
Large Language Models Engineer Too Many
Simple Features for Tabular Data

Jaris Küken
University of Freiburg

kuekenj@cs.uni-freiburg.de

Lennart Purucker
University of Freiburg

purucker@cs.uni-freiburg.de

Frank Hutter
ELLIS Institute Tübingen & University of Freiburg

Abstract

Tabular machine learning problems often require time-consuming and labor-
intensive feature engineering. Recent efforts have focused on using large language
models (LLMs) to capitalize on their potential domain knowledge. At the same
time, researchers have observed ethically concerning negative biases in other LLM-
related use cases, such as text generation. These developments motivated us to
investigate whether LLMs exhibit a bias that negatively impacts the performance
of feature engineering. While not ethically concerning, such a bias could hinder
practitioners from fully utilizing LLMs for automated data science. Therefore, we
propose a method to detect potential biases by detecting anomalies in the frequency
of operators (e.g., adding two features) suggested by LLMs when engineering new
features. Our experiments evaluate the bias of four LLMs, two big frontier and
two small open-source models, across 27 tabular datasets. Our results indicate
that LLMs are biased toward simple operators, such as addition, and can fail to
utilize more complex operators, such as grouping followed by aggregations. Fur-
thermore, the bias can negatively impact the predictive performance when using
LLM-generated features. Our results call for mitigating bias when using LLMs for
feature engineering.

1 Introduction

Machine learning problems for tabular data exist in many domains, such as medical diagnosis,
cybersecurity, and fraud detection [Borisov et al., 2022a, van Breugel and van der Schaar, 2024]. The
original data for these problems (e.g., an Excel sheet) often requires manual feature engineering by a
domain expert to solve the machine learning problem accurately [Tschalzev et al., 2024]. During
(automated) feature engineering, various operators (e.g., Add, Divide, GroupByThenMean) are
applied to existing features to create new features [Kanter and Veeramachaneni, 2015, Prado and
Digiampietri, 2020, Mumuni and Mumuni, 2024].
Large language models (LLMs) understand various domains [Kaddour et al., 2023, Kasneci et al.,
2023, Hadi et al., 2024], tabular data [Ruan et al., 2024, Fang et al., 2024], and feature engineering
[Hollmann et al., 2024, Jeong et al., 2024, Malberg et al., 2024]. Thus, data scientists have started to
leverage LLMs for feature engineering1; liberating practitioners from extensive manual labor.

Despite their utility, LLMs are known to have negative biases as observed for chat applications [Kotek
et al., 2023, Navigli et al., 2023, Gallegos et al., 2024, Bang et al., 2024] or when "meticulously
delving" into text generation [Liang et al., 2024]. Observing such biases motivated us to determine

1For example, see these recent Kaggle competition write-ups [Hatch, 2024, Türkmen, 2024].

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



whether LLMs also exhibit a bias that negatively impacts the quality of their engineered features. If a
bias is found and can be circumvented, LLMs would become a more potent tool for data scientists.

To determine whether a bias exists, we inspect the frequency of operators LLMs use when engineering
features. This parallels inspecting the frequency of words to detect LLM-generated text [Liang et al.,
2024]. Assuming LLMs use their world knowledge and reasoning capabilities to employ the most
appropriate operator, we expect the operators’ frequencies to be similar to those of the optimal
operators. That is, if adding two features is often the optimal feature, then an LLM would frequently
add two features. Moreover, if the LLM does not know the optimal operator, it should resort to a
random search over operators.

Therefore, we compare the frequencies of operators used by an LLM to those obtained by searching
for the optimal features with automatic black-box feature engineering using OpenFE [Zhang et al.,
2023]. Using this approach, we evaluated the bias of 4 LLMs, namely GPT-4o-mini [OpenAI, 2024],
Gemini-1.5-flash [Gemini-Team, 2024], Llama3.1-8B [Touvron et al., 2023], and Mistral7B-v0.3
[Jiang et al., 2023]. We obtained the distribution over operators for 27 tabular classification datasets
unknown to all LLMs.

Our results demonstrate that LLMs can have a negative bias when engineering features for tabular
data. LLMs favor simple operators during feature engineering (e.g., Add), while some LLMs rarely
use more complex operators (e.g., GroupByThenMean). In contrast, automatic black-box feature
engineering favors complex operators but also use simple operators.
In particular, we observed a strong bias and negative impact for GPT-4o-mini and Gemini-1.5-flash,
two big frontier models [Chiang et al., 2024]. Both select simple operators most often and their
generated features decrease the average predictive performance. In contrast, Llama3.1-8B and
Mistral7B-v0.3, the small open-source models, are less biased or negatively impacted. Nevertheless,
no LLM is close to the distribution over operators obtained by OpenFE. Likewise, the features
generated by OpenFE improve the predictive performance on average the most.

Our Contributions. Our long-term goal is to enhance LLMs for automated data science. This
work contributes toward our goal by: (1) developing a method to analyze LLMs for bias in feature
engineering, and (2) demonstrate the existence of a bias that negatively impacts feature engineering.

2 Related Work

Feature Engineering Without Large Language Models. Previous work dedicated considerable
effort toward automating the process of feature engineering [Kanter and Veeramachaneni, 2015,
Prado and Digiampietri, 2020, Mumuni and Mumuni, 2024]. Various black-box methods have
been proposed, such as ExploreKit [Katz et al., 2016], AutoFeat [Horn et al., 2020], BioAutoML
[Bonidia et al., 2022], FETCH [Li et al., 2023], and OpenFE [Zhang et al., 2023]. These methods
typically generate new features in two steps: 1) create a large set of candidate features by applying
mathematical (e.g., Add) or functional (e.g., GroupByThenMean) operators to features, and 2) return
a small set of promising features selected from all candidate features.

Feature Engineering with Large Language Models. LLMs allow us to exploit their (potential)
domain knowledge for feature engineering. LLMs can act as a proxy to a domain expert or data
scientist during the feature engineering process. To illustrate, LLMs can be prompted to suggest code
for generating new features [Hollmann et al., 2024, Hirose et al., 2024], to select predictive features
[Jeong et al., 2024], or to use rule-based reasoning for generation [Nam et al., 2024].

Bias in Large Language Models. LLMs exhibit explicit and implicit biases. Explicit biases can
be, among others, gender or racial discrimination in generated text [Kotek et al., 2023, Navigli et al.,
2023, Gallegos et al., 2024, Bang et al., 2024]. Moreover, LLMs can have implicit biases, such as
specific words and phrases frequently re-used in generated text. As a result, Liang et al. [2024] were
able to use recent trends in word frequency to detect and analyze LLM-generated text. Our method is
similar to the investigation by Liang et al. [2024] but focuses on operator instead of word frequency.

Other Applications of Large Language Models for Tabular Data. Many researchers recently
started using LLMs for applications related to tabular data. To avoid confusion in this plethora of
recent work, we highlight similar but not directly related work to our contribution. Our work is not
directly related to LLMs to tabular question answering [Ghosh et al., 2024, Grijalba et al., 2024, Wu
et al., 2024], tabular dataset generation [Borisov et al., 2022b, van Breugel et al., 2024, Panagiotou

2



Figure 1: Our Method to Analyze Feature Engineering Bias of an LLM. Our method is split
into three stages. In the first stage A), we discard tabular datasets, which the LLM might have
memorized. In the second stage B), we instruct the LLM to select the best operators to engineer
new features. At the same stage, we use OpenFE [Zhang et al., 2023], black-box automated feature
engineering, to determine a proxy for the optimal operators. In the third stage C), we compare the
frequencies of operators for the LLM and OpenFE. That is, we look for anomalies when contrasting
the distributions, such as using simple operators much more than complex ones.

et al., 2024], tabular data manipulation [Zhang et al., 2024, Qian et al., 2024, Lu et al., 2024], or
tabular few-shot predictions [Hegselmann et al., 2023, Han et al., 2024, Gardner et al., 2024]

3 Method: Analyzing Feature Engineering Bias

We propose a three-stage method to assess the bias of an LLM when used to engineer new features
for tabular data problems. Our three-stage method A) tests the LLM for memorization of benchmark
datasets; B) engineers new features with an LLM as well as black-box automated feature engineering;
and C) analyzes the bias of the LLM. We visualize our method in Figure 1.

A) Memorization Test. Given that language models are trained on vast amounts of publicly available
data, we must account for the possibility that the LLM memorizes a dataset and optimal new features
prior to our evaluation. To mitigate the risk of dataset-specific bias influencing the LLM during
feature engineering, we test the LLM for memorization of datasets using the methods proposed by
Bordt et al. [2024]. Specifically, we conducted the row completion test, feature completion test, and
the first token test. We consider a success rate of 50% or higher in any test an indicator that the
evaluation of the dataset is biased. In such cases, the dataset is excluded from further evaluation.

B) Feature Engineering. We propose a straightforward and interpretable feature engineering method
for LLMs. Given a dataset, the LLM is supplied with context information, including the name
and description. In addition, a comprehensive list of all features and critical statistical information
for each feature (e.g., datatype, number of values, minimum, maximum, etc.) are provided. The
instructions prompt also contains a pre-defined set of operators for engineering new features, each
with a description indicating whether an operator is unary (applicable to one feature) or binary
(requiring two features). We detail our full prompting specifications with examples in Appendix A.
The LLM is then instructed to generate precisely one new feature by selecting one or two existing
features and applying one of the available operators. We employ chain-of-thought (CoT) prompt-
ing [Wei et al., 2023] to boost the expressive power of the LLM [Li et al., 2024]. In addition, the
LLM explains why a feature was generated with CoT. We also employ a feedback loop, similar to
CAAFE [Hollmann et al., 2024], which we detail in Appendix A.
Our approach to feature engineering with LLMs deviates from prior work [Hollmann et al., 2024,
Hirose et al., 2024, Jeong et al., 2024] because we do not rely on code generation. This might put
LLMs at a disadvantage because we reduce their potential expressiveness. However, we see this
disadvantage outweighed by three significant advantages: first, we (almost) nullify the failure rate
of generated code, which can be as much as 95.3% for small models [Hirose et al., 2024] ; second,
we can control which operators the LLM uses; and third, we can extract applied operators from
structured output without a (failure prone) code parser – enabling our study.

3



Fundamentally, we aim to compare the distribution over operators suggested by the LLM to the
distribution over the optimal operators. That said, we do not know the optimal operators for a dataset.
Thus, as a proxy, we use the operators suggested by OpenFE [Zhang et al., 2023].
To the best of our knowledge, OpenFE is the most recent, well-performing, and highly adopted2

automated feature engineering tool. OpenFE suggests a set of new features after successively pruning
all possible new features generated by a set of operators. To do so, OpenFE uses multi-fidelity feature
boosting and computes feature importance.

C) Analysis. Finally, we analyze bias in feature engineering with LLMs using trends in the frequen-
cies of operators. Therefore, we save the operators used by LLMs and black-box automated feature
engineering from the previous stage. Subsequently, we compute the distribution over the frequencies
of operators. This database allows us to visualize, inspect, and contrast the functional behavior of
feature engineering with LLMs.

4 Experiments

We extensively evaluate the bias of 4 LLMs for 21 operators across 27 classification datasets.

Large Language Models. We use four LLMs hosted by external providers via APIs. In detail,
we used GPT-4o-mini [OpenAI, 2024] and Gemini-1.5-flash [Gemini-Team, 2024] to represent big
frontier LLMs and Llama3.1 8B [Touvron et al., 2023] and Mistral 7B Instruct v0.3 [Jiang et al.,
2023], hosted by Together AI3, to represent small open-source models. The API usage costed ∼200$.

Operators. In this study, we use a fixed set of applicable operators. These operators represent a
subset of the operators provided by OpenFE. We categorize the available operators into simple and
complex operators. Simple operators apply straightforward arithmetic operations, such as adding
two features. Furthermore, these operators are characterized by their relatively low computational
complexity, typically O(n). In contrast, complex operators perform more advanced transformations,
such as grouping or combining the existing data into distinct subsets, followed by various aggregation
functions. Compared to simple operators, complex operators generally exhibit a higher computational
complexity of O(n log n) or greater. We present all operators and their categories in Appendix B.

Datasets. We used 27 out of 71 classification datasets from the standard AutoML benchmark [Gijsbers
et al., 2024], which consists of curated tabular datasets from OpenML [Vanschoren et al., 2014]. First,
to avoid too large input prompts as well as extensive compute requirements, we selected all datasets
with up to 100 features, 100 000 samples, and 10 classes – resulting in 36 datasets. We had to remove
the yeast dataset due to insufficient samples per class for 10-fold cross-validation. Of the remaining
35 available datasets, 8 (∼23%) failed our memorization tests (see Appendix E) with at least one
LLM, making them unsuitable for further evaluation – resulting in 27 datasets.

Evaluation Setup. For each dataset, we perform 10-fold cross-validation. For each fold, we run
OpenFE and prompt each LLM to generate 20 features. We assess the predictive performance of
feature engineering following Zhang et al. [2023] by evaluating LightGBM [Ke et al., 2017] on the
original features and the original features plus the newly generated features. We measured predictive
performance using ROC AUC. Moreover, we mitigate a positional bias of our prompt template by
repeating feature generation five times with an arbitrary order of operators. Finally, we compute the
frequencies of operators across all new features, in total 27 000.

5 Results

We order our results as follows: first, we demonstrate that a bias exists; then, we show that the bias
negatively impacts the performance of feature engineering; and finally, we rule out confounding
factors of the prompt template with an additional experiment.

HYPOTHESIS 1: FEATURE ENGINEERING WITH LARGE LANGUAGE MODELS IS BI-
ASED TOWARD SIMPLE OPERATES.

Figure 2 illustrates the operators’ frequencies for OpenFE and the four LLMs. None of the language
models replicate the distribution found by OpenFE. Although, notably, the distribution of Llama3.1 8B

2At the time of writing, OpenFE’s GitHub repository has ∼760 stars and ∼100 forks.
3https://www.together.ai/

4

https://www.together.ai/


Figure 2: Frequency of Feature Engineering Operators. We present the frequency of how often
an operator was used to create a new feature across all datasets, folds, and repetitions for OpenFE,
GPT-4o-mini, Gemini-1.5-flash, Llama3.1 8B, and Mistral 7B. The highest frequency observed for
OpenFE is ∼13.42% with the complex operator GroupByThenRank. In contrast, for GPT-4o-mini, it
is ∼32.27% with the simple operator Multiply.

Table 1: Names and Frequencies of the Most and Least Frequent Operator. We present the most
frequent (Max Freq.) and least frequent (Min Freq.) operator and their frequency per method/model.
Each LLM model has a higher maximal and lower minimal frequency than OpenFE.

Method/Model Operator (Max Freq.) Frequency (in %) Operator (Min Freq.) Frequency (in %)

OpenFE groupbythenrank 13.42 absolute 0.11
GPT-4o-mini multiply 32.27 min/groupbythenmean 0.00
Gemini-1.5-flash divide 26.87 min 0.02
Llama3.1-8B groupbythenmean 18.96 round 0.00
Mistral-7B-v0.3 groupbythenmean 21.13 round 0.09

and Mistral 7B appear most similar. This discrepancy is particularly noticeable for the most frequently
used complex operators by OpenFE, GroupByThenRank, and CombineThenFrequencyEnconding.
Neither are among the top 3 most frequent operators for any LLM.

Table 1 presents names and frequencies of the most frequently generated operators by OpenFE and
each LLM. Surprisingly, the small open-source LLMs most often select a complex operator, while
both big LLMs favor simple operators. Nevertheless, the frequencies for the most used operators
are significantly higher for LLMs than those observed for OpenFE. We further this analysis with
Table 2, which shows all operators required to accumulate 90% of the total distribution. Notable,
GPT-4o-mini features only five operators, with four of them - add, subtract, multiply, divide -
representing basic arithmetic operators. This highlights a lack of complexity in the applied operators
of one of the most complex LLMs.

In some cases, LLMs were unable to follow the strict instructions of our prompt template for
generating a new feature. In these cases the LLM usually proposed an operator, which was not part of
the list of allowed operators. We show the frequency of occurrences for such invalid-operators
in Figure 2, represented by the right-most operator. Mistral-7B, exhibits the highest frequency of
invalid-operator across all LLMs.

HYPOTHESIS 2: THE BIAS OF LLMS NEGATIVELY IMPACTS FEATURE ENGINEERING.

Figure 3 and Table 3 present the predictive accuracy of the features engineered with each LLM and
OpenFE. We present raw results per dataset in Appendix F.

The results demonstrate the negative impact of the bias on the quality of the generated features. The
two big frontier models, which are more biased toward simple operators, perform worse on average.
While the two small open-source models improve performance, but still perform worse than OpenFE.

5



Table 2: Operators Making Up 90% of the Total Distribution. We show the set of operators that
make up 90% of the frequency distribution. OpenFE and both small open-source models require 10
operators to obtain 90% while GPT-4o-mini takes only 5.

Model Operators Count Cumulative Frequency (in %)

OpenFE groupbythenrank, subtract, divide, add 10 90.40
combinethenf.e., multiply, max,
combine, min, frequencyencoding

GPT-4o-mini multiply, add, combine, divide, subtract 5 93.63
Gemini-1.5-flash divide, subtract, combine, groupbythenmean, 7 91.68

combinethenf.e., groupbythenstd, absolute
Llama3.1-8B groupbythenmean, subtract, multiply, add, 10 91.62

divide, log,groupbythenmax, max,
combinethenf.e., absolute

Mistral-7B-v0.3 groupbythenmean, subtract, divide, 10 91.23
add, groupbythenrank, log, frequencyencoding,
combinethenf.e., multiply, invalid-operator

Figure 3: Relative Improvements of Feature Engineering. We visualize the distribution of relative
improvements using boxplots for OpenFE and each LLM. We compute improvement relative to
a LightGBM classifier trained only on the original dataset (red horizontal line). A higher relative
improvement indicates that the performance of LightGBM improved when training on the original
data plus the new features generated by OpenFE or an LLM. OpenFE improves the performance on
most datasets and has the highest median relative improvement, as shown by the black horizontal line
in the box. In contrast, Gemini-1.5-flash rarely improves the performance.

Table 3: Predictive Performance Improvement With Feature Engineering. We show the number
of datasets with improvements and the average relative improvement for OpenFE and each LLM.

Method/Model Improvements Average Relative Improvement (in %)

OpenFE 21/27 +0.638
GPT-4o-mini 10/27 −0.507
Gemini-1.5-flash 6/27 −1.161
Llama3.1-8b 16/27 +0.165
Mistral-7b-v0.3 14/27 +0.164

6



Figure 4: Frequency of Feature Engineering Operators for Random Search with LLMs. Distribu-
tion over the frequency of feature engineering operators when simulating random search by masking
the operators’ names in the prompt. The frequency denotes how often an operator was used to create
a new feature across all datasets, folds, and repetitions for GPT-4o-mini, Gemini-1.5-flash, Llama3.1
8B, and Mistral 7B. Compared to Figure 2, the distribution for all models exhibits a significantly
higher degree of uniformity, and the previously observed bias toward simple operators does not
manifest. Notably, Mistral 7B has again the highest selection frequency of invalid operator labels.

ADDITIONAL EXPERIMENT. RANDOM FEATURE ENGINEERING WITH LARGE LAN-
GUAGE MODELS.

We additionally investigate whether our prompt template influenced our results. Therefore, we adapt
our prompt template to mirror a random search. That is, we force an LLM to generate new features by
randomly selecting the most appropriate operator. To this end, we employed the same experimental
setup as our primary experiments. However, we masked the actual names of the operators in the
instructions prompt. Each operator is assigned a numeric label, which the LLM selects. Subsequently,
these numeric labels are mapped back to the names of the corresponding operators. Notably, we
again shuffle the order of operators five times.

Figure 4 shows the distribution over the frequency of operators with LLM-based random search for
feature engineering. We observe that all models exhibit a significantly higher degree of uniformity
compared to Figure 2. Yet, we do not observe total uniformity as expected for a random search, which
aligns with observations for LLMs by Hopkins et al. [2023]. Moreover, the previously observed bias
toward simple operators does not manifest anymore. This is particularly visible for GPT-4o-mini.
Mistral 7B has again the highest selection frequency of invalid operator labels, i.e., fails to follow the
prompt’s instructions. We conclude that our prompt template did not cause the bias toward simple
operators. Instead, the content of the prompt, in combination with the LLM, causes the bias.

6 Conclusion

In this work, we propose a method to evaluate whether large language models (LLMs) are biased
when used for feature engineering for tabular data. Our method detects a bias based on anomalies in
the frequency of operators used to engineer new features (e.g., Add). In our experiments, we evaluated
the bias of four LLMs. Our results reveal a bias towards simpler operators when engineering new
features with LLMs. Moreover, this bias seems to negatively impact the predictive performance when
using features generated by an LLM.

In conclusion, the contributions of our work are a method to detect bias in LLMs and evidence that a
bias toward simple operators exists. Future work should explore methods to circumvent this bias.
Promising methods are in-context learning (e.g., prompt tuning) or fine-tuning the LLM to favor
optimal operators. In the long term, after identifying and addressing biases in LLMs, we can fully
liberate ourselves from manual feature engineering. This will allow us to leverage LLMs as reliable
and efficient automated data science agents for tabular data.

7



Acknowledgments

We acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) under SFB 1597 (SmallData), grant number 499552394. This research was funded by
the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under grant number
417962828. Frank Hutter acknowledges the financial support of the Hector Foundation. Finally, we
thank the reviewers for their constructive feedback and contribution to improving the paper.

References
Yejin Bang, Delong Chen, Nayeon Lee, and Pascale Fung. Measuring political bias in large language

models: What is said and how it is said. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar,
editors, Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, pages 11142–11159.
Association for Computational Linguistics, 2024. URL https://aclanthology.org/2024.
acl-long.600.

Robson P Bonidia, Anderson P Avila Santos, Breno LS de Almeida, Peter F Stadler, Ulisses N
da Rocha, Danilo S Sanches, and André CPLF de Carvalho. Bioautoml: automated feature
engineering and metalearning to predict noncoding rnas in bacteria. Briefings in Bioinformatics,
23(4):bbac218, 2022.

Sebastian Bordt, Harsha Nori, and Rich Caruana. Elephants Never Forget: Testing Language Models
for Memorization of Tabular Data, March 2024. URL http://arxiv.org/abs/2403.06644.
arXiv:2403.06644 [cs].

Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and Gjergji
Kasneci. Deep neural networks and tabular data: A survey. IEEE transactions on neural networks
and learning systems, 2022a.

Vadim Borisov, Kathrin Seßler, Tobias Leemann, Martin Pawelczyk, and Gjergji Kasneci. Language
models are realistic tabular data generators. arXiv preprint arXiv:2210.06280, 2022b.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng
Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica. Chatbot arena:
An open platform for evaluating llms by human preference, 2024.

Xi Fang, Weijie Xu, Fiona Anting Tan, Jiani Zhang, Ziqing Hu, Yanjun Qi, Scott Nickleach, Diego
Socolinsky, Srinivasan Sengamedu, and Christos Faloutsos. Large language models on tabular
data–a survey. arXiv preprint arXiv:2402.17944, 2024.

Isabel O Gallegos, Ryan A Rossi, Joe Barrow, Md Mehrab Tanjim, Sungchul Kim, Franck Dernon-
court, Tong Yu, Ruiyi Zhang, and Nesreen K Ahmed. Bias and fairness in large language models:
A survey. Computational Linguistics, pages 1–79, 2024.

Josh Gardner, Juan C Perdomo, and Ludwig Schmidt. Large scale transfer learning for tabular data
via language modeling. arXiv preprint arXiv:2406.12031, 2024.

Gemini-Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context,
2024.

Akash Ghosh, B Venkata Sahith, Niloy Ganguly, Pawan Goyal, and Mayank Singh. How robust
are the tabular qa models for scientific tables? a study using customized dataset. arXiv preprint
arXiv:2404.00401, 2024.

Pieter Gijsbers, Marcos L. P. Bueno, Stefan Coors, Erin LeDell, Sébastien Poirier, Janek Thomas,
Bernd Bischl, and Joaquin Vanschoren. AMLB: an AutoML Benchmark. Journal of Machine Learn-
ing Research, 25(101):1–65, 2024. URL http://jmlr.org/papers/v25/22-0493.html.

Jorge Osés Grijalba, L Alfonso Urena Lopez, Eugenio Martínez-Cámara, and Jose Camacho-Collados.
Question answering over tabular data with databench: A large-scale empirical evaluation of llms. In
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024), pages 13471–13488, 2024.

8

https://aclanthology.org/2024.acl-long.600
https://aclanthology.org/2024.acl-long.600
http://arxiv.org/abs/2403.06644
http://jmlr.org/papers/v25/22-0493.html


Muhammad Usman Hadi, Qasem Al Tashi, Abbas Shah, Rizwan Qureshi, Amgad Muneer, Muham-
mad Irfan, Anas Zafar, Muhammad Bilal Shaikh, Naveed Akhtar, Jia Wu, et al. Large language
models: a comprehensive survey of its applications, challenges, limitations, and future prospects.
Authorea Preprints, 2024.

Sungwon Han, Jinsung Yoon, Sercan O Arik, and Tomas Pfister. Large language models can
automatically engineer features for few-shot tabular learning. arXiv preprint arXiv:2404.09491,
2024.

Robert Hatch. [automl grand prix] 2nd place solution, 2024. URL https://www.kaggle.com/
competitions/playground-series-s4e9/discussion/532028.

Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and David
Sontag. Tabllm: Few-shot classification of tabular data with large language models. In International
Conference on Artificial Intelligence and Statistics, pages 5549–5581. PMLR, 2023.

Yoichi Hirose, Kento Uchida, and Shinichi Shirakawa. Fine-tuning llms for automated feature
engineering. In AutoML Conference 2024 (Workshop Track), 2024.

Noah Hollmann, Samuel Müller, and Frank Hutter. Large Language Models for Automated
Data Science: Introducing CAAFE for Context-Aware Automated Feature Engineering. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in
Neural Information Processing Systems, volume 36, pages 44753–44775. Curran Associates,
Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
8c2df4c35cdbee764ebb9e9d0acd5197-Paper-Conference.pdf.

Noah Hollmann, Samuel Müller, and Frank Hutter. Large language models for automated data
science: Introducing caafe for context-aware automated feature engineering. Advances in Neural
Information Processing Systems, 36, 2024.

Aspen K Hopkins, Alex Renda, and Michael Carbin. Can llms generate random numbers? evaluating
llm sampling in controlled domains. In ICML 2023 Workshop: Sampling and Optimization in
Discrete Space, 2023.

Franziska Horn, Robert Pack, and Michael Rieger. The autofeat python library for automated
feature engineering and selection. In Machine Learning and Knowledge Discovery in Databases:
International Workshops of ECML PKDD 2019, Würzburg, Germany, September 16–20, 2019,
Proceedings, Part I, pages 111–120. Springer, 2020.

Daniel P Jeong, Zachary C Lipton, and Pradeep Ravikumar. Llm-select: Feature selection with large
language models. arXiv preprint arXiv:2407.02694, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.org/
abs/2310.06825.

Jean Kaddour, Joshua Harris, Maximilian Mozes, Herbie Bradley, Roberta Raileanu, and Robert
McHardy. Challenges and applications of large language models. arXiv preprint arXiv:2307.10169,
2023.

James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: Towards automating data
science endeavors. In 2015 IEEE international conference on data science and advanced analytics
(DSAA), pages 1–10. IEEE, 2015.

Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna Dementieva, Frank
Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke Hüllermeier, et al. Chatgpt for good?
on opportunities and challenges of large language models for education. Learning and individual
differences, 103:102274, 2023.

9

https://www.kaggle.com/competitions/playground-series-s4e9/discussion/532028
https://www.kaggle.com/competitions/playground-series-s4e9/discussion/532028
https://proceedings.neurips.cc/paper_files/paper/2023/file/8c2df4c35cdbee764ebb9e9d0acd5197-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/8c2df4c35cdbee764ebb9e9d0acd5197-Paper-Conference.pdf
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825


Gilad Katz, Eui Chul Richard Shin, and Dawn Song. ExploreKit: Automatic Feature Generation and
Selection. In 2016 IEEE 16th International Conference on Data Mining (ICDM), pages 979–984,
Barcelona, Spain, December 2016. IEEE. ISBN 978-1-5090-5473-2. doi: 10.1109/ICDM.2016.
0123. URL http://ieeexplore.ieee.org/document/7837936/.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei
Ye, and Tie-Yan Liu. LightGBM: A Highly Efficient Gradient Boosting Decision
Tree. In Advances in Neural Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://papers.nips.cc/paper_files/paper/2017/hash/
6449f44a102fde848669bdd9eb6b76fa-Abstract.html.

Hadas Kotek, Rikker Dockum, and David Sun. Gender bias and stereotypes in large language models.
In Proceedings of the ACM collective intelligence conference, pages 12–24, 2023.

Liyao Li, Haobo Wang, Liangyu Zha, Qingyi Huang, Sai Wu, Gang Chen, and Junbo Zhao. Learning
a data-driven policy network for pre-training automated feature engineering. In The Eleventh
International Conference on Learning Representations, 2023.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
solve inherently serial problems. arXiv preprint arXiv:2402.12875, 2024.

Weixin Liang, Zachary Izzo, Yaohui Zhang, Haley Lepp, Hancheng Cao, Xuandong Zhao, Lingjiao
Chen, Haotian Ye, Sheng Liu, Zhi Huang, et al. Monitoring ai-modified content at scale: A
case study on the impact of chatgpt on ai conference peer reviews. In Forty-first International
Conference on Machine Learning, 2024.

Weizheng Lu, Jiaming Zhang, Jing Zhang, and Yueguo Chen. Large language model for table
processing: A survey. arXiv preprint arXiv:2402.05121, 2024.

Simon Malberg, Edoardo Mosca, and Georg Groh. Felix: Automatic and interpretable feature
engineering using llms. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 230–246. Springer, 2024.

Alhassan Mumuni and Fuseini Mumuni. Automated data processing and feature engineering for deep
learning and big data applications: a survey. Journal of Information and Intelligence, 2024.

Jaehyun Nam, Kyuyoung Kim, Seunghyuk Oh, Jihoon Tack, Jaehyung Kim, and Jinwoo Shin.
Optimized Feature Generation for Tabular Data via LLMs with Decision Tree Reasoning, June
2024. URL http://arxiv.org/abs/2406.08527. arXiv:2406.08527 [cs].

Roberto Navigli, Simone Conia, and Björn Ross. Biases in large language models: origins, inventory,
and discussion. ACM Journal of Data and Information Quality, 15(2):1–21, 2023.

OpenAI. Gpt-4 technical report, 2024.

Emmanouil Panagiotou, Arjun Roy, and Eirini Ntoutsi. Synthetic tabular data generation for class
imbalance and fairness: A comparative study. arXiv preprint arXiv:2409.05215, 2024.

Fernando F Prado and Luciano A Digiampietri. A systematic review of automated feature engineering
solutions in machine learning problems. In Proceedings of the XVI Brazilian Symposium on
Information Systems, pages 1–7, 2020.

Yichen Qian, Yongyi He, Rong Zhu, Jintao Huang, Zhijian Ma, Haibin Wang, Yaohua Wang, Xiuyu
Sun, Defu Lian, Bolin Ding, et al. Unidm: A unified framework for data manipulation with large
language models. Proceedings of Machine Learning and Systems, 6:465–482, 2024.

Yucheng Ruan, Xiang Lan, Jingying Ma, Yizhi Dong, Kai He, and Mengling Feng. Language
modeling on tabular data: A survey of foundations, techniques and evolution. arXiv preprint
arXiv:2408.10548, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and Efficient Foundation Language
Models, February 2023. URL http://arxiv.org/abs/2302.13971. arXiv:2302.13971 [cs].

10

http://ieeexplore.ieee.org/document/7837936/
https://papers.nips.cc/paper_files/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
http://arxiv.org/abs/2406.08527
http://arxiv.org/abs/2302.13971


Andrej Tschalzev, Sascha Marton, Stefan Lüdtke, Christian Bartelt, and Heiner Stuckenschmidt. A
data-centric perspective on evaluating machine learning models for tabular data. arXiv preprint
arXiv:2407.02112, 2024.

Caner Türkmen. [automl grand prix] 2nd place solution, team aga, caafe + autogluon-
best w dynamic stacking, 2024. URL https://www.kaggle.com/competitions/
playground-series-s4e8/discussion/524752.

Boris van Breugel and Mihaela van der Schaar. Why tabular foundation models should be a research
priority. arXiv preprint arXiv:2405.01147, 2024.

Boris van Breugel, Jonathan Crabbé, Rob Davis, and Mihaela van der Schaar. Latable: Towards large
tabular models. arXiv preprint arXiv:2406.17673, 2024.

J. Vanschoren, J. van Rijn, B. Bischl, and L. Torgo. OpenML: Networked science in machine learning.
15(2):49–60, 2014.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models,
January 2023. URL http://arxiv.org/abs/2201.11903. arXiv:2201.11903 [cs].

Xianjie Wu, Jian Yang, Linzheng Chai, Ge Zhang, Jiaheng Liu, Xinrun Du, Di Liang, Daixin Shu,
Xianfu Cheng, Tianzhen Sun, et al. Tablebench: A comprehensive and complex benchmark for
table question answering. arXiv preprint arXiv:2408.09174, 2024.

Tianping Zhang, Zheyu Aqa Zhang, Zhiyuan Fan, Haoyan Luo, Fengyuan Liu, Qian Liu, Wei Cao,
and Li Jian. Openfe: automated feature generation with expert-level performance. In International
Conference on Machine Learning, pages 41880–41901. PMLR, 2023.

Xiaokang Zhang, Jing Zhang, Zeyao Ma, Yang Li, Bohan Zhang, Guanlin Li, Zijun Yao, Kangli Xu,
Jinchang Zhou, Daniel Zhang-Li, et al. Tablellm: Enabling tabular data manipulation by llms in
real office usage scenarios. arXiv preprint arXiv:2403.19318, 2024.

11

https://www.kaggle.com/competitions/playground-series-s4e8/discussion/524752
https://www.kaggle.com/competitions/playground-series-s4e8/discussion/524752
http://arxiv.org/abs/2201.11903


A Full Prompting Specifications

A.1 Prompt Templates

Figure 5 contains the system prompt we used to interact with the LLM during feature engineering.
Figure 6 contains an example instruction prompt for the blood-transfusion-service-center dataset.
First we include a list of statistical values describing each feature. Secondly, a list of all allowed
operators as defined in B is passed with a description for whether the operator is a binary operator
and thus applicable to two features at a time or unary, only applicable to one feature. Finally, we will
give strict formatting instructions for the expected output of the LLM. We demand that each newly
proposed feature contain four elements. First, we require reasoning as to why the given feature was
selected. Second, we require a combination of exactly one operator and one or two existing features
(depending on whether the chosen operator is a unary or a binary operator). Finally, we request a
name for the new feature and a short description of its contents in the context of the dataset.

You are an expert data scientist performing effective feature engineering on a dataset. You will get
a short description of every feature in the dataset. This description will contain some statistical
information about each feature.
Example of the information you will get about a feature: Feature 1: Type: int64, Feature size: 100,
Number of values: 100, Number of distinct values: 100, Number of missing values: 0, Max: 100,
Min: 0, Mean: 50, Variance: 100, Name: name. Sample: First couple of rows of the dataset.
If some value carries the value EMPTY, it means that this value is not applicable for this feature.
You are also provided a list of operators. There are unary and binary operators. Unary operators take
one feature as input and binary operators take two features as input.
Example of the information you will get about an operator: Operator: SomeOperator, Type: Binary
You are now asked to generate a new feature using the information from the features and the
information from the operators as well as your own understanding of the dataset and the given domain.
There will be an example of how your response should look like. You will only answer following this
example. Your response will containing nothing else. You are only allowed to select operators from
the list of operators and features from the list of features. Your are only allowed to generate one new
feature. Your newly generated feature will then be added to the dataset.

Figure 5: Our System Prompt. The contents of the full system prompt, which is send to the LLM
before the instructions to generate new features for a given dataset.

A.2 Feedback Loop

We additionally employ a feedback loop to supply the LLM with additional knowledge about its
generated features, similar to CAAFE [Hollmann et al., 2023]. After the LLM proposes a feature,
the new feature is manually computed by applying the requested operator to the respective features.
Before a feature is added to the dataset, we test whether it yields improvements in ROC AUC on the
given dataset to prevent the addition of noisy features. Each proposed feature is added to the dataset,
and 10-fold cross-validation is conducted using LightGBM [Ke et al., 2017]. When compare the
average ROC AUC score to the average ROC AUC scores over the dataset without the new feature.
The new feature is subsequently only added to the dataset if it improves the average ROC AUC score.
In the next feature generation request, the user prompt additionally contains information about the
previous feature, including its name, description, reasoning, and the actual transformation request
from the prior round. We also pass the change in ROC AUC score that the last feature yielded in
comparison to the dataset without the new feature.

B List of Operator and their Categories

See Tables 4 and 5 for an overview of operators used in our study.

C Datasets

See Table 6 for an overview of all dataset used in our study.

12



Feature 1: Type: int64, Feature size: 673, Number of values: 673, Number of distinct values: 30,
Number of missing values: 0, Max: 74, Min: 0, Mean: 9.543, Variance: 67.016, Name: V1
Feature 2: Type: int64, Feature size: 673, Number of values: 673, Number of distinct values: 33,
Number of missing values: 0, Max: 50, Min: 1, Mean: 5.558, Variance: 35.916, Name: V2
Feature 3: Type: int64, Feature size: 673, Number of values: 673, Number of distinct values: 33,
Number of missing values: 0, Max: 12500, Min: 250, Mean: 1389.673, Variance: 2244785.309,
Name: V3
Feature 4: Type: int64, Feature size: 673, Number of values: 673, Number of distinct values: 77,
Number of missing values: 0, Max: 98, Min: 2, Mean: 34.358, Variance: 599.813, Name: V4
Operator: FrequencyEncoding, Type: Unary
Operator: Absolute, Type: Unary
Operator: Log, Type: Unary
Operator: SquareRoot, Type: Unary
Operator: Sigmoid, Type: Unary
Operator: Round, Type: Unary
Operator: Residual, Type: Unary
Operator: Min, Type: Binary
Operator: Max, Type: Binary
Operator: Add, Type: Binary
Operator: Subtract, Type: Binary
Operator: Multiply, Type: Binary
Operator: Divide, Type: Binary
Operator: Combine, Type: Binary
Operator: CombineThenFrequencyEncoding, Type: Binary
Operator: GroupByThenMin, Type: Binary
Operator: GroupByThenMax, Type: Binary
Operator: GroupByThenMean, Type: Binary
Operator: GroupByThenMedian, Type: Binary
Operator: GroupByThenStd, Type: Binary
Operator: GroupByThenRank, Type: Binary
Here is an example of how your return will look like. Suppose you want to apply operator A to
Feature X and Feature Y. Even if you know the names of features X and Y you will only call them
by their indices provided to you. You will not call them by their actual names. You will return
the following and nothing else: REASONING: Your reasoning why you generated that feature.;
FEATURE: A(X, Y); NAME: name; DESCRIPTION: This is the feature called name. This feature
represents ... information.

Figure 6: Our Instruction Prompt. The contents of the instruction prompt on the example of the
blood-transfusion-service-center dataset. This prompt is send every time the LLM is instructed to
generate a feature for a given dataset. The order of operators is shuffled according to the explanations
in Section 4.

D Large Language Models

See Table 7 for an overview of the specific model versions used in this study.

E Memorization Test Results

To mitigate the risk of dataset-specific bias, we conduct memorization tests [Bordt et al., 2024] before
our experiment. From the forms proposed Bordt et al. [2024] for dataset understanding by a large
language model (LLM), we consider actual memorization of the dataset to be most influential to our
evaluation. Therefore, we employ the tests that evaluate the level to which extend a LLM memorizes
a given datasets. These tests include a (1) row completion test, (2) feature completion test, and (3)
first token test. Each test prompts a given LLM with 25 different samples from the dataset. We
consider a success rate of 50% on at least one test as an indicator of memorization. If one of the four
different used language models implied signs of memorization, the tests where not further conducted
for the other remaining models. Table 8 and Table 9 present the results for the memorization tests for
all initial datasets on all four models.

13



Table 4: Simple Operators.

Operators

abs
log
sqrt
round
min
max
add

subtract
multiply
divide

Table 5: Complex Operators.

Operators

residual
sigmoid

frequencyencoding
groupbythenmin
groupbythenmax
groupbythenmean

groupbythenmedian
groupbythenstd
groupbythenrank

combine
combinethenfrequencyencoding

F Predictive Accuracy Results

See Table 10 to see the average ROC AUC scores for all folds for all datasets for each method.

14



Table 6: Benchmark Datasets The table contains all datasets from the AutoML benchmark [Gijsbers
et al., 2024] that we used in our experiments. We selected dataset based on our constraints defined in
Section 4. All datasets listed in this Table were tested for memorization of the LLMs.

Datastet ID Dataset Features Samples Classes

190411 ada 49 4147 2
359983 adult 15 48842 2
359979 amazon_employee_access 10 32769 2
146818 australian 15 690 2
359982 bank-marketing 17 45211 2
359955 blood-transfusion-service-center 5 748 2
359960 car 7 1728 4
359968 churn 21 5000 2
359992 click_prediction_small 12 39948 2
359959 cmc 10 1473 3
359977 connect-4 43 67557 2
168757 credit-g 21 1000 2
359954 eucalyptus 20 736 5
359969 first-order-theorem-proving 52 6118 6
359970 gesturephasesegmentationprocessed 33 9873 5
211979 jannis 55 83733 4
359981 jungle_chess_2pcs_raw_endgame_complete 7 44819 3
359962 kc1 22 2109 2
359991 kick 33 72983 2
359965 kr-vs-kp 37 3196 2
167120 numerai28.6 22 96320 2
359993 okcupid-stem 20 50789 3
190137 ozone-level.8hr 73 2534 2
359958 pc4 38 1458 2
359971 phishingwebsites 31 11055 2
168350 phoneme 6 5404 2
359956 qsar-biodeg 42 1055 2
359975 satellite 37 5100 2
359963 segment 20 2310 7
359987 shuttle 10 58000 7
168784 steel-plates-fault 28 1941 7
359972 sylvine 21 5124 2
190146 vehicle 19 846 4
146820 wilt 6 4839 2
359974 wine-quality-white 12 4898 7

Table 7: Model API Versions. The full model versions as specified by the respective API provider.

Model Model Version

gpt-4o-mini gpt-4o-mini-2024-07-18
gemini-1.5-flash gemini-1.5-flash-001
llama3.1-8b Meta-Llama-3.1-8B-Instruct-Turbo (FP8 Quantization)
mistral7b-v0.3 Mistral-7B-Instruct-v0.3 (FP16 Quantization)

15



Table 8: Memorization Tests Results GPT and Llama. We present the results of all three memo-
rization tests [Bordt et al., 2024], (1) row completion test (r.c.), (2) feature completion test (f.c.) and
first token test (f.t.) for gpt-4o-mini and llama3.1-8b. For each dataset and each test, the number of
runs which imply signs of memorization are listed. Each test ran 25 tries per dataset. Sometimes, the
LLM failed to match the expected outcome sequences required by the tests (noted as -). If a prior
language model exhibited signs of memorization for a dataset, the tests were not further conducted
for subsequent models (noted as X)

Dataset gpt4-r.c. gpt4-f.c. gpt4-f.t. llama3.1-r.c. llama3.1-f.c. llama3.1-f.t.

ada 0/25 0/25 - 0/25 0/25 -
adult 0/25 0/25 8/25 0/25 0/25 3/25
amazon_employee_access 0/25 0/25 6/25 0/25 0/25 5/25
australian 0/25 0/25 4/25 0/25 0/25 4/25
bank-marketing 0/25 0/25 11/25 0/25 2/25 5/25
blood-transfusion... 2/25 1/25 15/25 X X X
car 23/25 6/25 25/25 X X X
churn 0/25 0/25 4/25 0/25 0/25 3/25
click_prediction_small 0/25 0/25 - 0/25 1/25 -
cmc 0/25 0/25 13/25 X X X
connect-4 0/25 5/25 - 0/25 5/25 -
credit-g 0/25 0/25 8/25 0/25 0/25 5/25
eucalyptus 0/25 0/25 - 0/25 0/25 -
first-order-theorem-proving 0/25 0/25 - 0/25 0/25 6/25
gesturephase... 0/25 0/25 - 0/25 0/25 -
jannis 0/25 0/25 10/25 0/25 0/25 8/25
jungle_chess... 20/25 1/25 - X X X
kc1 7/25 1/25 7/25 1/25 3/25 10/25
kick 0/25 0/25 - 0/25 0/25 -
kr-vs-kp 0/25 0/25 - 0/25 0/25 -
numerai28.6 0/25 0/25 1/25 0/25 0/25 1/25
okcupid-stem 0/25 - 10/25 0/25 - 12/25
ozone-level.8hr 0/25 0/25 - 0/25 0/25 12/25
pc4 0/25 3/25 7/25 0/25 0/25 5/25
phishingwebsites 0/25 1/25 - 0/25 1/25 -
phoneme 0/25 0/25 5/25 0/25 0/25 5/25
qsar-biodeg 0/25 0/25 1/25 0/25 0/25 3/25
satellite 0/25 1/25 - 0/25 2/25 -
segment 0/25 0/25 - 0/25 1/25 -
shuttle 0/25 0/25 9/25 0/25 4/25 8/25
steel-plates-fault 0/25 2/25 14/25 X X X
sylvine 0/25 0/25 7/25 0/25 0/25 -
vehicle 0/25 0/25 8/25 0/25 0/25 7/25
wilt 0/25 0/25 9/25 0/25 0/25 8/25
wine-quality-white 0/25 0/25 14/25 X X X
yeast 0/25 1/25 5/25 0/25 2/25 4/25

16



Table 9: Memorization Tests Results Mistrial and Gemini. We present the results of all three
memorization tests [Bordt et al., 2024], (1) row completion test (r.c.), (2) feature completion test
(f.c.) and first token test (f.t.) for mistral7b-v0.3 and gemini-1.5-flash. For each dataset and each test
the number of runs which imply signs of memorization are listed. Each test ran 25 tries per dataset.
Sometimes, the LLM failed to match the expected outcome sequences required by the tests (noted as
-). If a prior language model exhibited signs of memorization for a dataset, the tests were not further
conducted for subsequent models (noted as X)

Dataset mistral7b-r.c. mistral7b-f.c. mistral7b-f.t. gemini1.5-r.c. gemini1.5-f.c. gemini1.5-f.t.

ada 0/25 0/25 - 0/25 0/25 -
adult 0/25 0/25 0/25 0/25 0/25 4/25
amazon_employee_access 0/25 0/25 0/25 0/25 0/25 5/25
australian 0/25 0/25 0/25 0/25 0/25 8/25
bank-marketing 0/25 0/25 0/25 0/25 0/25 10/25
blood-transfusion... X X X X X X
car X X X X X X
churn 0/25 0/25 0/25 0/25 - 7/25
click_prediction_small 0/25 0/25 - 0/25 0/25 -
cmc X X X X X X
connect-4 0/25 2/25 - 0/25 2/25 -
credit-g 0/25 0/25 0/25 0/25 0/25 8/25
eucalyptus 0/25 0/25 - - 0/25 -
first-order-theorem-proving - 0/25 - 0/25 0/25 -
gesturephase... 0/25 - - 0/25 0/25 -
jannis - - - 0/25 0/25 12/25
jungle_chess... X X X X X X
kc1 0/25 - 0/25 1/25 9/25 11/25
kick 0/25 - - 0/25 0/25 -
kr-vs-kp 0/25 - - 1/25 0/25 -
numerai28.6 - - - 0/25 0/25 0/25
okcupid-stem 0/25 - 0/25 - - 7/25
ozone-level.8hr - - - 0/25 0/25 13/25
pc4 0/25 - 0/25 0/25 4/25 14/25
phishingwebsites 0/25 - - 0/25 0/25 -
phoneme 0/25 - 0/25 0/25 0/25 2/25
qsar-biodeg 0/25 - 0/25 0/25 0/25 3/25
satellite 0/25 - - 0/25 6/25 -
segment 0/25 - - 0/25 1/25 -
shuttle 0/25 - 0/25 0/25 1/25 8/25
steel-plates-fault X X X X X X
sylvine 0/25 - - 0/25 0/25 11/25
vehicle 0/25 - 0/25 0/25 0/25 10/25
wilt 0/25 - 0/25 0/25 0/25 6/25
wine-quality-white X X X X X X
yeast 0/25 - 0/25 0/25 0/25 6/25

17



Table 10: Predictive Performance of Feature Engineering. We show the average and standard
deviation of the ROC AUC scores for all folds for all datasets. Base represents the baseline score
without feature engineering. The scores for the four large language models additionally contain the
average over all 5 shuffles of operator order in the instructions prompt. For each fold the respective
method generated 20 new features. Features were only added to the method if it improved the
feedback scores described in A.

Dataset Base OpenFE GPT-4o-mini Gemini-1.5-flash Llama3.1-8B Mistral7B-v0.3

ada 0.912± .016 0.910± .019 0.910± .019 0.904± .019 0.911± .017 0.911± .017
adult 0.929± .004 0.931± .004 0.929± .004 0.921± .013 0.929± .004 0.929± .004
amazon_employee_access 0.822± .018 0.825± .017 0.776± .038 0.820± .024 0.823± .019 0.825± .017
australian 0.933± .025 0.932± .021 0.929± .027 0.927± .019 0.930± .023 0.931± .028
bank_marketing 0.935± .007 0.939± .006 0.935± .007 0.934± .007 0.935± .007 0.935± .007
churn 0.923± .028 0.924± .018 0.926± .023 0.920± .026 0.924± .025 0.924± .026
click_prediction_small 0.607± .014 0.607± .022 0.602± .019 0.594± .016 0.603± .017 0.600± .018
connect-4 0.876± .004 0.886± .004 0.876± .004 0.876± .004 0.876± .004 0.876± .004
credit-g 0.767± .042 0.762± .043 0.770± .034 0.775± .040 0.769± .044 0.773± .039
eucalyptus 0.780± .035 0.780± .032 0.778± .034 0.833± .000 0.779± .037 0.780± .036
first-order-theorem-proving 0.824± .012 0.824± .009 0.825± .012 0.820± .017 0.824± .013 0.825± .011
gesturephasesegmentationprocessed 0.888± .009 0.892± .011 0.863± .027 0.781± .055 0.874± .044 0.887± .017
jannis 0.851± .004 0.856± .004 0.843± .014 0.790± .068 0.851± .004 0.846± .017
kc1 0.789± .039 0.798± .041 0.791± .038 0.792± .039 0.790± .040 0.791± .034
kick 0.770± .009 0.771± .008 0.770± .009 0.770± .010 0.771± .008 0.771± .009
kr-vs-kp 1.000± .000 1.000± .000 1.000± .000 1.000± .000 1.000± .000 1.000± .000
numerai28.6 0.523± .003 0.523± .003 0.519± .006 0.509± .010 0.520± .006 0.522± .003
okcupid-stem 0.839± .003 0.845± .004 0.844± .005 0.844± .005 0.841± .007 0.845± .005
phishingwebsites 0.996± .001 0.997± .001 0.996± .001 0.996± .001 0.996± .001 0.996± .001
phnome 0.956± .009 0.959± .011 0.944± .017 0.890± .039 0.954± .016 0.954± .015
qsar-biodeg 0.925± .044 0.929± .040 0.925± .042 0.923± .041 0.926± .042 0.926± .044
satellite 0.987± .014 0.992± .008 0.990± .010 0.988± .014 0.985± .024 0.988± .014
segment 0.996± .002 0.996± .002 0.996± .002 0.991± .003 0.996± .002 0.996± .002
shuttle 0.589± .054 0.646± .060 0.602± .061 0.605± .054 0.629± .057 0.614± .063
sylvine 0.986± .004 0.993± .003 0.984± .006 0.968± .01 0.986± .004 0.986± .004
vehicle 0.933± .013 0.942± .018 0.932± .016 0.925± .022 0.932± .018 0.932± .014
wilt 0.990± .013 0.994± .005 0.990± .012 0.990± .011 0.992± .008 0.992± .010

18


	Introduction
	Related Work
	Method: Analyzing Feature Engineering Bias
	Experiments
	Results
	Conclusion
	Full Prompting Specifications
	Prompt Templates
	Feedback Loop

	List of Operator and their Categories
	Datasets
	Large Language Models
	Memorization Test Results
	Predictive Accuracy Results

