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Abstract

Hawkes processes are point process models that have been used to capture self-excitatory
behaviour in social interactions, neural activity, earthquakes and viral epidemics. They can
model the occurrence of the times and locations of events. We develop a new class of spa-
tiotemporal Hawkes processes that can capture both triggering and clustering behaviour and
we provide an efficient method for performing inference. We use a log-Gaussian Cox process
(LGCP) as prior for the background rate of the Hawkes process which gives arbitrary flexibil-
ity to capture a wide range of underlying background effects (for infectious diseases these are
called endemic effects). The Hawkes process and LGCP are computationally expensive due
to the former having a likelihood with quadratic complexity in the number of observations
and the latter involving inversion of the precision matrix which is cubic in observations. We
propose a novel approach to perform MCMC sampling for our Hawkes process with LGCP
background, using pre-trained Gaussian process generators which provide direct and cheap
access to samples during inference. We show the efficacy and flexibility of our approach in
experiments on simulated data and use our methods to uncover the trends in a dataset of
reported crimes in the US.
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1 Introduction

Hawkes processes are a class of point processes that can model self or mutual excitation between events, in
which the occurrence of one event triggers additional events, for example: a violent event in one geographical
area on a given day encourages another violent event in an area nearby the next day. A unique feature of
Hawkes processes is their ability to model exogenous and endogenous "causes" of events. An exogenous cause
happens by the external addition of a event, while endogenous events are self-excited from previous events by
a triggering kernel. An example of the difference between these two mechanisms is in disease transmission - an
exogenous event could be a zoonosis event such as the transmission of Influenza from birds, while endogenous
events are subsequent human to human transmission. Due to their flexibility and mathematical tractability,
Hawkes processes have been extensively used in the literature in a series of applications. They have modelled
among others, neural activity (Linderman et al., 2014), earthquakes (Ogata, 1988), violence (Loeffler &
Flaxman, 2018; Holbrook et al., 2021) and social interactions (Miscouridou et al., 2018).

The majority of research on Hawkes processes focuses on the purely temporal settings where events occur
and are subsequently triggered only in time. However, many practical problems require the inclusion of a
spatial dimension. This inclusion is motivated by several factors, first, natural phenomena that self-excite
tend to do so both spatial and temporally e.g. infectious diseases, crime or diffusion over a network. Second,
natural processes tend to cluster closely in space and time (Tobler, 1970). Third, in parametric formulations
residual variation persists and this is often structured in both space and time (Diggle & Ribeiro, 2007).
A wide body of research exists in modelling spatial phenomena ranging from Kriging (Matheron, 1962) to
model based estimates (Diggle & Ribeiro, 2007) using Gaussian processes. In the more general Gaussian
process, which provides a prior function class, spatial phenomena are modelled through a mean function
and a covariance function that allows control over the degree of clustering as well as the smoothness of the
underlying functions. Specifically for applications for spatial point patterns, an elegant formulation using
log-Gaussian Cox processes (LGCP), (Møller et al., 1998) is commonly used (Diggle et al., 2013). LGCPs
can capture complex spatial structure but at a fundamental level are unequipped with a mechanism to model
self-excitation. When examining the processes’ endogenous and exogenous drivers, the lack of a self-exciting
mechanism can potentially lead to spurious scientific conclusions even if prediction accuracy is high. For
example, appealing again to the Influenza example, only modelling the distribution of cases using an LGCP
will ignore the complex interplay of zoonosis events and secondary transmission events, both of which require
different policy actions.

The inclusion of space has a long history via the Hawkes process triggering mechanism - fistly modelled using
the Epidemic Type Aftershock Sequence (ETAS) kernel (Ogata, 1988) but many subsequent approaches now
exist. However, to our knowledge, very few approaches consider spatial and temporal events in both the
exogenous and endogenous Hawkes process mechanisms - that is where events can occur in space and time,
and then these events trigger new events also in space and time. Many mechanisms have been proposed for
space-time triggering kernels (Reinhart, 2018), but it is not clear nor straightforward how to also allow for
exogenous space-time events simultaneously. In the vast majority of previous applications, exogenous events
occur at a constant rate in both space and time. Non constant approaches exist but have usually been case
specific. For example the use of a periodic function had been effective in modelling seasonal malaria (Un-
win et al., 2021). Some studies do provide nonparametric approaches for the background rate: Lewis &
Mohler (2011) provide an estimation procedure for the background and kernel of the Hawkes process when
no parametric form is assumed for either of the two. Donnet et al. (2020) and Sulem et al. (2021) use non-
parametric estimation on the Hawkes kernel whereas Miscouridou et al. (2018) use a nonparametric prior
on the background based on completely random measures to construct Hawkes processes that build directed
graphs.

Other recent approaches use neural networks to estimate the rate but the majority of these approaches are
in purely temporal settings such as Omi et al. (2019). There are a few that consider marked point processes
such as Du et al. (2016). However, a marked temporal point process which can use marks as locations would
not capture the spatial correlations we are interested in. More recently Zhou et al. (2022) and Chen et al.
(2021) provided a way to model spatiotemporal settings with neural networks. However, both of them still
lack the ability to capture a more flexible background where background intensity is not just a constant
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but by itself produces clustering in time and space (we like to emphasise here that this type of clustering is
different from the one emerging from the self-exciting nature of the process).

Beyond neural network approaches, there exist non deep models that deal with non-linear intensities. An
example is Zhou et al. (2020) who proposed a sigmoid Gaussian Hawkes process with baseline intensity
and triggering kernel drawn from a Gaussian process prior, passed through a sigmoid link function to
guarantee non-negativity. Similarly, Apostolopoulou et al. (2019); Sulem et al. (2021); Malem-Shinitski
et al. (2021) propose point process models with a non-linear component that allows both excitatory and
inhibitory relationships in continuous time.

Here we propose a novel space-time approach that combines Hawkes processes (Hawkes, 1971) with log-
Gaussian Cox processes (Møller et al., 1998; Diggle et al., 2013). This synthesis allows us, for the first time,
to have an exogenous background intensity process with self-excitation that is stochastic and able to vary
in both space and time. We provide a suite of new methods for simulation and computationally tractable
inference. Our methods leverage modern computational techniques that are scalable and can efficiently
learn complex spatiotemporal data. We apply our approach on both simulated and real data. Our novel
addition of an LGCP prior in both space and time is accompanied with new computational challenges: a
Hawkes process is quadratic in complexity due to a double summation in the likelihood, and LGCPs incur
cubic complexity from matrix inversions. To ensure our approach is scalable and still competitive with
standard Hawkes processes we utilise a recently developed Gaussian process approximation (Mishra et al.,
2022; Semenova et al., 2022) that obliviates the need for repeated matrix inversions. Our work represents
a step towards more general, scalable, point process framework that encodes more flexible and plausible
mechanisms to represent natural and physical phenomena.

Our contributions

A summary of the contributions of our work is: (i) We provide a novel model formulation for a highly
flexible self-exciting process that can capture endogenous and exogenous events in both space and time. Our
utilisation of LCGPs for the exogenous background rate is extremely flexible and follows from the current
state-of-the-art in spatial statistics (Diggle et al., 2013). (ii) In contrast to previous work such as Loeffler
& Flaxman (2018), our framework admits a generative model that can produce stochastic realisations at
an arbitrary set of locations. We provide a novel algorithm to sample from this generative process. (iii)
We offer an efficient Bayesian inference approach that ensures our more flexible model is still as scalable
as standard Hawkes processes and straightforward to implement computationally. (iv) Our framework is
directly applicable to numerous spatiotemporal problems where there are both endogenous and exogenous
causes e.g. for natural or social phenomena such as crime, diseases, environment, or human behaviour.

2 Related methods

As mentioned before, modelling space through Hawkes processes was first used with the Epidemic Type
Aftershock Sequence (ETAS) kernel (Ogata, 1988) and other approaches followed some of which exist
in Reinhart (2018). For modelling spatial point patterns without self-excitation, log-Gaussian Cox processes
(LGCP) Møller et al. (1998) provide an elegant approach as explained in Diggle et al. (2013).

Reinhart (2018) provide an overview on spatiotemporal Hawkes processes explaining various options for the
form of the intensity, the kernels and the corresponding simulating algorithm. However, the case of an LGCP
background is not discussed in the review.

Our approach is the first to use an LGCP to capture the background underlying effects (these are called
endemic effects in infectious disease modelling but here we will use this term broadly for other applications
too) and can model the exact spatial and time locations.

Loeffler & Flaxman (2018) aim to understand whether gun violence in Chicago is contagious or merely
clusters in space and time. To this end, they use a spatiotemporal Hawkes model and a space-time test
to distinguish between the two. The model uses a kernel density estimator for the background (endemic)
effects and a kernel for the epidemic events that is separable in space and time. Their model has a different
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construction as it does not admit a generative procedure since the background rate is estimated using kernel
density estimators.

Similarly to Loeffler & Flaxman (2018), Holbrook et al. (2021) build a scalable inference algorithm for para-
metric spatiotemporal self-exciting processes. Their proposed model is the one of Loeffler & Flaxman (2018)
which is based on a Gaussian kernel smoother for the background. The main contribution is to overcome
the bottleneck of the quadratic computational complexity of such a point process. The authors develop
a high-performance computing statistical framework to do Bayesian analysis with Metropolis-Hastings us-
ing contemporary hardware. They apply it on a gunfire dataset which covers a larger dataset and more
fine-grained than the one in Loeffler & Flaxman (2018).

The combination of a Hawkes process with an LGCP is found in Linderman & Adams (2015) where the
authors propose a purely temporal multivariate Hawkes process with LGCP in the background with the goal
to infer a latent network structure given observed sequences of events. This approach is based on Linderman
& Adams (2014) but in discrete time and with an improved inference scheme based in mini batches. However
both of these two have different scope to our work and work only with temporal data.

Finally, Mohler (2013) develops a purely temporal Hawkes process model with LGCP background for count
(aggregated) events. Mohler (2013) builds a Metropolis adjusted Langevin algorithm for estimation and uses
the algorithms to disentangle the sources of clustering in crime and security data. We are instead interested
in modelling and predicting exact event times and locations.

Few neural network models (Du et al., 2016; Mei & Eisner, 2017; Omi et al., 2019; Zhang et al., 2022) have
been suggested but they are only temporal in nature. A few of them provide a way to model a spatial
domain, by treating space locations as discrete marks. However, using marks doesn’t allow us to model
spatial correlations, as observed in many settings. Okawa et al. (2019)) extend neural networks to spatial
settings but lack the ability to predict the next event in space and time. Work most similar to ours is Chen
et al. (2021) and Zhou et al. (2022), where they apply neural network inspired point process models for
spatiotemporal data. However, they still lack the ability to account for anything more than a constant
background intensity.

3 Model

3.1 Point process intensity

A Hawkes process is an inhomogeneous Poisson point process defined in terms of a counting measure and an
intensity function or rate. For a generic spatiotemporal inhomogeneous Poisson point process on the domain
X × [0, T ), for X ⊂ Rd we denote the counting measure of the process by N and the conditional intensity
by λ. The definition of a generic inhomogeneous point process intensity in space and time is as below. For
s ∈ X ⊂ Rd (generally d here represents Euclidean or Cartesian coordinates) and t ∈ [0, T )

λ(t, s) = lim
∆t,∆s→0

E[N [(t, t + ∆t) × B(s, ∆s)] |Ht]
∆t × |B(s, ∆s)| (1)

where Ht denotes the history of all events of the process up to time t, N(A) is the counting measure of
events over the set A ⊂ X × [0, T ) and |B(s, ∆s)| is the Lebesgue measure of the ball B(s, ∆s) with radius
∆s > 0. The intensity λ has to be non-negative, i.e. λ ≥ 0. Note that the spatial locations can be univariate,
referring for example to regions or countries, or bivariate such as geographical coordinates of longitude and
latitude or even multivariate depending on the context.

3.2 Hawkes process intensity

Hawkes processes were originally proposed by Hawkes (1971) as temporal point processes. The intensity is
conditional on the history of the process such that the current rate of events depends on previous events. We
focus on self-exciting Hawkes processes, in which historic events encourage the appearance of future events.
We develop spatiotemporal self-exciting processes which can predict the rate of events happening at specific
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locations and times. The conditional intensity defined as in equation 1 admits the form

λ(t, s|Ht) = µ(t, s) +
∑

i:ti<t

g (t − ti, s − si) , (2)

where (t1, t2, . . . , tn) denotes the ordered sequence of the times of the observed events and (s1, s2, . . . , sn)
their corresponding spatial locations. Events arise either from the background rate µ(t, s) (exogenous or
non excitation effects) or from the triggering function/kernel g (endogenous or self-excitation effects). µ is
non-negative to ensure that the initial intensity is non-negative and we take g non-negative as we consider
excitation effects and do not deal with inhibition. For the scope of our work, we are interested in excitation,
however for other applications such as neural connectivity patterns where inhibition is needed, one can read
for example Cai et al. (2022).

g can be parametric or it can be estimated using full nonparametric assumptions, as done for example in Don-
net et al. (2020); Sulem et al. (2021). Similarly, it can take a form of separable (additive or multiplicative)
or non-separable kernels in space and time. There exists a lot of work covering all these cases for purely
temporal processes but not in spatiotemporal settings. To give some background, in purely temporal cases
there exist guarantees on the estimation and under certain conditions there are consistency results as well
identifiability results. However once we add the spatial component, the results do not necessarily extend.
Therefore, we consider here the simple case of a separable form of a product of an exponential kernel in time
and a Gaussian kernel in space. For multivariate linear purely temporal Hawkes processes with constant
background, it is a known result that one can recover the parameters, i.e. the process is identifiable and one
can also prove consistency results: Donnet et al. (2020) prove this and give posterior concentration rates.
Some results also exist for non-linear Hawkes processes with constant backgrounds: Brémaud & Massoulié
(1996) provide results on the uniqueness of the stationary solution but they do not study estimation of the
parameters. Similarly Sulem et al. (2021) study general non-linear and nonparametric Hawkes processes and
provide conditions on the Bayesian methods to estimate the parameters with a (presumably optimal) con-
centration rate. Other approaches with time-varying backgrounds exist (e.g. Unwin et al. (2021); Zhou et al.
(2020)) but there are no theoretical results that apply directly in that case (linear or non-linear). We think
it is an interesting direction to study the theoretical properties of spatiotemporal hawkes processes and we
would encourage research in that direction. We would like to note though that in any Hawkes process with a
temporally or spatiotemporally varying background, stationarity is not relevant anymore as the background
is changing in time and therefore the expectation of the intensity cannot be constant.

The process with intensity defined in equation 2 can be treated as a Poisson cluster process, with mean
number of offsprings given by b =

∫
X
∫∞

0 g(dt, ds). To ensure that the cluster sizes are almost surely finite,
we require that b ∈ (0, 1) as each generation of offsprings follows a geometric progression, with expected
total cluster size of 1

1−b . For b = 0 we have a Cox process where as for b ≥ 1 the process explodes and
we would have an infinite number of events in finite time. To see how explosion emerges, we refer the
reader to of (Grimmett & Stirzaker, 2001, Chapter 5) which give the calculations on the expected number
of descendants of one atom. More on the implications of the values of b can be found in Asmussen & Glynn
(2003).

The triggering function g, centered at the triggering event, is the intensity function for the offspring process.
Properly normalised, it induces a probability distribution for the location and times of the offspring events.
The cluster process representation of the Hawkes process (Hawkes & Oakes, 1974) will prove crucial to the
efficient simulation of self-exciting processes which we give in section 4.1.

We give below the triggering kernel that admits a separable form of a product of an exponential kernel in
time and a Gaussian kernel in space. Both of these choices are relevant for the applications we consider
in the paper as we know from previous work Loeffler & Flaxman (2018); Holbrook et al. (2021) that the
decay and variation in crime data can can be well explained by the decay prescribed by an exponential and
Gaussian kernel respectively. For t > 0 and s ∈ X ⊂ Rd the self-exciting part of the rate is given by

g(t, s) = αβ exp (−βt) 1√
2π|Σ|

exp
(
−sT Σ−1s

)
, (3)

where α > 0, β > 0 and Σ a semi-positive definite matrix.
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For the temporal part we use the widely used exponential kernel, originally proposed by Hawkes (1971),
giving exponential decay which is suitable for the applications we are interested in. Note that an exponential
kernel is not always a reasonable choice, for instance in infectious diseases one would prefer the Rayleigh
kernel (e.g. see Unwin et al. (2021)). For the spatial part, we use a Gaussian kernel which is suitable for
modelling spatial locations especially for social violence settings as first proposed and used by other authors
in literature. Specifically, (Loeffler & Flaxman, 2018; Holbrook et al., 2021) analyse the public policy and
crime implications of a larger gunshot dataset which includes the data used in this paper and choose these
forms for the kernels.

As mentioned above we consider here a separable form of g. Note that non-separable kernel approaches exist
in literature, such as Jun & Cook (2022), in which temporal patterns differ according to location. However
one cannot naively use those without properly assessing identifiability concerns. The current construction
can be extended to cover those, however this would be beyond the scope of the novelty of the current method
and the scope of the applications we consider here.

The other part of the intensity is µ(t, s), which is the background rate of the process. It is a nonnegative
function with initial nonzero value that captures the underlying patterns in space and time that encourage
the clustering of events in those time and space locations. It often takes the form of a constant for simplicity,
or a parametric form such as periodic as assumed in Unwin et al. (2021) or can even have a nonparametric
prior constructed on random measures as in Miscouridou et al. (2018). As further explained in more detail
below, we assume a log-Gaussian process prior on µ(t, s) which to our knowledge has not been used before
in the literature of spatiotemporal Hawkes processes.

3.3 Latent log Gaussian process for background rate

We use a latent Gaussian process (GP) to determine the background rate of events in time t ∈ R and space
s ∈ Rd. This means that the background rate takes the form

µ(t, s) = exp (f (t, s)) (4)

where f(t, s) is a function realisation from a Gaussian process prior in space and time. Formally, a Gaussian
process is a collection of random variables, such that any finite collection of them is Gaussian distributed.
GPs are a class of Bayesian nonparametric models that define a prior over functions which in our case are
functions over time and space. Similarly to a probability distribution that describes random variables which
are scalars or vectors (for multivariate distributions), a Gaussian process is distribution over functions and
belongs in the family of stochastic processes.

GPs are a powerful tool in machine learning, for learning complex functions with applications in regression
and classification problems. We refer the reader to (Rasmussen & Williams, 2005, Chapter 2) for details on
Gaussian processes and their properties.

A Gaussian process on RD, for any D > 0 is completely specified by its mean function m(·) and covariance
function k(·, ·). We will denote a draw from a Gaussian process as

f(·) ∼ GP (m(·), k(·, ·)) .

The Gaussian process is centered around its mean function, with the correlation structure (how similar
two points are) of the residuals specified via the covariance kernel. Properties of the underlying function
space such as smoothness, differentiability and periodicity can be controlled by the choice of kernel. One
of the most popular choices of covariance kernel, and the one we choose to introduce the model with, is
the Gaussian kernel (also commonly called the squared exponential kernel), defined for u, u′ ∈ RD by the
covariance function

Cov (f (u) , f (u′)) = k (u, u′) = ω2 exp
(

− 1
2l2 |u − u′|2

)
(5)

where |u| denotes the Euclidean norm, i.e. it is equal to |u| =
√∑

i u2
i if u is a vector (D > 1 e.g. the

spatial locations) and to the absolute value of u if u is a scalar (D = 1 e.g. timestamps). ω2 > 0 defines the
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kernel’s variance scale and l > 0 is a length scale parameter that specifies how nearsighted the correlation
between pairs of events is. The hyperparameters can be varied, thus also known as free parameters. The
kernel and mean of the GP together fully specify the prior distribution over functions.

We will consider an additive separable kernel with a bivariate spatial dimension s = (x, y) and univariate
temporal dimension t. Note that one could naively consider a joint fst with no assumptions of additivity
(or other form of structure) at all. However this would not be advisable as it would be impossible in this
case to guarantee that we can recover the underlying latent functions. When there is not enough structure
in the form of the background it is much more difficult to study the identifiability of the latent functions ft

and fs. In non-identifiable cases, the prior dominates the estimation and the estimated ft, fs will be heavily
influenced by the prior and not by the data. We consider here the additive structure as a minimum type of
structure to assume on the background latent process which is still very generic, able to capture arbitrary
background trends.

In order to ensure a nonnegative background we exponentiate the additive kernel. From this kernel specifi-
cation the background intensity µ(t, s) follows a log-Gaussian Cox process (Møller et al., 1998; Diggle et al.,
2013) over space and time

µ(t, s) = exp (fs (s) + ft (t)) (6)
ft ∼ GP (mt, kt)
fs ∼ GP (ms, ks) ,

where mt and ms are the GP mean functions and kt, ks are the kernels defined by the hyperparameters
ω2

t , ω2
s , lt, ls.

3.4 Full Model Likelihood

To model the spatial coordinates s = (x, y) and time stamps t, we use a Hawkes kernel gts(t, s) = gt(t)gs(s)
from equation 3 and the log-Gaussian Cox process µ(t, s) = exp (fs(s + ft(t)) from equation 6. Without loss
of generality we will assume here that the Gaussian processes have zero mean. The joint model we consider
is a Hawkes process with composite rate λ(t, x, y) which is the sum of the intensities of an LGCP process
and a Hawkes process

λ(t, x, y) = exp (fs (x, y) + ft (t))

+
∑

i:ti<t

gt(t − ti)gs(x − xi, y − yi)

= exp (fs (x, y) + ft(t))

+
∑

i:ti<t

αβ exp (−β(t − ti))
1

2πσxσy
exp

(
− (x − xi)2

2σ2
x

− (y − yi)2

2σ2
y

)
. (7)

One could see this as an intercept coming from constant contributions by both the temporal and spatial
background processes as these are only identifiable through their sum and not separately. Given a set
of observed ordered times (t1, t2, . . . , tn) ∈ [0, T ) and the corresponding locations (s1, s2, . . . , sn) ∈ X , let
D denote the full data D = {ti, si}n

i=1 and L(D) the likelihood. Following equation (7.1.2) in (Daley &
Vere-Jones, 2008, Chapter 7) the likelihood is given by

L(D) =
[

n∏
i=1

λ(ti, si)
]

exp
(

−
∫

X

∫ T

0
λ(t, s)dtds

)

=
[

n∏
i=1

λ(ti, xi, yi)
]

exp
(

−
∫

X

∫ T

0
λ(t, x, y)dtdxdy

)
. (8)

We give below details on how to simulate from the process with the rate defined in equation 7 and how to
perform Bayesian inference using the likelihood from equation 8.
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4 Methods

4.1 Simulation

By construction our model admits a generative process facilitating simulation. This is an important and
nuanced advantage over previous spatiotemporal models (Loeffler & Flaxman, 2018; Holbrook et al., 2021)
which were not fully generative due to a deterministic parameterisation of the exogenous component. Note
that the model of Mohler (2013) does admit a generative model but only for a purely temporal model for
aggregated (count) data. In general, Hawkes processes can be simulated in two ways: through an intensity
based approach or a cluster based approach. We give below Algorithm 1 to simulate from our model via
the latter approach, i.e. through simulating the background first and then the generations of subsequent
offsprings. Note that for the hyperparameters lt, ls, ω2

t , ω2
s one can either fix them to a known value or

(hyper)priors on them.

Algorithm 1 Cluster based generative algorithm for Hawkes process simulation
Require: Fix T > 0, X

Draw lt, ls ∼ p+(·)
Draw ω2

t , ω2
s ∼ p+(·)

Draw a0 ∼ p(·)
Draw ft ∼ GP(0, kt), fs ∼ GP(0, ks)
Set µ(t, s) = exp (ft(t) + fs(s) + a0)
Draw N0 ∼ Pois

(∫ T

0
∫

X µ (t, s) dtds
)

Draw
(

t
(0)
i , s(0)

i

)N0

i=1
from a Poisson Process with rate µ(t, s) where s

(0)
i =

(
x

(0)
i

y
(0)
i

)
Set G0 =

(
t
(0)
i , s(0)

i

)N0

i=1
, ℓ = 0

while Gℓ ̸= ∅ do
for i = 1 to Nℓ do

Draw Ci ∼ Pois
(∫ T

0
∫

X gts(t, s)dtds
)

, the number of offsprings of event i

for j = 1 to Ci do
Draw t

(ℓ+1)
j

iid∼ Exp(β) + t
(ℓ)
i ,

Draw s
(ℓ+1)
j

iid∼ Normal
((

x
(l)
i

y
(l)
i

)
,

(
σ2

x 0
0 σ2

y

))
Set Oj =

(
t
(ℓ+1)
i , s(ℓ+1)

i

)
end for

end for
ℓ+ = 1
Gℓ = {

⋃Nℓ

i=1 O1, . . . , OCi
}{i:t(ℓ)

i
<T }

end while
return

⋃
ℓ Gℓ

We use a clustering approach (Hawkes & Oakes, 1974) for simulation which makes use of the Poisson cluster
process where each event has a mean number of offspring b (see section 3.2) and relies on the following idea:
for each immigrant i, the times and locations of the first-generation offspring arrivals given the knowledge
of the total number of them are each i.i.d. distributed. We provide the simulation in Algorithm 1. In
Algorithm 1 we introduce a0 to denote the total mean of the background rate as the GPs have zero mean.
p+(·) refers to a probability distribution on the positive real line and p(·) a distribution on the real line. As
a test check for making sure that our Hawkes process simulations are correct we employ an approximate
Kolmogorov-Smirnov type of test adapting Algorithm 7.4.V from Daley & Vere-Jones (2008).
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To simulate from our model proposed above, i.e. a Cox-Hawkes process we need to draw from a GP. Since
GPs are infinitely dimensional objects, in order to simulate them we have to resort to finite approximations.
The most common approach is to implement them through finitely-dimensional multivariate Gaussian dis-
tributions. This is the approach we take as well for simulating our GPs. In order to sample points from
the LGCP background of the process, we draw an (approximate) realisation from the GP prior and then
use rejection sampling to sample the exact temporal and spatial locations. The algorithm can be found in
Appendix A.1.

4.2 Inference

Given a set of n observed data D = {ti, si}n
i=1 over a period [0, T ] and a spatial area denoted by X , we are

interested in a Bayesian approach to infer the parameters and hyperparameters of the model. Denote by θ
and ϕ set of the parameters of the background rate µ(t, s) and the triggering rate g(t, s) respectively. This
gives θ = (a0, ft(t), fs(s)) and ϕ =

(
α, β, σ2

x, σ2
y

)
.

The posterior is then given by

π(ϕ, θ|D) ∝ π(θ) × π(ϕ) × L(D) (9)
= π(ft(t))π(fs(s))π(a0) × π(α)π(β)π(σ2

x)π(σ2
y) × L(D).

where L(D) is the likelihood defined in equation 8 and with some abuse of notation, we use π to denote both
prior and posterior for all the parameters. For a0 we use a Normal prior. The prior for π(α), π(β), π(σ2

x) and
π(σ2

y) is Truncated Normal (restricted on the positive real line) to ensure the positivity of these parameters.
For the experiments we demonstrate below we have also tried Gamma and Exponential priors for α and β,
however in that case the MCMC chains showed worse mixing in comparison to the case of the Truncated
Normal prior. Note that the prior on the functions ft and fs can be further defined by the priors on the
hyperparameters lt ∼ InverseGamma, ω2

t ∼ LogNormal for the temporal process and ls ∼ InverseGamma,
ω2

s ∼ LogNormal for the spatial.

Our objective is to approximate the total posterior distribution π(ϕ, θ|D) using MCMC sampling. A classical
Hawkes process has quadratic complexity for computing the likelihood. Only in special cases such as that
of a purely temporal exponential kernel the complexity is reduced from quadratic to linear as it admits
a recursive construction. See Dassios & Zhao (2013) for an explanation. Note however we cannot apply
this in our case as it does not hold when we add (on top of the temporal exponential kernel) the Gaussian
spatial kernel. Inference is in general cumbersome and people tend to either resort to approximations or
high performance computing techniques such as Holbrook et al. (2021).

A naive formulation of combining log-Gaussian cox processes as the background intensity function in the
spatiotemporal Hawkes process will increase the computational complexity for the inference. This happens
because in addition to the quadratic complexity arising from the triggering kernel the exogeneous formulation
naively introduces a cubic complexity for a LGCP (Diggle et al., 2013).

We propose to circumvent the computational issues through a reduced rank approximation of a Gaussian
process (Semenova et al., 2022) through variational autoencoders (VAE). This approach relies on pre-training
a VAE on samples from a Gaussian process to create a reduced rank generative model. Once this VAE is
trained, the decoder can be used to generate new samples for Bayesian inference. More specifically, in this
framework one should first train a VAE to approximate a class of GP priors (the class of GP priors learned
varies from context to context depending on our prior belief about the problem space) and then utilises the
trained decoder to produce approximate samples from the GP. This step reduces the inference time and
complexity as drawing from a standard normal distribution z ∼ N (0, I) with uncorrelated zi is much more
efficient than drawing from a highly correlated multivariate normal N ∼ (0, Σ) with dense Σ. For more
details see section 2.5 in Semenova et al. (2022). Here we will denote this approximation to the Gaussian
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Figure 1: Plot for the temporal Gaussian process ft(t) on simulated data. The red line is the simulated draw
of the Gaussian process, the green line is the mean posterior and the yellow shaded area is the 90% credible
interval. The red marks on the x-axis are the exact simulated times from the background process.

Process prior by π̃. Hence, we obtain overall the Bayesian hierarchical model

π(ϕ, θ|D) ∝ π(θ) π(ϕ)L(D)
= π(ft(t))π(fs(s))π(a0)π(α)π(β)π(σ2

x)π(σ2
y)

≈ π̃ (ft(t)) π̃(fs(s))π(a0)π(α)π(β)π(σ2
x)π(σ2

y). (10)

The code for simulation and inference for this class of models of Cox-Hawkes processes implemented in python
and numpyro (Phan et al., 2019) can be found at https://github.com/misxenia/Spatiotemporal_Cox_
Hawkes.

5 Experiments

We demonstrate the applicability of our methods on both simulated and real data. For simulations our goal
is twofold: (i) to show that we can accurately estimate the parameters of both the background and self-
exciting components thereby showing that we recover the true underlying mechanisms and (ii) to show that
our method performs well under model misspecification, thereby showing our model is sufficiently general to
be used in real data situations where the true underlying data generating mechanism is unknown. On real
settings we apply our methods to gunfire data used in Loeffler & Flaxman (2018) detected by an acoustic
gunshot locator system to uncover the underlying patterns of crime contagion in space and time. We show
how our model can be used as an actionable tool by practitioners to understand and measure contagion
effects in important settings. Note that throughout the following we refer to the model used for simulating
data as the true model.

5.1 Experiment 1: Simulated Data

We simulate data from a Hawkes process with rate as given in equation 7 on the domain [0, T ] = [0, 50], X =
[0, 1] × [0, 1]. For the background rate which governs the exogenous events we simulate a realisation of the
latent (separable) spatiotemporal Gaussian process with covariance kernels defined as in equation 5 using
lt = 10, ω2

t = 1, ls = 0.25, ω2
s = 1. The simulated ft(t) from the temporal Gaussian process can be seen in

Figure 1 in red and the temporal events drawn from this background are also shown in red on the x-axis.
The simulated two-dimensional spatial Gaussian process can be seen at the left plot of Figure 2. Note that
we also use an explicit constant intercept of a0 = 0.8 giving an overall background rate of exp(a0 + ft + fs)
and in inference we use a Normal prior on it.

For the diffusion effect we use a triggering spatiotemporal kernel of the form in equation 3 with values
α = 0.5, β = 0.7 for the exponential kernel. For the Gaussian spatial kernel we will assume a common
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Figure 2: Simulated draw and the posterior predictive distribution for the 2-dimensional spatial Gaussian
process. The simulated fs(x, y) is shown on the left on a regular grid and the mean predictive distribution
is shown on the right with the simulated locations in red.

0.0

0.5

1.0

1.5

0

1

2

3

0 500 1000 1500 2000 2500 3000
MCMC iterations

1

0

1

2

a 0

0 500 1000 1500 2000 2500 3000
MCMC iterations

0.00

0.25

0.50

0.75

1.00

1.25

2

Figure 3: MCMC trace for a0, α, β, σ on simulated data where the red line shows the simulated value for the
experiments. The samples shown are collected from 3 chains.

parameter σ2 for both σ2
x and σ2

y which we will assume to be 0.5. This gives a set of around n = 210
spatiotemporal points {ti, xi, yi}n

i=1 of which the ratio of background to offspring events is roughly 1 : 1.

For inference we run 3 chains with 1, 500 samples each of which 500 were discarded as burn in, using a
thinning size of 1. In Figure 3 we report the trace plots for the parameters α, β, σ which define the triggering
kernel that governs excitation. We also report a0 which we used as the total mean of the latent Gaussian
process µ(t, x, y) = exp (ft(t) + a0 + fs(x, y)). We use a Normal prior on a0. In all cases the simulated values
shown in red are within the trace coverage. In our experiments we combine the samples (after removing
the warmup iterations) from all the chains. The plots overall show good convergence with good mixing
between the chains and no multimodal behaviour. Regarding the Gaussian process fitting, we show the
posterior predictive plots in Figures 1 and 2. For the one-dimensional temporal Gaussian process we plot
the simulated draw ft(t) in Figure 1 in red. The blue line is the mean posterior of ft(t) and the yellow
shaded area is the 90% credible interval obtained from the posterior predictive distribution. The red dots
on the x-axis are the exact simulated time events drawn from the process. The 90% credible interval covers
well the simulated function, and the mean posterior predictive is very close to the simulated one, showing
good model fit.

For the two-dimensional spatial Gaussian process we plot the simulated draw function fs(x, y) at the left plot
of Figure 2. The the mean posterior predictive distribution is shown in the centre and the mean predictive
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distribution with the true simulated locations embedded on it is shown on the right. The color scale on the
right shows the relative values ranging from dark blue (smallest) to yellow (highest). The simulated and the
mean of the posterior predictive distribution, are relatively similar when compared visually which shows a
good fit for the model.

To quantify convergence we require good R̂ diagnostics. For all our results the R̂ diagnostics returned by
the sampler were in [1, 1.002] for all the estimated parameters. This, combined with visual inspection of the
MCMC trace show good evidence of convergence and good mixing behaviour.

To further validate our method we perform a goodness of fit test. From the estimated model parameters we
obtain above, we compute the estimated intensity and then apply the time-rescaling theorem (Meyer, 1969;
Papangelou, 1972) which states that if the process is correct, the rescaled times are independent exponentially
distributed random variables with unit rate. We can thus compare the empirical and theoretical distributions
to assess how well the chosen model agrees with the empirical data. We make this comparison using a
quantile-quantile (QQ) plot and a Kolmogorov-Smirnov test. We provide in Appendix A.2 in Figure 9
the QQ plot which shows a good fit as the best fit line has a slope of 1.1 and intercept of −0.2 with the
coefficient of determination that measures the correlation between the two axes to be 0.98. Secondly, we
perform hypothesis testing using the Kolmogorov-Smirnov statistic to test the null hypothesis that two
distributions were drawn from the same distribution. Our p-value is ≫ 0.05 suggesting that at a confidence
level of 95% we cannot reject the null hypothesis. Given the above, we conclude a good fit of our process to
the data.

5.2 Experiment 2: Model misspecification

Our second experiment on simulated data compares and contrasts our method (LGCP-Hawkes) to a Hawkes
process with constant background and a pure log Gaussian Cox Process. The intensity for our LGCP-Hawkes
model is equation 7, for Hawkes it is equation 2 with constant µ(t, s) = µ and for LGCP it is equation 6.

We simulate data from these three inhomogeneous point process models and then fit each model on every
dataset on a train set and perform prediction on a test set. Note that we also fit under a homogeneous
Poisson model as it’s the baseline giving the simplest spatiotemporal model that exists. We show that our
model Hawkes-LGCP is a reasonable approach even when there is model mismatch (i.e. when the data are
drawn from a pure Hawkes or pure LGCP). It is therefore a good approach to use in real data scenarios
when the underling data generating mechanism is unknown.

It is in general challenging to evaluate the quality of model fit from different point process models.

We use two ways to evaluate the model fit and generalisation ability of our model. We first adopt a procedure
to predict the temporal and spatial locations of future events under the inference model and then compute
the combined error between those events and events generated under the true generating model that was
used for simulation. This procedure mirrors the properties that practitioners would desire from their model
in real world settings.

The metrics we use to test the generalisation ability of the model are (a) the combined root mean square error
(RMSE) between the exact simulated and predicted events and (b) the normalised negative log-likelihood
of the test events. The formula we use is the following RMSE = RMSEs + RMSEt where RMSEt =√

1
ntest

∑ntest

j=1 (tj − t̃j)2 and RMSEs =
√

1
ntest

∑ntest

j=1 (xj − x̃j)2 + 1
ntest

∑ntest

j=1 (yj − ỹj)2 for tt, xi, yi here
denoting the true events and t̃i, x̃i, ỹi denoting the predicted ones. The RMSE with its standard error is
demonstrated in Figure 4 (top). Similarly we evaluate the normalised negative log-likelihood (NNL) on the
test data in each case given the setup explained below and report the mean and standard error in Figure 4
(bottom). The normalisation is given through the division of the original negative log-likelihood by the
number of datapoints involved (here the number of test points).

The experimental setup is as follow. We simulate 100 datasets (each of which give on average 300 events)
over a fixed time window and a fixed spatial domain and then do a train-test split. We repeat this using as
generating model each of the models.
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Figure 4: Plots to support the model misspecification experiment. Top: Average RMSE and its standard
error (combined for space and time) reported for the model misspecification experiment. Bottom: Average
negative normalised log-likelihood and its standard error on test data. The left plot corresponds to a
simulated dataset from an LGCP model, the middle to an LGCP-Hawkes and the right from a Hawkes
model. In all three cases we perform inference under all LGCP, LGCP-Hawkes, Hawkes as well as Poisson
(baseline).

For every dataset, we then perform inference under our MCMC scheme under every model. Given the
estimated parameters, we predict 200 times the next 10 future events which we compare to those of the test
set. We compute the error between the true and estimated events across the 200 predictions and the 100
simulations. We report the mean and standard error of the RMSE and normalised negative log-likelihood
(NNL) graphically in Figure 4. This plot shows how good each model is in predicting the near future.

As shown in Figure 4, and as expected, the RMSE error is always lowest when the true model is used for
inference, however in all cases the next best model is LGCP-Hawkes although the differences are not always
statistically significant. This provides evidence for our model’s ability to flexibly capture a wide range of
underlying patterns. Looking at the RMSE error in all cases the worst model is the Poisson baseline, as its
constant intensity in space and time cannot capture the inhomogeneities in the data. These results highlight
that when the true data generating process is unknown, which is the default scenario in real world settings,
our model is likely to be a robust choice. The NNL results suggest the same conclusion, as in all cases
NNL is always lowest when the true model is used for inference, and in all cases the next best model is
LGCP-Hawkes. The difference with the RMSE results is that under an LGCP-Hawkes model and a Hawkes
model the log-likelihood of an LGCP deviates quite a lot from the LGCP-Hawkes and Hawkes model.

Furthermore, what is of interest is to see how the LGCP-Hawkes model under study correctly recovers
the other processes, namely Poisson, LGCP and Hawkes. Recall that intensity consists of two parts, the
background and the excitation. We will report in each case two ratios, rB : the ratio of the background to
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the total intensity and rE : the ratio of the excitation to the total intensity to explain how our model recovers
correctly the mechanism which drives the appearance of the events. We will also consider the coefficient for
the excitation part of the intensity, which we denote by c = α × β and the parameter of the background, a0
and will report their respective mean estimates.

Applying our LGCP-Hawkes model (that assumes an intensity as in equation 7) on simulated data obtained
from the LGCP with true value a0 = 0.5, and using the posterior mean of the parameters, we estimate
rB = 0.91, rE = 0.09. The mean estimates for the excitation coefficient c and a0 are 0.02 and 0.58 re-
spectively. These suggest that the model has correctly inferred that there is negligible contribution to the
intensity coming from the self-excitation part, meaning that events arise because of spatiotemporal back-
ground variation and not contagion.

Applying our LGCP-Hawkes model on simulated data obtained from the Poisson process with a0 = 0.8, we
estimate rB = 0.85, rE = 0.15. This suggests that most of the contribution comes from the background and
a small part from the excitation. The mean estimate for c and α0 are 0.09 and 0.52 respectively. These
suggest that the model has correctly inferred that there is very little contribution to the intensity coming
from the self-excitation part, meaning that events arise because of spatiotemporal background variation and
not contagion.

Applying our LGCP-Hawkes model on simulated data from the Hawkes process with a0 = 0.5 and c =
α × β = 0.4, we estimate rB = 0.43, rE = 0.57 which suggests that the events of this process are due to both
the background and the self-exciting kernel. The mean estimate for the excitation coefficient c and α0 are
0.42 and 0.52 respectively, which shows that the model has properly recovered the contribution from both
background effects and self-exciting behaviour.

5.3 Experiment 3: Gunshot Dataset
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Figure 5: Spatial (a) and temporal (b) distribution of the gunfire data in Washington DC over the year 2013.
The spatial locations are the exact geographical coordinates and the temporal locations are shown weekly.

We use gunshot data in 2013 recorded by an acoustic gunshot locator system (AGLS) in Washington DC and
follow Loeffler & Flaxman (2018) for data preprocessing. There were 1,171 gunshots recorded in total. Spatial
locations were rounded to produce approximately 100m spatial resolution and 1 sec temporal resolution.
Visualisations of the temporal and spatial distributions of the data are shown in Figure 5(a) and (b).
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Figure 6: MCMC trace for the parameters (a) a0, α, β and (b) σ2
x, σ2

y when collecting the MCMC samples
from all chains and discarding warmup.

We perform inference with the HMC (Neal, 2011) routines of numpyro which uses the NUTS (Hoffman &
Gelman, 2014) algorithm. We used 2 chains each with 4, 000 samples from which 2000 are discarded as
warmup. We join together the samples from the two chains and report the combined MCMC trace for each
of the parameters. Note that we did some prior sensitivity analysis to assess the robustness of our results. We
used different parameters on the priors for the parameters and we observed that the posterior distributions of
the parameters were similar, giving posterior mean estimates very close to each other. We also tried different
priors such as Gamma and Exponential but the convergence of the chains was better when using Truncated
Normal distributions. Note that we have rescaled accordingly the temporal and spatial locations of the
events, in order to simplify their use in inference and to be appropriate for the domain of our pre-trained
GP generators. Rescaling, is standard practice in point process modelling. In Figure 6(a) we report the
MCMC trace plots for the parameters α and β and a0 and in Figure 6(b) we report σ2

x, σ2
y which define the

lengthscales of the spatial Gaussian kernel (x and y distance) that governs excitation in space.

Regarding the Gaussian process fitting, we show the posterior predictive plots in Figures 7 and 8. For the
one-dimensional temporal Gaussian process we plot the estimated function ft(t) in Figure 7. The green line
is the mean posterior of ft(t) and the yellow shaded area is the 90% credible interval obtained from the
posterior predictive distribution. The red marks indicate the observed true events.

For the spatial Gaussian process we plot the estimated function fs(x, y) at the left plot of Figure 8. The
mean predictive distribution with the true locations embedded on it is shown on the right. The plots overall
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Figure 7: Posterior predictive for ft(t) with the posterior mean in green and the 90% credible interval in the
yellow shaded area, with true time stamps of the events on the x-axis.
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Figure 8: Mean of the posterior predictive for fs(x, y) (left) and similarly with the true locations (right).

show good convergence with good mixing between the chains and no multimodal behaviour. This is also
quantified by the convergence diagnostics R̂ which were equal to 1 for all the parameters estimated.

We report an estimate and 90% credible intervals of â0 = 0.53 (−0.46, 1.47), α̂ = 0.73 (0.68, 0.78), β̂ =
0.18 (0.16, 0.21), 1/β̂ = 5.35(4.64, 6.11), σ̂2

x = 9.26e−5(7.90e−5, 1.07e−4), σ̂2
y = 5.65e−5 (4.78e−5, 6.67e−5)

which can be interpreted as below, following the way of interpretation of Loeffler & Flaxman (2018). The
average number of shootings triggered by one shooting is around 0.73. Then, rounding to the nearest minute
or meter correspondingly, the temporal lengthscale for the exponential triggering kernel is estimated to be
around 5 minutes, the spatial triggering lengthscale in x distance, denoted by σx is around 10m and for the
y distance 8m. This means that for every 100 shootings that occur, these create at most another 73. Using
the right upper bound of the uncertainty intervals, the period in which diffusion takes place is within less
than 6 minutes and the area is within 10 meters in x distance and 8 meters in the y distance. Regarding
the background effects the posterior mean of the spatiotemporal Gaussian process is estimated to be 0.53.
The results have some differences from the ones reported by Loeffler & Flaxman (2018) and Holbrook et al.
(2021) but the model assumed here has a different form and we have applied it on a different subset of the
gunshot dataset.

Table 1: Fist row: Average RMSE on test data with its standard error in brackets computed when predicting
future unseen temporal and spatial events under the five models. Second row: Average NNL with its standard
error in brackets computed when predicting future unseen temporal and spatial events under the five models.
Third row: Average NNL with its standard error in bracketss computed on training data under the five
models.

Hawkes-LGCP Hawkes LGCP Poisson DeepSTPP
RMSE (test) 7.33 (0.11) 8.14 (0.13) 7.90 (0.09) 14.2 (0.29) 7.86 (0.25)

NNL (test) -2.534(0.09) -1.789(0.08) -0.309 (0.039) -0.26(0.024) −2.24(0.11)
NNL (train) −3.42(0.0007) −3.15(0.0007) −2.47(0.0026) −1.99(0.0003) −2.76(0.009)

We compare our model to the LGCP model, Hawkes model , baseline Poisson and the state-of-the-art neural
network based spatiotemporal model of (Zhou et al., 2022). In our results, we name the model of (Zhou
et al., 2022) as DeepSTPP. We report in Table 1 the average RMSE on test data, normalised negative
log-likelihood (NNL) on both training and test data. As seen from Table 1 LGCP-Hawkes gives the best
predictive performance both in terms of RMSE and NNL. The normalisation of the log-likelihood is done
by dividing by the number of training and test data points respectively. The training inference times are
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45 minutes for Hawkes-LGCP, 8 minutes for Hawkes, 25 seconds for LGCP, 11 seconds for Poisson and 12
minutes for DeepSTPP.

6 Conclusion

We presented a novel model combining Hawkes processes with Gaussian processes, and used it to identify
patterns in gun violence in Washington DC. Methodologically, ours is the first model of its kind to have
such flexibility in capturing underlying patterns in the rate of occurrence of events, combining a powerful
nonparametric statistical model with an interpretable mechanistic self-exciting point process model. This
combination means that it can be used across a range of real world spatiotemporal problems in which the
underlying data mechanism is unknown. Applications could include social networks, biology, economics and
epidemiology. Its general and practical form make it an actionable tool for practitioners that can be used to
design interventions and for policy making.

There are many directions for future research. One could study the properties of this model in a theoretical
level to define the implications of different forms of the background rate and whether they are identifiable.
Additionally, this model can be further extended to include additional covariates. These take the role of
marks in a Hawkes process construction and can bring more information in infectious disease applications
in which one wants to characterise the disease transmission and quantify the sources that govern infection
in space and times. Deviating from a univariate setting, one can consider interacting Hawkes processes
to model events in different states or regions where the intensity of events in one regions depends on the
intensity in another region. This model could be useful for crime data, and also in neuroscience, where
multiple neural trains interact across different parts of the brain. Computationally, this may prove to be a
difficult extension. In scenarios where the background trends are potentially coming from different sources,
incorporating transformations of Gaussian process could make the framework even more flexible and able to
capture multimodal distributions. Finally, one can extend this in a generic flexible framework for Hawkes
processes with non-linear intensities that can potentially capture inhibition.
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A Appendix

A.1 Simulation

In Algorithm 2 we show how to simulate from the LGCP background of the process with intensity µ(t, s) =
exp(ft(t) + a0 + fs(s)). For simulation purposes we write explicitly a0 = a0t + a0s but only estimate them
via their sum (i.e. a0) as a0t and a0s are only identifiable through their sum. p+ denotes a probability
distribution on the positive real line whereas p denotes a probability on the real line. We take the prior on
ℓt and ℓs to be Inverse Gamma, and the one on ω2

t and ω2
s to be Log Normal but other options are possible.

For the prior on a0t and a0s we use a Normal distribution.

Algorithm 2 Simulation of the LGCP events from the background
Require: T > 0, X

Draw a0t, a0s ∼ p(·)
Draw lt, ls ∼ p+(·)
Draw ω2

t , ω2
s ∼ p+(·)

Form kt, ks using equation 5
Draw ft ∼ GP(0, kt), fs ∼ GP(0, ks)
Set r(t) = exp(ft(t) + a0t), r(s) = exp(fs(s) + a0s)
Approximate I(t, s) =

∫ T

0
∫

X r (t) × r(s) dtds
Draw N0 ∼ Pois (I(t, s))
Draw {t}N0

i=1 ∈ [0, T ] from r(t) via rejection sampling
Draw {s}N0

i=1 ∈ X from r(s) via rejection sampling
return G0 = (ti, si)N0

i=1

A.2 Simulation experiment
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Figure 9: Quantile-quantile plot to compare the quantiles of the empirical and theoretical intensity.

To further support Experiment 1 in section 5.1 we consider goodness of fit tests. We provide a QQ plot and
a Kolmogorov-Smirnov test. The QQ plot shown in Figure 9 measures the agreement between the observed
and the theoretical quantiles of the intensity function. The theoretical quantiles plotted in x-axis are those
from the exponential distribution whereas the empirical ones in y-axis are those from the fitted intensity
under our LGCP-Hawkes model. The best fit line on our data has a slope of 1.1 and intercept −0.2. The
coefficient of determination is 0.98 suggesting almost perfect correlation between the two. This suggests a
good agreement between the point process model and the experimental data as the points lie on a 45−degree
line. Secondly, we measure the discrepancy between the two using a Kolmogorov-Smirnov test which gives
a p value ≫ 0.05 clearly not rejecting the null hypothesis that the two samples are coming from the same
distribution.
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