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Abstract

Component attribution quantifies how model components, from individual neurons
to transformer layers, contribute to a prediction. Despite their successes, most
methods assume additive linear effects between components and overlook interac-
tions that shape how predictions arise from internal computations. In this work, we
formalize nonlinear component modeling and introduce a Kolmogorov—Arnold Net-
work (KAN)-based framework for component attribution. We fit KAN surrogates
on perturbation-response data to represent effects nonlinearly, then use them to
extract local component interaction coefficients in two complementary ways: by au-
tomatic differentiation of the trained KAN and by recovering a symbolic surrogate
whose closed-form mixed partial derivatives yield symbolic interaction scores. This
provides a way to relate a classifier’s output back to interacting internal building
blocks instead of isolated components. The resulting expressions are intended for
future integration with formal verification methods to support richer counterfactual
analyses. Preliminary results on standard image classification models demonstrate
that our approach improves the accuracy of counterfactual predictions and enables
extraction of higher-order component interactions compared to linear attribution.

1 Introduction

Advances in deep learning continue to deliver performance gains across image classification, language
modeling, and audio processing [[1H3]. As architectures scale, attributing a given prediction to
specific components such as transformer layers, residual blocks, and convolutional layers becomes
increasingly difficult [4} 5]]. Attribution methods address this by quantifying output changes under
component ablation [6].

Existing approaches, including Component Attribution via Regression (COAR) [5], typically adopt a
main-effects-only linear model. While efficient, this design necessarily omits interactions among
components that are key to explaining how predictions arise from internal computation.

To overcome this limitation, we introduce a nonlinear component attribution framework based on
Kolmogorov—Arnold Networks (KANs) [[7, 8]. Extending the formulation of Shah et al. [5], we
replace the linear counterfactual model with a flexible KAN surrogate capable of capturing nonlinear
dependencies among components. We generate perturbation—response datasets through randomized,
continuous multicomponent interventions and train the KAN to approximate these responses. From
the trained surrogate, interaction coefficients can be extracted directly, or symbolic regression can be
applied to recover closed-form expressions of importance scores up to a specified derivative order.
Figure [T]illustrates the overall approach.
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From the Perturbation-Response dataset, we train a Kolmogorov-Arnold Network (KAN) and extract Attribution Scores through two paths.
Automatic differentiation of the learned KAN directly yields coefficients, while Symbolic Regression followed by Symbolic Differentiation produces
analytic formulas that can be evaluated at the zero vector to get the coefficients.

Figure 1: Overview of the proposed approach.

Our main contributions are:
1. Formalizing higher-order component attribution within the established component modeling
framework [5]].
2. Introducing KANs as nonlinear component models.
3. Employing two complementary paths to extract attribution scores from the learned KAN:

(a) Automatic differentiation of the trained KAN yields numerical interaction coefficients.

(b) Symbolic regression fits a closed-form surrogate whose symbolic differentiation pro-
vides analytic expressions.

4. Providing empirical validation that nonlinear modeling significantly enhances counterfactual
prediction accuracy compared to linear approaches.

2 Motivation

2.1 Nonlinear Modeling

Attribution is credit assignment: measuring how model components, input features, and training
examples shape predictions [6]]. Despite widespread use, component attribution is commonly imple-
mented with linear surrogates, which capture only main effects and miss higher-order interactions
among components [4} 9].

Attribution methods can be interpreted as performing local function approximation; they fit a simpler
surrogate to a complex model f in the neighborhood of an anchor point z [5 (6} [10]:

g = argmin Eeoz ((f, g,2,¢), @)
9g€eG
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Figure 2: Capturing nonlinear interactions through more expressive surrogate models.

where § is the surrogate class, Z a local perturbation distribution, and ¢ a local loss. Component and
feature attribution differ primarily in how they interpret the surrogate’s input dimensions [6]; insights
therefore transfer across the two settings.

This transfer is well illustrated by LIME-style feature attribution [11413]], which—under suitable
conditions—converges to gradient approximations of f at the anchor [13H15]. We leverage the same
intuition for components. If first-order scores arise as local gradients, then higher-order component
scores should arise as local mixed partials.

Assume inputs x € R™. Extending the local-proxy view, we define the order-r interaction coefficient
for index set S (with |.S| = r) at reference point a by the mixed partials of the learned surrogate §:

1(a) = 9"4(z)

e - , r<n. )
Hjes Ox;

r=a

These coefficients serve as local approximations to the corresponding mixed partials of f at a,
as illustrated in Figure 2| To extract such partials reliably, that is, to capture interactions beyond
first-order effects, the surrogate should satisfy:

1. Expressiveness: universal approximation of the relevant local relationships.

2. Differentiability: k-times continuously differentiable in a neighborhood of a.

2.2 KANs as Nonlinear Surrogates

Linear models [16] represent a response as an intercept plus a weighted sum of the inputs. Generalized
Additive Models (GAMs) [[17] extend this formulation by replacing each linear term with a smooth
univariate function and optionally applying a link function; under the identity link with linear
univariate effects, a GAM reduces to a standard linear model. The Kolmogorov—Arnold representation
theorem [/18} [19] provides a more expressive foundation by showing that, after an affine rescaling of
the domain, any continuous multivariate function can be written as a finite sum of univariate outer
functions applied to sums of univariate functions of individual coordinates.

Kolmogorov—Arnold Networks (KANSs) [[7, 18] operationalize this representation using learnable uni-
variate B-spline mappings on edges with explicit cross-variable mixing, thereby strictly generalizing
both GAMs and linear models. When degree-k + 1 B-splines are used [20]], each univariate map is
C*, which in turn makes the overall network C* in its inputs. As a consequence, all mixed partial
derivatives up to order r < k exist and are continuous.



3 Higher-Order Component Attribution via KANs

Setup We build upon the component modeling framework introduced by Shah et al. [5]. Given a
trained model M composed of m components C = {c, ..., ¢, } and a fixed input z, we define the
scalar output function fj/(z, o) as the model’s prediction when applying an additive gating mask
o ~ N, (0,72L,) to its component. Under this definition, the mask O represents the unperturbed
model, while any deviation from O corresponds to a scaled perturbation of component outputs. We
formalize this notion through the centered counterfactual response:

Afu(z,0) = fu(z,0) = fu(z,0), 3

ensuring A far(z,0) = 0 by construction.

Perturbation-response Dataset To build a perturbation—response dataset D for each input z, we
draw N random masks o (") from a multivariate normal distribution N, (0,721,,,) (Algorithm .
For every mask, we record the centered output () = A fy/(z, o(?)). The resulting dataset captures
local nonlinear dependencies among components in the neighborhood of the intact configuration.

KAN as a component model We train a per-example KAN component model g, : R™ — R using
the dataset D. The component model aims to approximate the nonlinear mapping from component
perturbations to changes in model outputs by minimizing:

N
1 ) N2
i (@). gy _ (D)
min - (gz (c\;:0) —y ) )

Symbolic Approximation and Interaction Scores After training, we symbolically approximate
each univariate spline function within the trained KAN component model g, via symbolic regression
[211, 22]], yielding a closed-form symbolic component model g, (Algorithm 2).

To quantify interactions of arbitrary order, we compute mixed partial derivatives of g, at the intact
configuration & = 0. For any subset of component indices S C {1,...,m} of size r = |5|, we
define the local r-way interaction coefficient as:

9" g, (o)
HjeS do;

Algorithm 3] systematically computes these coefficients up to a specified order k, providing hierarchi-
cal insights into component effects: first-order terms quantify independent effects, while higher-order
terms reveal complex joint interactions. When nonlinear interactions are negligible, our method
naturally reduces to standard linear component attribution [S]].

LY (z) = )

o=0

3.1 Experimental Setup

We follow the experimental framework proposed by Shah et al. [5], adapted to our target level
of granularity. Rather than examining individual neurons, we treat residual blocks in ResNet
architectures [23] and encoder layers in Vision Transformers (ViTs) [24] as individual components.
This choice is motivated by the intrinsic limitations of Kolmogorov—Arnold Networks (KANs), which
are currently unable to efficiently handle very high-dimensional inputs and thus impose a practical
constraint on component resolution.

We evaluate our approach on three standard image classification setups: ResNet-18 trained on CIFAR-
10 [25]], ResNet-50 trained on ImageNet [26]], and ViT-B/16 trained on ImageNet. For each model-
dataset pair, we construct localized perturbation—response datasets by sampling multicomponent
perturbations following Algorithm[I} As a baseline, we compare against COAR [3]], a linear attribution
method that fits a linear model to the perturbation—response pairs (o, A f). Attribution accuracy is
quantified using the Pearson correlation coefficient and the mean squared error between predicted
and ground-truth responses on held-out perturbations, consistent with prior work [5]. As shown in
Figure [3] the proposed KAN-based approach consistently outperforms the linear COAR baseline
across all evaluated tasks.
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Figure 3: Comparison of attribution accuracy between predicted and observed counterfactual re-
sponses
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Figure 4: Recovering derivatives on random 3-variable symbolic functions with KANs

4 Recovering Interaction Coefficients

We study whether KAN surrogates can recover mixed partial derivatives up to third order on random
symbolic targets, motivated by the view of attribution as a form of local function approximation. We
generate 1,000 scalar expressions f : R? — R using the ramped half-and-half procedure [21}27]]. For
each function, three independent anchor points p;, p2, p3 € R? are sampled. Around each anchor, we
apply small input-level perturbations o ~ N/3(0, I5) and record the resulting local responses. Since
each target function is available in closed form, ground-truth derivatives at z = p can be computed
directly. In parallel, derivative estimates are obtained from KAN surrogates using both automatic
differentiation and symbolic differentiation. These estimates are then compared to the corresponding
ground-truth values for derivative orders r € {1,2, 3}. Results are reported in Figure

5 Conclusion

In this work, we presented a nonlinear component attribution framework built upon Kolmogorov—
Arnold Networks (KANs), designed to explicitly model higher-order interactions that conventional
linear attribution methods fail to capture. Empirically, KAN-based component models achieved more
accurate counterfactual predictions than linear baselines, highlighting their capacity to represent
complex dependencies. Nonetheless, the approach remains constrained by the intrinsic dimensionality
limits of KANSs, which hinder scalability to high-dimensional inputs. Future efforts should aim to
relax these constraints to extend the method’s reach.
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Appendix

A Algorithms

Algorithm 1 Perturbation—Response Dataset

1: procedure GENERATEDATASET(example z, model M with components C (size m), sample size
N, perturbation scale 7)

2 D« [ > init dataset
3 fori e {1,...,N} do > N samples
4 Sample o(*) ~ N (0,7 Im) > multicomponent perturbation
5: Afu(z,0) = fu(z,0) = fu(2,0)

6: y D — Afy(z,0) > model output
7 D+ D+ [(a@,4®)) > append pair
8 end for

9 return D > dataset for surrogate
10: end procedure

Algorithm 2 Symbolic KAN Surrogate
1: procedure SYMBOLICSURROGATE(dataset D)

2: Fit KAN g, on D > train surrogate
3: S+ > init symbol list
4 for edge e in g, do > per-edge univariate
5: qge + SymbolicRegression(¢.) > closed-form fit
6: S — S+](e; de)] > collect
7: end for A

8 Replace ¢ + ¢, in g, > compose symbolic surrogate
9 return g,, S > outputs
10: end procedure

Algorithm 3 Local Interaction Coefficients
1: procedure LOCALINTERACTIONS(symbolic surrogate §,, components C (size m), max order k)

2. forre{l,...,k}do > interaction order
3: for index subset S C {1,...,m} with |S| = r do > choose indices
-
4: L(ST) — M > r-way interaction at baseline
[l;es 905 o0

5 end for

6: end for

7 return {L("}F_, > local interaction coefficients
8: end procedure
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