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Abstract

Component attribution methods provide insight into how parts of deep learning1

models, such as convolutional filters and attention heads, influence model predic-2

tions. Despite their successes, existing attribution approaches typically assume3

component effects are additive and independent, neglecting complex interactions4

among components. Capturing these relations between components is crucial for5

a better mechanistic understanding of these models. In this work, we improve6

component attribution (COAR) by replacing the linear counterfactual estimator7

with a Kolmogorov–Arnold Network (KAN) surrogate fitted to example-wise per-8

turbation–response data. Then, a symbolic approximation of the learned KAN lets9

us compute mixed partial derivatives that captures and makes explicit high-order10

component interactions that linear methods are missing. These symbolic expres-11

sions facilitate future integration with formal verification methods, enabling richer12

counterfactual analyses of internal model behavior. Preliminary results on standard13

image classification models demonstrate that our approach improves the accu-14

racy of predicted counterfactuals and enable extraction of higher-order component15

interactions compared to linear attribution methods.16

1 Introduction17

Advances in deep learning generate continuous performance improvements across various tasks,18

including image classification, language modeling, and audio processing [1–3]. However, the19

growing complexity of deep models often obscures the precise role of individual components20

such as transformer blocks, residual blocks, or convolutional layers play in generating specific21

predictions [4, 5]. Component attribution methods, which quantify the effect of ablating or perturbing22

these components on model outputs, have become essential tools for interpretability and targeted23

interventions [6].24

Existing attribution methods, including component attribution via regression (COAR) [5], typically25

assume additive independence among component effects. Although these methods are efficient and26

insightful, their linear assumptions limit their ability to capture complex, nonlinear interactions27

between components. Addressing these higher-order interactions explicitly is critical to advancing28

our mechanistic understanding of deep neural networks.29

In this paper, we propose a novel nonlinear component attribution framework based on Kol-30

mogorov–Arnold Networks (KANs) [7, 8]. Our method builds upon the formalization of component31

modeling introduced by Shah et al. [5], replacing the linear attribution approach with a flexible non-32

linear component model. Specifically, we construct perturbation-response datasets from randomized,33

continuous multicomponent interventions. We then train a KAN to approximate these responses and34

use symbolic regression [9] to derive a closed-form symbolic expression. Higher-order mixed partial35
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A perturbation vector intervenes on the outputs of individual 
components for a fixed input. Initially, no perturbation is applied 

noise is then introduced to the output of each component.

We ablate the fixed model using randomly sampled perturbation vectors and 
record the corresponding outputs, producing a dataset that relates perturbation 

patterns to the model's responses on a fixed input.

From the perturbation–response dataset, we train a Kolmogorov–Arnold Network (KAN) and apply symbolic regression to its activation functions. 
From this, we construct a symbolic expression representing the KAN, and subsequently perform symbolic differentiation to obtain closed-form 

functions that capture interaction patterns among model components.
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Figure 1: Overview of the proposed approach.

derivatives of this symbolic function directly quantify interactions among components. Figure 136

illustrates our overall approach.37

Our main contributions are:38

1. Formalizing higher-order component attribution explicitly within the established component39

modeling framework [5].40

2. Introducing a three-step methodological approach that:41

(a) Fits nonlinear KAN component models to perturbation-response datasets.42

(b) Makes a symbolic approximation of the learned component model and analytically43

computes their derivatives.44

(c) Quantifies higher-order component interactions via mixed partial derivatives.45

3. Providing empirical validation that nonlinear modeling significantly enhances the accuracy46

of counterfactual predictions compared to linear approaches.47

2 High-order Component Attribution via KANs48

Setup We build upon the component modeling framework introduced by Shah et al. [5]. Given a49

trained model M composed of m components C = {c1, . . . , cm} and a fixed input z, we define the50

scalar output function fM (z,σ) as the model’s prediction when applying an additive gating mask51

σ ∼ Nm(0, Im) to its components. Under this definition, the mask 0 represents the unperturbed52

model, while any deviation from 0 corresponds to partial ablation or amplification of component53

outputs. We formalize this notion through the centered counterfactual response:54

∆fM (z,σ) = fM (z,σ)− fM (z,0) (1)

ensuring ∆fM (z,0) = 0 by construction.55
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Perturbation-response Dataset To build a perturbation–response dataset D for each input z, we56

draw N random masks σ(i) from a multivariate normal distribution Nm(0, Im) (Algorithm 1). For57

every mask, we record the centered output y(i) = ∆fM (z,σ(i)). The resulting dataset captures local58

nonlinear dependencies among components in the neighborhood of the intact configuration.59

KAN as a component model We train a per-example KAN component model gz : Rm → R using60

the dataset D. The component model aims to approximate the nonlinear mapping from component61

perturbations to changes in model outputs by minimizing:62

min
θ

1

N

N∑
i=1

(
gz(σ

(i); θ)− y(i)
)2

(2)

Symbolic Approximation and Interaction Scores After training, we symbolically approximate63

each univariate spline function within the trained KAN component model gz via symbolic regression64

[9], yielding a closed-form symbolic component model ĝz (Algorithm 2).65

To quantify interactions of arbitrary order, we compute mixed partial derivatives of ĝz at the intact66

configuration σ = 0. For any subset of component indices S ⊆ 1, . . . ,m of size r = |S|, we define67

the local r-way interaction coefficient as:68

L
(r)
S (z) =

∂r ĝz(σ)∏
j∈S ∂σj

∣∣∣∣
σ=0

(3)

Algorithm 3 systematically computes these coefficients up to a specified order k, providing hierarchi-69

cal insights into component effects: first-order terms quantify independent effects, while higher-order70

terms reveal complex joint interactions. When nonlinear interactions are negligible, our method71

naturally reduces to standard linear component attribution [5]72

2.1 Experimental Setup73

We follow the experimental framework proposed by Shah et al. [5], adapted to our specific level74

of granularity. Rather than examining individual neurons, we focus on residual blocks in ResNet75

architectures [10] and encoder layers in Vision Transformers (ViTs) [11] as individual components.76

This granularity is selected due to the intrinsic limitations of Kolmogorov–Arnold Networks (KANs),77

which are currently unable to efficiently handle high-dimensional inputs, thereby constituting a78

limitation of our approach. We assess our methodology on three widely used image classification79

setups: ResNet-18 trained on CIFAR-10 [12], ResNet-50 trained on ImageNet [13], and ViT-B/1680

also trained on ImageNet. For each model-dataset combination, we generate localized perturbation-81

response datasets by sampling multicomponent perturbations, following Algorithm 1.82

Baselines and Evaluation Metrics We benchmark our proposed approach against the established83

linear attribution baseline:84

• COAR (Linear Attribution) [5]: This baseline applies a linear model to perturbation-85

response data.86

In line with previous research [5], we quantify attribution accuracy using two metrics: the Pearson87

correlation coefficient and the mean squared error, computed between predicted and actual responses88

on held-out perturbations.89

Our experimental results, summarized in Table 1, show that the proposed KAN-based approach90

consistently outperforms the linear COAR baseline across all evaluated tasks. Specifically, KAN91

achieves higher Pearson correlations and lower mean squared errors, indicating a clear advantage in92

modeling nonlinearity within the component attribution framework.93

3 Conclusions and Future Work94

In this work, we introduced a novel nonlinear component attribution framework based on Kol-95

mogorov–Arnold Networks (KANs), capable of explicitly capturing higher-order component in-96

teractions that traditional linear attribution methods overlook. Our experiments demonstrated that97
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Table 1: Comparison of attribution accuracy between predicted and observed counterfactual responses

ResNet-18 / CIFAR-10 ResNet-50 / ImageNet ViT-B/16 / ImageNet
Method Pearson ↑ MSE ↓ Pearson ↑ MSE ↓ Pearson ↑ MSE ↓
COAR (Linear) 0.62± 0.05 0.82± 0.07 0.54± 0.06 0.95± 0.08 0.48± 0.07 1.05± 0.09
KAN (Ours) 0.76± 0.03 0.53± 0.05 0.70± 0.04 0.60± 0.06 0.66± 0.05 0.68± 0.07

employing KAN-based component models significantly improves the accuracy of predicted counter-98

factual responses compared to linear baselines. However, the current methodology is limited by the99

intrinsic dimensionality constraints inherent to KANs, restricting their scalability to high-dimensional100

input spaces. Future research should focus on addressing these dimensionality challenges to broaden101

the applicability and scalability of the proposed method. Additionally, it will be valuable to explore102

meaningful use cases of higher-order interactions in realistic scenarios. While our current results103

already show promising improvements in attribution accuracy, further extensions could illustrate104

practical benefits of higher-order attributions enabled by our proposed methodology, potentially105

leading to deeper insights into complex model behaviors.106

4 Algorithms107

Algorithm 1 Perturbation–Response Dataset
1: procedure GENERATEDATASET(example z, model M with components C (size m), sample size

N )
2: D ← [] ▷ init dataset
3: for i ∈ {1, . . . , N} do ▷ N samples
4: Sample σ(i) ∼ Nm(0, Im) ▷ multicomponent perturbation
5: ∆fM (z,σ(i)) = fM (z,σ(i))− fM (z,0)
6: y(i) ← ∆fM (z,σ(i)) ▷ model output
7: D ← D + [(σ(i), y(i))] ▷ append pair
8: end for
9: return D ▷ dataset for surrogate

10: end procedure

Algorithm 2 Symbolic KAN Surrogate
1: procedure SYMBOLICSURROGATE(dataset D)
2: Fit KAN gz on D ▷ train surrogate
3: S ← [] ▷ init symbol list
4: for edge e in gz do ▷ per-edge univariate
5: ϕ̂e ← SymbolicRegression(ϕe) ▷ closed-form fit
6: S ← S + [(e, ϕ̂e)] ▷ collect
7: end for
8: Replace ϕe ← ϕ̂e in gz ▷ compose symbolic surrogate
9: return ĝz,S ▷ outputs

10: end procedure

Algorithm 3 Local Interaction Coefficients
1: procedure LOCALINTERACTIONS(symbolic surrogate ĝz, components C (size m), max order k)
2: for r ∈ {1, . . . , k} do ▷ interaction order
3: for index subset S ⊆ {1, . . . ,m} with |S| = r do ▷ choose indices

4: L
(r)
S ← ∂r ĝz(σ)∏

j∈S ∂σj

∣∣∣∣∣
σ=0

▷ r-way interaction at baseline

5: end for
6: end for
7: return {L(r)}kr=1 ▷ local interaction coefficients
8: end procedure

4



References108

[1] Jie Huang and Kevin Chen-Chuan Chang. Towards Reasoning in Large Language Models: A109

Survey. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Findings of the110

Association for Computational Linguistics: ACL 2023, pages 1049–1065, Toronto, Canada, July111

2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.67. URL112

https://aclanthology.org/2023.findings-acl.67/.113

[2] Yutong Zhou and Nobutaka Shimada. Vision + Language Applications: A Survey. In 2023114

IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),115

pages 826–842, Vancouver, BC, Canada, June 2023. IEEE. ISBN 979-8-3503-0249-3. doi:116

10.1109/CVPRW59228.2023.00090. URL https://ieeexplore.ieee.org/document/117

10208464/.118

[3] Siddique Latif, Moazzam Shoukat, Fahad Shamshad, Muhammad Usama, Yi Ren, Heriberto119

Cuayáhuitl, Wenwu Wang, Xulong Zhang, Roberto Togneri, Erik Cambria, and Björn W.120

Schuller. Sparks of Large Audio Models: A Survey and Outlook, September 2023. URL121

http://arxiv.org/abs/2308.12792. arXiv:2308.12792 [cs].122

[4] Lee Sharkey, Bilal Chughtai, Joshua Batson, Jack Lindsey, Jeff Wu, Lucius Bushnaq, Nicholas123

Goldowsky-Dill, Stefan Heimersheim, Alejandro Ortega, Joseph Bloom, Stella Biderman,124

Adria Garriga-Alonso, Arthur Conmy, Neel Nanda, Jessica Rumbelow, Martin Wattenberg,125

Nandi Schoots, Joseph Miller, Eric J. Michaud, Stephen Casper, Max Tegmark, William126

Saunders, David Bau, Eric Todd, Atticus Geiger, Mor Geva, Jesse Hoogland, Daniel Murfet,127

and Tom McGrath. Open Problems in Mechanistic Interpretability, January 2025. URL128

http://arxiv.org/abs/2501.16496. arXiv:2501.16496 [cs].129

[5] Harshay Shah, Andrew Ilyas, and Aleksander Madry. Decomposing and Editing Predictions130

by Modeling Model Computation, April 2024. URL http://arxiv.org/abs/2404.11534.131

arXiv:2404.11534 [cs].132

[6] Shichang Zhang, Tessa Han, Usha Bhalla, and Himabindu Lakkaraju. Towards Unified Attri-133

bution in Explainable AI, Data-Centric AI, and Mechanistic Interpretability, May 2025. URL134

http://arxiv.org/abs/2501.18887. arXiv:2501.18887 [cs].135

[7] Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,136
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