos/editing.mp4.



B. Facial landmarks detections
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Figure 11. Facial landmark detections on 300-W. Randomly sampled predictions from 300-W test set. The model was trained with
unlabeled images from VoxCeleb face videos dataset and unpaired landmarks sampled from MultiPIE dataset, hence shows significant
generalisation. Green markers denote our detections, blue correspond to the ground truth.



C. Human pose estimation
C.1. Pose detection on Human3.6M
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Figure 12. Pose estimation on Human3.6M. Randomly sampled results from Human3.6M test set. The model is trained with unpaired
images and skeletons from Human3.6M. We show predictions on videos in videos folder accompanying this supplementary material.



C.2. Pose detection on Simplified Human3.6M
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Figure 13. Pose estimation on the Simplified Human3.6M. Randomly sampled results from the Simplified Human3.6M test set. The
model is trained with unpaired images and skeletons from Simplified Human3.6M.



C.3. Pose detection on PennAction
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Figure 14. Pose estimation on PennAction. Randomly sampled results from PennAction test set. The model is trained with unpaired
images and skeletons from PennAction.



D. Training progress
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Figure 15. Human pose training progression. Samples from Human3.6M test set through the training iterations. Numbers below images
denote elapsed training iterations. Our model learns to output plausible looking skeletons after about 10k-20k iterations, and learns to to
align them with the input at convergence.
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Figure 16. Facial landmarks training progression. Samples from the 300-W testset through the training iterations. Model is trained on
unlabeled images from VoxCeleb dataset and unpaired landmarks from MultiPIE dataset. Numbers below images denote elapsed training
iterations. Reasonably aligned landmark predictions are learned only after about 10k iterations.



E. Architectures

Type Kernel Stride Output channels Output size Norm. Activation

Inputx - - 3 128 - -

Conv 7 1 32 128 Batch ReLU

Conv 3 1 32 128 Batch ReLU

Conv 3 2 64 64 Batch ReLU

Conv 3 1 64 64 Batch ReLU

Conv 3 2 128 32 Batch ReLU

Conv 3 1 128 32 Batch ReLU

Conv 3 2 256 16 Batch ReLU

Conv 3 1 256 16 Batch ReLU

Conv 1 1 256 16 None None

Conv 3 1 256 16 Batch ReLU

Conv 3 1 256 16 Batch ReLU

Bilinear upsampl. - - 128 32 - -

Conv 3 1 128 32 Batch ReLU

Conv 3 1 128 32 Batch ReLU

Bilinear upsampl. - - 64 64 - -

Conv 3 1 64 64 Batch ReLU

Conv 3 1 64 64 Batch ReLU

Bilinear upsampl. - - 32 128 - -

Conv 3 1 32 128 Batch ReLU

Conv 3 1 1 128 None None

Figure 17. Image encoder Φ. The network is composed of the encoder and decoder network from [23].

Stride Output ch. Output size Norm Activ

- 1 128 - -

1 32 128 Batch ReLU

1 32 128 Batch ReLU

2 64 64 Batch ReLU

1 64 64 Batch ReLU

2 128 32 Batch ReLU

1 128 32 Batch ReLU

2 256 16 Batch ReLU

1 256 16 Batch ReLU

1 256 16 None None

Activ

-

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

None

Activ

-

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

Type Kernel Stride Output ch. Output size Norm Activ

Inputx' - - 3 128 - -

Conv 7 1 32 128 Batch ReLU

Conv 3 1 32 128 Batch ReLU

Conv 3 2 64 64 Batch ReLU

Conv 3 1 64 64 Batch ReLU

Conv 3 2 128 32 Batch ReLU

Conv 3 1 128 32 Batch ReLU

Conv 3 2 256 16 Batch ReLU

Conv 3 1 256 16 Batch ReLU

Conv 1 1 256 16 None None

Type Kernel Stride Output ch. Output size Norm Activ

Inputy* - - 1 128 - -

Conv 7 1 32 128 Batch ReLU

Conv 3 1 32 128 Batch ReLU

Conv 3 2 64 64 Batch ReLU

Conv 3 1 64 64 Batch ReLU

Conv 3 2 128 32 Batch ReLU

Conv 3 1 128 32 Batch ReLU

Conv 3 2 256 16 Batch ReLU

Conv 3 1 256 16 Batch ReLU

Conv 1 1 256 16 None None

Type Kernel Stride Output ch. Output size Norm. Activ.

Concat - - 512 16 - -

Conv 3 1 256 16 Batch ReLU

Conv 3 1 256 16 Batch ReLU

Bi. upsampl. - - 128 32 - -

Conv 3 1 128 32 Batch ReLU

Conv 3 1 128 32 Batch ReLU

Bi. upsampl. - - 64 64 - -

Conv 3 1 64 64 Batch ReLU

Conv 3 1 64 64 Batch ReLU

Bi. upsampl. - - 32 128 - -

Conv 3 1 32 128 Batch ReLU

Conv 3 1 32 128 None None

Figure 18. Image decoder Ψ. Image encoder first processes the conditioning image x′ and the skeleton y∗

in two separate independent branches before it concatenates them into a single stream. The design follows [23].



Type Kernel size Stride Output channels Output size Norm. Activation

Inputy - - 3 128 - -

Conv 7 1 32 128 Batch ReLU

Conv 3 1 32 128 Batch ReLU

Conv 3 2 64 64 Batch ReLU

Conv 3 1 64 64 Batch ReLU

Conv 3 2 128 32 Batch ReLU

Conv 3 1 128 32 Batch ReLU

Conv 3 2 256 16 Batch ReLU

Conv 3 1 256 16 Batch ReLU

Conv 1 1 n keypoints 16 None None

Figure 19. Skeleton encoder η. The architecture is based on the encoder from [23]. The last layer has as many output channels as the
number of keypoints to predict.

Type Kernel size Stride Output channels Output size Norm. Activation

Input (ȳ or y) - - 1 128 - -

Conv 4 2 64 64 Instance LReLU

Conv 4 2 128 32 Instance LReLU

Conv 4 2 256 16 Instance LReLU

Conv 4 1 512 15 Instance LReLU

Conv 4 1 1 14 None None

Figure 20. Skeleton discriminator DY . The architecture follows [79]. LReLU stands for Leaky Rectified Linear Unit [39] that is used
with 0.2 negative slope. Instance normalization [66] is used before every activation.

Type Kernel Stride Output ch. Output size Norm. Activ.

Input (Ψ(ȳ, x') or x) - - 3 128 - -

Conv 3 1 16 128 Instance LReLU

Conv 3 1 32 128 Instance LReLU

Conv 3 1 32 128 Instance LReLU

Avg. pool. 2 2 32 64 - -

Conv 3 1 64 64 Instance LReLU

Conv 3 1 64 64 Instance LReLU

Avg. pool. 2 2 64 32 - -

Conv 3 1 128 32 Instance LReLU

Conv 1 1 128 32 Instance LReLU

Avg. pool. 2 2 128 16 - -

Conv 3 1 256 16 Instance LReLU

Conv 1 1 256 16 Instance LReLU

Avg. pool. 2 2 256 8 - -

Type Kernel Stride Output ch. Output size Norm. Activ.

Input x' - - 3 128 - -

Conv 3 1 16 128 Instance LReLU

Conv 3 1 32 128 Instance LReLU

Conv 3 1 32 128 Instance LReLU

Avg. pool. 2 2 32 64 - -

Conv 3 1 64 64 Instance LReLU

Conv 3 1 64 64 Instance LReLU

Avg. pool. 2 2 64 32 - -

Conv 3 1 128 32 Instance LReLU

Conv 1 1 128 32 Instance LReLU

Avg. pool. 2 2 128 16 - -

Conv 3 1 256 16 Instance LReLU

Conv 1 1 256 16 Instance LReLU

Avg. pool. 2 2 256 8 - -

Type Kernel size Stride Output channels Output size Norm. Activation

Concat - - 512 8 - -

Conv 1 1 512 8 Instance LReLU

Conv 3 1 512 8 Instance LReLU

Conv 3 1 512 8 Instance LReLU

Avg. pool. 2 2 512 4 - -

Conv 3 1 512 4 Instance LReLU

Conv 1 1 512 4 Instance LReLU

Conv 4 1 512 1 Instance LReLU

Conv 1 1 1 1 None None

weight

sharing

Figure 21. Conditional image discriminatorDX . Conditional image discriminator starts with a Siamese architecture until the two streams
are concatenated. When the version without conditioning is required, the second branch in the Siamese part is simply omitted. LReLU
stands for Leaky Rectified Linear Unit [39]. We set the negative slope to 0.2. Every activation is preceded by instance normalization [66].
The architecture is loosely based on [28].



F. Architectures for experiments with MPI-INF-3DHP
In experiments that use MPI-INF-3DHP as the source of skeletons and Human3.6M as the source of unlabelled images,

we employ modified architectures for some parts of the model as described below.

Type Kernel Stride Output channels Output size Norm. Activation

Input x - - 3 128 - -

Conv 7 1 32 128 Batch ReLU

Conv 3 1 32 128 Batch ReLU

Conv 3 2 64 64 Batch ReLU

Conv 3 1 64 64 Batch ReLU

Conv 3 2 128 32 Batch ReLU

Conv 3 1 128 32 Batch ReLU

Conv 3 2 256 16 Batch ReLU

Conv 3 1 256 16 Batch ReLU

Conv 1 1 256 16 None None

Conv 3 1 256 16 Batch ReLU

Conv 3 1 256 16 Batch ReLU

Bilinear upsampl. - - 128 32 - -

Conv 3 1 128 32 Batch ReLU

Conv 3 1 128 32 Batch ReLU

Bilinear upsampl. - - 64 64 - -

Conv 3 1 64 64 Batch ReLU

Conv 3 1 64 64 Batch ReLU

Bilinear upsampl. - - 32 128 - -

Conv 3 1 32 128 Batch ReLU

Conv 3 1 32 128 Batch ReLU

Conv 3 1 1 128 None None

Figure 22. Image encoder Φ. The network is based of the encoder and decoder network from [23]. Arrows on the side denotes skip
connection that are concatenated to the other input.

Mask features with detected limbs

Type Kernel Stride Output ch. Output size Norm. Activ.

Max across limbs - - 64 128 - -

Concat - - 67 128 - -

Type Kernel Stride Output channels Output size Norm. Activation

Conv 3 1 256 32 Batch ReLU

Conv 3 1 256 32 Batch ReLU

Bilinear upsampl. - - 256 64 - -

Conv 3 1 128 64 Batch ReLU

Conv 3 1 128 64 Batch ReLU

Bilinear upsampl. - - 128 128 - -

Conv 3 1 64 128 Batch ReLU

Conv 3 1 64 128 Batch ReLU

Conv 3 1 64 128 None None

Bilinear downsampling

Type Kernel Stride Output ch. Output size Norm. Activ.

Input y* - - # limbs 128 - -

Type Kernel Stride Output ch. Output size Norm. Activ.

Input x' - - 3 128 - -

Conv 7 1 32 128 Batch ReLU

Conv 3 1 32 128 Batch ReLU

Conv 3 1 64 128 Batch ReLU

Conv 3 1 64 128 Batch ReLU

Conv 3 2 128 64 Batch ReLU

Conv 3 1 128 64 Batch ReLU

Conv 1 1 # limbs * 64 64 None None

Avg. pool 64 1 # limbs * 64 1 None None

Group channels - - # limbs x 64 1 - -

Type Kernel Stride Output ch. Output size Norm. Activ.

Input - - # limbs x 64 128 - -

Figure 23. Image decoder Ψ. Image decoder first encodes the conditioning image x′ and then it uses limbs from skeleton y∗ to mask
features of the encoded conditioning image x′. Arrows on the sides denote skip connections that are concatenated to the other input.


