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ABSTRACT

Machine learning models can be trained with formal privacy guarantees via dif-
ferentially private optimizers such as DP-SGD. In this work, we focus on a threat
model where the adversary has access only to the final model, with no visibility
into intermediate updates. In the literature, this “hidden state” threat model exhibits
a significant gap between the lower bound from empirical privacy auditing and the
theoretical upper bound provided by privacy accounting. To challenge this gap, we
propose to audit this threat model with adversaries that craft a gradient sequence
designed to maximize the privacy loss of the final model without relying on interme-
diate updates. Our experiments show that this approach consistently outperforms
previous attempts at auditing the hidden state model. Furthermore, our results ad-
vance the understanding of achievable privacy guarantees within this threat model.
Specifically, when the crafted gradient is inserted at every optimization step, we
show that concealing the intermediate model updates in DP-SGD does not amplify
privacy. The situation is more complex when the crafted gradient is not inserted
at every step: our auditing lower bound matches the privacy upper bound only for
an adversarially-chosen loss landscape and a sufficiently large batch size. This
suggests that existing privacy upper bounds can be improved in certain regimes.

1 INTRODUCTION

Machine learning models trained with non-private optimizers such as Stochastic Gradient Descent
(SGD) have been shown to leak information about the training data (Shokri et al., 2017; Yeom et al.,
2018; Balle et al., 2022; Haim et al., 2022). To address this issue, Differential Privacy (DP) (Dwork
et al., 2006) has been widely accepted as the standard approach to quantify and mitigate privacy
leakage, with DP-SGD (Abadi et al., 2016) as the defacto algorithm to train machine learning models
with DP guarantees. DP-SGD follows the same steps as standard SGD but clips the gradients’ norm
to a threshold before perturbing them with carefully calibrated Gaussian noise, providing differential
privacy guarantees for each gradient step.

As the practical importance of differential privacy grew, the need to track the privacy loss efficiently
across the entire training process (privacy accounting) became critical: indeed, optimal utility is
obtained by adding the minimum amount of noise required to achieve the desired privacy guarantee.
Existing privacy accounting techniques rely on privacy composition (Kairouz et al., 2015; Abadi
et al., 2016; Gopi et al., 2021; Doroshenko et al., 2022) to derive the overall privacy guarantees of a
training run of DP-SGD from the guarantees of each gradient step. Privacy amplification techniques
(Kasiviswanathan et al., 2011; Feldman et al., 2018; Erlingsson et al., 2019; Cyffers and Bellet,
2022; Altschuler and Talwar, 2022) can further decrease the overall privacy loss by exploiting
the non-disclosure of certain intermediate computations. For instance, privacy amplification by
subsampling relies on the secrecy of the randomness used to select the mini-batches.

Despite recent improvements in privacy accounting, training over-parameterized neural networks
from scratch with differential privacy typically results in either weak privacy guarantees or significant
utility loss (Tramèr and Boneh, 2021). While a possible explanation could be that the privacy
accounting of DP-SGD based on composition is overly conservative, (Nasr et al., 2021; 2023) refuted
this hypothesis using privacy auditing. Leveraging the fact that differential privacy upper bounds the
success rate of any adversary that seeks to infer private information from the output of DP-SGD, they
showed that it is possible to instantiate adversaries that achieve the maximal success rate allowed by
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the privacy accounting upper bound. This negative result suggests that the only hope to improve the
privacy-utility trade-offs of DP-SGD is to relax the underlying threat model, i.e., to make additional
assumptions limiting the adversary’s capabilities.We focus on one capability granted to the adversary
in prior work, namely that all intermediate models (i.e., training checkpoints) are released.

In this work, we consider a natural relaxation where intermediate models are concealed and only the
final model is released. This threat model, often referred to as hidden state, is particularly relevant
in practice, encompassing scenarios such as open-sourcing a trained model by publishing its weights.
From a theoretical perspective, recent work has demonstrated that the hidden state model can yield
significantly improved privacy upper bounds for DP-SGD compared to those derived through standard
composition (Ye and Shokri, 2022; Altschuler and Talwar, 2022). This improvement can be attributed
to the phenomenon of privacy amplification by iteration (Feldman et al., 2018; Balle et al., 2019):
in a nutshell, the privacy of a data point used at earlier stages of the optimization process improves as
subsequent steps are performed. However, these results only hold for convex problems, leaving a piv-
otal question unanswered: Does the privacy of non-convex machine learning problems improve when
intermediate models are withheld? While empirical lower bounds obtained through privacy auditing
(Nasr et al., 2021; 2023; Steinke et al., 2023) suggest that it might be the case, it remains unclear
whether the gap with upper bounds is because genuine privacy amplification occurs or because the
existing adversaries are suboptimal, leading to loose privacy lower bounds. This raises another crucial
question: How can one design worst-case adversaries when the intermediate models are concealed?

Our contributions. Leveraging the observation that all privacy accounting techniques for DP-SGD
protect against worst-case gradients, we adapt the idea of gradient-crafting adversaries (Nasr et al.,
2021) to the hidden state model. Instead of crafting a data point (canary) that gets added to the training
set as in prior attempts to audit the hidden state model (Nasr et al., 2023; Steinke et al., 2023), our ad-
versaries craft a sequence of gradients prior to the execution of the algorithm (i.e., without knowledge
of the intermediate models). The crafted gradients are then added to gradients computed on real train-
ing points to yield the highest possible privacy loss for the final model. In other words, our adversaries
abstract away the canary and directly decide the gradient it would have produced when inserted at a
given step of DP-SGD. But how do we pick the gradient sequence leading to the worst-case leakage?

In the scenario where crafted gradients are inserted at every iteration of DP-SGD, we demonstrate
that gradient-crafting adversaries which allocate the maximum magnitude permitted by DP-SGD
to a single gradient dimension are optimal: they imply privacy lower bounds that match the known
upper bounds given by numerical composition (Gopi et al., 2021). Therefore, our results reveal that
releasing only the final model does not amplify privacy in this regime. In the case of small models,
we achieve these tight privacy auditing results by carefully selecting the gradient dimension, whereas
for over-parameterized models, the dimension selection can be arbitrary.

When the crafted gradient is not inserted at every step, we find that the above adversaries still
outperform canary-crafting adversaries by a significant margin but cannot reach the privacy upper
bounds. We show that part of the gap can be attributed to the inability of known adversaries to
influence the gradients on real training data in steps where the crafted gradient is not inserted. To
address this gap, we design an adversary that crafts both the gradient and the loss landscape. Our
results uncover two distinct regimes: (i) when the batch size is large compared to the noise variance,
our adversary proves to be optimal, yielding a privacy lower bound that matches the known upper
bound and thus demonstrating the absence of privacy amplification; and (ii) when the batch is small
relative to the noise variance, we show strong evidence of privacy amplification for non-convex
problems, although the effect is qualitatively weaker than in the convex case. Our findings advance
the understanding of privacy guarantees in the hidden state model, and lay the groundwork for the
design of better privacy accounting techniques for this threat model.

2 BACKGROUND

2.1 DIFFERENTIAL PRIVACY AND DP-SGD

Differential Privacy (DP) has become the de-facto standard in privacy-preserving machine learning
thanks to the robustness of its guarantees, its desirable behaviour under post-processing and composi-
tion, and its extensive algorithmic framework. We recall the definition below and refer to Dwork and
Roth (2014) for more details. Here and throughout, we denote by D the space of datasets.
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Definition 1 ((ε, δ)-Differential Privacy). A randomized mechanismM is (ε, δ)-DP if for all neigh-
boring datasets D ∈ D and D′ = D ∪ {x} ∈ D and for all events O:

P [M(D) ∈ O] ≤ eεP [M(D′) ∈ O] + δ. (1)

In the above definition, δ ∈ (0, 1) can be thought of as a very small failure probability, while ε > 0 is
the privacy loss (the smaller, the stronger the privacy guarantees).

The workhorse of private machine learning is the Differentially Privacy Stochastic Gradient Descent
(DP-SGD) algorithm (Song et al., 2013; Bassily et al., 2014; Abadi et al., 2016). Let D be the
training dataset, θ the model parameters and consider the standard empirical risk minimization
objective minθ

1
|D|

∑
x∈D ℓ(θ;x) where ℓ is a loss function differentiable in its first parameter.

DP-SGD follows similar steps as standard (non-private) SGD but ensures differential privacy by (i)
bounding the contribution of each data point to the gradient using clipping and (ii) adding Gaussian
noise to the clipped gradients.

Formally, starting from some initialization θ0, DP-SGD performs T iterative updates of the form:

θt+1 = θt − η
|Bt|

(∑
x∈Bt

clip(∇θtℓ(θt;x), C) + Zt

)
, (2)

where η > 0 is the learning rate, Bt ⊆ D is a mini-batch of data points, clip(g, C) =
g ·min(1, C/∥g∥2) with C > 0 the clipping threshold, and Zt ∼ N (0, σ2C2I).

2.2 THREAT MODELS FOR DP-SGD

DP protects against an adversary that observes the output of either M(D) or M(D′) and seeks
to predict whether the dataset was D or D′ = D ∪ {x}, i.e., whether x was included in the input
dataset (a.k.a. membership inference). In this context, the threat model specifies which information
is observable/known by the adversary. For DP-SGD, in addition to the final model θT , threat models
typically consider that the adversary has access to (and potentially controls) the model architecture, the
loss ℓ, the initialization θ0, the dataset (up to the presence of x) and differ in which internal states of
DP-SGD are observable by the adversary. Below, we recall the two threat models relevant to our work.

Standard threat model. Standard privacy accounting techniques analyze DP-SGD as a composition
of (potentially subsampled) Gaussian mechanisms (Abadi et al., 2016; Gopi et al., 2021; Doroshenko
et al., 2022). Composition allows the adversary to observe all intermediate models θ1, ..., θT−1 (in
addition to θ0 and θT ). Previous work has shown that existing privacy accounting techniques are tight
in this threat model (Nasr et al., 2021; 2023). However, revealing intermediate models is unnecessary
in most realistic deployment settings and may hurt the privacy-utility trade-off, motivating the study
of the hidden state threat model.

Hidden state threat model. Our work studies the scenario where intermediate models θ1, ..., θT−1

are concealed from the adversary, who observes only the final model θT . This threat model has at-
tracted much attention recently, with theoretical work proving better privacy upper bounds than in the
standard threat model in some regimes (Feldman et al., 2018; Balle et al., 2019; Ye and Shokri, 2022;
Altschuler and Talwar, 2022). A fundamental phenomenon underlying these results is “privacy ampli-
fication by iteration” (Feldman et al., 2018), which shows that repeatedly applying noisy contractive
iterations enhances the privacy guarantees of data used in earlier steps. Unfortunately, applying this
general result to DP-SGD is only possible for convex problems, ruling out deep neural networks. The
existence of privacy amplification for non-convex problems in this threat model is an open problem
(Altschuler and Talwar, 2022) that we study in this work through the lens of privacy auditing.

2.3 AUDITING DIFFERENTIAL PRIVACY

Privacy accounting only provides upper bounds on the (ε, δ)-DP parameters, and these bounds are
not always tight. Leveraging the relation between DP and the performance of membership inference
attacks, privacy auditing aims to produce lower bounds on the DP parameters by instantiating
concrete adversaries in various threat models (Jagielski et al., 2020; Nasr et al., 2021). When these
lower bounds match the upper bounds given by privacy accounting, we can conclude that the privacy
analysis is tight; when they do not, it is possible to improve the privacy accounting and/or the attacks.
A privacy auditing pipeline can be broken down into two components: an adversary and an auditing
scheme. The high-level process is shown in Algorithm 1.
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Adversary. Auditing a mechanism M first requires the design of an adversary A, which seeks
to predict the presence or absence of a canary point x∗ from the information available in the
considered threat model. Typically, an adversary A consists of two subroutines RankSample
and RejectionRule. RankSample gives a confidence score that the observed output was
generated by sampling fromM(D) rather than fromM(D ∪ {x∗}), which can interpreted as the
two hypotheses of a binary test. RejectionRule applies a threshold to the confidence scores
generated across multiple random runs ofM to decide when to reject the first hypothesis. It then
compares these decisions to the ground truth to produce binary test statistics: True Negatives (TN),
True Positives (TP), False Negatives (FN), and False Positives (FP).

Algorithm 1 Privacy auditing

Input: Audited mechanism M, adversary A,
dataset D, canary point x∗, number of auditing
runs R, privacy parameter δ
S ← [], b← []
D0 ← D
D1 ← D ∪ {x∗}
for i = 1 to R do
bi ← Ber(1/2) {draw a random bit}
Si ← A.RankSample(M(Dbi), D0, D1)

end for
TN, TP, FN, FP← A.RejectionRule(S, b)

α, β ← ConfInterval(TN, TP, FN, FP)
ε̂← ConvertToDP(α, β, δ)
return ε̂

Auditing scheme. The auditing scheme takes
as input the hypothesis testing statistics of
an adversary and a privacy parameter δ, and
outputs a high-probability lower bound ε̂ on
the privacy loss of the mechanism M. It
comprises two subroutines: ConfInterval
and ConvertToDP. ConfInterval con-
verts the adversary statistics to high probabil-
ity lower bounds for the False Negative Rates
α and False Positive Rates β. ConvertToDP
then converts these lower bounds into ε̂ for the
specified δ by leveraging the fact that DP implies
an upper bound on any adversary’s performance.
Our experiments will rely on the recently pro-
posed auditing scheme based on Gaussian DP
(Nasr et al., 2023), which we describe for com-
pleteness in Appendix A.

To obtain the tightest possible ε̂, one should
perform auditing using a worst-case canary x∗ and a worst-case adversary A. This proves to be
especially challenging in the hidden state model as the adversary cannot rely on the knowledge of
intermediate models. In this paper, we will obtain tighter lower bounds ε̂ by abstracting away the
canary and using adversaries that directly craft gradients.

3 RELATED WORK IN DIFFERENTIAL PRIVACY AUDITING

The goal of differential privacy auditing is to create worst-case adversaries that maximally exploit
the underlying threat model, even if the information used by the adversary might not be available
in practical scenarios.1 A rich line of work has designed adversaries that can tightly and efficiently
audit the privacy of learning algorithms when intermediate models are released (Nasr et al., 2021;
Maddock et al., 2023; Nasr et al., 2023; Steinke et al., 2023). The first adversarial construction (the
malicious dataset attack in Nasr et al. (2021)) to reach the theoretical upper bound given by privacy
accounting for DP-SGD used a restrictive threat model in which the adversary controls the entire
learning process, including the dataset, the mini-batch ordering, all hyperparameters and intermediate
models. In follow-up work by Nasr et al. (2023), a nearly matching lower bound was obtained
for a gradient-crafting adversary that does not need to control the dataset, the minibatches or the
hyperparameters but still requires access to intermediate models.

Prior attempts at auditing the hidden state model used adversaries employing a loss-based attack
that targets a canary obtained by flipping the label of a genuine data point (Nasr et al., 2021; 2023;
Steinke et al., 2023; Annamalai and Cristofaro, 2024). The idea is to generate an outlier from an
in-distribution data point so that the loss of the model on this canary is high when it is not part of
the training set but drops significantly when used during training. Auditing the hidden state model
with these adversaries yields privacy lower bounds that exhibit a significant gap compared to privacy
accounting upper bounds for the standard threat model (Nasr et al., 2021; 2023; Steinke et al., 2023;
Annamalai and Cristofaro, 2024). This gap has two possible explanations: (i) these adversaries are
suboptimal and stronger adversaries exist in the hidden state model; and/or (ii) the upper bounds

1This is in contrast to membership inference attacks seeking feasibility against real systems (Shokri et al.,
2017; Yeom et al., 2018; Carlini et al., 2022; Zarifzadeh et al., 2023).
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are not tight. Understanding the reasons for this gap, so as to gain better knowledge of the properties
of DP-SGD in the hidden state model, is the main motivation for our work. We demonstrate that
gradient-crafting adversaries can provide tighter auditing results, thereby proving the validity of
hypothesis (i). We show that in certain scenarios, our auditing results match the privacy upper bounds,
indicating that releasing intermediate models does not increase the privacy loss. However, we also
identify regimes where a gap remains, thus providing compelling evidence in support of hypothesis
(ii). Specifically, our findings suggest the presence of a privacy amplification by iteration phenomenon
in the non-convex setting, albeit weaker compared to what is theoretically established for the convex
case (Feldman et al., 2018; Balle et al., 2019; Bok et al., 2024), but less restrictive than the results
of Asoodeh and Diaz (2023). The latter require projections onto a convex set of bounded diameter
or a strong enough decay term on the parameters, which are unrealistic assumptions in practical
scenarios involving non-convex and over-parameterized models like the ones considered in our work.

In Table 1 (Appendix B), we provide a summary of prior auditing results for DP-SGD, highlighting
in particular whether the considered adversaries are compatible with the hidden state threat model.

4 GRADIENT-CRAFTING ADVERSARIES FOR THE HIDDEN STATE MODEL

In all threat models, DP-SGD enjoys a simplified interpretation as a sequence of T sum queries
with bounded terms, where the t-th query corresponds to summing the clipped gradients over the
mini-batch Bt in Equation 2. Therefore, privacy accounting techniques for DP-SGD do not have
the construct of a fixed set of data points that generate gradients but instead account for any possible
gradients with bounded norm C. This highlights a key limitation of adversaries used so far in the
hidden state model: due to the non-convexity of the objective function, any sequence of gradients
for the canary x∗ is likely to be possible, but how to craft a worst-case x∗ is unclear (and in fact
out of scope for privacy auditing). Instead, we allow the adversary to directly craft any gradient
sequence, considering that there could be a data point that would generate that sequence.
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Figure 1: The gradient norm of the canary varies
along the optimization path and for different ar-
chitectures. We report the mean and ±2 standard
deviations across 30 random runs.

Threat model. As per the hidden state, only
the final model θT is revealed while the inter-
mediate models θ1, . . . , θT−1 are kept hidden.
We assume that the adversary knows the model
architecture, the loss function ℓ, the initializa-
tion θ0, the dataset D and the mini-batches
B0, . . . , BT−1.2 Considering the mini-batches
to be known, as done for instance in Feldman
et al. (2018), allows to isolate the impact of
concealing the intermediate models from other
factors (such as privacy amplification by sub-
sampling). We consider the hyperparameters
of DP-SGD (η, C, σ) to be fixed and identical
for all optimization steps to avoid uninterest-
ing edge cases (e.g., setting the learning rate
η to 0 in all optimization steps that do not use
the crafted gradients). This requirement can be
lifted by switching to Noisy-SGD as in Feldman et al. (2018); Altschuler and Talwar (2022), where
hyperparameters like the learning rate or the batch size are part of the privacy definition.

Gradient-crafting adversaries. Following the above threat model, we allow the adversary to craft
an arbitrary gradient sequence as long as it is not a function of the intermediate models. In other
words, the adversary must decide on a sequence of gradients before training starts, in an offline way,
to audit a complete, end-to-end training run of DP-SGD. We stress that this is in stark contrast to
Nasr et al. (2023), who use gradient-crafting adversaries to audit each step of DP-SGD and then
leverage composition to derive a privacy lower bound for the overall training run. Their approach
thus explicitly relies on the adversary having access to all intermediate models, whereas ours does
not make this assumption nor use this information in any way.

2When inserted, the crafted gradient is added to the genuine gradients of the mini-batch.
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Our construction helps to understand the hidden state threat model and its properties by decoupling the
privacy leakage induced by a worst-case sequence of gradients from the craftability of a canary that
could produce that sequence. Allowing the adversary to craft a gradient sequence directly circumvents
two issues in prior attempts to audit the hidden state model (Nasr et al., 2023; Steinke et al., 2023):

• Saturating the gradient norm: The canary point crafted by prior adversaries is not guaranteed
to saturate the gradient clipping threshold throughout training. The adversary’s performance
becomes architecture-dependent: for example, a small convolutional neural network has a small
canary norm at the start of the training compared to a ResNet, as observed in Figure 1. Thus,
for a tight audit, one must tune the clipping threshold according to the canary gradient norm,
a quantity the adversary cannot access in our threat model.

• Hypothesis testing: Prior adversaries need to test the presence of a sequence of gradients
they cannot access, so they use the model’s loss as a proxy confidence score (RankSample
in Algorithm 1): a lower loss implies a higher confidence that a sample was used during
training. By allowing the adversary to pick the sequence of gradients, we can align the choice
of confidence score to the way adversarial information is encoded in the gradients (as will be
evident in the adversaries we propose below), thereby achieving superior testing performance.

Concrete adversary instantiations. We propose two concrete instantiations of our gradient-crafting
adversaries, which we will use to perform privacy auditing on real datasets in the next section (see
Appendix C for more precise descriptions):

1. Random Biased Dimension (AGC-R): The adversary picks a random dimension and crafts
gradients with magnitude C in this dimension. To test whether crafted gradients were inserted
(RankSample in Algorithm 1), the adversary uses the difference between θT and θ0 in that
dimension as the confidence score (RankSample in Algorithm 1).

2. Simulated Biased Dimension (AGC-S): The adversary simulates the training algorithm and
picks the least updated dimension. Then, it crafts gradients with magnitude C in that dimension.
To test the presence of crafted gradients, the adversary uses the same confidence score asAGC -R.

These two adversaries are designed to be as simple as possible. Other gradient constructions can
be used, such as crafting a random gradient following the method proposed by Andrew et al. (2024)
(see Figure 8 of the appendix for a comparison with the adversaries we use). However, our choice
of adversaries can be further justified by recent findings on privacy backdoors, where the model
architecture and parameters are chosen adversarially to leak certain input points. Specifically,
Feng and Tramèr (2024) propose a specific construction of architecture and initialization in which
a well-chosen input point generates gradients that are nearly concentrated in a single dimension
throughout training. This demonstrates that in some cases, our adversaries AGC-R and AGC-S can
be instantiated by inserting a canary point.

5 PRIVACY AUDITING RESULTS ON REAL DATASETS

5.1 EXPERIMENTAL SETUP

Training details. We perform auditing on two datasets: we choose CIFAR10 (Krizhevsky, 2009) as
a representative dataset for the state-of-the-art in differentially private training (Tramèr and Boneh,
2021; De et al., 2022), and Housing (Pace and Barry, 1997) to underline the hardness of auditing
smaller models in the hidden state. We use predefined hyperparameters for each dataset: on CIFAR10,
the batch size is 128, and the learning rate is 0.01, while on Housing, the batch size is 400, and the
learning rate is 0.1. Training is done with DP-SGD with no momentum. We use three models: a fully
connected neural network (FCNN) for the Housing dataset (Pace and Barry, 1997), a convolutional
neural network (CovNet) (LeCun et al., 1989) and a residual network (ResNet) (He et al., 2016) for
CIFAR10. A detailed description of the models can be found in Appendix D.

Baseline adversary. As baseline, we adopt an adversary used in prior related research (Nasr et al.,
2023; Steinke et al., 2023). This adversary selects a point from the training dataset and flips its label
to generate an outlier which serves as the canary x∗. The loss of the model on this canary is used as
confidence score to test whether it was inserted or not. We refer to this baseline as the "loss-based
adversary", denoted by AL.
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Figure 2: Auditing results for AGC (ours) and AL on ConvNet (Fig. 2a) and ResNets (Fig. 2b) at
periodicity k = 1 and C ∈ {1, 2, 4}. In Fig. 2c we present the results for AGC-R (ours), AGC-S
(ours) and AL on FCNN (Housing dataset) at periodicity k = 1.

Privacy accounting & auditing. We compute privacy upper and lower bounds for the crafted
gradient (for AGC) or canary (AL) as follows. The theoretical privacy upper bound is given by the
numerical accountant of Gopi et al. (2021). We audit three scenarios where the accountant gives
equivalent privacy guarantees for the crafted gradient or canary by inserting it at different periodicity
k ∈ {1, 5, 25}, accounting only for the steps where the insertion occurs and adjusting the time horizon
T accordingly. When k = 1, the model is trained for T = 250 steps, and the crafted gradient or
canary is inserted at every step; when k = 5, the model is trained for 1250 steps and insertion occurs
every 5 steps; and similarly for k = 25. We report both the theoretical and empirical epsilons at a
fixed δ = 1e−5, but note that we can generate the complete privacy curve (ε, δ(ε)), see Figure 11 of
the appendix. For auditing, we rely on the recently proposed scheme based on Gaussian DP (described
in Appendix A for completeness) as it allows accurate auditing with a small number of auditing runs
(Nasr et al., 2023). Details on training and auditing parameters can be found in Appendix D.

Remark 1 (On the impact of known initialization). As explained in our threat model of Section 4, we
consider the initialization θ0 known to the adversary. This is a standard assumption made explicitly
or implicitly by virtually all privacy accounting techniques, including those tailored to the hidden
state (Feldman et al., 2018). Nevertheless, we show in Figure 12 of the appendix that commonly used
random initializations like Kaiming (He et al., 2015) or Xavier (Glorot and Bengio, 2010) do not
significantly affect our auditing results, as they only add a bit of variance at initialization.

Remark 2 (On pre-trained models). While we consider here that models are trained from scratch
on private data, our techniques and results also apply to the scenario where a model pre-trained on
public data defines a new (potentially smaller) model to be fine-tuned on private data. We illustrate
this by fine-tuning a pre-trained AlexNet (Krizhevsky et al., 2012) model by training only the last fully
connected layer of the classifier on CIFAR10, see Figure 13 of the appendix.

5.2 AUDITING RESULTS FOR PERIODICITY k = 1

Over-parameterized models. The results in Figure 2 show that our adversary AGC -R achieves tight
auditing results in the hidden state model when the crafted gradient is inserted at every step, a result
that had been achieved until now only when the adversary could pick a worst-case dataset D = {∅}
(Nasr et al., 2021) and set the learning rate to 0 in steps where the canary is not inserted, or when the
adversary had access to the intermediate models (Nasr et al., 2023). Note that the baseline loss-based
adversary AL is indeed not tight and even very loose in some regimes.

The fact that a tight audit can be achieved by our simplest adversary AGC-R (random biased
dimension) may seem surprising. We provide a high-level explanation of this phenomenon. As we are
auditing over-parameterized models, which are highly redundant, we can expect a genuine gradient
to assign on average a magnitude of O(C|minibatch|

p ) to each dimension, where p is the number of
parameters of the model. As p is typically orders of magnitude larger than the commonly used batch
sizes, genuine gradients in a mini-batch contribute a negligible magnitude to any dimension compared
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Figure 3: Auditing results for AGC(ours) and AL on ConvNet and ResNet (CIFAR10) at privacy
parameters C = 1 at periodicity k = 5 (Figure 3a) and k = 25 (Figure 3b).

to the magnitude of C inserted at a single dimension by AGC-R (or AGC-S). Therefore, genuine
gradients do not interfere with the contribution of the adversary, regardless of the selected dimension.
We see below that this no longer holds when auditing low-dimensional models.

Low-dimensional models. Auditing smaller models is more challenging because the ratio between
the mini-batch size and the number of parameters is much larger. To evaluate our adversaries in this
regime, we switch to the Housing dataset with the FCNN model, which has only 68 parameters. We
report the performance of our two adversaries over five independent runs in Figure 2c. We observe
that randomly selecting a dimension (AGC-R) no longer achieves tight results, although it still
outperforms the baseline loss-based adversary. Remarkably, our second adversary, which simulates
the training algorithm to select an appropriate dimension (AGC -S), recovers nearly tight results with
small variance between runs.

To conclude, the tightness of our adversaries implies a novel negative result.
Implication 1. If a data point is used at every optimization step of DP-SGD, hiding intermediate
models does not amplify its privacy guarantees.

5.3 AUDITING RESULTS AT PERIODICITY k > 1

We now study how our adversaries perform when the crafted gradient is inserted at a higher
periodicity k ∈ {5, 25}. We observe in Figure 3 that (i) we still outperform the baseline loss-based
adversary AL by a large margin, but (ii) we no longer match the privacy upper bound, and our
adversary becomes weaker as we increase k. Intuitively, the latter is due to the accumulation of the
noise added on genuine gradients during the k − 1 iterations between each crafted gradient insertion.
However, privacy accounting (i.e., the upper bound) does not take advantage of this accumulated
noise: as the insertion of a crafted gradient at a given step could bias subsequent genuine gradients
towards a particular direction, the best one can do is to resort to the post-processing property of DP,
which ensures that subsequent genuine gradients do not weaken the privacy guarantees. In the next
section, we investigate whether it is possible to match the upper bound given by privacy accounting
in this setting, which amounts to designing an adversary capable of crafting gradients that maximally
influence subsequent genuine gradients.
Remark 3. Using auditing via Gaussian DP (Nasr et al., 2023) for k > 1 implies approximating the
trade-off function of the mechanism with a Gaussian one (see Appendix A for definitions). While this
approximation can underestimate the privacy guarantees in certain cases like subsampled or shuffled
mechanisms (see Dong et al. (2022); Wang et al. (2024)), in our context it is justified by the Central
Limit Theorem (Dong et al., 2022), and has been used before when auditing the hidden state (Nasr
et al., 2023). Appendix E (Figure 7a) shows the approximation error is indeed negligible in our case.

6 TOWARDS A WORST-CASE ADVERSARY FOR THE HIDDEN STATE

In this section, we investigate whether reducing (and potentially closing) the gap with the theoretical
upper bound observed in Section 5.3 is possible. For simplicity, we consider the case where a crafted
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Figure 4: Auditing performance of our adversary Ah∗

S across T = 25 steps. Figure 4a shows the
evolution of the auditing performance across time for σ ∈ {1, 8} and batch size B ∈ {1, 2, 4, 8, 16}.
Figure 4b gives the privacy amplification rate, i.e., the ratio ε̂t=25/ε̂t=1 between the privacy auditing
lower bounds at step 25 (ε̂t=25) and at step 1 (ε̂t=1).

gradient is inserted only in the first optimization step, and then T − 1 subsequent steps are performed
without inserting crafted gradients. This corresponds to the scenario studied by privacy amplification
by iteration (Feldman et al., 2018), but we do not restrict ourselves to convex losses.

We introduce a new class of adversaries AS that crafts the gradient and the loss landscape itself,
thereby controlling the distribution of all T updates. Therefore, AS can pick a (non-convex) loss
landscape such that the crafted gradient inserted at step T = 1 maximally biases subsequent genuine
gradients, thereby yielding the highest possible privacy loss for the final model. Note the underlying
principle is the same as in Section 4: instead of requiring the adversary to craft a dataset, model
architecture and loss function, we allow the adversary to select the loss landscape directly, considering
that there could be a dataset that would generate this landscape. As long as the loss landscape is
selected before training starts, this is covered by the hidden state threat model we consider.

We formalize the above using the following pair of one-dimensional stochastic processes:

θt+1 = θt −
1

B
(g(θt) + Zt+1) , θt+1 = θt −

1

B

(
g(θt) + Zt+1

)
, (3)

where the first step of the process is either θ1 = Z1 (a process that did not use the crafted gradient)
or θ1 = ∇∗ + Z1 (a process that used the crafted gradient ∇∗), with Zi ∼ N (0, C2σ2), and
g : R→ [−BC,BC] is a function that abstracts away the sum of gradients of the loss on a batch of
size B in the DP-SGD update (Equation 2). The goal of the adversary is to choose the function g and
the crafted gradient∇∗, without knowing the intermediate updates, so as to make the distribution of
θT and θT as “distinguishable” as possible.
Example 1 (Constant g). Consider the simple case where g outputs a constant c, independent of the
input. This implies that the Gaussian noise accumulates at every step, and the privacy loss ε for the
last iterate converges to 0 as T →∞ at a rate of O(1/

√
T ).

As illustrated by Example 1, it is easy to design a function g that amplifies privacy over time. However,
the converse objective, i.e., designing a function that provides no or minimal privacy amplification
for the final step T , appears much more challenging.

A worst-case proposal. We propose a concrete adversaryAh∗

S which selects∇∗ = C and the function
gϕ∗(X) = BC if ϕ∗(X) = 1 and gϕ∗(X) = −BC otherwise, where ϕ∗ : R→ {0, 1} is the linear
threshold function that achieves the minimal False Positive Error Rate α + False Negative Error Rate
β for distinguishing between θ1 and θ1 (i.e., testing if the model after 1 step was generated using
the crafted gradient ∇∗). More precisely, ϕ∗(X) = 1 if X > h∗ and ϕ∗(X) = 0 otherwise, with
h∗ = |∇∗|

2 = C
2 (see Appendix F for a numerical validation). The resulting non-convex loss landscape

adheres to the intuition that the crafted gradient maximally biases subsequent steps (see Appendix F).

Auditing with Ah∗

S . Figure 4a shows the auditing performance of our adversary Ah∗

S for T ∈
{1, . . . , 25} steps, batch sizes B ∈ {1, 2, 4, 8, 16} and noise variances σ ∈ {1, 8} (for more values
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see Figure 14 in the appendix).3 Figure 4b gives the ratio between the privacy auditing lower bound
ε̂t=25 at the last step and the one obtained after the first step, to measure the extent of the privacy am-
plification phenomenon for various batch sizes B and values of σ. When this ratio is equal to 1, there
is no amplification and the audit is tight, while values smaller than 1 indicate the existence of a privacy
amplification effect. We observe two general trends: the amplification rate increases with σ and
decreases with B. This can be explained as follows. Higher noise variance (σ) helps forget initial con-
ditions in the stochastic processes (3). Conversely, a larger batch size (B) allows subsequent updates to
be larger, enabling the initial conditions to propagate better across iterations despite the noise. Indeed,
as gradient updates are bounded by [−BC,BC] and the noise remains independent of B, increasing
B allows the adversary to retain more “signal” about the canary’s presence in subsequent gradients.

Unlike the case where the crafted gradient is inserted at every step (see Implication 1), the above
results reveal two distinct two regimes, as highlighted in Implications 2 and 3 below. On the one hand,
when the batch size B is large enough relative to the noise variance σ, our adversary Ah∗

S achieves a
tight audit. In this regime, this adversary is thus optimal and there is no privacy amplification.
Implication 2. For a sufficiently large batch size relative to the noise variance, the privacy accounting
of DP-SGD is tight in the hidden state model: hiding intermediate updates does not amplify privacy.

On the other hand, privacy amplification seems to occur when the batch size is small enough relative
to the noise variance. As seen from Figure 4a, the privacy loss of Ah∗

S converges to a constant: this
is because the privacy loss distributions become sufficiently far away and stop mixing over time. This
constant is smaller than the upper bound from privacy accounting, but remains positive, indicating
that this potential amplification must be qualitatively weaker than in the convex case.
Implication 3. In the non-convex regime, for a sufficiently small batch size relative to the noise
variance, hiding intermediate updates may amplify the privacy guarantees of DP-SGD. However, the
privacy loss of a sample does not go to 0 as subsequent steps are performed, in contrast to the convex
case where the privacy loss decreases in O(1/

√
T ) (Feldman et al., 2018).

Remark 4 (Comparison to parallel work). Implication 2 was independently established in a recent
concurrent work by Annamalai (2024). Their worst-case construction differs from ours, and in
particular implicitly assumes that the batch size is large relative to the noise variance. As a
consequence, their results overlook the fact that privacy amplification can occur under small batch
sizes, which is a practically important regime where stronger privacy guarantees may be achievable.

7 DISCUSSION AND FUTURE WORK

Our work allows tighter auditing of DP-SGD in the hidden state model, and our results yield sev-
eral implications that advance the understanding of this threat model. For instance, Implication 3
means that the property of converging privacy loss of DP-SGD as T → +∞ recently established by
Altschuler and Talwar (2022) in the convex case cannot hold for non-convex models without additional
constraints. Beyond this negative result, our work suggests that a (weaker) form of privacy amplifica-
tion does occur for non-convex problems when the batch size is small relative to the noise variance.

Beyond differential privacy, our results have consequences for machine unlearning (Bourtoule et al.,
2021), which aims to remove a specific data point from a trained model as if the data had never been
used for training. A recent approach to unlearning relies on noisy training and privacy amplification
by iteration (Chien et al., 2024). Implication 3 shows that this approach cannot provide complete data
point deletion when considering non-convex models like neural networks.

An intriguing open question arises from the gap between our empirical results on real datasets (Section
5) and the adversary crafting the loss landscape (Section 6) when the canary is not inserted at every
step. While recent work on privacy backdoors shows that certain architectures can be manipulated
to make a specific data point produce the desired gradient sequence throughout training (Feng and
Tramèr, 2024), it seems unlikely that this point could also maximally bias subsequent gradients of gen-
uine training points in the same way as our worst-case adversaryAh∗

S . Investigating the extent to which
this is feasible in commonly used architectures would enhance our understanding of privacy leakage
in deep learning, and could ultimately lead to better privacy accounting for the hidden state model.

3As in Section 5, we need to approximate the trade-off function of our mechanism with a Gaussian one (see
Remark 3). In practice, the approximation error is again negligible (see Figure 7b in Appendix E).
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A DETAILS ON AUDITING VIA GAUSSIAN DP

For completeness, in this section we present the privacy auditing approach proposed by Nasr et al.
(2023), which we use in our experiments. We start by introducing some necessary concepts on f -DP
and Gaussian DP in Section A.1. Then, in Section A.2, we present an overview of how auditing is
performed and how all the elements of the general auditing pipeline (Algorithm 1) are implemented.

A.1 f -DIFFERENTIAL PRIVACY AND GAUSSIAN DIFFERENTIAL PRIVACY

f -DP and Gaussian DP (Dong et al., 2022) are based on a characterization of DP as binary hypothesis
testing. We recall the main concepts below.

Definition 2 (Error rates). Let P and Q be two arbitrary distributions and O a sample drawn from
either P or Q. Let a binary hypothesis test be defined by the following two hypotheses: H0 : “the
output O is drawn from P” or “H1: the output O is drawn from Q”. Consider a rejection rule
ϕ : Rd → [0, 1] that outputs the probability that we should reject H0. We define the Type I (or false

positive) error rate of this rejection rule ϕ as αϕ
∆
= E

P
[ϕ] and the Type II (or false negative) error rate

as βϕ
∆
= 1− E

Q
[ϕ].

Definition 3 (Trade-off functions). Let P and Q be two arbitrary distributions. We define the
trade-off function between P and Q as:

T (P,Q)(α) = inf
ϕ
{βϕ : αϕ ≤ α}. (4)

We can now introduce f -DP.

Definition 4 (f -Differential Privacy). Let f be a trade-off function. Then a mechanism M is
f -Differentially Private (f -DP) if for all neighbouring datasets D and D′:

T (M(D),M(D′)) ≥ f. (5)

Trade-off functions describe the lowest Type II error rate achievable by any adversary at any Type I
error rate . We say that a mechanism M1 is strictly less private than M2 if T (M1(D),M1(D

′))(α) ≤
T (M2(D),M2(D

′))(α) for all α ∈ [0, 1]. Dong et al. (2022) show (ε, δ)-DP can be formulated as
f -DP as follows:

fε,δ(α) = max{0, 1− δeε, e−ε(1− δ)} (6)

Gaussian Differential Privacy (GDP) is a specialized formulation of f -DP where f is the trade-off
function of two Gaussian distributions.

Definition 5 (Gaussian Differential Privacy). Let Φ be the cumulative distribution function (CDF) of
N (0, 1) and Φ−1 its associated quantile function. A mechanism M is µ-GDP if it is Gµ-DP, where

Gµ(α)
∆
= T (M(D),M(D′))(α) = Φ(Φ−1(1− α)− µ). (7)

The following result is crucial for auditing: it shows that the error rates of an adversary give a lower
bound on the GDP guarantees.

Lemma 1 (Relating error rates to GDP). Assume that an adversary has error rates αM , βM in the
binary test defined by P = M(D) and Q = M(D′) where M is a mechanism and D and D′ are two
neighboring datasets. Then, if M satisfies µ-GDP, then

µ ≥ Φ−1(1− α)− Φ−1(β). (8)

Finally, we can convert µ-GDP to (ε, δ)-DP.

Corollary 1 (From µ-GDP to (ε, δ)-Differential Privacy.). If a mechanism M is µ-GDP then it
satisfies (ε, δ)-DP, where:

δ(ε) = Φ(− ε

µ
+

µ

2
)− eεΦ(− ε

µ
− µ

2
). (9)
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A.2 AUDITING VIA GDP

Auditing a mechanism M via GDP follows the general approach outlined in Algorithm 1, and
amounts to instantiating its different primitives:

1. RankSample: We first generate R outputs of M , half of them sampled from M(D), the
rest from M(D′), where D′ = D ∪ {x∗}. For each output i ∈ {1, . . . , R}, a score Si is
computed to the adversary’s confidence that either D or D′ were used as input for M . The
precise computation of this confidence score depends on the considered adversary and is
abstracted by the RankSample method in Algorithm 1. We refer to Sections 4-5 for details
about the RankSample method used by the adversaries we consider.

2. RejectionRule: Each Si is then augmented with its associated ground truth label bi,
reflecting if a particular sample has been generated from D or D′. The adversary selects a
classifier (RejectionRule in Algorithm 1) that receives the set S as input and needs to
classify it against the ground truth label b. We stress that DP holds against any choice of
such a classifier. Commonly used ones are linear threshold classifiers (Nasr et al., 2023).
Once a threshold classifier has been selected, we evaluate the error rates of the classifier
using S and b as the ground truth labels, evaluating the False Negative (FN), False Positive
(FP), True Negative (TN), and True Positive (TP) of the classifier.

3. ConfInterval: Using these statistics, we employ the Clopper Pearson (Clopper and
Pearson, 1934) confidence intervals over binomial distributions to get a high-probability
lower bound on the Type I error rate (α) and Type II error rate (β) for the adversary’s
performance. We note that other techniques exist to compute such confidence intervals
(Zanella-Béguelin et al., 2023; Lu et al., 2022); however, the benefits we observed practically
were negligible in our case.

4. ConvertToDP: Finally, given access to the lower bounds on the error rates of the adversary,
we can compute the lower bound on the privacy loss of a mechanism M in GDP by using
Lemma 1, and translate the result to (ε, δ)-DP using Corollary 1.

We stress that this technique offers a lower bound on the privacy loss, while techniques like privacy
accounting (Abadi et al., 2016; Gopi et al., 2021; Doroshenko et al., 2022) or composition (Dwork
et al., 2006; Kairouz et al., 2015; Dong et al., 2022) offer upper bounds on the privacy loss. We call a
mechanism tight if a lower bound offered by auditing match the upper bound

B SUMMARY OF PRIOR WORK ON PRIVACY AUDITING OF DP-SGD

We provide in Table 1 a list of adversaries used in prior work on privacy auditing of DP-SGD along
with their key properties: whether they are compatible with the hidden state, whether they achieved a
tight audit, and the type of canary they used.

C DETAILS ABOUT OUR ADVERSARIES AGC

The algorithmic description of our adversaries AGC-R and AGC-S are given in Algorithms 2-3.

We discuss different strategies to select the biased dimension for our adversary AGC-S. The general
idea is to explore how the different dimensions are updated by simulating the training process, as all
the required knowledge is available to the adversary. We have considered two types of simulations:
(i) Noisy simulation, in which we use the same noise variance as the simulated process, and (ii)
Noiseless simulation, in which we run the training algorithm without noise or clipping. Note that for
the noiseless simulation, the training algorithm is deterministic, as the initialization and the batches
are fixed and known to the adversary, while in the noisy simulation, the stochasticity of DP-SGD is
concealed for the adversary. We use four simulations of the training process. We then proceed to
choose how to rank the most suitable dimension to bias, for which we have explored two options: (i)
Per Step (PS): selecting the dimension that has the lowest gradient norm accumulated over all the
training runs or (ii) Final Model (FM): selecting the dimension that is the closest to initialization
at the end of the training run. We experiment with these design choices, resulting in 4 dimension
selection strategies. The results in Figure 5 show that the Noiseless-PS strategy performs best.
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Paper Adversary HS TA CT
Jagielski et al. (2020) Poisoned Backdoor ✓ ✗ Sample

Nasr et al. (2021)

API Access ✓ ✗ Sample
Static Adversary ✓ ✗ Sample

Intermediate Poison Attack ✓ ✗ Sample
Adaptive Poisoning Attack ✗ ✗ Sample

Gradient Attack ✗ ✗ Gradient
Malicious Datasets ✗ ✓ Gradient

Zanella-Béguelin et al. (2023) Experiment 1 ✓ ✗ Sample
Experiment 2 ✓ ✗ Sample

Maddock et al. (2023) Algorithm 1 ✗ ✗ Gradient

Nasr et al. (2023) Algorithm 1 ✓ ✗ Sample
Algorithm 2 ✗ ✓ Gradient

Andrew et al. (2024) Algorithm 2 ✓ ✗ Sample or Gradient
Algorithm 3 ✗ ✗ Gradient

Steinke et al. (2023)
audit-type=whitebox ✗ ✗ Sample or Gradient
audit-type=blackbox ✓ ✗ Sample

Ours AGC-R, k = 1 ✓ ✓ Gradient
AGC-R, k > 1 ✓ ✗ Gradient

Table 1: Summary of adversaries used in prior privacy auditing of DP-SGD. We report whether the
adversary is compatible with the hidden state (HS), if the adversary achieves tight audit in the threat
model it operates (TA) and the type of canary (CT) used by the adversary (gradient canaries or sample
space canaries).
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Figure 5: Auditing results of AL, AGC-R
and AGC-S on the Housing dataset. We
consider 4 variants of AGC -S, depending on
whether the noisy or noiseless simulation is
used and whether we rank dimensions based
on accumulating per-step updates (PS) or on
the final model norm difference (FM).
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AGC-S, ConvNet, k=1

AGC-R, ConvNet, k=1

AGC-S, ResNet18, k=1

AGC-R, ResNet18, k=1

AGC-S, ConvNet, k=5
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Figure 6: Auditing results for AGC-S compared to
AGC-R at k ∈ {1, 5} on ConvNet and ResNet18. We
observe that the two adversaries are equivalent for these
over-parameterized models, demonstrating that AGC -S
only enhances our attack against under-parameterized
models.

In Figure 6, we show that AGC-S using the best strategy is equivalent with AGC-R on our studied
over-parameterized models.

Algorithm 2 Gradient Generation for AGC-R (Random Biased Dimension)

Input: dataset D, initialization θ0 ∈ Rp, clipping threshold C
d← random element from {1, . . . , p}
∇∗ ← (0, . . . , 0) ∈ Rp

∇∗[d]← C
return ∇∗
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Algorithm 3 Noisy gradient generation for AGC-S (Simulated Biased Dimension)

Input: dataset D, initialization θ0 ∈ Rp, clipping threshold C, noise variance σ2, mini-batches
{B1 . . . BT },

number of runs r, parameter selection rank ∈ {PerStep, FinalModel}, simulation ∈
{Noisy, Noiseless}
S = [0]p

for j = 1 to r do
for i = 1 to T do

Zt ∼ N (0, C2σ2I)
θt+1 ← θt − η

|Bt|

( ∑
x∈Bt

clip
(
∇θtℓ(θt;x), C

))
if simulation = Noisy then

θt+1 = θt+1 +
η

|Bt|Z, where Z ∼ N (0, σ2)

end if

if rank = PerStep then
S ← S + θi − θi−1

end if
end for

if rank = FinalModel then
S ← θT − θ0

end if
end for
d← argmin S
∇∗ ← (0, . . . , 0) ∈ Rp

∇∗[d]← C
return ∇∗

D EXPERIMENTAL DETAILS ON TRAINING & AUDITING

In our experimental section, we audit three neural network architectures, a ConvNet and a ResNet
on the CIFAR10 dataset and a Fully-Connected Neural Network on the Housing dataset. These
models were implemented using PyTorch (Paszke et al., 2019), and the DP-SGD optimizer was
Opacus (Yousefpour et al., 2021). The hyperparameters for training, privacy guarantees, and privacy
auditing parameters for each audited machine learning model are meticulously outlined in Table 2.
The ConvNet and ResNet have been audited when trained for 250, 1250, and 6250 optimization steps,
totalling approximately 3500 GPU hours.

For each experiment, we audit R = 5000 machine learning models using GDP auditing (see
Appendix A). For the Clopper Pearson confidence intervals, we use a confidence of 95% (consistent
with prior work (Jagielski et al., 2020; Nasr et al., 2021)) to get a lower bound on the Type I error
rate (α) and Type II error rate (β) for the adversary’s performance. RejectionRule is computed
by selecting the best linear threshold classifier on S. While, in practice, the adversary should pick the
classifier on a set of held-out scores S, we select the classifier directly on S to save the computational
resources required to compute the held-out set S. We stress that it is not an issue, as differential
privacy guarantees hold against any choice of classifier.

E APPROXIMATION ERRORS FOR GDP AUDITING

As explained in Remark 3, using auditing via Gaussian DP (Nasr et al., 2023) (see Appendix A)
implies approximating the trade-off function of our mechanism with a Gaussian one (Dong et al.,
2022). In this section, we present some samples of the privacy trade-off curves that we observe when
auditing both AGC in Figure 7a and Ah∗

S in Figure 7b. For AGC , we show the case where T = 1250

when auditing a ConvNet at canary gradient insertion periodicity k = 5 on CIFAR10, while for Ah∗

S
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Table 2: Hyperparameters used per model

HYPERPARAMETER FULLY-CONNECTED NN CONVNET RESNET18

LEARNING RATE (η) 10−2 10−2 10−2

BATCH SIZE 400 128 128
TRAINABLE PARAMS 68 62006 11173962
LOSS FUNCTION BINARY CROSS ENTROPY CROSS ENTROPY CROSS ENTROPY
CLIPPING NORM C 1.0 { 1.0, 2.0, 4.0 } {1.0, 2.0, 4.0 }
NOISE VARIANCE σ 4 4 4
FAILURE PROBABILITY δ 10−5 10−5 10−5

AUDITING RUNS 5000 5000 5000
CONFIDENCE INTERVAL 0.95 0.95 0.95
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(a) The approximation error of approximating the trade-
off function of the observations via GDP for AGC-R
when auditing a ConvNet on CIFAR10 when k = 5 at
step 1250.
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(b) The approximation error of approximating the trade-
off function of the observations via GDP for Ah∗

S when
the T = 25 case at privacy parameter C = 1 and
σ = 4.

we present the approximation when T = 25. We see that the approximation errors are negligible, and
the approximation technique is representative.

This good behaviour is due to the Central Limit Theorem for f -DP composition (Dong et al., 2022),
which, in a nutshell, states that while individual mechanisms are not well approximated by a Gaussian
Mechanism, their composition has a decaying error in the number of compositions performed when
approximated via a Gaussian Mechanism.

F DETAILS ON OUR ADVERSARY A∗
h

Visualization of the loss landscape. Figure 10 shows the loss landscape corresponding to our
adversary A∗

h defined in Section 6. One can see how the crafted gradient can bias subsequent steps.
Note that the discontinuity is not essential and can be removed by appropriate scaling.

Numerical validation of optimality of h∗. In this section, we numerically validate that the choice of
threshold h∗ inAh∗

S is indeed optimal for T = 2 by comparing it with all possible threshold functions.
To search for these functions, we discretize the Type I error rate α ∈ [0, 1] into {α1 . . . αd}, and each
αi we look for the rejection rule ϕi that achieves the lowest Type II error rate βi. Given that, in this
case, our function g distinguishes between two Gaussian distributions via Neyman-Pearson (Neyman
et al., 1933), it is well known that the optimal classifier with a fixed type I error rate is achieved by its
associated threshold classifier hi = Φ(1−αi), where Φ is the CDF ofN (0, σ2). With {h1 . . . hd} at
hand, we can define multiple gϕi , and implicitly multiple adversaries Ahi

S that use gϕi as a candidate
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Algorithm 5 Lower bound search routine over
multiple threshold classifiers.

{α1 . . . αd} = linspace(0,Φ( C
2σ2 ), d)

for αi ∈ {α1 . . . αd} do
hi = Φ−1(1− αi)
ε̂ = Audit(gϕhi

)
end for
return max(ε̂)
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Figure 7: Comparison between the privacy ac-
counting upper bound and the auditing perfor-
mance of Ah∗

S and our threshold search algorithm
when T = 2. All results are averaged across five
training runs

for g in Eq. 3 which we use to audit, resulting in {ε̂1 . . . ε̂d}, out of which we pick the maximum. A
detailed description is provided in Algorithm 5.

The results shown in Figure 7 confirm thatAh∗

S employs the optimal threshold classifier to distinguish
the input distributions.

G ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present additional experimental results mentioned in various parts of the main text.
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Figure 8: Comparison of privacy auditing performance for AGC-R (ours), AL and ACotS (Andrew
et al., 2024) when auditing a FCNN model on the Housing dataset.

Alternative gradient-crafting strategy. The adversaries that we propose in Section 4 and use in Sec-
tion 5 construct a gradient biased in a single dimension chosen by the adversary. We investigate here
an alternative approach inspired by the auditing method of Andrew et al. (2024). In their approach, the
crafted gradient is randomly sampled from the unit sphere and then scaled by the sensitivity C. For
the confidence score (RankSample in Algorithm 1), the adversary computes the cosine similarity
between the canary gradient and the change in model parameters θT−θ0, which is compatible with the
hidden state model. For completeness, Algorithms 6-7 formally show how the generation of the gra-
dient and the computation of the confidence score is performed. We denote this adversary by ACotS .

We observe experimentally that AGC outperform ACotS , and that both approaches outperform the
loss based adversary AL, see the results in Figure 8.

Experiments on auditing with unknown initialization. As common in differential privacy, we
consider throughout the paper that the initialization θ0. We discuss here the impact of considering the
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Algorithm 6 RankSample for ACotS

1: Input: Model θT ∈ Rp, Initialisation θ0,
canary ∇∗

2: U ← θT − θ0
3: return ⟨∇∗, U⟩/(∥∇∗∥2 × ∥U∥2)

Algorithm 7 Gradient Generation for ACotS

1: Input: dataset D, initialization θ0 ∈ Rp,
clipping threshold C

2: ∇ ← N (0, Ip)
3: ∇∗ ← ∇/∥∇∥2
4: return C ×∇∗

Figure 9: Algorithms used for auditing via ACotS: (a) RankSample and (b) Gradient Generation.
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Figure 10: Visualization of the loss landscape
corresponding to Ah∗

S for C = 1.
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Figure 11: Privacy profiles of AGC-R for k ∈
{1, 5, 25}, C = 1 on CNN trained on CIFAR10
on the last step of training (T = 250 for k = 1,
T = 1250 for k = 5, T = 6150 for k = 25).

initialization to be unknown. First, we note that standard initialization techniques like Glorot (Glorot
and Bengio, 2010) or Xavier (He et al., 2015), which are commonly used to stabilize the training
process by preventing the vanishing or exploding gradients phenomena, sample random parameters
from a uniform or normal distribution with a small variance. Therefore, such initializations only add
a bit of variance. Figure 12 shows the results of using AGC-R to audit a CNN model on CIFAR-10
with unknown initialization from Xavier. We observe no quantitative difference in the performance
of AGC-R compared to the case where the initialization is fixed and known.

Experiments on auditing pre-trained models. In Figure 12 we present the results of AGC-R to
audit pretrained models. We audit an AlexNet model (Krizhevsky et al., 2012), a model pre-trained
on ImageNet (treated as public data) and fine-tuned on CIFAR-10 (treated as private data), compared
to a CNN trained from scratch directly on CIFAR-10 with no frozen parameters. We see that AGC -R
performs tight auditing for k = 1 in this scenario as well.

Privacy profiles. While in all of our experiments, we report both the theoretical epsilon provided
by the privacy accounting and the empirical epsilon at a fixed δ = 1e−5, we can generate the entire
privacy profile curve ε 7→ δ(ε) and thus produce auditing results at an arbitrary δ. Indeed, our auditing
technique computes a lower bound on the µ-GDP parameter (see Section A for more details). Using
the lower bound on µ in Corollary 1, we can compute any δ(ε). To compute ε at a fixed δ, we use a line-
search algorithm like the bisection method, as the function δ(ε) is monotonically increasing in ε. In
Figure 11, we present three privacy profile curves ε 7→ δ(ε) corresponding to the performance ofAGC -
R when auditing a CNN with k ∈ {1, 5, 25}. This confirms that for the case k = 1, we are indeed tight
in all privacy regimes, while for k > 1 AGC-R is not tight for all ε ≥ 0, as discussed in Section 5.

Detailed results for Ah∗

S . In Figure 14 we present all the training curves that generated the heatmap
in Figure 4b by computing the empirical privacy loss generated by Ah∗

S for all σ ∈ {1, . . . , 8}
and B ∈ {1, 2, 4, 8, 16}. As a reference, we display the theoretical epsilon provided by privacy
accounting at each σ. In all plots we observe that the regime B = 16 yields tight auditing, and this is
also the case for larger batch sizes (not shown to avoid clutter).
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Figure 12: Auditing results for AGC on CNN
trained on CIFAR10 when the initialisation of
the neural network is unknown to the adversary,
compared to the case of known initialisation.
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Figure 13: Auditing results for AGC -R when
k = 1 on a pre-trained AlexNet model is fine-
tuned on CIFAR10.
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Figure 14: Auditing performance ofAh∗

S over time T = 25 for various batch sizes B ∈ {1, 2, 4, 8, 16}
and noise levels σ ∈ {1 · · · 8}, used to generate Figure 4b.
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