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Abstract

Although gradient descent with momentum is widely used in modern deep learning,
a concrete understanding of its effects on the training trajectory still remains elusive.
In this work, we empirically show that momentum gradient descent with a large
learning rate and learning rate warmup displays large catapults, driving the iterates
towards flatter minima than those found by gradient descent. We then provide
empirical evidence and theoretical intuition that the large catapult is caused by
momentum “amplifying” the self-stabilization effect (Damian et al., 2023).

1 Introduction

Momentum and learning rate warmups are the most widely used and crucial components for training
modern deep neural networks (Goyal et al., 2017; Sutskever et al., 2013). Yet, our understanding of
why they work separately, let alone together, is still lacking. Throughout the paper, for a loss function
f(w), we consider Polyak’s heavy-ball momentum (PHB) method given as follows, and from here
on, we refer to Polyak’s momentum simply as momentum:

wt+1 = wt − ηt∇f(wt) + β(wt −wt−1). (1)

For momentum, we are not even sure yet why and when it accelerates (stochastic) gradient descent (Fu
et al., 2023b; Goh, 2017), and perhaps more importantly, how it changes the implicit bias and thus
the resulting model’s generalization capability (Ghosh et al., 2023; Jelassi and Li, 2022; Wang et al.,
2022a, 2023). For learning rate warmup, some works show that the warmup effectively performs
variance reduction (Gotmare et al., 2019; Liu et al., 2020), and more recently, in conjunction with the
edge-of-stability phenomena (Cohen et al., 2021, 2022), Gilmer et al. (2022) show that learning rate
warmup acts as preconditioning that helps avoid instabilities that arise from using large learning rate.
We refer the readers to Appendix A for a more thorough review of related literature.
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Figure 1: Experiments following the same setting as Nacson et al. (2022). In (a) and (b), "ℓ1 baseline"
and "ℓ2 baseline" respectively stand for the solution with the minimal ℓ1 norm and the solution with
the minimal ℓ2 norm to the regression problem. We use β = 0.9 for PHB.

In this work, we provide experimental evidence suggesting that momentum combined with learning
rate warmup goes through a very steep sharpness drop, much more than GD with the same warmup.
Thus, this provides an implicit bias effect of driving the iterates towards much flatter minima (Hochre-
iter and Schmidhuber, 1997), compared to GD. We then discuss why and how such phenomena occur
through carefully crafted experimental verifications as well as some theoretical intuitions, inspired by
the self-stabilization of GD (Damian et al., 2023) and catapult mechanism of (S)GD (Lewkowycz
et al., 2020; Meltzer and Liu, 2023; Zhu et al., 2023a).

2 Motivating Example: Linear Diagonal Networks

The linear diagonal network (LDN) is known to be one of the simplest non-linear models that display
rich, non-trivial algorithmic bias (Woodworth et al., 2020) yet is still tractable. Here, we focus on the
depth-2 diagonal linear network given as follows:

f(x;u,v) := ⟨u⊙ u− v ⊙ v,x⟩ = ⟨w,x⟩, x,u,v ∈ Rd, (2)

where x is the input vector, (u,v) is the trainable parameter vector, w := u ⊙ u − v ⊙ v is the
regression parameter vector. This has been rigorously investigated for gradient flow (Pesme and
Flammarion, 2023; Woodworth et al., 2020), stochastic gradient flow (Pesme et al., 2021), and
recently, (S)GD with finite step sizes (Even et al., 2023; Nacson et al., 2022). Woodworth et al.
(2020) proved that for the sparse regression problem where the true w is assumed to be sparse, the
gradient flow for LDN initialized at u0 = v0 = α · 1 converges to the minimum ℓ1-norm solution
when α → 0 and minimum ℓ2-norm solution when α → ∞. Given that the underlying problem has
an intrinsic sparse structure, the minimum ℓ1-norm solution has a better generalization capability.
Later, Nacson et al. (2022) showed that in the finite learning rate regime, gradient descent with a
larger learning rate consistently recovers solutions with smaller test loss, even for initializations with
large α’s, as shown in Figure 1(a).

In this work, we intend to see the implicit bias effect of momentum, and as a motivating example, we
first reconduct the sparse regression experiment of Nacson et al. (2022) with momentum. The training
set is {(xn,yn)}Nn=1 generated as xi ∼ Nd(µ, σ

2I) and yi = ⟨w⋆,xn⟩, where N = 50, σ2 =

5, d = 100,µ = 5 · 1 and w⋆ = (δi≤5/
√
5)i. We initialize u0 = v0 = α · 1, where α ∈ [0, 0.3] is

the initialization scale. For each chosen ηf , we use linear warmup for the first ηf · 106 steps, starting
from ηi = 10−8. For the momentum parameter of PHB, we use β = 0.9.
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(a) Step warmup.
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(b) Terminating the warmup.

Figure 2: Ablations on the learning rate warmup. (a) Step warmup is used instead of linear warmup.
(b) The warmup period is initially set to 5000 iterations, but the warmup is terminated at iteration
2150 around the iteration where the sharpness crosses the MSS.

Over the varying initialization scales α and (final) learning rates ηf , we report the final resulting test
losses in Figure 1. Note how strikingly different the plot is between (a) GD and (b) PHB. Compared
to GD, which displays a rather monotonic relationship between α and test loss (larger α leads to larger
test loss until saturation, as reported in Nacson et al. (2022)), it is clear that PHB has a fundamentally
different behavior from GD in the finite learning rate regime. For PHB, when α becomes larger than
some threshold ᾱ(ηf ) (dependent on ηf ), the test loss sharply drops close to zero. Note that ᾱ(ηf )
appears to be negatively correlated with ηf , that is, ᾱ(ηf ) decreases as ηf increases.

Momentum Induces Larger Catapults. Cohen et al. (2021) show that PHB exhibits unstable
behaviors when the sharpness, defined as λ := λmax(∇2f) exceeds maximum stable sharpness
(MSS) 2(1+β)

η . Indeed, it is known that when the learning rate is sufficiently large such that the
iterates’ sharpness goes above the MSS, then several interesting phenomena such as edge of stability
(EoS) (Cohen et al., 2021) and catapult (Lewkowycz et al., 2020) arise. Throughout this paper, we
refer to catapult as a sharp increase in loss, followed by a decrease that forms a single spike in the
training loss, coupled with a rapid sharpness reduction.

To find the cause for our observed phenomena, we plot sharpness for PHB in Figure 1(e) at α and
η at which the test loss suddenly drops. Note that as the warmup proceeds, the MSS decreases
monotonically, and as soon as the sharpness of the iterates “hits” the MSS curve, it goes through a
rapid sharpness reduction, coupled with a loss spike (Figure 1(f)). The sharpness reduction of PHB is
so drastic that the final sharpness is well below the MSS of the final learning rate. This is in contrast
to GD, which goes through an incremental, step-wise sharpness reduction (Figure 1(c)) with multiple
loss spikes (Figure 1(d)), and the iterates stay just below the MSS corresponding to the final learning
rate at the end; this was also observed in Zhu et al. (2023a). Here, one could make an educated guess
that momentum induces much larger catapults that bias the solution towards flatter minima.

One interesting observation here is that the MSS for PHB is higher than that of GD with the same
learning rate. This implies that the α that causes a catapult for GD may not for PHB, i.e., momentum
does not improve test loss across all settings (e.g., initialization) as shown in Figure 1(b); but, if a
catapult does occur, its reduction of sharpness is much more drastic for PHB than GD.

Role of Linear Learning Rate Warmup. Although we use linear learning rate warmup (henceforth
referred to as “linear warmup”) in our experiments, we emphasize that linear warmup is not necessary
to induce the catapults. We claim that the main criteria for inducing the catapults are (1) for the
iterates to be in a neighborhood of a stable minimum and (2) for the learning rate to increase until the
minimum is unstable (in that the sharpness of the minimum is above the MSS) but not so unstable
that training diverges. Linear warmup satisfies these two criteria by (1) stably moving the iterates
towards a minimum under a low learning rate and (2) automatically finding a suitably large learning
rate (that does not lead to divergence) by gradually increasing the learning rate. However, as long as
the two criteria are met, catapults can be induced without linear warmup.

To show that the specific form of the warmup is not essential in inducing the catapults, we train an
LDN using a step warmup scheduler. We use the learning rate of 10−5 for the first 2000 iterations
and then 0.002355 for the remaining 2000 iterations. Note that under the same learning rate, the MSS
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Figure 3: Experiments using f(x, y) = x2

2y and PHB. Initialization is (0.01, 1), ηi = 2, ηf = 5, and
β = 0.9 for PHB. The purple region is the duration of the learning rate warmup.

of GD and PHB differ by a factor of (1 + β). To keep the comparison fair, the learning rate used
for the PHB experiment is the specified learning rate multiplied by (1 + β) so that the MSS match.
Unless stated otherwise, we do this for every plot that compares GD and PHB. As shown in
Figure 2(a), this setting also induces a catapult despite not using linear warmup. However, it should
be noted that, unlike linear warmup, the final learning rate must be carefully tuned to prevent training
from diverging. To show the effectiveness of the linear warmup in finding the appropriate scale of the
learning rate for inducing catapults, we terminate the warmup as soon as the sharpness crosses the
MSS, even before the prescribed warmup period ends. As shown in Figure 2(b), this is enough to
induce catapults for PHB, supporting our claim that linear warmup has the advantage of “smoothly”
finding a suitable learning rate for inducing catapults.

3 Why Large Catapult? Because Momentum Amplifies Self-Stabilization

Toy Example. To investigate the mechanism behind this phenomenon, we consider an elementary
toy loss function, f(x, y) = x2

2y , restricted to y > 0. Note that the (only) manifold of global minima
is x = 0, and the sharpness decreases as y increases in the y > 0 range. Figure 3 provides the
trajectory plot for GD and PHB as well as the evolution of sharpness along with the MSS for a
specific learning rate setup that induces catapult(s) for both GD and PHB. As with the LDN, GD goes
through step-wise decreases in sharpness, whereas PHB goes through a single steep sharpness drop.
One noteworthy observation is the diverging dynamics in the x-direction (which roughly coincides
with the leading eigendirection close to the minima). Note also that the x-direction is orthogonal to
both the manifold of global minima and the direction of sharpness decrease (positive y-direction).
As such, the sharpness drops occur due to moving in the positive y-direction while diverging in the
x-direction. In the later stage, the dynamics in the x-direction undergoes damped oscillation due to
reduced sharpness at larger y, stabilizing and forcing the dynamics to converge. Appendix C provides
additional experimental results and some theoretical intuitions on the effect of momentum.

Remark 3.1. Here, we provide some justifications on the choice of our toy loss function. The fact that
f has a manifold of global minima is consistent with assumptions used in prior works for analyzing
gradient-based methods seeking flatter minima (Arora et al., 2022; Damian et al., 2021). Also, the
uniqueness of such manifold makes the overall analysis simple, since if there are multiple manifolds
of minima, the trajectory of PHB may display chaotic3 behaviors such as overshooting.

Theoretical Intuitions. The interplay between the movement in the y-direction and the divergence
in the x-direction in the above toy example can be explained through self-stabilization (Damian et al.,
2023). The self-stabilization mechanism consists of four stages: (1) Progressive Sharpening,4 (2)
Blowup, (3) Self-Stabilization, and (4) Return to Stability. In Figure 3, as the MSS decreases below
the sharpness, the weights oscillate wildly in the x-direction (stage 2), followed by movement in
the y-direction which decreases the gradient in the x-direction (stage 3), allowing the iterates to

3Intuitively, each manifold of minima induces a potential field, whose overlap is expected to be quite complex.
4Due to the simplicity of our toy model, progressive sharpening (PS) is not observed, which was also the

case for simple FCN experiments of Zhu et al. (2023a). Cohen et al. (2021) discuss that PS usually happens for
more complex models; indeed, PS is observed in our nonlinear neural network experiments (Section 4).
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(a) FCN trained on the Rank2-400-200 dataset, ηi = 0.02, ηf = 0.6
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(b) ResNet20 trained on a 1k-datapoint subset of CIFAR10, ηi = 0.05, ηf = 0.1

Figure 4: Experiments using a 3-layer FCN and a ResNet20, both trained using MSE loss. The
purple-shaded region represents the prescribed learning rate warmup period.

stabilize and the sharpness to drop below the MSS (stage 4). Note that stages 2–4 constitute a single
catapult. For GD, this process repeats multiple times, resulting in the step-wise decreases in sharpness.
However, unlike GD, PHB displays only one steep decrease in sharpness. This phenomenon can be
attributed to the role of momentum in stages 3 and 4. For PHB, although the dynamics stabilizes once
the sharpness drops below the MSS, momentum prolongs the effect of self-stabilization and continues
to propagate the iterates along the y-direction, resulting in a prolonged decrease in sharpness until
the momentum term decays to zero. In the process, momentum provides extra stabilization in the
x-direction, inducing damped oscillations with respect to the x-axis.5 In Apppendix B, we follow the
self-stabilization analysis of the simple dynamics (Damian et al., 2023) for PHB.

4 Nonlinear Neural Networks

We perform additional experiments on a 3-layer fully connected ReLU network (FCN) with a synthetic
dataset and a ResNet20 with a subset of the CIFAR10 dataset; full experimental details are deferred to
Appendix D.2. As shown in Figure 4, PHB displays a catapult behavior in nonlinear networks similar
to our previous experiments. Notably, the sharpness of GD remains close to the MSS throughout
training, going through edge-of-stability (Cohen et al., 2021) and highly unstable training. In contrast,
the sharpness of PHB displays a large catapult, resulting in the final sharpness stabilizing well below
the MSS, i.e., PHB displays a much more stable training, with the instabilities only appearing during
the short catapult phases. Additional ablations and experiments can be found in Appendix D.
Remark 4.1. We are not claiming that flatter minima necessarily lead to better generalization, and
in fact, some “counterexamples” have been recently proposed (Andriushchenko et al., 2023; Dinh
et al., 2017; Even et al., 2023). Instead, we solely focus on the effect of momentum and learning rate
warmup on how sharpness changes throughout training.

5 Conclusions and Future Works

In this paper, we empirically observe that PHB with large learning rate and linear learning rate
warmup induce large catapults, resulting in a much larger sharpness reduction than that of GD. We
then provide empirical evidence on a toy example and theoretical intuition that the large catapult is
due to the momentum amplifying the self-stabilization effect (Damian et al., 2023). One immediate
and important future direction is to theoretically analyze these newly reported phenomena.

5reminiscent of interpreting momentum as a mass-spring-damper system (Muehlebach and Jordan, 2021).
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A Further Related Works

A.1 Undertanding the Role of Momentum in Generalization

Closely related works are Ghosh et al. (2023); Jelassi and Li (2022), which also consider the positive
effects of momentum for nonlinear neural networks. Jelassi and Li (2022) prove that a binary
classification setting exists where PHB provably generalizes better than GD for a one-hidden-layer
convolutional network. Ghosh et al. (2023) derive an implicit gradient regularizer (Barrett and Dherin,
2021) for PHB that biases the solution towards flatter minima, and they showed that the regularizer
term is strengthened by 1

1−β times compared to GD.

A.2 Edge of Stability

The first work to systemically report the phenomena of progressive sharpening (PS) and the edge
of stability (EoS) is Cohen et al. (2021), in which the authors consistently observed PS and EoS
across various modern neural networks. PS is the phenomenon of the sharpness increasing til
MSS, when we run GD(m) with a learning rate below MSS. This is followed by EoS, which is the
phenomenon in which, instead of diverging as predicted by classical convex optimization theory,
the loss decreases non-monotonically and displays an oscillatory behavior. At the same time, the
sharpness also oscillates around the MSS, indicating that as long as the sharpness does not diverge too
far from the MSS, the sharpness will force itself to remain close to the MSS. Much works have been
devoted to theoretical analyses of PS and EoS (Ahn et al., 2022, 2023; Arora et al., 2022; Damian
et al., 2023; Song and Yun, 2023; Wang et al., 2022b; Zhu et al., 2023b) as well as their systematic
empirical analyses (Cohen et al., 2021, 2022; Gilmer et al., 2022). There are also works explaining
the effect of optimization tricks by considering their interaction with EoS (Fu et al., 2023a; Gilmer
et al., 2022).

A.3 Catapults in (S)GD

Lewkowycz et al. (2020) show that GD with large learning rates can induce catapults which results
in momentary spikes in training loss but also results in lower sharpness. The theoretical analysis
in Lewkowycz et al. (2020) focuses on the network function f = d−1/2uTv, where u,v ∈ Rd.
Meltzer and Liu (2023) extend this work by theoretically deriving sufficient conditions for catapults in
quadratic nets. Zhu et al. (2023a) study the loss spikes that occur during the catapults by decomposing
the loss into components corresponding to different eigenspaces of the NTK. They observe that
the loss spikes occur in the top eigenspace of the NTK while the loss components corresponding
to lower eigenspaces are not affected, resulting in the loss quickly decreasing after the catapults.
They also show that catapults improve generalization through feature learning and quantitatively
measure this using average gradient outer product (AGOP) alignment and that learning rate warmup
can induce multiple catapults. Despite an abundance of works on the catapult mechanism, to the best
of our knowledge, we are the first to report the substantial differences in the catapult mechanism and
sharpness reduction between GD and PHB (in the presence of learning rate warmup).

B Self-Stabilization of PHB for Simplified Dynamics

We follow the theoretical intuition of the simplified dynamics of self-stabilization as described in
Damian et al. (2023). To parallel their argument, we closely follow their notation and assumption. Let
L(θ) be the loss function, S(θ) := λmax be the sharpness, and e(θ) be the corresponding leading
eigenvector. We consider a reference point θ⋆ and define the following quantities at θ⋆:

∇L := ∇L(θ⋆),∇2L := ∇2L(θ⋆), e := e(θ⋆),∇S := ∇S(θ⋆), γ := ∥∇S∥2.
We also define the progressive sharpening coefficient at θ⋆ as α := −∇L · ∇S. For simplicity, we
assume that γ > 0 throughout this section.

B.1 Negative Feedback-type Recurrence for PHB

We start by rederiving the negative feedback-type recurrence relation for GD with momentum. Here,
we do not consider the learning rate warmup. This is because, as discussed in Section 3, warmup’s role
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is to enable stable training with a large learning rate ηf and deter fast early convergence. Theoretically
analyzing the exact effect of warmup in the early stage is left for future works.

Define at = e · (θt − θ⋆) to be the movement in the unstable direction and bt = ∇S · (θt − θ⋆) to
be the change in sharpness.

We do not assume anything on α, i.e., there are three cases: the progressive sharpening happens
(α > 0), the gradient of sharpness is orthogonal to that of the loss (α = 0), or progressive flattening
(α < 0). Out of these cases, we especially focus on α = 0, as our toy example did not display any
change in sharpness during the intervals before the sharpness hits the MSS. We remark that Damian
et al. (2023) consider the case of α > 0 for GD.

Stage 1: Progressive Sharpening (if α > 0) First, we have the following:

bt+1 − bt = ∇S · (θt+1 − θt)

= ∇S · (−η∇L(θt) + β(θt − θt−1))

≈ ∇S · (−η∇L+ β(θt − θt−1))

= ηα+ β(bt − bt−1).

Solving this recurrence relation gives

bt =
ηα

1− β
t+ c1β

t + c2

for some initialization (b1, b2) dependent constants c1, c2. Note that given α > 0, this corresponds to
progressive sharpening, and compared to GD, the rate of sharpening is accelerated by 1

1−β times.

Stage 2: Blowup Next, we consider the approximation of S(θt) ≈ 2(1+β)
η + bt. Then,

at+1 = e · (θt − θ⋆ − η∇L(θt) + β(θt − θt−1))

= at − ηe · ∇L(θt) + β(at − at−1)

≈ at − ηS(θt) + β(at − at−1)

≈ at − η

(
2(1 + β)

η
+ bt

)
at + β(at − at−1)

= −(1 + β + ηbt)at − βat−1.

Stage 3: Self-Stabilization Via similar reasoning, we can derive a similar extension for this stage
as follows:

bt+1 − bt ≈ η
(
α− γ

2
a2t

)
+ β(bt − bt−1).

Stage 4: Return to Stability When bt < 0 due to the self-stabilization effect, |at| shrinks
exponentially (at a faster rate thanks to momentum), and we return to Stage 1 again.

Putting them all together All in all, we are left with the following negative feedback-type recur-
rence for PHB:

at+1 ≈ −(1 + β + ηbt)at − βat−1 (3)

bt+1 − bt ≈ η
(
α− γ

2
a2t

)
+ β(bt − bt−1). (4)

Note that when β = 0, we recover the recurrence as derived in Damian et al. (2023). Now, under the
approximation that at ≈ −at−1, we analyze a coupled6 system of ODEs that roughly describe the
dynamics of (|at|, bt).

6in the informal sense
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B.2 First-order ODE Approximation

B.2.1 Theoretical Analysis

We consider the following system of first-order ODE approximation:

Ȧ(t) =
1

1− β
A(t)B(t), (5)

Ḃ(t) =
1

1− β

(
α− γ

2
A(t)2

)
. (6)

Note that extra 1
1−β factor due to momentum; see Kovachki and Stuart (2021) for more detailed

discussions on momentum.

Depending on the range of α, the equillibrium point(s) differ:

• α > 0: unique equillibrium point (A⋆, B⋆) = (δ, 0), where δ :=
√

2α
γ ,

• α = 0: a manifold of equilibria A⋆ = 0,

• α < 0: no equillibrium point

In other words, the system displays a bifurcation depending on α (often referred to as control variable),
which can be studied via the catastrophe theory (Arnold, 1986); this is left for future work. In this
work, we mainly stick to “elementary” tools from dynamical system theory; see Guckenheimer and
Holmes (1983); Teschl (2012) for an overview/introduction.

We first consider the stability of the equilibrium point(s):

Proposition B.1. For α > 0, (δ, 0) is a saddle point, thus an unstable equilibrium. For α = 0,
(0, B⋆) is a globally asymptotically stable equilibrium if and only if B⋆ ≤ 0.

Proof. Consider the Jacobian of the ODE system:

J(A,B) =
1

1− β

[
B A

−γA 0

]
.

For simplicity, let us ignore the 1
1−β factor.

When α > 0, J(δ, 0) has two non-zero eigenvalues, δ > 0 and −γδ < 0, i.e., (δ, 0) is a hyperbolic
equilibrium point that is unstable in the linearized dynamics. By Hartman-Grobman theorem (see
e.g., Theorem 9.9 of Teschl (2012)), the linearization provides “qualitatively same behavior”7, and
thus (δ, 0) is an unstable equilibrium.

When α = 0, J(0, B⋆) has two eigenvalues, 0 and B⋆. As (0, B⋆) is unstable if B⋆ > 0, let
us consider the case B⋆ ≤ 0. Note that as we have a zero eigenvalue, linearization analysis is
inapplicable, and thus we need to look at its center manifold. It is quite easy to see that the center
manifold of the system at (0, B⋆) is C := {(A,B) : A = 0}, and the restricted dynamics of the
system on C is globally asymptotically stable, which implies the same to the original system by
the Center Manifold Theorem (see e.g., Theorem 3.2.1 and 3.2.2 of Guckenheimer and Holmes
(1983)).

We also have the following conservation law:

Proposition B.2. Let h(z) = z − 1− log z. Then,

Et(A,B;α, β, γ) =

h
(

A2

δ2

)
+ (1−β)B2

α , α > 0,

A2 + 2(1−β)
γ B2, α = 0.

(7)

is conserved, i.e., ∂tEt = 0.
7This is formalized using the notion of topological conjugacy.
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Figure 5: (from left to right) A-B phase portrait, A(t) vs. t, and B(t) vs. t. For the phase portrait
at α = 1, the red dot represents the equilibrium point (δ, 0), where in our case, δ =

√
2α > 0. At

α = 0, the grey dotted line is the x-axis, which is the center manifold.

Proof. Note that d
dtA

2 = 2AȦ = 2A2B and d
dt logA = B. Then,

2BḂ =
2α

1− β
B − γ

1− β
A2B =

2α

1− β
B − γ

2(1− β)
˙(A2).

Rearranging, we have the following: for α > 0,

d

dt

(
(1− β)B2

α
+

A2

δ2
− 1− log

A2

δ2

)
= 0,

and for α = 0,
d

dt

(
A2 +

2(1− β)

γ
B2

)
= 0.

Corollary B.1. For all t, the following holds:

(i) α > 0:

|A(t)| ≲ δ

√
1− β

α
|B(0)|+ |A(0)|, |B(t)| ≲

√
α

1− β

|A(0)|
δ

+ |B(0)|, (8)

(ii) α = 0:

|A(t)| ≤ |A(0)|+
√

2(1− β)

γ
|B(0)|, |B(t)| ≤

√
γ

2(1− β)
|A(0)|+ |B(0)|. (9)

Proof. Trivial from triangle inequality and the energy conservation.
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B.2.2 Simulation Results

As done in Damian et al. (2023), we also provide simulation results. Here, we fix γ = 1 and the
initialization to (A(0), B(0)) = (1, 0). Figure 5 shows the result for both α = 1 and α = 0.

When α = 1, the phase portrait orbits around the unstable equilibrium (δ, 0), just as reported in
Damian et al. (2023). Moreover, with larger β, the fluctuation in A stays the same while the fluctuation
in B is amplified by approximately 1√

1−β
; also, looking at the plots of A(t) and B(t), momentum

reduces the period, causing more oscillations. Recalling that B is the change in sharpness, this
suggests that momentum does indeed amplify the catapult, resulting in a larger sharpness reduction.

Things are quite different at α = 0. Here, as predicted by our theory, note how all trajectories
converge to the globally asymptotically stable part of a center manifold {(0, B) : B ≤ 0}, and that
with larger β, the final converged point has larger B⋆ in magnitude. Such convergent behavior might
be connected to fast convergence behavior that we occasionally observe (see e.g., α = 0.18 plot of
Figure 1 in Section 2).

Overall, α = 0 induces a somewhat degenerate dynamics, while α = 1 (or generally α > 0) induces
a limit cycle of Damian et al. (2023), amplified by some factors of β. However, these dynamics do
not seem to explain the oscillatory behavior of PHB during/after a catapult.

C Theoretical Intuitions on Late Phase Dynamics of the Toy Example

For vanilla PHB, we have the following discrete dynamical system:

xt+1 = xt − η
xt

yt
+ β(xt − xt−1) =

(
1− η

yt
+ β

)
xt − βxt−1, (10)

yt+1 = yt + η
x2
t

2y2t
+ β(yt − yt−1), (11)

where for simplicity we’ve set η to be constant. One immediate observation here is that the sequence
{yt} is monotone increasing, and the rate of increase roughly gets faster with higher β.

Now suppose that there exists some time step t0 such that yt ≫ √
ηxt for all t ≥ t0. Then, considering

above as a slow-fast-type dynamical system8, we can consider the following “approximation”:

xt+1 =

(
1− η

yt
+ β

)
xt − βxt−1, (12)

yt+1 = yt + β(yt − yt−1). (13)

By expanding, we can get a closed form for yt:

yt =

{
yt0 + (yt0+1 − yt0)

βt0−1−βt−1

1−β , β > 0,

yt0 , β = 0
(14)

For both cases, asymptotically {yt} is close to a constant sequence, say yt = y. Then, we are left
with the following second-order homogeneous difference equation:

xt+1 −
(
1− η

y
+ β

)
xt + βxt−1 = 0. (15)

When β > 0, by Theorem 2.37 of Elaydi (2005), xt is asymptotically stable if and only if 1
y < 2(1+β)

η ,
which is true. Also, by Theorem 2.35 of Elaydi (2005), xt goes through a damped oscillation at the
absolute scale of βt if and only if 1+β

η < 1
y . This is consistent with our empirical observation.

8In the classical slow-fast coupled ODEs, we usually have an infinitesimal time scale ε multiplied to one
of the two coupled dynamics, on which the geometric singular perturbation theory (Fenichel, 1979) has been
extensively developed. Here, we use the terminology as the behavior is somewhat similar, but we do not claim
that our dynamical system is a slow-fast dynamical system in the strict sense.
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Figure 6: Trajectories of GD and PHB for the toy example with momentum turned off for the
x-direction. Initialization is (0.01, 1), ηi = 2, and β = 0.9 for PHB.

When β = 0, we have that

xt+1 −
(
1− η

y

)
xt = 0, (16)

which amounts to

xt = xt0

(
1− η

y

)t−t0

, (17)

i.e., xt converges to 0 geometrically fast, without any oscillation. This is consistent with our empirical
observation when considering PHB with momentum turned off for the x-direction.

Our underlying assumption that there exists some time step t0 such that yt ≫ max(η, xt) for all
t ≥ t0 is inspired by our empirical observations. A rigorous theoretical characterization of PHB for
even such simple loss functions is expected to be quite hard but, at the same time, fruitful, and we
leave it to future work.

C.1 Simulation Studies

To see that our simplified analysis captures the behavior, we consider the scenario in which momentum
is only applied to the y-direction and the x-direction goes through vanilla GD updates. The results
are shown in Figure 6, for ηf ∈ {5, 101, 102, 103, 105, 1010}. The result shows that turning off the
momentum in the x-axis leads to instability in the training trajectory: the fluctuation in the x-axis
increases significantly, and no damped oscillation is observed. This matches the presented theoretical
intuition and our hypothesis that the momentum amplified the self-stabilization effect, i.e., more
stable.

Some observations to look out for:

• With higher ηf , the slow-fast-type dynamics are more apparent; note how, at certain intervals,
the x (or y) coordinates of the iterates stay roughly the same!

• Our theoretical intuition partially explains some of the behaviors. For instance, for ηf ∈
{105, 1010}, PHB has a gradual (yet still quite large compared to GD) increase in both x
and y in magnitude, then suddenly changes the course to the predicted slow-fast dynamics
phase where y stays roughly constant.

Indeed, our rough theoretical arguments do not explain all the observed behaviors. For instance,
for PHB with momentum turned off for the x-direction, the trajectory has a single large catapult
at the beginning, then goes through a phase in which x stays roughly constant while y increases
significantly, then enters the slow-fast dynamics phase. Our current “theory” also does not cover the
middle phase, which displays quite an interesting behavior.
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D Additional Experimental Results

D.1 Toy Example

Here, we provide additional results for the toy example, f(x, y) = x2

2y , for varying the final learning
rate ηf ∈ {101, 102, 103, 105, 1010}. We set the initialization to be (0.01, 1), ηi = 2, and β = 0.9
for PHB. We report the results in Figures 7 and 8.

Remark D.1. The reason that we could consider such large learning rates for our specific toy model
is that the gradient at (x, y) is

(
x
y ,− x2

2y2

)
, and thus at higher y, the magnitude of the gradient

field gets smaller. This deters the iterates from ever diverging, and we believe that in our example,
the iterates always converge regardless of the initialization and learning rate. However, as this is
often not the case, we expect that the self-stabilization effect described in Appendix B is critical in
stabilizing the dynamics of PHB for realistic scenarios.
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Figure 7: Trajectories of GD and PHB for the toy example.
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Figure 8: Sharpness plots of GD and PHB for the toy example.
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D.2 Nonlinear Neural Networks

D.2.1 Deferred Settings

For the first nonlinear experiment, we follow the setting of Zhu et al. (2023a). We train a fully-
connected 3-layer ReLU network of width 64 on the synthetic rank-2 dataset. The synthetic rank-2
dataset is generated by i.i.d. sampling data xxxi ∼ N (000, Id) and generating outputs yi = xxx

(1)
i xxx

(2)
i

(product of the first two coordinates of xxxi). A rank2-D-N dataset refers to the synthetic rank-2
dataset generated using d = D whose training set consists of N data points; in our experiment,
we used a rank2-400-200 dataset. For the second nonlinear experiment, we use a ResNet20 with
a 1k-datapoint, 10-class subset of CIFAR10 (Figure 9 shows the result for a 128-datapoint, 2-class
subset of CIFAR10.) For both experiments, we used a momentum rate of β = 0.9 and MSE loss.
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Figure 9: ResNet20 trained on a 128-datapoint, 2-class subset of CIFAR10 with MSE loss.

D.2.2 Ablation for Nonlinear Neural Networks: Pre-catapult Training Loss

We conduct ablation studies to show that the catapult effect is an inherent characteristic of momentum
itself and not simply a byproduct of confounding variables such as the pre-catapult training loss. In
Fig. 10, we conduct the same experiments as in Section 4 but where the warmup period does not
begin from the first iteration and may not necessarily be equal for GD and PHB. Looking at the log
training loss plot, we note that the catapult occurs either when GD and PHB achieve similar training
loss or when PHB has higher training loss than GD. Thus it seems that the pre-catapult loss level
does not matter when inducing catapults.
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(a) Rank 2, width=64, ηi = 0.02, ηf = 0.6
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Figure 10: Experiments using a fully connected 3-layer ReLU network with constant width trained
using MSE loss. The region represents the learning rate warmup period. We use different warmup
periods for GD and PHB to ensure that PHB does not achieve significantly lower training loss than
GD when the first catapult occurs. Note that we use a log scale for the training loss plots
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Figure 11: Again, note that in (a), "ℓ1 baseline" and "ℓ2 baseline" respectively stand for the solution
with the minimal ℓ1 norm and the solution with the minimal ℓ2 norm to the regression problem.

D.3 Additional Results for β = 0.99

We redo every experiment with β = 0.99. Overall, the trend is the same, with the effect of momentum
more amplified. We provide the necessary details and some discussions for each experiment redone.

D.3.1 Linear Diagonal Networks

Here, we redo the experiments of Section 2 with β = 0.99, where the results are reported in Figure 11.
Note how we expanded the range of α’s to see the effect of momentum, which seems to be a bit
“delayed”. But, at the same time, there’s little instability in the trend in that once the curve reaches
zero test loss, it stays there; this is in contrast to our β = 0.9 experiment (Figure 1(b) of Section 2),
where there were some instabilities over α’s.

D.3.2 Toy Example

Here, we provide additional results for the toy example with β = 0.99 for vanilla GD and vanilla
PHB. The results are shown in Figures 12 and 13.

D.3.3 Nonlinear Neural Networks

For nonlinear networks, momentum with β = 0.99 has very unstable training dynamics when trained
on a small dataset. For the CIFAR10 experiment, we train on a small subset of CIFAR10 with 2
classes and 2000 training images. For the synthetic rank-2 dataset, we use a Rank2-400-4000 dataset.
Results are shown in Figure 14
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Figure 12: Trajectories of GD and PHB for the toy example.
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Figure 13: Sharpness plots of GD and PHB for the toy example.
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(a) CIFAR10-2k, width=256, MSE loss, ηi = 0.001, ηf = 0.01
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(b) Rank2-400-4000, width=128, MSE loss, ηi = 0.01, ηf = 0.2

Figure 14: Nonlinear Neural Network Experiments with β ∈ {0.0, 0.9, 0.99} and larger training set
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