
Dynamic Chain-of-Thought: Towards Adaptive Deep
Reasoning

Libo Wang
UCSI University

Nicolaus Copernicus University
free.equality.anyone@gmail.com

Abstract

To reduce the cost and consumption of computing resources caused by compu-1

tational redundancy and delayed reward assignment in long CoT, this research2

proposes the dynamic chain-of-thought with adaptive reasoning time and steps. The3

researcher used simulation experiment to simulate the integration of D-CoT through4

Python 3.13 IDLE combined with a Python simulator based on GPTs. At the same5

time, the researcher used DeepSeek R1 as a control group to test and compare6

the performance of the D-CoT simulator in processing MIT OpenCourseWare’s7

linear algebra exam questions. Experimental results show that D-CoT is better8

than DeepSeek R1 based on long CoT in three indicators: reasoning time, CoT9

length (reasoning steps) and token count, which achieves a significant reduction in10

computing resource consumption. In addition, this research has potential value in11

deep reasoning optimization that is used as a reference for future dynamic deep12

reasoning frameworks.13

Figure 1: Comparison of the reasoning process of long CoT and dynamic CoT via prompting.

1 Introduction14

As an emergent capability of large language models (LLMs) with huge parameter sizes in the15

reasoning process, chain-of-thought (CoT) allocates additional computing resources in a way that16

facilitates the gradual decomposition of tasks, which is particularly prominent in context learning [17].17

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

It follows that chain-of-thought provides techniques for gradually unfolding intermediate reasoning18

steps to enhance LLMs’ ability to handle complex problems by disassembling them into coherent19

sub-steps [6]. However, affected by context, prompt word design, and model learning bias, CoT has20

unfaithful interpretations, which leads to deviations between the reasoning process and the actual21

decision-making mechanism [14]. In addition, while CoT enhances the reasoning capabilities of22

LLMs, it also brings concerns about rising costs by prolonging the reasoning steps and improving23

quality [8]. In response to the above-mentioned shortcomings of traditional CoT, more and more24

cutting-edge LLMs apply long CoT technology to demonstrate excellent reasoning capabilities when25

processing complex tasks [2, 16].26

Long chain-of-thought (long CoT) aims to promote the model to have self-reflection and adaptive27

refinement in multi-step complex scene reasoning through hierarchical reasoning and stepwise28

verification to ensure accuracy and consistency [16]. For few-shot CoT, the accuracy of LLMs output29

is linearly related to the number of reasoning steps, which means that the longer the number of steps,30

the more accurate the response, while reducing the CoT length will significantly reduce the response31

accuracy [8]. Jin et al. found that even if errors occur in the intermediate steps of long CoT during the32

reasoning process, maintaining the necessary reasoning length will produce a high-accuracy response.33

In the application of OpenAI’s o1 model, long CoT is combined with reinforcement fine-tuning34

(RFT) to further optimize LLMs’ understanding and memory capabilities of multi-level reasoning35

processes [7, 18]. In view of the shortcomings of LLMs in intermediate reasoning and adaptive36

learning capabilities, DeepSeek-R1 introduces large-scale pure reinforcement learning training to37

reduce reliance on supervised fine-tuning (SFT) [19]. During training, in order to avoid instability in38

the initial cold start phase due to no longer relying on large amounts of labeled data, it constructs39

long CoT data and uses specific collection and processing methods to guide deeper reflection. and40

verification [2, 4].41

However, long CoT requires a large number of intermediate steps in the reasoning practice process,42

its inherent computational redundancy and delayed feedback problems significantly increase the43

reasoning cost and consumption of computing resources, which is directly reflected in the exponential44

growth of reasoning time and steps. In order to improve accuracy, a large number of lengthy reasoning45

steps do not directly contribute to the final answer but only serve as an auxiliary process, resulting in46

the accumulation of computational overhead [3]. These phenomena are often reflected in users’ actual47

applications, especially LLMs with deep reasoning capabilities such as o3 min-high or DeepSeek R1.48

For example, when users use DeepSeek R1 to perform difficult and complex tasks, the number of49

reasoning steps increases significantly and the system response delay increases significantly.50

The deep gap lies in the fact that long CoT essentially runs on a static reasoning framework, making51

it difficult to flexibly adjust the number of reasoning steps according to the difficulty of different52

problems. The lack of dynamic adaptation mechanism usually treats the reasoning process as a linear53

expansion, which is reflected in the inability to adjust the length of the thinking chain according to54

the complexity of different tasks and environmental feedback. For example, DeepSeek R1 faces the55

problem of increased reasoning steps and longer system response delays when performing complex56

and difficult tasks. The flaw makes it difficult for the system to adaptively allocate computing57

resources, and the accumulation of inefficient reasoning causes nonlinear growth in reasoning time.58

In addition, the insufficient coupling between long CoT generation and RL reward mechanism is one59

of gaps about huge computational overhead. This technology is designed to enhance transparency60

and explainability, but is not tightly integrated with RL goals, which results in the lack of an effective61

credit allocation mechanism between reward signals during reasoning. Even though traditional RL62

relies on immediate or deferred rewards to adjust strategies, the value of a step in a long CoT is63

usually only determined when rewards are finally obtained.64

2 Proposed Framework & Algorithms65

In view of gaps, this research proposes dynamic chain-of-thought (D-CoT) to implement a state66

compression mechanism with adaptive reasoning steps to reduce computational redundancy. Figure 167

shows the comparison of between long CoT and dynamic CoT under the same prompt.68

2

2.1 Dynamic Chain-of-Thought Framework69

Dynamic chain-of-thought (D-CoT) is an LLMs reasoning framework with adaptive reasoning70

capabilities that reduces the consumption of cost computing resources by real-time adjustment of71

chain length (reasoning steps) and reasoning time. Compared with the fixed and linear expansion of72

reasoning steps of traditional long CoT, D-CoT dynamically adjust the length of CoT in real time,73

select key steps after rating different tasks. Its specific internal structure is shown in Figure 2.74

Figure 2: Dynamic Chain-of-Thought Framework

The D-CoT leverages the core principles of the hierarchical adaptive reinforcement learning to75

adjust the steps and information weights in the deep reasoning process to minimize computational76

redundancy and optimize the decision path. It introduces an importance-driven pruning strategy in77

the process of auto-regressive decoding, combines the partial reward estimator to instantly evaluate78

the effectiveness of the reasoning block, and decides whether to expand or delete the reasoning79

steps through adaptive thresholding. In addition, D-CoT constructs a multi-level reasoning structure80

through macro summary and micro detail buffer to ensure the optimal transmission of information81

flow at different reasoning scales. In contrast, it not only reduces the cumulative computational82

burden of long CoTs, but also improves the adaptability of reasoning, forming an efficient reasoning83

framework with feedback adjustment capabilities.84

2.1.1 Hierarchical Adaptive Reward Optimization85

The operating mechanism of the HARO (Hierarchical Adaptive Reward Optimization) algorithm86

is based on hierarchical reward allocation and adaptive reasoning adjustment. The algorithm uses87

the partial reward estimator to instantly evaluate the contribution of decisions at different levels of88

the deep reasoning process, and uses adaptive thresholding to dynamically correct the weight of the89

reasoning step (CoT length) to ensure the priority delivery of high-value information. In addition,90

this algorithm combines an importance-driven pruning strategy to instantly filter inefficient reasoning91

paths to reduce redundant computing overhead and improve overall reasoning efficiency.92

Token Importance Evaluation Each reasoning step 𝑐𝑖 is assigned an importance score:93

𝐼 (𝑐𝑖) = 𝛼∗𝐴(𝑐𝑖) + (1 − 𝛼)∗GatingScore(𝑐𝑖)
where 𝐴(𝑐𝑖) is the dominance estimate derived from RL and GatingScore reflects the token-level94

contribution.95

Dynamic Adaptive Pruning Thresholding It introduces a self-adjusting threshold 𝜏𝑡 based on96

historical success rates:97

𝜏𝑡 = 𝛾 · 𝜏𝑡−1 + (1 − 𝛾) ·
1
𝑁

𝑁∑︁
𝑗=1

1[𝐼 (𝑐 𝑗)] > 𝜏𝑡−1]

3

where 𝜏𝑡 represents the updated threshold at time step 𝑡; 𝛾 is an attenuation factor used to control98

the retention of historical information; 1[𝐼 (𝑐 𝑗) > 𝜏𝑡−1] tracks whether past tokens have exceeded a99

previous threshold.100

Progressive Reasoning Buffer (Adaptive Selection) Dynamic adjustments in CoT segments are101

stored in buffers:102

𝐶𝑡 = 𝐶𝑡−𝑙 + argmax𝑐𝑖 (𝐼 (𝑐𝑖) − 𝜏𝑡)
where steps below 𝜏𝑡 are discarded unless they contribute significantly to global coherence; 𝐶𝑡103

represents the CoT state at time 𝑡.104

Reward Optimization and Auto-Regressive Feedback HARO uses reward gradients to iteratively105

optimize token selection by core semantics:106

∇𝜃 𝐽 = 𝐸 [𝑅sem (𝐶) + 𝜆𝑅struct (𝐶)∇𝜃 log 𝜋𝜃 (𝐶)]
where 𝐸 represents expectation value; 𝑅 represents reward function; 𝛩 represents model parameters;107

𝑅sem (𝐶) represents a semantic reward function; 𝑅struct (𝐶) represents a structural function; 𝛾 is a108

weighting hyperparameter balancing semantic fidelity and structural efficiency; 𝜋𝜃 (𝐶) represents the109

policy for selecting tokens; ∇𝜃 log 𝜋𝜃 (𝐶) is the optimization through policy gradients.110

Notably, reward alignment and policy adjustment are inspired by PPO (Proximal Policy Optimization).111

PPO is committed to truncating the clipped objective function restriction policy and updating the112

amplitude policy update range to ensure training stability [12]. HARO further introduces adaptive113

thresholding, allowing reward signals to dynamically adapt according to the reasoning steps to114

improve the selectivity of the optimal decision trajectory. In addition, HARO draws on advantage115

estimation, dynamically filters high-value reasoning through hierarchical feedback mechanism,116

reduces low-reward expansion, and thereby reasons redundancy.117

2.2 Detailed Framework Composition118

The D-CoT framework consists of six key parts.119

2.2.1 Tokenization & Embedding120

As the first part of D-CoT, it is responsible for converting natural language input into a dense vector121

representation that can be processed by the model [13]. This process first decomposes the text into122

subword units through tokenization, maps it to a high-dimensional space through an embedding123

layer to capture semantic information and contextual dependencies, and combines it with positional124

encoding to provide sequence order information [15]. The following are the supported algorithms in125

the workflow:126

Tokenization Process
T = Tokenizer (Q)

Embedding with Positional Encoding
X = 𝐸 (T) + 𝑃,

Seamless Transition to MoE Stack
X→ MoE-Enabled Transformer

where converting user query Q into a token sequence T, this algorithm converts Q into discrete127

labeled units; Mapping tokens into dense embeddings while integrating positional encoding; X128

represents the final embedding representation that contains the vectorized representation and position129

encoding; 𝐸 (T) represents the embedding function that converts mark tokens into corresponding130

embedding representations; 𝑃 represents position encoding.131

When the processed dense vector representation enters the MoE-rnabled transformer stack, the system132

selects the appropriate expert path through the gating network based on the semantic features of133

the input sequence that allows different parts of the information to flow through the most suitable134

expert layers (Pan et al., 2024). X→MoE-Enabled Transformer means passing the final embedding135

representation X to the MoE-enabled transformer stack.136

4

2.2.2 MoE-Enabled Transformer Stack137

The MoE-enabled transformer stack uses a mixture of experts (MoE) mechanism to enhance selective138

computing capabilities through multi-head self-attention to ensure efficient acquisition of key infor-139

mation [4]. The feed-forward layers combined with enhanced gating perform feature transformation140

based on dynamically selected experts to maximize reasoning efficiency [19]. The residual-norm mod-141

ule provides gradient stability and reduces signal attenuation to ensure smooth flow of information in142

deep structures. The researcher demonstrated its workflow algorithm as follow.143

Expert Selection

𝛼𝑡 ,𝑒 = Router (𝑢t, 𝑒),Eactive = TopK{𝛼𝑡 ,𝑒 | 𝑒 = 1, · · · , 𝑁}

Expert Outputs
h′𝑡 =

∑︁
𝑒∈𝐸𝑡,active

𝛼𝑡 ,𝑒 · 𝑓𝑒 (u𝑡), u𝑡 ∈ ℜ

Importance Score

𝐼𝑡 = 𝛾
©­«

∑︁
𝑒∈E𝑡,active

𝛼t,e
ª®¬ + (1 − 𝛾) 𝛽𝑡

After expert assignment of input vectors through MoE, the refined semantic information is passed to144

the dynamic CoT controller for adaptive pruning and dynamic summarization145

Adaptive Thresholding for Pruning and Summarization

𝜏dyn (𝑟𝑡) = 𝜏0 + 𝜂(𝑟𝑡 − 𝑟)

Hierarchical Decoding & Assembly

𝑦𝑡+1 = Assemble (𝐵𝑇 , {macro, micro})
where 𝜏dyn (𝑟𝑡) is dynamic threshold; 𝑟𝑡 is partial reward; 𝜏0 is a base threshold, 𝑟 is a running146

average reward, and 𝜂 is a scaling factor; 𝑦𝑡+1 represents the next generated token after decoding; 𝐵𝑇147

represents the final buffer of CoT segments after iterative refinement; The macro-level summaries148

compress global information; micro-level expansions retain fine-grained details.149

2.2.3 Dynamic CoT Controller150

As the core of deep reasoning, the dynamic CoT controller is responsible for optimizing the length151

and content of CoT to reduce redundant calculations and the accumulation of unnecessary steps.152

The key technology is to dynamically adjust the reasoning steps to adapt the reasoning process153

to different types of task requirements, thereby improving the adaptability of LLMs in complex154

decision-making scenarios. Its operating mechanism calculates the importance score of the token155

based on gating logs and attention scores, which determines whether the inference step should be156

retained or compressed. Afterwards, the reasoning fragments are stored in the progressive reasoning157

buffer to ensure that key information is efficiently used in subsequent steps. Reasoning discriminator158

determines whether to start CoT reasoning through knowledge certainty evaluation (Y/N). The system159

calculates the confidence 𝑃fact (𝑥) via FAISS/BM25, 𝐶comp (𝑥) is not greater than 3 that is based160

on syntactic structure and computational cost evaluation. If both are below the threshold, they are161

directly output, otherwise they enter CoT segments for reasoning. The relevant supported algorithms162

are as follows:163

Adaptive Pruning & Summarization

𝐼𝑡 = Importance (𝑡) (combining gating + attention)
if 𝐼𝑡<𝜏dyn (𝑟𝑡), prune token 𝑡, else, optionally summarize

Progressive Buffer Update

𝐵𝑡+1 = B𝑡 ∪ {Summarized 𝑡 | 𝐼𝑡 ≥ 𝜏dyn (𝑟𝑡)}

5

Partial Reward
𝑟𝑡 = RLFeedback (𝑡), 𝜏dyn (𝑟𝑡) = 𝜏0 + 𝜂 · (𝑟𝑡 − 𝑟)

Adaptive Token Expansion and Pruning

z𝑡+1 = Adjust (Generate (SelectTokens (𝐵𝑡 , 𝜃𝑡 , 𝑟𝑡), 𝐵𝑡 , 𝜃𝑡), r𝑡+1)

Reasoning Discriminator

𝑦out =

{
OutputAnsw er(𝑥), if 𝑃fact (x)≥0.85 and 𝐶 comp (𝑥)≤3
CoT Segments (𝑥), otherwise

Reward-Guided CoT Assembly

𝐵𝑡 = AssembleCoT(𝐵𝑡 , {𝑧𝑡 }𝑡=−𝑇 , r𝑡+1 = RewardUpdate (𝑟𝑡 ,DecodeOut (z𝑡+1)))
where 𝐼𝑡 is importance score of token 𝑡 (gating + attention); 𝜏dyn represents dynamic threshold164

based on reward 𝑟𝑡 ; 𝜏0is base pruning threshold; 𝜂 is scaling factor for threshold adjustment; 𝑟𝑡 is165

RL feedback at step 𝑡/ partial reward signal; 𝑟𝑡 + 1 represents the updated reward at step 𝑡 + 1; 𝑟166

represents running average reward; 𝐵𝑡 represents token buffer at step 𝑡/ the final structured CoT167

assembly after multiple iteration steps; 𝐵𝑡+1 represents updated token buffer; 𝑡 represents the current168

reasoning step in the iterative decoding process; Summarized 𝑡 is compressed token representation;169

RLFeedback(t) represents RL-based reward function for token 𝑡; 𝑧𝑡 represents tokens at time step170

𝑡/ the generated reasoning tokens at step 𝑡; 𝜃𝑡 represents hidden parameters of the decoder at 𝑡;171

SelectTokens() represents token selection of core semantics; Generate(·) is based on generation of172

new tokens; Adjust(·) expands or prunes tokens (adaptive pruning or expansion decision) based on173

rewards and gating logs; 𝑇 is The total number of CoT reasoning steps; RewardUpdate() updates the174

reward based on the previous reward and newly decoded token sequence; DecodeOut(𝑧𝑡 + 1) is from175

the iterative reasoning process at step 𝑡 + 1; AssembleCoT() structures the final CoT by integrating176

generated reasoning tokens and their associated reward values.177

The processed CoT fragment is passed to auto-regressive decoding with feedback loop. It evaluates178

the effectiveness of each fragment based on the partial reward estimator and optimizes the reasoning179

strategy through dynamic adjustment, which reduces computational overhead while maintaining high180

accuracy output.181

2.2.4 Auto-Regressive Decoding with Feedback Loop (Iterative Small Blocks)182

Auto-regressive decoding with feedback loop calculates the relative contribution of tokens in the183

current reasoning process through the partial reward estimator. It filters qualified tags into iterative184

generation and gradually builds a complete reasoning chain. The generation process uses small block185

decoding to ensure that reasoning can optimize the structure under short-term feedback constraints186

to improve adaptability and efficiency. Then, adjusting/pruning dynamically selects whether to187

compress, retain or expand tags based on the partial reward signal and internal dynamic threshold188

to reduce redundant calculations and ensure efficient reasoning. Some of the filtered tokens are fed189

back to the progressive reasoning buffer to ensure consistent reasoning logic, and weight estimation190

is dynamically updated. The mathematical expression of attention merging is:191

Hierarchical Decoding and Expansion Rule

𝐶𝑡+1 = 𝐶𝑡 ∪ 𝑇𝑡+1, 𝑇𝑡+1 = Adjust(Decode (𝑇𝑡 ,Θ𝑡 , 𝑟𝑡), Importance(𝑇𝑡+1), 𝑟𝑡+1)

Reward-Guided Hierarchical CoT Refinement

F(𝑡 + 1) = Refine (AssembleSplit (𝑇𝑡+1), RewardMap (𝑀𝑡+1), 𝑟𝑡+1))
where 𝐶𝑡 is CoT structure at time step 𝑡;𝐶𝑡 + 1 represents update CoT after processing new tokens;192

𝑇𝑡 is token block at time step 𝑡;𝑇𝑡+1 is adjusted token block after pruning/expansion; 𝜃𝑡 is Local193

model parameters, including gating logs and RL signals; 𝑟𝑡 represents partial reward signal guid-194

ing RL; 𝑟𝑡 + 1 represents partial reward signal guiding hierarchical selection; Importance (𝑇𝑡+1)195

represents function computing token importance; Adjust() is the operator for pruning/expanding196

token sequences; Decode() represents function ¯generating token sequences from parameters; F𝑡+1 is197

6

final hierarchical CoT representation at step 𝑡 + 1;M𝑡 + 1 is macro-level summary tokens, m𝑡 + 1 is198

micro-level detail tokens; AssembleSplit() represents operator splitting token blocks into macro/micro199

segments; RewardMap() represents function ranking macro segments based on reward signals; Re-200

fine() represents operator merging macro, micro, and reward-driven structures into final hierarchical201

CoT.202

2.2.5 Hierarchical CoT Assembly203

Hierarchical CoT assembly extracts high-level semantic information through macro summary builder204

and establishes a global reasoning structure to ensure contextual consistency. The fine-grained205

information is stored through micro detail buffer, which retains important reasoning details to avoid206

semantic loss. The stored information is further analyzed by the contextual mapper, which enables207

the reasoning process to dynamically adapt to contextual changes by integrating different levels of208

information. The reward-aligned refinement adjusts the reasoning weight through the RL mechanism209

and dynamically adjusts the contribution of key markers based on the learning reward signal. The210

algorithm is as follows:211

Macro / Micro Separation

𝐶macro, 𝐶micro = Assemble (𝐶, PartialRewards)

Reward-Aligned Refinement

𝐶final = Refine (𝐶macro, 𝐶micro,RewardMap)
where 𝐶 still represents CoT; 𝐶macro represents is a macro-level reasoning component; 𝐶micro is212

micro-level reasoning component; Assemble (·) is assembly function, it is responsible for dividing the213

reasoning steps and decomposing the complete CoT structure into 𝐶macro and 𝐶micro; 𝐶final represents214

final refined CoT; Refine (·) represents refinement function.215

2.2.6 Final Output Generation216

After completing the hierarchical CoT assembly, the final output generation produces the final answer217

in response. At the same time, integrated RL reward re-evaluates reasoning weights and adjusts218

pruning and gating policies through importance estimators, and feeds the updated decision signals219

back to the dynamic CoT controller to optimize future reasoning processes. The supported algorithms220

are as follows:221

Final Answer
A = OutputAnswer(𝐶final)

Compute Episode Reward

𝑅episode = RewardFunction (A,EnvironmentState)

Update Dynamic CoT Parameters (Loop)

𝛩CoT ← 𝛩CoT + 𝜂∇𝛩CoT · 𝑅episode

where A is final answer; 𝐶final represents the output result from hierarchical CoT assembly; 𝑅episode222

represents episode reward; 𝛩CoT is is a parameter of D-CoT; ∇𝛩CoT𝑅episode is gradient of episode223

reward; 𝜂 is the learning rate that controls the update amplitude of the D-CoT parameters.224

3 Experiments225

D-CoT is essentially a modular enhancement technology for deep reasoning. Its core mechanism226

includes adaptive step adjustment and reasoning pruning, but does not involve changes to the pre-227

training architecture of LLMs. It needs to be embedded into existing LLMs to achieve performance as228

it relies on its language understanding capabilities rather than independent execution [9]. Therefore,229

this research chose simulation experiment to test D-CoT’s adaptive step adjustment, computational230

resource allocation, reasoning pruning and reward alignment in the deep reasoning process. It allows231

7

verifying the impact of different regulation strategies on reasoning performance in a controlled232

environment , which avoids being limited by the immutability of the internal architecture [5, 10].233

In addition, except for a few open sources such as DeepSeek R1 and MemGPT, mainstream ones such234

as OpenAI o1 and o3 min-high are still closed-source LLMs, and the API interface cannot provide235

internal control capabilities for the reasoning steps [11]. The researcher was unable to directly modify236

the internal reasoning architecture of LLMs by integrating D-CoT for dynamic step adjustment and237

reward alignment testing [1].238

3.1 Experimental Setup239

Considering that it is difficult to directly integrate into existing closed-source LLMs and a simulation240

experiment was used to test its reasoning performance, the researcher simulated the process of241

integrating D-CoT into current LLMs through custom GPTs with runnable code. By developing242

code in Python 3.13 IDLE and uploading it to the Python simulator based on GPTs, the researcher243

simulate the dynamic control of D-CoT’s deep reasoning steps, calculation mechanism adjustment244

and reward alignment strategies, and simulate its time application scenarios in LLMs. The Python245

simulator has the highly complex ability to execute code in customized GPTs, which earned it a246

4.2-star rating, ensuring flexibility and controllability in testing. The researcher uploaded the D-CoT247

code to a Python-based simulator as an experimental group, and selected DeepSeek R1 with deep248

reasoning capabilities as a control group to compare the performance differences of reasoning.249

3.2 Dataset250

Based on the fact that solving linear algebra requires high structure and strong reasoning requirements,251

it has become an effective test set to evaluate the reasoning ability of CoT. The researcher chose252

the test questions of 18.06 Spring 2022 Problem Sets and Exams of 18.06 Linear Algebra of MIT253

OpenCourseWare as experimental data. Linear algebra usually includes multi-step calculations and254

logical derivation. Both Long CoT and D-CoT need to show the details in the reasoning process. In255

addition, the test questions cover questions of different difficulty levels and can test the adaptability256

and robustness of dynamic D-CoT under various reasoning challenges. And because this test question257

is provided in text format, it is suitable for uploading to GPTs that emulate Python and ensures the258

independent operation of D-CoT. This data has been placed in Appendix 1, and it is noteworthy that259

the MIT OpenCourseWare license authorizes the test questions to be used publicly and experimentally260

for non-commercial purposes.261

3.3 Implementation262

The researcher uploaded the D-CoT code developed by Python 3.13 IDLE to the Python simulator263

based on GPTs to simulate its integration process in LLMs. At the same time, the researcher also set264

up corresponding instructions in DeepSeek R1 to execute and process linear algebra test questions.265

Afterwards, the researcher uploaded the 18.06 Spring 2022 Problem Sets and Exams one by one to266

the simulator and DeepSeek R1 integrated with D-CoT and recorded the experimental results. In267

order to avoid deviations in image semantics recognition between the experimental group and the268

control group, all test questions were converted to machine-readable format and renumbered into 18269

questions without changing the original meaning.270

In view of the problem, the researcher sets three core evaluation indicators to evaluate the reasoning271

cost and computing resource consumption of D-CoT. These metrics are reasoning time, CoT length272

(reasoning steps) and token count to quantify the computational overhead of the D-CoT simulator and273

DeepSeek R1 respectively. In addition, since this research is committed to reducing computational274

redundancy and optimizing reasoning steps rather than verifying the accuracy of calculation results,275

it does not include accuracy score as an evaluation indicator. Complete experimental records and276

codes have been uploaded to supplementary material to ensure reproducibility.277

3.4 Result & Discussion278

After the above execution process, the experimental group and the control group respectively display279

the data results except for reasoning time, CoT length (reasoning steps) and token count (Figure 3).280

8

70.03

71.87

179.65

48.92

105.36

12.01

14.31

18.12

55.2

37.8

22.87

55.52

118.71

20.45

43.82

79.08

28.29

11.03

54

88

295

65

159

21

17

7

54

28

22

71

142

22

72

95

20

15

Question 1
Question 2
Question 3
Question 4
Question 5
Question 6
Question 7
Question 8
Question 9

Question 10
Question 11
Question 12
Question 13
Question 14
Question 15
Question 16
Question 17
Question 18

0 50 100 150 200 250 300
Reasoning Time (seconds)

 Long CoT (DeepSeek R1)
 Dynamic CoT

5

4

8

4

8

4

6

4

6

5

5

6

6

3

5

5

5

4

5

5

5

6

8

4

7

5

8

3

5

3

3

4

5

3

5

5

Question 1
Question 2
Question 3
Question 4
Question 5
Question 6
Question 7
Question 8
Question 9

Question 10
Question 11
Question 12
Question 13
Question 14
Question 15
Question 16
Question 17
Question 18

0 1 2 3 4 5 6 7 8 9 10 11
CoT Length (steps)

 Long CoT (DeepSeek R1)
 Dynamic CoT

79

72

153

90

149

98

132

83

96

122

104

155

118

70

121

89

98

77

150

180

250

280

320

200

220

180

300

150

200

180

150

250

220

150

200

180

Question 1
Question 2
Question 3
Question 4
Question 5
Question 6
Question 7
Question 8
Question 9

Question 10
Question 11
Question 12
Question 13
Question 14
Question 15
Question 16
Question 17
Question 18

0 50 100 150 200 250 300 350 400 450
Token Count

 Long CoT (DeepSeek R1)
 Dynamic CoT

Figure 3: Comparison between D-CoT simulator and DeepSeek R1

According to the data results, in terms of reasoning time, the maximum reasoning time of DeepSeek281

R1 reaches 295 seconds, while D-CoT is significantly reduced to 179.65 seconds, showing its282

computing optimization capabilities in long reasoning processes. Judging from the distribution trend,283

the reasoning time of DeepSeek R1 is mostly concentrated in 50 to 150 seconds, but some questions284

exceed 200 seconds, showing the instability of its reasoning chain length; in comparison, D-CoT285

mostly maintains in the range of 40 to 120 seconds, and the fluctuation is small, indicating that it can286

effectively control the reasoning time. In terms of CoT length (reasoning steps), the number of steps287

of DeepSeek R1 is up to 8 steps, while D-CoT is controlled within 6 steps, and most questions only288

require 3 to 6 steps, which significantly shows that it can reduce redundant reasoning steps through a289

dynamic adjustment mechanism. As for the token count, the token usage of DeepSeek R1 is up to290

320 tokens, while that of D-CoT is significantly reduced to 180, and its overall distribution is mainly291

concentrated in the 70 to 180 range. Compared with DeepSeek R1, which exceeded 300 in some292

complex questions, D-CoT has demonstrated effective suppression of token growth and reduction of293

computing resource consumption.294

4 Limitation & Future Research295

In light of the fact that external researcher do not have the authority to access and modify the internal296

architecture of most current mainstream closed-source LLMs, D-CoT is difficult to directly integrate297

and uses simulation experiments to compare with DeepSeek R1 through a customized GPTs platform.298

However, the computing power, neural network size and parameters of GPTs are significantly different299

from DeepSeek R1, which causes the generalizability of the data results to be affected by additional300

factors. In addition, D-CoT relies on auto-regressive decoding and feedback mechanisms to adjust301

dynamic reasoning steps. This mechanism causes certain interference in fully reproducing the effects302

of pruning and reward alignment of LLMs under different contextual conditions in a simulation303

environment. The above limitations show that obtaining LLMs of open source architecture for304

internal integration testing in the future will help to more accurately evaluate the actual application305

performance of D-CoT.306

5 Conclusion307

In view of the fact that long CoT has a large number of intermediate steps in reasoning, which308

increases reasoning costs and consumption of computing resources due to inherent computational309

redundancy and delayed feedback, this research proposes dynamic chain-of-thought (D-CoT) to310

implement a dynamic deep reasoning mechanism of adaptive pruning, reward alignment, and step-311

wise control. It simulated the integration of D-CoT through simulation experiment in Python 3.13312

IDLE combined with the Python simulator based on GPTs, and used DeepSeek R1 based on long CoT313

as a control group to test its performance in solving the 18.06 linear algebra test questions of MIT314

OpenCourseWare. Experimental results show that D-CoT can effectively reduce computing resource315

consumption in reasoning time, CoT length and token count, thereby optimizing and reducing the316

computing cost and resource consumption of deep reasoning. Although D-CoT is limited by the317

current closed-source environment and cannot be directly integrated into LLMs for testing, it provides318

a new feasibility perspective for deep reasoning optimization of LLMs.319

9

Appendix 1320

The data for this research comes from the 18.06 Spring 2022 Problem Sets and Exams questions of321

MIT OpenCourseWare’s 18.06 Linear Algebra, which were uploaded to the D-CoT simulator and322

DeepSeek R1 to answer respectively. In order to avoid the image semantic recognition bias of matrix323

operations from interfering with the experimental results, the researcher converted all test questions324

into computer language input and renumbered them into 18 questions without changing the original325

meaning. This test may be used non-commercially for the experimental purposes of this study under326

the terms of the Creative Commons Attribution-Non Commercial sharealike (CCBY-NC-SA) license.327

Problem 1 (4+4+6 points):328

The matrix A is given by A = LUL-1U-1329

for330

𝐿 =
©­­«

1
−1 1
0 3 1
1 0 0 1

ª®®¬ ,𝑈 =
©­­«
2 0 1 1
−1 0 −1

−2 1
1

ª®®¬ .
(a) Write an expression for 𝐴− 1 in terms of 𝐿, 𝑈 , 𝐿 − 1, and/or 𝑈 − 1 (but you don’t need to actually331

multiply or invert the terms!).332

(b) What is the determinant of A?333

(c) Solve 𝑃𝐴𝑥 = 𝑏 for 𝑥, where 𝑃 is the 44 permutation that swaps the 1stand 4th elements of 𝑎334

vector, and 𝑏 =
©­­«
−5
4
11
−3

ª®®¬ . (You can get partial credit by just outlining a reasonable sequence of steps335

here that doesn’t involve a lot of unnecessary calculation.)336

Problem 2 (4+6 points):337

(a) If a and x are vectors in Rn , then aaTx can be computed using either left-to-right as (aaT)xor338

right-to-left as a(aTx), where the parentheses indicate the order of operations. Roughly count the339

number of arithmetic operations (additions and multiplications) in these two approaches: say whether340

each approach scales proportional to n, n2 , n3 , etcetera.341

(b) A is an n × n real matrix and x is an n-component real vector. Indicate which of the following342

must be equal to one another:343

trace(AxxT), trace(xAxT), trace(xTAx), xTAx,344

trace(xTxA), xxTA, trace(xxTA), determinant(xxTA).345

For the expressions that are equal, indicate how you would evaluate this quantity in a cost (in346

arithmetic operations) proportional to n2.347

Problem 3 (4+4+4+5 points):348

You have a 4 × 3 matrix A =
(
q1 2q2 3q1 + 4q2

)
, where we have expressed the three columns of349

A in terms of the orthonormal vectors350

𝑞1 =
1
2

©­­«
1
1
−1
−1

ª®®¬ , 𝑞2 =
1
2

©­­«
1
−1
−1
1

ª®®¬ .
(a) What is the rank of A?351

(b) Give a basis for N(A).352

(c) You are asked to calculate the projection matrix P onto C(A). Your friend Harvey Ard suggests353

applying the formula P = A(AT A)-1AT he memorized in linear algebra. Explain why this won’t work354

here, and give an even simpler (correct) formula for P in terms of the quantities above. (You need not355

evaluate P numerically, just write a formula in terms of products of quantities defined above.)356

10

(d) Find the closest vector to x =
©­­«
2
0
0
0

ª®®¬ in 𝑁 (𝐴𝑇).357

Problem 4 (3+4+4+6 points):358

The nullspace N (A) of the real matrix A is spanned by the vector v =
©­­«
1
2
3
4

ª®®¬359

(a) Give as much true information as possible about the size (the number of rows and columns) of A.360

(b) Give an eigenvector and eigenvalue of the matrix 𝐵 = (3𝐼 − 𝐴𝑇 𝐴) (3𝐼 + 𝐴𝑇 𝐴)−1 .361

(c) Aside from the eigenvalue identified in the previous part, all other eigen- values 𝜆 of B must be362

(circle/copy all that apply): purely real, purely imaginary, zero, negative real part, positive real part,363

𝑗𝜆 𝑗 < 1, 𝑗𝜆 𝑗 > 1, 𝑗𝜆 𝑗 ⩽ 1, 𝑗𝜆 𝑗 ⩾ 1.364

(d) Give a good approximate formula for of 𝐵𝑛365

©­­«
0
−1
0
8

ª®®¬
for large n. (Give an explicit numerical vector, possibly including simple functions of n like 2𝑛 or366

𝑛3... no other abstract symbolic formulas.)367

Problem 5 (10 points):368

Describe (give an explicit numerical result with as few unknowns as possible) all possible linear369

combinations of the vectors370

𝑎1 =

(1
0
2

)
, 𝑎2 =

(1
2
4

)
, 𝑎3 =

(1
−1
3

)
, 𝑎4 =

(1
1
1

)

that give the vector x =

(4
−1
5

)
371

Problem 6 (8+8 points):372

Professor May Trix is trying to construct an 18.06 homework question in which 𝑑𝑥/𝑑𝑡 = 𝐴𝑥 has the373

solution374

x(𝑡) = v1 cos(2𝑡) + v2e−𝑡 + v3 sin(2𝑡)
for some nonzero real constant vectors 𝑣1, 𝑣2, 𝑣3 , and some initial condition 𝑥(0). Help May375

construct𝐴, 𝑣1, 𝑣2, 𝑣3 , and 𝑥(0):376

(a) Write down a numerical formula for a possible real matrix A such that A is as small in size as377

possible and where A contains no zero entries. Your formula can be left as a product of some matrices378

and/or matrix inverses - you don’t need to multiply them out or invert any matrices, but you should379

give possible numeric values for all of the matrices in your formula. (You don’t need to explicitly380

check that your A has no zero en- tries as long as zero entries seem unlikely. e.g. the inverse of a381

matrix with no special structure probably has no zero entries.)382

(Note that there are many possible answers here, but they will all have certain things in common.)383

(b) Using the numbers that you chose from the formula in your previous part, give possible corre-384

sponding (numeric) values for x(0), v1 , v2 , and v3 .385

11

References386

[1] Aitor Arrieta, Miriam Ugarte, Pablo Valle, José Antonio Parejo, and Sergio Segura. O3-mini vs387

deepseek-r1: Which one is safer?, 2025.388

[2] Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi389

Liu, Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Do390

not think that much for 2+3=? on the overthinking of o1-like llms, 2025.391

[3] Damai Dai, Chengqi Deng, Chenggang Zhao, R.x. Xu, Huazuo Gao, Deli Chen, Jiashi Li,392

Wangding Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y.k. Li, Panpan Huang, Fuli Luo, Chong393

Ruan, Zhifang Sui, and Wenfeng Liang. Deepseekmoe: Towards ultimate expert specialization394

in mixture-of-experts language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar,395

editors, Proceedings of the 62nd Annual Meeting of the Association for Computational Linguis-396

tics (Volume 1: Long Papers), pages 1280–1297, Bangkok, Thailand, 2024. Association for397

Computational Linguistics.398

[4] DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, and et al. Deepseek-v3 technical report, 2025.399

[5] BRUCE EDMONDS and DAVID and HALES. Computational simulation as theoretical experi-400

ment. The Journal of Mathematical Sociology, 29(3):209–232, 2005.401

[6] Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards402

revealing the mystery behind chain of thought: A theoretical perspective. Advances in Neural403

Information Processing Systems, 36:70757–70798, 2023.404

[7] Zhen Huang, Haoyang Zou, Xuefeng Li, Yixiu Liu, Yuxiang Zheng, Ethan Chern, Shijie405

Xia, Yiwei Qin, Weizhe Yuan, and Pengfei Liu. O1 replication journey – part 2: Surpassing406

o1-preview through simple distillation, big progress or bitter lesson?, 2024.407

[8] Mingyu Jin, Qinkai Yu, Dong Shu, Haiyan Zhao, Wenyue Hua, Yanda Meng, Yongfeng Zhang,408

and Mengnan Du. The impact of reasoning step length on large language models, 2024.409

[9] Pravneet Kaur, Gautam Siddharth Kashyap, Ankit Kumar, Md Tabrez Nafis, Sandeep Kumar,410

and Vikrant Shokeen. From text to transformation: A comprehensive review of large language411

models’ versatility, 2024.412

[10] Jack P.C. Kleijnen. Design and Analysis of Simulation Experiments, volume 230 of International413

Series in Operations Research & Management Science. Springer International Publishing, Cham,414

2015.415

[11] Chaochao Lu, Chen Qian, Guodong Zheng, Hongxing Fan, Hongzhi Gao, Jie Zhang, Jing416

Shao, Jingyi Deng, Jinlan Fu, Kexin Huang, Kunchang Li, Lijun Li, Limin Wang, Lu Sheng,417

Meiqi Chen, Ming Zhang, Qibing Ren, Sirui Chen, Tao Gui, Wanli Ouyang, Yali Wang, Yan418

Teng, Yaru Wang, Yi Wang, Yinan He, Yingchun Wang, Yixu Wang, Yongting Zhang, Yu Qiao,419

Yujiong Shen, Yurong Mou, Yuxi Chen, Zaibin Zhang, Zhelun Shi, Zhenfei Yin, and Zhipin420

Wang. From gpt-4 to gemini and beyond: Assessing the landscape of mllms on generalizability,421

trustworthiness and causality through four modalities, 2024.422

[12] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal423

policy optimization algorithms, 2017.424

[13] Lewis Tunstall, Leandro Von Werra, and Thomas Wolf. Natural Language Processing with425

Transformers. " O’Reilly Media, Inc.", 2022.426

[14] Miles Turpin, Julian Michael, Ethan Perez, and Samuel R. Bowman. Language models don’t427

always say what they think: Unfaithful explanations in chain-of-thought prompting. In Proceed-428

ings of the 37th International Conference on Neural Information Processing Systems, NIPS ’23,429

pages 74952–74965, Red Hook, NY, USA, 2023. Curran Associates Inc.430

[15] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,431

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st432

International Conference on Neural Information Processing Systems, NIPS’17, pages 6000–433

6010, Red Hook, NY, USA, 2017. Curran Associates Inc.434

12

[16] Jiaan Wang, Fandong Meng, Yunlong Liang, and Jie Zhou. Drt: Deep reasoning translation via435

long chain-of-thought, 2025.436

[17] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,437

Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language438

models. In Proceedings of the 36th International Conference on Neural Information Processing439

Systems, NIPS ’22, pages 24824–24837, Red Hook, NY, USA, 2022. Curran Associates Inc.440

[18] Yuxiang Zhang, Yuqi Yang, Jiangming Shu, Yuhang Wang, Jinlin Xiao, and Jitao Sang. Openrft:441

Adapting reasoning foundation model for domain-specific tasks with reinforcement fine-tuning,442

2024.443

[19] Tianyang Zhong, Zhengliang Liu, Yi Pan, Yutong Zhang, and et al. Evaluation of openai o1:444

Opportunities and challenges of agi, 2024.445

13

	Introduction
	Proposed Framework & Algorithms
	Dynamic Chain-of-Thought Framework
	Hierarchical Adaptive Reward Optimization

	Detailed Framework Composition
	Tokenization & Embedding
	MoE-Enabled Transformer Stack
	Dynamic CoT Controller
	Auto-Regressive Decoding with Feedback Loop (Iterative Small Blocks)
	Hierarchical CoT Assembly
	Final Output Generation

	Experiments
	Experimental Setup
	Dataset
	Implementation
	Result & Discussion

	Limitation & Future Research
	Conclusion

