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Abstract

Color is a crucial visual cue readily exploited by Convolutional Neural Networks
(CNNs) for object recognition. However, CNNs struggle if there is data imbalance
between color variations introduced by accidental recording conditions. Color
invariance addresses this issue but does so at the cost of removing all color infor-
mation, which sacrifices discriminative power. In this paper, we propose Color
Equivariant Convolutions (CEConvs), a novel deep learning building block that
enables shape feature sharing across the color spectrum while retaining important
color information. We extend the notion of equivariance from geometric to pho-
tometric transformations by incorporating parameter sharing over hue-shifts in a
neural network. We demonstrate the benefits of CEConvs in terms of downstream
performance to various tasks and improved robustness to color changes, including
train-test distribution shifts. Our approach can be seamlessly integrated into exist-
ing architectures, such as ResNets, and offers a promising solution for addressing
color-based domain shifts in CNNs.

1 Introduction

Color is a powerful cue for visual object recognition. Trichromatic color vision in primates may
have developed to aid the detection of ripe fruits against a background of green foliage [38, 45].
The benefit of color vision here is two-fold: not only does color information improve foreground-
background segmentation by rendering foreground objects more salient, color also allows diagnostics,
e.g. identifying the type (orange) and ripeness (green) where color is an intrinsic property facilitating
recognition [3], as illustrated in Fig. 1a. Convolutional neural networks (CNNs) too exploit color
information by learning color selective features that respond differently based on the presence or
absence of a particular color in the input [42].

Unwanted color variations, however, can be introduced by accidental scene recording conditions such
as illumination changes [29, 48], or by low color-diagnostic objects occurring in a variety of colors,
making color no longer a discriminative feature but rather an undesired source of variation in the data.
Given a sufficiently large training set that encompasses all possible color variations, a CNN learns to
become robust by learning color invariant and equivariant features from the available data [36, 37].
However, due to the long tail of the real world it is almost impossible to collect balanced training
data for all scenarios. This naturally leads to color distribution shifts between training and test time,
and an imbalance in the training data where less frequently occurring colors are underrepresented.
As CNNs often fail to generalize to out-of-distribution test samples, this can have significant impact
on many real-world applications, e.g. a model trained mostly on red cars may struggle to recognize
the exact same car in blue.

Color invariance addresses this issue through features that are by design invariant to color changes
and therefore generalize better under appearance variations [14, 17]. However, color invariance
comes at the loss of discriminative power as valuable color information is removed from the model’s
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Figure 1: Color plays a significant role in object recognition. (a) The absence of color makes flowers
less distinct from their background and thus harder to classify. The characteristic purple-blue color of
the Monkshood (Class A) enables a clear distinction from the Snapdragon (Class B) [35]. On the
other hand, relying too much on colors might negatively impact recognition to color variations within
the same flower class. (b) Image classification performance on the Flower-102 dataset [35] under a
gradual variation of the image hue. Test-time hue shifts degrade the performance of CNNs (ResNet-
18) drastically. Grayscale images and color augmentations result in invariance to hue variations,
but fail to capture all the characteristic color features of flowers. Our color equivariant network
(CE-ResNet-18-1) enables feature sharing across the color spectrum, which helps generalise to
underrepresented colors in the dataset, while preserving discriminative color information, improving
classification for unbalanced color variations.

internal feature representation [18]. We therefore propose to equip models with the less restrictive
color equivariance property, where features are explicitly shared across different colors through a
hue transformation on the learned filters. This allows the model to generalize across different colors,
while at the same time also retaining important color information in the feature representation.

An RGB pixel can be decomposed into an orthogonal representation by the well-known hue-saturation-
value (HSV) model, where hue represents the chromaticity of a color. In this work we extend the
notion of equivariance from geometric to photometric transformations by hard-wiring parameter
sharing over hue-shifts in a neural network. More specifically, we build upon the seminal work
of Group Equivariant Convolutions [7] (GConvs), which implements equivariance to translations,
flips and rotations of multiples of 90 degrees, and formulates equivariance using the mathematical
framework of symmetry groups. We introduce Color Equivariant Convolutions (CEConvs) as a novel
deep learning building block, which implements equivariance to the Hn symmetry group of discrete
hue rotations. CEConvs share parameters across hue-transformed filters in the input layer and store
color information in hue-equivariant feature maps.

CEConv feature maps contain an additional dimension compared to regular CNNs, and as a result,
require larger filters and thus more parameters for the same number of channels. To evaluate
equivariant architectures, it is common practice to reduce the width of the network to match the
parameter count of the baseline model. However, this approach introduces a trade-off between
equivariance and model capacity, where particularly in deeper layers the quadratic increase in
parameter count of CEConv layers makes equivariance computationally expensive. We therefore
investigate hybrid architectures, where early color invariance is introduced by pooling over the color
dimension of the feature maps. Note that early color invariance is maintained throughout the rest
of the network, despite the use of regular convolutional layers after the pooling operation. Limiting
color equivariant filters to the early layers is in line with the findings that early layers tend to benefit
the most from equivariance [5] and learn more color selective filters [37, 42].

We rigorously validate the properties of CEConvs empirically through precisely controlled synthetic
experiments, and evaluate the performance of color invariant and equivariant ResNets on various
more realistic classification benchmarks. Moreover, we investigate the combined effects of color
equivariance and color augmentations. Our experiments show that CEConvs perform on par or better
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than regular convolutions, while at the same time significantly improving the robustness to test-time
color shifts, and is complementary to color augmentations.

The main contributions of this paper can be summarized as follows:

• We show that convolutional neural networks benefit from using color information, and at the
same time are not robust to color-based domain shifts.

• We introduce Color Equivariant Convolutions (CEConvs), a novel deep learning building
block that allows feature sharing between colors and can be readily integrated into existing
architectures such as ResNets.

• We demonstrate that CEConvs improve robustness to train-test color shifts in the input.

All code and experiments are made publicly available on https://github.com/Attila94/CEConv.

2 Related work

Equivariant architectures Translation equivariance is a key property of convolutional neural
networks (CNNs) [23, 28]: shifting the input to a convolution layer results in an equally shifted output
feature map. This allows CNNs to share filter parameters over spatial locations, which improves
both parameter and data efficiency as the model can generalize to new locations not covered by
the training set. A variety of methods have extended equivariance in CNNs to other geometric
transformations [44], including the seminal Group Equivariant Convolutions [7] for rotations and
flips, and other works concerning rotations [2, 30, 52], scaling [50, 53] and arbitrary Lie groups [32].
Yet to date, equivariance to photometric transformations has remained largely unexplored. Offset
equivariant networks [9] constrain the trainable parameters such that an additive bias to the RGB
input channels results in an equal bias in the output logits. By applying a log transformation to the
input the network becomes equivariant to global illumination changes according to the Von Kries
model [13]. In this work we explore an alternative approach to photometric equivariance inspired by
the seminal Group Equivariant Convolution [7] framework.

Color in CNNs Recent research has investigated the internal representation of color in Convo-
lutional Neural Networks (CNNs), challenging the traditional view of CNNs as black boxes. For
example, [41, 42] introduces the Neuron Feature visualization technique and characterizes neurons in
trained CNNs based on their color selectivity, assessing whether a neuron activates in response to
the presence of color in the input. The findings indicate that networks learn highly color-selective
neurons across all layers, emphasizing the significance of color as a crucial visual cue. Additionally,
[43] classifies neurons based on their class selectivity and observes that early layers contain more
class-agnostic neurons, while later layers exhibited high class selectivity. A similar study has been
performed in [12], further supporting these findings. [36, 37] investigate learned symmetries in an
InceptionV1 model trained on ImageNet [10] and discover filters that demonstrated equivariance to
rotations, scale, hue shifts, and combinations thereof. These results motivate color equivariance as a
prior for CNNs, especially in the first layers. Moreover, in this study, we will employ the metrics
introduced by [42] to provide an explanation for several of our own findings.

Color priors in deep learning Color is an important visual discriminator [15, 19, 51]. In classical
computer vision, color invariants are used to extract features from an RGB image that are more
consistent under illumination changes [14, 17, 18]. Recent studies have explored using color invariants
as a preprocessing step to deep neural networks [1, 33] or incorporating them directly into the
architecture itself [29], leading to improved robustness against time-of-day domain shifts and other
illumination-based variations in the input. Capsule networks [22, 47], which use groups of neurons
to represent object properties such as pose and appearance, have shown encouraging results in image
colorization tasks [39]. Quaternion networks [16, 54] represent RGB color values using quaternion
notation, and employ quaternion convolutional layers resulting in moderate improvements in image
classification and inpainting tasks. Building upon these advancements, we contribute to the ongoing
research on integrating color priors within deep neural architectures.
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3 Color equivariant convolutions

3.1 Group Equivariant Convolutions

A CNN layer Φ is equivariant to a symmetry group G if for all transformations g ∈ G on the input x
the resulting feature mapping Φ(x) transforms similarly, i.e., first doing a transformation and then
the mapping is similar to first doing the mapping and then the transformation. Formally, equivariance
is defined as

Φ(Tgx) = T ′
gΦ(x), ∀g ∈ G, (1)

where Tg and T ′
g are the transformation operators of group action g on the input and feature space,

respectively. Note that Tg and T ′
g can be identical, as is the case for translation equivariance where

shifting the input results in an equally shifted feature map, but do not necessarily need to be. A special
case of equivariance is invariance, where T ′

g is the identity mapping and the input transformation
leaves the feature map unchanged:

Φ(Tgx) = Φ(x), ∀g ∈ G. (2)

We use the definition from [7] to denote the i-th output channel of a standard convolutional layer l in
terms of the correlation operation (⋆) between a set of feature maps f and Cl+1 filters ψ:

[f ⋆ ψi](x) =
∑
y∈Z2

Cl∑
c=1

fc(y)ψ
i
c(y − x). (3)

Here f : Z2 → RCl

and ψi : Z2 → RCl

are functions that map pixel locations x to a Cl-dimensional
vector. This definition can be extended to groups by replacing the translation x by a group action g:

[f ⋆ ψi](g) =
∑
y∈Z2

Cl∑
c

fc(y)ψ
i
c(g

−1y) (4)

As the resulting feature map f ⋆ ψi is a function on G rather than Z2, the inputs and filters of all
hidden layers should also be defined on G:

[f ⋆ ψi](g) =
∑
h∈G

Cl∑
c

fc(h)ψ
i
c(g

−1h) (5)

Invariance to a subgroup can be achieved by applying a pooling operation over the corresponding
cosets. For a more detailed introduction to group equivariant convolutions, please refer to [4, 7].

3.2 Color Equivariance

We define color equivariance as equivariance to hue shifts. The HSV color space encodes hue by an
angular scalar value, and a hue shift is performed as a simple additive offset followed by a modulo
operator. When projecting the HSV representation into three-dimensional RGB space, the same hue
shift becomes a rotation along the [1, 1, 1] diagonal vector.

We formulate hue equivariance in the framework of group theory by defining the group Hn of
multiples of 360/n-degree rotations about the [1, 1, 1] diagonal vector in R3 space. Hn is a subgroup
of the SO(3) group of all rotations about the origin of three-dimensional Euclidean space. We can
parameterize H in terms of integers k, n as

Hn(k) =

cos( 2kπn ) + a a− b a+ b
a+ b cos( 2kπn ) + a a− b
a− b a+ b cos( 2kπn ) + a

 (6)

with n the total number of discrete rotations in the group, k the rotation, a = 1
3 − 1

3 cos(
2kπ
n ) and

b =
√

1
3 ∗ sin( 2kπn ). The group operation is matrix multiplication which acts on the continuous R3

space of RGB pixel values. The derivation of Hn is provided in Appendix A.
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Color Equivariant Convolution (CEConv) Let us define the group G = Z2 ×Hn, which is a
direct product of the Z2 group of discrete 2D translations and the Hn group of discrete hue shifts.
We can then define the Color Equivariant Convolution (CEConv) in the input layer as:

[f ⋆ ψi](x, k) =
∑
y∈Z2

Cl∑
c=1

fc(y) ·Hn(k)ψ
i
c(y − x). (7)

We furthermore introduce the operator Lg = L(t,m) including translation t and hue shift m acting on
input f defined on the plane Z2:

[Lgf ](x) = [L(t,m)f ](x) = Hn(m)f(x− t) (8)

Since Hn is an orthogonal matrix, the dot product between a hue shifted input Hnf and a filter ψ is
equal to the dot product between the original input f and the inverse hue shifted filter H−1

n ψ:

Hnf · ψ = (Hnf)
Tψ = fTHT

n ψ = f ·HT
n ψ = f ·H−1

n ψ. (9)

Then the equivariance of the CEConv layer can be derived as follows (using Cl = 1 for brevity):

[[L(t,m)f ] ⋆ ψ
i](x, k) =

∑
y∈Z2

Hn(m)f(y − t) ·Hn(k)ψ
i(y − x)

=
∑
y∈Z2

f(y) ·Hn(m)−1Hn(k)ψ
i(y − (x− t))

=
∑
y∈Z2

f(y) ·Hn(k −m)ψi(y − (x− t))

= [f ⋆ ψi](x− t, k −m)

= [L′
(t,m)[f ⋆ ψ

i]](x, k)

(10)

Since input f and feature map [f ⋆ ψ] are functions on Z2 and G, respectively, L(t,k) and L′
(t,k)

represent two equivalent operators acting on their respective groups. For all subsequent hidden layers
the input f and filters ψi are functions on G parameterized by x, k, and the hidden layer for CEConv
is defined as:

[f ⋆ ψi](x, k) =
∑
y∈Z2

n∑
r=1

Cl∑
c=1

fc(y, r) · ψi
c(y − x, (r − k)%n), (11)

where n is the number of discrete rotations in the group and % is the modulo operator. In practice,
applying a rotation to RGB pixels will cause some pixel values to fall outside of the RGB cube,
which will then have to be reprojected within the cube. Due to this discrepancy, Eq. (9) only holds
approximately, though in practice this has only limited consequences, as we empirical show in
Appendix D.

3.3 Implementation

Tensor operations We implement CEConv similarly to GConv [7]. GConv represents the pose
associated with the added spatial rotation group by extending the feature map tensor X with an extra
dimension Gl to size [Cl, Gl, H,W ], denoting the number of channels, transformations that leave
the origin invariant, and height and width of the feature map at layer l, respectively (batch dimension
omitted). Similarly, a GConv filter F̃ with spatial extent k is of size [Cl+1, Gl+1, Cl, Gl, k, k]. The
GConv is then defined in terms of tensor multiplication operations as:

X l+1
c′,g′,:,: =

Cl∑
c

Gl∑
g

F̃ l
c′,g′,c,g,:,: ⋆ X

l
c,g,:,:, (12)

where (:) denotes tensor slices. Note that in the implementation, a GConv filter F only contains
[Cl+1, Cl, Gl, k, k] unique parameters - the extra Gl+1 dimension is made up of transformed copies
of F .
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As the RGB input to the network is defined on Z2, we have G1 = 1 and F̃ has size
[Cl+1, Gl+1, 3, 1, k, k]. The transformed copies in Gl+1 are computed by applying the rotation
matrix from Eq. (6):

F̃ 1
c′,g′,:,1,u,v = Hn(g

′)F 1
c′,:,1,u,v. (13)

In the hidden layers F̃ contains cyclically permuted copies of F :

F̃ l
c′,g′,c,g,u,v = F l

c′,c,(g+g′)%n,u,v. (14)

Furthermore, to explicitly share the channel-wise spatial kernel over Gl [30], filter F is decomposed
into a spatial component S and a pointwise component P as follows:

F l
c′,c,g,u,v = Sc′,c,1,u,v · Pc′,g′,c,g,1,1 (15)

F is precomputed in each forward step prior to the convolution operation in Eq. (12).

Input normalization is performed using a single value for the mean and standard deviations rather
than per channel, as is commonly done for standard CNNs. Channel-wise means and standard
deviations break the equivariance property of CECNN as a hue shift could no longer be defined as
a rotation around the [1, 1, 1] diagonal. Experiments have shown that using a single value for all
channels instead of channel-wise normalization has no effect on the performance.

Compute efficiency CEConvs create a factor |Hn| more feature maps in each layer. Due to the
decomposition in Eq. (15), the number of multiply-accumulate (MAC) operations increase by only a
factor |Hn|2

k2 + |Hn|, and the number of parameters by a factor |Hn|
k2 + 1. See Appendix C.3 for an

overview of parameter counts and MAC operations.

4 Experiments

4.1 When is color equivariance useful?

Color equivariant convolutions share shape information across different colors while preserving color
information in the group dimension. To demonstrate when this property is useful we perform two
controlled toy experiments on variations of the MNIST [11] dataset. We use the Z2CNN architecture
from [7], and create a color equivariant version of the network called CECNN by replacing all
convolutional layers by CEConvs with three rotations of 120◦. The number of channels in CECNN is
scaled such as to keep the number of parameters approximately equal to the Z2CNN. We also create
a color invariant CECNN by applying coset max-pooling after the final CEConv layer, and a color
invariant Z2CNN by converting the inputs to grayscale. All experiments are performed using the
Adam [24] optimizer with a learning rate of 0.001 and the OneCycle learning rate scheduler. No
data augmentations are used. We report the average performance over ten runs with different random
initializations.

Color imbalance is simulated by long-tailed ColorMNIST, a 30-class classification problem where
digits occur in three colors on a gray background, and need to be classified by both number (0-9) and
color (red, green, blue). The number of samples per class is drawn from a power law distribution
resulting in a long-tailed class imbalance. Sharing shape information across colors is beneficial as a
certain digit may occur more frequently in one color than in another. The train set contains a total
of 1,514 training samples and the test set is uniformly distributed with 250 samples per class. The
training set is visualized in Appendix B.1. We train all four architectures on the dataset for 1000
epochs using the standard cross-entropy loss. The train set distribution and per-class test accuracies
for all models are shown in Fig. 2a. With an average accuracy of 91.35±0.40% the CECNN performs
significantly better than the CNN with 71.59± 0.61%. The performance increase is most significant
for the classes with a low sample size, indicating that CEConvs are indeed more efficient in sharing
shape information across different colors. The color invariant Z2CNN and CECNN networks, with
an average accuracy of 24.19± 0.53% and 29.43± 0.46%, respectively, are unable to discriminate
between colors. CECNN with coset pooling is better able to discriminate between foreground and
background and therefore performs slightly better. We repeated the experiment with a weighted loss
and observed no significantly different results. We have also experimented with adding color jitter
augmentations, which makes solving the classification problem prohibitive, as color is required. See
Appendix B.2 for both detailed results on both experiments.
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Figure 2: Color equivariant convolutions efficiently share shape information across different colors.
CECNN outperforms a vanilla network in both a long-tailed class imbalance setting (a), where
MNIST digits are to be classified based on both shape and color, and a color biased setting (b), where
the color of each class c is sampled according to θd ∼ N (θc, σ).

Color variations are simulated by biased ColorMNIST, a 10-class classification problem where
each class c has its own characteristic hue θc defined in degrees, distributed uniformly on the hue
circle. The exact color of each digit x is sampled according to θx ∼ N (θc, σ). We generate multiple
datasets by varying σ between 0 and 106, where σ = 0 results in a completely deterministic color
for each class and σ = 106 in an approximately uniform distribution for θx. For small σ, color is
thus highly informative of the class, whereas for large σ the classification needs to be performed
based on shape. The dataset is visualized in Appendix B.1. We train all models on the train set of
1.000 samples for 1500 epochs and evaluate on the test set of 10.000 samples. The test accuracies
for different σ are shown in Fig. 2b. CECNN outperforms Z2CNN across all standard deviations,
indicating CEConvs allow for a more efficient internal color representation. The color invariant
CECNN network outperforms the equivariant CECNN model from σ ≥ 48. Above this value color is
no longer informative for the classification task and merely acts as noise unnecessarily consuming
model capacity, which is effectively filtered out by the color invariant networks. The results of the
grayscale Z2CNN are omitted as they are significantly worse, ranging between 89.89% (σ = 0) and
79.94 (σ = 106). Interestingly, CECNN with coset pooling outperforms the grayscale Z2CNN. This
is due to the fact that a CECNN with coset pooling is still able to distinguish between small color
changes and therefore can partially exploit color information. Networks trained with color jitter are
unable to exploit color information for low σ; see Appendix B.2 for detailed results.

4.2 Image classification

Setup We evaluate our method for robustness to color variations on several natural image classifica-
tion datasets, including CIFAR-10 and CIFAR-100 [27], Flowers-102 [35], STL-10 [6], Oxford-IIIT
Pet [40], Caltech-101 [31], Stanford Cars [26] and ImageNet [10]. We train a baseline and color
equivariant (CE-)ResNet [20] with 3 rotations and evaluate on a range of test sets where we gradually
apply a hue shift between -180◦ and 180◦. For high-resolution datasets (all except CIFAR) we train a
ResNet-18 architecture and use default ImageNet data augmentations: we scale to 256 pixels, random
crop to 224 pixels and apply random horizontal flips. For the CIFAR datasets we use the ResNet-44
architecture and augmentations from [7], including random horizontal flips and translations of up
to 4 pixels. We train models both with and without color jitter augmentation to separately evaluate
the effect of equivariance and augmentation. The CE-ResNets are downscaled in width to match the
parameter count of the baseline ResNets. We have also included AugMix [21] and CIConv [29] as
baselines for comparison. Training is performed for 200 epochs using the Adam [25] optimizer with
a learning rate of 0.001 and the OneCycle learning rate scheduler. All our experiments use PyTorch
and run on a single NVIDIA A40 GPU.

Hybrid networks In our toy experiments we enforce color equivariance throughout the network.
For real world datasets however, we anticipate that the later layers of a CNN may not benefit from
enforcing parameter sharing between colors, if the classes of the dataset are determined by color
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specific features. We therefore evaluate hybrid versions of our color equivariance networks, denoted
by an integer suffix for the number of ResNet stages, out of a possible four, that use CEConvs.

Original test set Caltech C-10 C-100 Flowers Ox-Pet Cars STL10 ImageNet

Baseline 71.61 93.69 71.28 66.79 69.87 76.54 83.80 69.71
CIConv-W 72.85 75.26 38.81 68.71 61.53 79.52 80.71 65.81
CEConv 70.16 93.71 71.37 68.18 70.24 76.22 84.24 66.85
CEConv-2 71.50 93.94 72.20 68.38 70.34 77.06 84.50 70.02

Baseline + jitter 73.93 93.03 69.23 68.75 72.71 80.59 83.91 69.37
CIConv-W + jitter 74.38 77.49 42.27 75.05 64.23 81.56 81.88 65.95
CEConv + jitter 73.58 93.51 71.12 74.17 73.29 79.79 84.16 65.57
CEConv-2 + jitter 72.61 93.86 71.35 71.72 72.80 80.32 84.46 69.42

Baseline + AugMix 71.92 94.13 72.64 75.49 76.02 82.32 84.99 -
CEConv + AugMix 70.74 94.22 72.48 78.10 75.90 80.81 85.46 -

Hue-shifted test set

Baseline 51.14 85.26 47.01 13.41 37.56 55.59 67.60 54.72
CIConv-W 71.92 74.88 37.09 59.03 60.54 78.71 79.92 64.62
CEConv 62.17 90.90 59.04 33.33 54.02 67.16 78.25 56.90
CEConv-2 64.51 91.43 62.11 33.32 51.14 68.17 77.80 62.26

Baseline + jitter 73.61 92.91 69.12 68.44 72.30 80.65 83.71 67.10
CIConv-W + jitter 74.40 77.28 42.30 75.66 63.93 81.44 81.54 65.03
CEConv + jitter 73.57 93.39 71.06 73.86 72.94 79.79 84.02 64.52
CEConv-2 + jitter 73.03 93.80 71.33 71.44 72.58 80.28 84.31 68.74

Baseline + AugMix 51.82 88.03 51.39 15.99 48.04 68.69 72.19 -
CEConv + AugMix 62.29 91.68 60.75 41.43 62.27 73.59 80.17 -

Table 1: Classification accuracy in % of vanilla vs. color equivariant (CE-)ResNets, evaluated both
on the original and hue-shifted test sets. Color equivariant CNNs perform on par with vanilla CNNs
on the original test sets, but are significantly more robust to test-time hue shifts.

Results We report both the performance on the original test set, as well as the average accuracy
over all hue shifts in Table 1. For brevity we only show the fully equivariant and hybrid-2 networks,
a complete overview of the performances of all hybrid network configurations and error standard
deviations can be found in Appendix C.1. Between the full color equivariant and hybrid versions of
our CE-ResNets, at least one variant outperforms vanilla ResNets on most datasets on the original test
set. On most datasets the one- or two-stage hybrid versions are the optimal CE-ResNets, providing a
good trade-off between color equivariance and leaving the network free to learn color specific features
in later layers. CE-ResNets are also significantly more robust to test-time hue shifts, especially
when trained without color jitter augmentation. Training the CE-ResNets with color jitter further
improves robustness, indicating that train-time augmentations complement the already hard-coded
inductive biases in the network. We show the detailed performance on Flowers-102 for all test-time
hue shifts in Fig. 1b. The accuracy of the vanilla CNN quickly drops as a hue shift is applied, whereas
the CE-CNN performance peaks at -120◦, 0◦and 120◦. Applying train-time color jitter improves
the CNN’s robustness to the level of a CNN with grayscale inputs. The CE-CNN with color jitter
outperforms all models for all hue shifts. Plots for other datasets are provided in Appendix C.2.

Color selectivity To explore what affects the success of color equivariance, we investigate the color
selectivity of a subset of the studied datasets. We use the color selectivity measure from [42] and
average across all neurons in the baseline model trained on each dataset. Fig. 3 shows that color
selective datasets benefit from using color equivariance up to late stages, whereas less color selective
datasets do not.

Feature representations of color equivariant CNNs We use the Neuron Feature [42] (NF)
visualization method to investigate the internal feature representation of the CE-ResNet. NF computes
a weighted average of the N highest activation input patches for each filter at a certain layer, as such
representing the input patch that a specific neuron fires on. Fig. 4 shows the NF (N = 50) and top-3
input patches for filters at the final layers of stages 1-4 of a CE-ResNet18 trained on Flowers-102.
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Figure 3: Color selective datasets benefit from using color equivariance up to late stages, whereas
less color selective datasets do not. We compute average color selectivity [42] of all neurons in the
baseline CNN trained on each dataset, and plot the accuracy improvement of using color equivariance
in hybrid and full models, coloring each graphed dataset for color selectivity.

Figure 4: Neuron Feature [42] (NF) visualization with top-3 patches at different stages of a CE-
ResNet18 trained on Flowers-102. Rows represent different rotations of the same filter. As expected,
each row of a NF activates on the same shape in a different color.

Different rows represent different rotations of the same filter. As expected, each row of a NF activates
on the same shape in a different color, demonstrating the color sharing capabilities of CEConvs. More
detailed NF visualization are provided in Appendix C.4.

Ablation studies We perform ablations to investigate the effect of the number of rotations, the use
of group coset pooling, and the strength of train-time color jitter augmentations. In short, we find that
a) increasing the number of hue rotations increases robustness to test-time hue shifts at the cost of a
slight reduction in network capacity, b) removing group coset pooling breaks hue invariance, and
c) hue equivariant networks require lower intensity color jitter augmentations to achieve the same
test-time hue shift robustness and accuracy. The full results can be found in Appendix D.

5 Conclusion

In this work, we propose Color Equivariant Convolutions (CEConvs) which enable feature sharing
across colors in the data, while retaining discriminative power. Our toy experiments demonstrate ben-
efits for datasets where the color distribution is long-tailed or biased. Our proposed fully equivariant
CECNNs improve performance on datasets where features are color selective, while hybrid versions
that selectively apply CEConvs only in early stages of a CNN benefit various classification tasks.

Limitations CEConvs are computationally more expensive than regular convolutions. For fair
comparison, we have equalized the parameter cost of all models compared, at the cost of reducing the
number of channels of CECNNs. In cases where color equivariance is not a useful prior, the reduced
capacity hurts model performance, as reflected in our experimental results.

Pixel values near the borders of the RGB cube can fall outside the cube after rotation, and subsequently
need to be reprojected. Due to this clipping effect the hue equivariance in Eq. (9) only holds
approximately. As demonstrated empirically, this has only limited practical consequences, yet future
work should investigate how this shortcoming could be mitigated.
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Local vs. global equivariance The proposed CEConv implements local hue equivariance, i.e.
it allows to model local color changes in different regions of an image separately. In contrast,
global equivariance, e.g. by performing hue shifts on the full input image, then processing all
inputs with the same CNN and combining representations at the final layer to get a hue-equivariant
representation, encodes global equivariance to the entire image. While we have also considered
such setup, initial experiments did not yield promising results. The theoretical benefit of local over
global hue equivariance is that multiple objects in one image can be recognized equivariantly in any
combination of hues - empirically this indeed proves to be a useful property.

Future work The group of hue shifts is but one of many possible transformations groups on images.
CNNs naturally learn features that vary in both photometric and geometric transformations [5, 37].
Future work could combine hue shifts with geometric transformations such as roto-translation [7]
and scaling [49]. Also, other photometric properties could be explored in an equivariance setting,
such as saturation and brightness.

Our proposed method rotates the hue of the inputs by a predetermined angle as encoded in a rotation
matrix. Making this rotation matrix learnable could yield an inexact but more flexible type of
color equivariance, in line with recent works on learnable equivariance [34, 46]. An additional
line of interesting future work is to incorporate more fine-grained equivariance to continuous hue
shifts, which is currently intractable within the GConv-inspired framework as the number multiply-
accumulate operations grow quadratically with the number of hue rotations.

Broader impact Improving performance on tasks where color is a discriminative feature could
affect humans that are the target of discrimination based on the color of their skin. CEConvs ideally
benefit datasets with long-tailed color distributions by increasing robustness to color changes, in
theory reducing a CNN’s reliance on skin tone as a discriminating factor. However, careful and
rigorous evaluation is needed before such properties can be attributed to CECNNs with certainty.
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A Derivation of Hn

Rotation around an arbitrary unit vector u by angle θ can be decomposed into five simple steps [8]:

1. rotating the vector such that it lies in one of the coordinate planes, e.g. xz using Mxz;
2. rotating the vector such that it lies on one of the coordinate axes, e.g. x using Mx;
3. rotating the point around vector u on axis x using Rx;
4. reversing the rotation in step 2. using M−1

x =MT
x ;

5. reversing the rotation in step 1. using M−1
xz =MT

xz .

These operations can be combined into a single matrix:

Ru,θ =MT
xz(M

T
x (Rx,θ(Mxz(Mxz)))) (16)

=MT
xzM

T
x Rx,θMxzMxz (17)

=

 cos θ + u2x (1− cos θ) uxuy (1− cos θ)− uz sin θ uxuz (1− cos θ) + uy sin θ
uyux (1− cos θ) + uz sin θ cos θ + u2y (1− cos θ) uyuz (1− cos θ)− ux sin θ
uzux (1− cos θ)− uy sin θ uzuy (1− cos θ) + ux sin θ cos θ + u2z (1− cos θ)

 .
(18)

Substituting u = [ 1√
3
, 1√

3
, 1√

3
] yields

Ru,θ =

 cos θ + 1
3 (1− cos θ) 1

3 (1− cos θ)− 1√
3
sin θ 1

3 (1− cos θ) + 1√
3
sin θ

1
3 (1− cos θ) + 1√

3
sin θ cos θ + 1

3 (1− cos θ) 1
3 (1− cos θ)− 1√

3
sin θ

1
3 (1− cos θ)− 1√

3
sin θ 1

3 (1− cos θ) + 1√
3
sin θ cos θ + 1

3 (1− cos θ)

 , (19)

and lastly, rearranging and substituting θ = 2kπ
n results in

Hn(k) =

cos( 2kπn ) + a a− b a+ b
a+ b cos( 2kπn ) + a a− b
a− b a+ b cos( 2kπn ) + a

 . (20)

with n the total number of discrete rotations in the group, k the rotation, a = 1
3 − 1

3 cos(
2kπ
n ) and

b =
√

1
3 ∗ sin( 2kπn ).

13



B ColorMNIST

B.1 Dataset visualization

Long-tailed ColorMNIST dataset The training samples of the Longtailed ColorMNIST dataset
are depicted in Fig. 5, clearly indicating a class imbalance.

Figure 5: Long-tailed ColorMNIST. Note the strong class imbalance in the dataset. Best viewed in
color.

Biased ColorMNIST dataset A small subset of the samples of Biased ColorMNIST is shown in
Fig. 6 for σ = 0 (a) and σ = 36 (b), respectively. Note that the samples in (a) have a deterministic
color, whereas in (b) exhibit some variation in hue.

(a) (b)

Figure 6: Samples from Biased ColorMNIST for σ = 0 (a) and σ = 36 (b), respectively. Best viewed
in color.
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B.2 Additional experiments

Results with color jitter augmentation We performed both ColorMNIST experiments with color
jitter augmentations. The results are shown in Fig. 7. (a) For long-tailed ColorMNIST, adding jitter
makes solving the classification problem prohibitive, as color is required. Z2CNN and CECNN
with jitter therefore perform no better than as the CECNN model with coset pooling. (b) For biased
MNIST, performance decreases for small and improves for large σ, with CEConv still performing
best.
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Figure 7: Color equivariant convolutions efficiently share shape information across different colors.
CECNN outperforms a vanilla network in both a long-tailed class imbalance setting (a), where
MNIST digits are to be classified based on both shape and color, and a color biased setting (b), where
the color of each class c is sampled according to θd ∼ N (θc, σ).

Long-tailed ColorMNIST with weighted loss We performed the longtailed ColorMNIST experi-
ment both with a uniformly weighted loss and a loss where classes are weighted inversely to their
frequency according to wi =

N
c∗ni

, where wi denotes the weight for class i, N the number of samples
in the training set, c the number of classes, and ni the number of samples for class i. The results are
shown in Fig. 8. We observed no significant difference between the two setups, with the CECNN
without coset pooling outperforming the other models by a large margin in both.
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Figure 8: Per-class accuracy of various models trained with a loss function weighted by inverse
class frequency. CECNN without coset pooling outperforms all other models, with no significant
differences compared to an uniformly weighted loss function.

C Classification experiments

C.1 Overview of all CE-ResNet configurations

Table 2 shows an overview of the classification accuracies of all baselines and equivariant architectures.
CEConv-x denotes the number of ResNet stages with CE convolutions with CEConv-4 (3 for CIFAR)
being a fully equivariant ResNet. In nearly all cases, early equivariance is beneficial for improving
classification accuracy on both the original as well as the hue shifted test sets. In case of the Flowers-
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102 dataset late equivariance seems to have a significant advantage, whereas for Caltech-101 and
Stanford Cars the color equivariance bias does not seem to have much added value.

Table 2 shows the classification results for all network architectures, trained with and without color
jitter.
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Table 2: Classification accuracy on various datasets. CEConv-s denotes a ResNet with s color
equivariant stages. We report results for models trained with and without color jitter augmentation.
(Hybrid) color equivariant networks improve performance over the baseline model on both the
original as well as the hue-shifted test set.
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C.2 Test-time hue shift plots

Fig. 9 shows the test accuracies under a test time hue shift on all datasets in the paper. Each figure
includes a regular ResNet, a color equivariant ResNet-x (CE-ResNet-x) and a ResNet-x with color
equivariant convolutions in the first ResNet stage (CE-ResNet-x-1), trained with and without color
jitter augmentation. Finally, the plot shows the accuracy of a ResNet-x trained on grayscale inputs.
CEConv improves robustness to test-time hue shifts on all datasets.
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Figure 9: Test accuracy on various classification datasets under a test time hue shift.
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C.3 CE-ResNet configurations

The configurations of the color equivariant ResNet with three hue rotations, as used in the classification
experiment in Section 4.2, are shown in Table 3. CE stages 0 denotes a regular ResNet.

Model CE stages Width Parameters (M) MACs (G)

ResNet-18

0 64 11.69 3.59
1 63 11.38 5.66
2 63 11.57 7.37
3 61 11.54 8.80
4 55 11.79 10.32

ResNet-44

0 32 2.64 0.78
1 31 2.51 1.23
2 30 2.50 1.63
3 27 2.60 1.83

Table 3: Color equivariant ResNet configurations.

C.4 Neuron Feature visualizations

Fig. 10 shows the Neuron Feature [42] (NF) visualization with top-3 patches of two neurons at
different stages in a CE-ResNet18 trained on Stanford Cars. As expected, each row of a NF activates
on the same shape in a different color. We show neurons that are insensitive to color (top row) and
neurons that are sensitive to color (bottom row).

Stage 1 Stage 2 Stage 3 Stage 4
20.455

20.409

20.279

20.582 20.517NF

20.789 20.469NF

20.554 20.446NF

21.909

20.296

14.985

22.294 22.027NF

21.391 21.127NF

16.636 15.634NF

18.125 17.695 17.495NF

18.128 17.715 17.526NF

18.136 17.616 17.485NF

9.972 9.878 9.846NF

8.535 8.445 8.157NF

8.751 8.656 8.183NF

9.425 8.289 7.960NF

9.613 8.396 7.962NF

8.790 8.196 7.965NF

11.058 9.627 9.479NF

12.976 12.580 12.576NF

9.986 9.948 9.784NF

25.032 24.372 23.664NF

25.066 24.076 22.677NF

23.940 23.344 23.326NF

26.329 24.012 23.750NF

30.466 30.158 29.863NF

30.343 21.615 20.688NF

Figure 10: Neuron Feature [42] (NF) visualization with top-3 patches of two neurons at different
stages in a CE-ResNet18 trained on Stanford Cars. Rows represent different rotations of the same
filter.

D Ablation studies

Strength of color jitter augmentations Fig. 11 shows the effect of hue jitter augmentation during
training on both a color equivariant ResNet-18 with 3 rotations (a) and a regular ResNet-18 (b) trained
on Flowers-102. All runs have been repeated 3 times and the mean performance is reported. As
expected, the color equivariant network (a) without jitter augmentation is equivariant to rotations of
multiples of 120 degrees, but performance quickly degrades. Applying slight (0.1) hue jitter during
training both helps in an absolute sense, increasing performance over all rotations, and makes the
network more robust to hue changes as shown by the increasing width of the peaks. Further increasing
the strength of the augmentation results in a uniform performance over all hue shifts, indicated by the
flat lines. There appears to be no significant difference for jitter strength > 0.2. In comparison, the
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regular ResNet (b) trained without hue augmentation shows a single peak around 0 degrees, which
increases in width when applying more severe augmentation. Note that the increase in absolute
performance is smaller compared to the color equivariant network. The reason for this is that the
equivariant architecture only requires augmentation "between" the discrete rotations to which it is
already robust, as opposed to the full scale of hue shifts for the baseline architecture. Augmentation
and equivariance thus exhibit a remarkable synergistic interaction.
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Figure 11: Effect of hue jitter augmentation on a color equivariant (a) and a regular (b) ResNet-18.

Group coset pooling We have removed the group coset pooling operation by flattening the feature
map group dimension into the channel dimension in the penultimate layer, before applying the final
classification layer. As shown in Fig. 12, the model without pooling layer is no longer invariant to
hue shifts and behaves identically to the baseline model.
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Figure 12: CE-ResNet without group coset pooling behaves similarly to a regular ResNet (average
over 5 runs).

Number of color rotations We investigate the effect of the number of hue rotations in color
equivariant convolutions by training CE-ResNets with 2-10 rotations on Flowers-102. Fig. 13 shows
the test accuracies for rotations 1-5 (a) and 6-10 (b), respectively. Note that, for this particular dataset,
more hue rotations not only lead to better robustness to test-time hue shifts, but also to better absolute
performance. However, there is a trade-off between number of rotations and model capacity, as
increasing the number of rotations increases the number of parameters in the model, and the model
width needs to be scaled down to keep the number of parameters equal. Both the optimal number of
color rotations and network width therefore depend on the amount of color vs. the complexity of the
data, and therefore both need to be carefully calibrated per dataset.

As expected, the number of peaks increases with the number of hue rotations, though interestingly,
the peaks do vary in height. This is an artifact due the way test-time hue shifts are applied to the
input images. When RGB pixels are rotated about the [1,1,1] diagonal, values near the borders
of the RGB cube tend to fall outside the cube and subsequently need to be reprojected. This
reprojection is not modeled by the filter transformations in the CEConv layers, and subsequently
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causes a discrepancy between the filter and the image transformations. Indeed, when the test-time
hue shift is instead implemented through a rotation in RGB space without reprojecting into the cube,
this artifact disappears and all peaks are of equal height, as shown in Fig. 13 (c-d). Note that rotations
of multiples of 120 degrees always end up within the RGB cube, which is why this artifact does never
occur at -120, 0 and 120 degrees. Future work should further investigate the extent to which this
discrepancy is problematic in practice, and look into alternative solutions.
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(a) Test-time hue shift with reprojection.
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(b) Test-time hue shift with reprojection.
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(c) Test-time hue shift without reprojection.
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(d) Test-time hue shift without reprojection.

Figure 13: The effect of the number of hue rotations in color equivariant convolutions on downstream
performance. More rotations increases robustness to test-time hue shifts. Note that in (a-b) the peaks
are not of equal height due to clipping effects near the boundaries of the RGB cube. This artifact
disappears when the test-time hue shift is also applied without reprojection, resulting in peaks of
equal height (c-d).
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