
JARVIS-1: Open-world Multi-task Agents with
Memory-Augmented Multimodal Language Models

Zihao Wang1,2, Shaofei Cai1,2, Anji Liu3, Xiaojian Ma3, Yitao Liang1,4∗

Team CraftJarvis
1Institute for Artificial Intelligence, Peking University

2School of Intelligence Science and Technology, Peking University
3Computer Science Department, University of California, Los Angeles

4Beijing Institute for General Artificial Intelligence (BIGAI)
{zhwang,caishaofei}@stu.pku.edu.cn

liuanji@cs.ucla.edu,xiaojian.ma@ucla.edu,yitaol@pku.edu.cn

Abstract

Achieving human-like planning with multimodal observations in an open world is
a key milestone for more functional generalist agents. We introduce JARVIS-1, an
open-world multi-task agent that can perceive multimodal input (visual observa-
tions and human instructions), generate sophisticated plans, and perform embodied
control, all within the popular yet challenging Minecraft universe. Specifically, we
develop JARVIS-1 on top of pre-trained Vision-Language Models, which maps
visual observations and textual instructions to plans. The plans will be ultimately
dispatched to the goal-conditioned controllers. We outfit JARVIS-1 with a mul-
timodal memory, which facilitates planning using both pre-trained knowledge
and its actual game survival experiences. Additionally, JARVIS-1 can rectify its
own planning errors through retrospection, i.e. self-debug. In our experiments,
JARVIS-1 exhibits nearly perfect performances across over 200 varying tasks in
Minecraft, ranging from entry to intermediate levels. JARVIS-1 has achieved a
completion rate of 12.5% in the long-horizon diamond pickaxe task. This represents
a significant increase up to 5 times compared to previous records.

1 Introduction

Creating sophisticated agents that can accomplish myriad of tasks in complex domains remains a piv-
otal milestone towards generally capable artificial intelligence [42, 8, 3, 6, 58]. Recent advancements
have shown a trend towards employing a hierarchical goal execution architecture [49, 22, 21], and
leveraging large language models (LLMs) as the high-level planner to generate action plans that will
be ultimately executed by low-level instruction-following controllers. Albeit the fruitful progress
they have yielded in many robotics [22] and even open-world environments like Minecraft [14, 19],
today’s agents built with these approaches are still struggling with three major issues: 1) perceive the
world from multimodal sensory observations, such as images, videos in addition to natural language
instructions and feedback for planning; This is mostly due to the inability of LLM-based planners on
processing multimodal data [21, 53]; 2) perform consistent and accurate long-term planning. This
requires multi-round, knowledge, and reasoning-intensive dialogues, which remain great challenges
to LLMs [22]; 3) learn and evolve in a life-long fashion. This calls out the need for agents to propose
their own tasks and self-improve. Addressing these issues will unleash the full planning potential of
LLM-based agents, and expedite the development of more generalist agents.

∗Corresponding Author.

2nd Workshop on Agent Learning in Open-Endedness (ALOE) at NeurIPS 2023.

.97

.97

.95

.57

.96

.94

.90.92.79.97.75.91

.87 .91 .95

.25

.25

.11 .10 .04 .11

.11.04.02.02.05

.40.33.32.33.34

.09

.06

.55

.05.33.38.30.37

.32

.36.28.36.28.32.36.38

.37 .45 .50 .32 .50 .31

.06

.14

.05

.26 .08 .18 .24 .22 .23 .02

.05.05.08.06.02

.04

.02.05.02.02.14

.88 .79 .84 .94.87.90.97

.67.90

.89 .93 .92

Figure 1: How does JARVIS-1 unlock the technology tree of the Minecraft universe. JARVIS-1 can
consistently obtain high-level items on the main tech-tree of the overworld in Minecraft, such as diamond,
redstone, and golden items, which require collecting over 10 different intermediate items. JARVIS-1 not only
outperforms the previous state-of-the-art VPT [4] (6% vs. 2.5% reliability) on diamond pickaxe, but also can
craft almost all diamond items in overworld including diamond chestplate.

In this work, we introduce JARVIS-1, a brand new agent that can robustly produce plans for long-
horizon tasks from multimodal user and environment inputs, and translate them into motor control
in Minecraft, a popular yet challenging open-world testbed for generalist agents. To be specific,
we chain a multimodal foundation model MineCLIP [14] and an LLM [8] together, the resulting
multimodal language model (MLM) allows our agent to better understand the tasks, situations, and
environmental feedback. To further enhance the correctness and consistency of planning, especially
on long-horizon tasks, we propose to augment the agent with a multimodal memory, which stores
both the scenarios and actual plans of the successful planning experiences in the past. By retrieving
the relevant memory entries, the planning skill of our MLM-based agent can be strengthened from
the agent’s own interactions with the environment in an in-context manner. Finally, JARVIS-1 is
able to evolve throughout the gameplay by proposing tasks on its own (i.e. self-instruct) as a means
of exploration and saving the obtained experiences in the multimodal memory, therefore facilitating
better reasoning and planning. This self-improving ability sparks its potential for a higher level of
autonomy.

Our main evaluations are conducted in Minecraft, with more than 200 tasks selected from the
Minecraft Universe Benchmark [30], with no demonstration provided. The tasks cover a broad
spectrum from the early game (e.g. ObtainCraftingTable) to intermediate and even chal-
lenging long-horizon tasks (e.g. ObtainDiamondPickaxe). A glimpse of what JARVIS-1 is
able to achieve can be found in Figure 1. JARVIS-1 exhibits strong performances on these tasks,
representing an up to 5× increase to the previous records. Our ablative analysis then offers a detailed
account of how JARVIS-1 approaches this significant progress and becomes the first agent that can
robustly obtain the diamond pickaxe with up to 12.5% success rate. What is even more surprising
is that, without the need for additional training, JARVIS-1 demonstrates a continuous increase in
performance as game time increases in long-horizon tasks. Moreover, JARVIS-1 has demonstrated
its potential of self-improve in an exploratory life-long learning experiment, where it needs to propose
tasks to progressively explore the world, collect experiences, and sharpen its planning skill using
these experiences stored in the multimodal memory.

In summary, JARVIS-1 pilots the effort towards a human-like multi-task and autonomous agent in
an open-world, embodied environment like Minecraft. We would like to share the key takeaways of
what we have learned during its development as follows:

• From LLMs to MLMs. The capability of perceiving multimodal sensory input is critical to
planning in a dynamic and open-world world. JARVIS-1 enables this by chaining a multimodal
foundation model together with an LLM. Compared to LLM “blindly” produces plans, MLM is
able to natively understand the current situation and plan accordingly. Further, rich environmental

2

（a） （b） （c）

wood

stone

iron

diamond

60
min

10
min

60
min

9.59x

0à8.99

iron

diamond

3.39x

Figure 2: Challenges in open-world environments and how does JARVIS-1 tackle them. (Left) With situation-
aware planning, JARVIS-1 substantially improves the success rate on the challenging ObtainDiamond task,
compared to the baseline (GPT) without it. Note: Due to resource constraints, we can only provide human
results of 10-min gameplay; (Middle) As task complexity increases (STONE→IRON→DIAMOND), JARVIS-1
exhibits more significant advantages thanks to interactive planning; (Right) Success rate gain (indicated by the
color depth) on selected tasks (x-axis) given in-context experiences on other tasks (y-axis) retrieved from the
multimodal memory. With life-long learning and memory, JARVIS-1 can utilize prior experiences on relevant
tasks for better planning.

feedback can be obtained through multimodal perception, therefore helping the self-check and
self-explain of the planner spot and fix possible bugs in the plans, enabling stronger interactive
planning.

• Multimodal memory. Early research has suggested the crucial role that memory mechanisms
can serve in the functioning of generalist agents. By outfitting JARVIS-1 with a multimodal
memory, we effectively allow it to plan with both pretrained knowledge and its actual experiences
in the world, therefore bringing significant improvement to planning correctness and consistency.
Compared to canonical RL or planning agents with exploration, no additional model update is
needed as the MLM in JARVIS-1 makes it possible to leverage these experiences in an in-context
manner.

• Self-instruct and self-improve. A sign of generalist agents is the capacity to proactively acquire
new experiences and continuously improve themselves. We have demonstrated how JARVIS-1
effectively traverses the environment by executing tasks autonomously generated through its self-
instruct mechanism. With multimodal memory teaming up with experiences from the explorations,
we have observed consistent improvement, especially in accomplishing more complicated tasks.
Ultimately, this aspect of autonomous learning in JARVIS-1 signifies an evolutionary step towards
generalist agents that can learn, adapt, and improve over time with minimal external intervention.

2 Challenges for Agents in open-world Environments

Compared to canonical scenarios with relatively small scale, simple dynamics, and limited tasks,
open-world environments impose substantial challenges to building agents that can accomplish a
diverse set of tasks [14, 18, 17, 23, 9, 49, 10]. In this section, we will review three major challenges
we’ve identified during the development of JARVIS-1.

2.1 Challenge I: Situation-Aware Planning

In an open world, there could be various possible paths towards an open-world goal. However, not all
of them are plausible or equally efficient given a certain situation (location, inventory status, etc.). For
example, building a bed can be done through collecting wool from sheeps , haunting spiders
for strings , or trading with villagers . Depending on the current location and its proximity to
these subjects, some options can be more viable and more efficient than others. Further, the agent’s
own situation can also change throughout the episode, e.g. day and night shifts, weather conditions
(bringing different types of danger), tool usage (it can be broken). To this end, the plan needs to be
constantly updated based off the current situation. Figure 2 (left) shows that when attempting the
"ObtainDiamondPickaxe" task with a GPT-based planner that produces plans only at the beginning
without looking at the current situation, the agent failed to complete the task as opposed to human
players and JARVIS-1, which perform situation-aware planning from time to time. We’ve observed

3

that many failures coming from this were attributed to the agent’s inability to adapt to the changing
situations including entering a new biome, the tool being used becoming broken, etc.

2.2 Challenge II: Task Complexity

The second challenge comes from the higher task complexity in open-world environments. Due
to the richness of terrains, objects, and action space, tasks in open-world domains usually require
substantially long planning horizons as well as good accuracy and precision. For example, the task
ObtainEnchantingTable includes more than 20 different sub-goals and therefore demand
significantly longer reasoning steps. Meanwhile, many of these sub-goals have to be achieved
precisely with the exact object name, quantities, and preconditions, e.g., mine 3 obsidian
with diamond pickaxe, craft 1 diamond pickaxe from 3 diamonds and 2
sticks on crafting table; otherwise, the subsequent sub-goals won’t be executed due
to unfulfilled preconditions. To tackle this, we may refer to some approaches in LLM reasoning,
e.g. self-debugging [11] and turning the planning into an interactive fashion. In Figure 2 (Middle),
we’ve shown that as the complexity of the task increases, our JARVIS-1, which uses interactive
planning [49] to mitigate the aforementioned issues (details can be found in Section 3.2), elicits more
significant advantages over the baseline (GPT) planner.

2.3 Challenge III: Life-long Learning

Finally, being open world often implies offering an infinite number of tasks. Clearly, it is difficult
for an agent to master all tasks or generalize to arbitrary tasks without additional learning. To this
end, agents in an open world should be able to learn novel tasks while completing existing tasks, i.e.
life-long learning. Furthermore, as many open-world agents employ large models [49, 54, 47, 59],
canonical gradient-based learning could be extremely inefficient given the number of new tasks and
experiences to learn. Our MLM-based JARVIS-1 tackles this by adopting a memory to save all the
experiences on past tasks. By retrieving memory entries relevant to the newly-coming task and putting
them into the context as a reference, JARVIS-1 is able to accumulate more experiences as the game
continues and strengthen its own planning skills without gradient update. As illustrated in Figure 2
(Right), for instance, both ObtainDiamondPickaxe and ObtainDiamondAxe require
gathering almost identical materials. Therefore, they can help each other by using the experiences
from the other task. Compared to completing these challenging tasks without any prior experiences,
memory-based in-context life-long learning in JARVIS-1 can bring significant advantages.

3 Multi-task Agent with Memory-Augmented MLM

This section details the architecture of the proposed JARVIS-1 agent. We begin with an overview
of the modular agent design in Section 3.1. Next, we elaborate on how to implement an interactive
planning scheme with a multimodal language model, which helps with more accurate plans, especially
on complex and long-horizon tasks in Section 3.2. Finally, we show how to augment this planning
framework with a multimodal memory to allow JARVIS-1 to strengthen its planning skill throughout
the episode by in-context life-long learning in Section 3.3 and Section 3.4.

3.1 Overview

We aim to develop an agent capable of solving long-horizon instruction-following tasks using image
observations and human-aligned actions. To accomplish this, we propose a multi-modal agent
including an interactive planner, a goal-conditioned controller, and a multimodal memory of
multimodal experiences. Upon receiving a task and the current observation, JARVIS-1 first utilizes
the MLM to generate a multimodal query (query gen) that retrieves relevant planning experiences
from the memory. These experiences will then be used along with the planning instruction to prompt
the MLM-based planner. Leveraging its own pretrained knowledge as well as the retrieved reference
plans, the planner will ultimately produce a series of K short-horizon goals g1, . . . , gK to be executed
by the controller. Once the plan is successfully executed, it will be stored in the memory along with
the task and the agent situation when it was planned. We also empower JARVIS-1 with life-long
learning by combining self-instruct, where JARVIS-1 will propose some tasks for itself to complete
as a means of exploration; and self-improve, where multiple JARVIS-1 agents will be running in

4

M
u

lt
i-

M
o
d

a
li

ty

M
e
m

o
ry

Memory-Augmented
Multi-modal

Language Model

Controller

Environment

(a) JARVIS-1 architecture (b) Self-Improving

<task>
Pool

Self-
instruct

S
h

a
re

d
M

u
lt

i-
M

o
d

a
li

ty

M
e
m

o
ry

Distributed
JARVIS-1

Env
Instances

<act>

keyboard
& mouse

<task>

<obs>

<plan>

language

vision

Query Gen
(MLM)

reference
<plan>

Planner
(MLM)

<plan>

context

retrieve

<obs,task>

vision & language

<task>
batch

save

Figure 3: Architecture of JARVIS-1 and its self-improving mechanism. (a) JARVIS-1 comprises a memory-
augmented multimodal language model (MLM) that produces plans and a low-level action controller. JARVIS-1
also utilizes a multimodal memory to store and obtain experiences as references for planning. (b) JARVIS-1 can
strengthen its own planning skills through exploration with its own proposed tasks (self-instruct) and a growing
memory that helps with better planning on tasks that have been (partially) visited before.

parallel to gather experiences, therefore helping with better planning later. We provide an illustration
in Figure 3.

3.2 Interactive Planning with MLM

As we have mentioned in Section 2.1 and Section 2.2, the primary challenges for planning in Minecraft
come from the requirement of being able to plan for long-horizon tasks under dynamic observations.
Confirmed by many prior arts [49, 47, 54], this makes it exceptionally hard to utilize canonical
symbolic planners, which can be much less flexible. To this end, we take a multimodal language
model (MLM) as zero-shot planner and combine it with an interactive planning framework to tackle
these challenges.

Situation-aware planning with MLM. To achieve situation-aware planning, the planner must
take the current observation into account, in addition to the task instruction [21, 53]. Specifically,
we begin with translating the multimodal observation into text descriptions. As opposed to letting
the MLM caption the scene directly, we first extract keywords of Minecraft items (e.g., "acacia
tree", "sheep") from Minecraft wiki and utilizing GPT [8] to generate sentences that describe
these observations. For example, a generated sentence could be "I can see sheep in the acacia plains".
Then the MLM will retrieve the condition sentence according to current visual observation during
planning. Additional situation details including biome and inventory status are also converted into
text using templates. Finally, we prompt the MLM again (the language part only) into a plan given
the task instruction and all the aforementioned textual situation descriptions. Compared to end-to-
end alternatives [5, 20], we find our composable usage of MLM provides higher quality situation
descriptions and ultimately, plans with much less hallucination.

Planning with self-check. Our first layer of shield to ensure the correctness of plans involves
self-check. Similar to self-debugging[11], given an initial plan, we ask JARVIS-1 to progressively
simulate the plan execution, predict the resulting state after each step (primarily the state of inventory),
and evaluate them. By verifying if these states satisfy the goal’s precondition, JARVIS-1 can
proactively identify potential plan flaws. Compared to the canonical planner where the agent has to
encounter the error first before making a remedy, this upfront plan verification could mitigate the
need for the agent to recover (re-plan) from more challenging situations due to plan failure. For
instance, if an agent starts digging underground without sufficient wood, it would typically have to
return to the surface, which substantially lowers the chance of completing the task.

5

Planner
(MLM)

Self-Check
(MLM)

Self-Explain
(MLM)

refined
<plan>

<obs>
Controller Environment

<act>

multi-modal
<feedback>

original
<plan>

error
<explanation>

<obs,task>
<task>: Obtain a diamond in Minecraft step-by-step?; <obs>:

original <plan>:

3 3 1 113 12 1 4 1 11 1

Self-check: When simulating on the goal , I find are not enough (lack of 2). So
I need craft more from . More require more . So I need to mine more .

refined <plan> :

3 3 1 114 16 1 8 1 11 1

Self-explain: Because mining needs , which I do not have in the inventory.
Crafting needs . So I need to smelt into first.

3 1 1
new <plan> by re-planning:

multi-modal <feedback> : I failed on . My current state is:
is broken; I still have in the inventory. My position is …

1

1

…

Figure 4: Interactive planning in JARVIS-1. After receiving the current task instruction and observation,
JARVIS-1 will produce an initial plan, which will go through self-check to get possible bugs (marked in red)
fixed. Further, in case any error (also marked in red) occurs during the execution of the refined plan, JARVIS-1
will try to reason about the next move from the environmental feedback via self-explain. Interleaving self-check
and self-explain significantly boosts the correctness and robustness of JARVIS-1 planning.

Planning with environment feedback. Next, our interactive planning framework ventures into
allowing JARVIS-1 to quickly recover from failure by leveraging environment feedback in a closed-
loop fashion. The process is illustrated in Figure 4. During plan execution, we feed the feedback to
the MLM of JARVIS-1 in case there is any execution failure (possibly due to a flawed plan) and
utilize its self-explain mechanism [43] to explain the error and locate the bugs in the original plan (we
term this as error explanation). Finally, the MLM planner of JARVIS-1 will produce an improved
plan based on both the outside environment feedback and the inside retrospective. Compared to other
agents that rely on human intervention or privileged environment information [22, 59], JARVIS-1
has the ability to speculate about the reasons why current goals cannot be achieved, without the need
for additional information or design.

3.3 Planning with Multimodal Memory in the Loop

To address the life-long learning challenge mentioned in Section 2.3, we equip JARVIS-1 with
multimodal memory to allow learning from its own past experiences. We will detail the formulation
of the retrieval-augmented planning, query generation, and memory layout below.

Retrival-augmented planning. Retrieval-augmented generation (RAG) [27, 36] enhances the quality
of responses generated by LLMs by incorporating external sources of knowledge to complement the
model’s internal representation. We also utilize RAG to enhance JARVIS-1’s long-term planning
capability. Compared to official RAG methods leveraging the external knowledge library, we take the
collected multimodal memory as the knowledge library and retrieve the interactive experiences as the
demonstration prompt to augment the planning results. The formulation is as follows:

p(y | x) ≈
∑

z∈top-k(p(·|x))

pη(z | x)pθ(y | x, z), (1)

where x, y, and z denote instruction, plans, and retrieved memory entries respectively, and pη and
pθ are denoted as retrieval and planning models. Such retrieval-augmented planning method helps
JARVIS-1 ground the internal knowledge into the open-ended environments efficiently and leverage
the historical interaction feedback to solve the hallucination within LLMs and produce more accurate
plans.

Multimodal memory. We have demonstrated the layout of our multimodal memory on the right side
of Figure 5. From a high level, it is a key-value memory where the keys are multimodal, comprising
both the task and the observation (or situation) made when this memory entry was created. The
values are the plans that were successfully executed. Note that, since the plans in an open-world
environment like Minecraft are situated (see Section 2.1), there could be multiple entries that are
with the same task but different observations and plans. As a result, JARVIS-1 needs to produce
multimodal queries based on the current task and situations to retrieve the relevant memory entries.

6

User: My current task is , but I have never accomplished this task
before. What related tasks might be helpful for me to complete ?

Assistant:

reasoning stops

wooden pickaxe

3 12 1 4 1

stone pickaxe
…

1 1 3 1

Multi-Modal Memory

initial query (text)

Enchanting
Table

Obsidian

Diamond

Book

Diamond Pickaxe

Leather

Paper

Diamond

Iron Pickaxe
not in memory

in memory

reasoning

query generation via reasoning

Diamond axe

final query (obs):final query (text): Diamond Leather Paper Iron Pickaxe

Query generation via reasoning

Query+
query gen retrieve

Figure 5: Query generation in JARVIS-1. Given the current observation and the task, JARVIS-1 will first
think backward and figure out the needed intermediate sub-goals. The reasoning will be bounded by a limited
depth. The sub-goal that is present in the memory will join the current visual observation to form the final query.
Entries that match the text query will be ranked by the perceiving distance of their states to the obs query and
only the top entry of each sub-goal will be retrieved.

Query generation via reasoning. When presented with an instruction as a task, we employ query
generation via LLM reasoning to decompose the instruction into sub-tasks or related tasks, which will
then be used as textual queries to retrieve relevant planning experiences as references for solving the
current task. For instance, consider the instruction "craft 1 enchanting table with empty inventory" as
shown in Figure 5. JARVIS-1 queries the MLMs to identify the tasks that are required for achieving
the main task in a backward search fashion, e.g., “obtain book /diamond /obsidian with
empty inventory”. The search depth is bounded for efficiency. Further, instead of relying solely
on retrieval based on the text query [47, 59], we also propose to append the agent’s current visual
observation to the textual query, resulting in a multimodal query to take the situation into account
during memory retrieval.

Multimodal retrieval. After obtaining the textual and visual query, we compute the alignment
between the query and each trajectory in multimodal memory. We first use the text encoder of CLIP
model to compute the embedding of the query and task key of each entry in memory. We select the
memory entries with similarity higher than the confidence threshold as the candidate entries. Then
we will compute the visual state embedding of query and states in candidate entires. Then we sort the
candidate entries with the visual embedding similarities, which can be formed as:

pη(z | x) ∝CLIPv(sz)
⊤CLIPv(sx), (2)

where sz and sx are the visual key of memory entries and visual query, respectively. Finally, we
retrieve the plan of top-k candidate entries as reference prompt z.

3.4 Self-improving Agents

Learning in Minecraft with memory. The remaining issue now is where the aforementioned
multimodal memory comes from. Inspired by the life-long learning scheme in many close-world and
open-world reinforcement learning problems [1, 2, 47], we propose the following learning approach
for augmenting the memory in JARVIS-1: 1) First, we generate a set of tasks, which form some
curricula for the agents to complete as means of exploration of the world. During this process,
JARVIS-1 produces plans, interacts with the environment, embraces the errors, and stores all these
experiences in the memory; 2) After this learning stage, we evaluate JARVIS-1 on various tasks.
Therefore, JARVIS-1 is able to produce better plans with the memory teaming up with the planning
experiences. In our experiments, we use this as the default setting for all tasks.

Exploration using self-instruct. The key issue to the success of learning with memory is how
to effectively acquire useful experiences given a limited amount of time. We propose to use self-
instruct [48] to generate the dynamic curriculum and guide JARVIS-1 to learn from the interactions

7

with environments. In each round, we prompt the MLM to consider how capable JARVIS-1 is at
this point and subsequently select tasks from a task pool to explore. We find that the curriculum
almost follows the technical tree-growing direction. To accelerate the learning process, we augment
the linear self-instruct to distributed learning in distributed environments with shared memory, i.e.
speculative execution [26]. Specifically, we generate multiple executable tasks as candidate task
batches and provide them to agents with the same memory for verification and execution in various
different environments. Meanwhile, experiences are collected into a shared centralized memory.
When all exploration tasks have been accomplished, we move to the next round, until the memory
reaches a certain capacity.

Life-long learning. We’ve also observed that the aforementioned learning (where the memory is
being filled) can be extended throughout the whole gameplay, where the agent gradually acquires
more and more skills. As the gameplay continues, more and more experiences are pouring in, there-
fore JARVIS-1 can find better references for challenging tasks like ObtainDiamondPickaxe,
resulting in an improved success rate on these tasks. Further, there is no gradient update in this thanks
to the memory-augmented MLM, i.e. we can do in-context life-long learning. In Section A.2, we
offer exploratory experiments to show the potential of such capability of JARVIS-1.

4 Experiments

In the experiments, our goal is to 1) evaluate the general performances of JARVIS-1 on the chal-
lenging Minecraft tasks, especially on its advantages over baselines that do not (fully) address the
aforementioned issues in open-world agents; 2) understand the factors that contributes to the gen-
eral results; 3) explore the potential of JARVIS-1 in terms of life-long learning and its benefits to
long-horizon tasks. To this end, we will first briefly introduce the evaluation settings, then cover the
main comparative results and ablation studies, and conclude with an exploratory trial on long-horizon
tasks.

4.1 Experimental Setups

We evaluate JARVIS-1 in Minecraft, with tasks selected from the recently introduced Minecraft
Universe Benchmark [30]. For the reader’s convenience, we provide details on the basic setups below.

Environment setting. To ensure realistic gameplay, the agent needs to utilize observation and action
spaces that are similar to those used by humans. Instead of manually designing a custom interface
for models to interact with the environment, as done in previous methods such as MineDojo[14],
GITM[59], and Voyager[47], we opt for using the native human interface provided by Minecraft.
This applies to both the observation and action space. The model operates at a speed of 20 frames per
second and is required to use a mouse and keyboard interface when interacting with human GUIs.
For more information on the detailed descriptions of the observation and action spaces, please refer
to the Appendix.

Task setting. In Minecraft, players have access to thousands of items, each with specific acquisition
requirements or recipes. For example, stone-type items can only be obtained using a pickaxe, and two
planks can be crafted into four sticks (these requirements are available on the Minecraft Wiki2). In
survival mode, players must obtain each type of item from the environment or craft/smelt the object
item from materials. We choose over 200 tasks from the Minecraft Universe Benchmark [30] for
evaluation. These tasks are related to items that can be obtained in the Minecraft overworld. For
the convenience of statistics, we have classified them into 11 groups according to recommended
categories3 in Minecraft (see Table 6 in Appendix). Due to the varying complexity of these tasks, we
adopt different maximum gameplay durations (Max. Steps) for each task. The limit is determined
by the average time the human players need to accomplish the corresponding task. Other details
about each task, such as language instruction, maximum steps, evaluation times, biome, and initial
inventory when the agent is born into the world can be found in Appendix Table 7-16.

Evaluation metrics. By default, the agent always starts in survival mode, with an empty inventory.
A task is considered a success when the target object is obtained within a specified time. Due to the
open-world nature of Minecraft, the world and initial position that the agent is spawned at could vary

2https://minecraft.fandom.com/wiki/Minecraft_Wiki
3https://minecraft.fandom.com/wiki/Tutorials/Organization#Categories

8

Table 1: Results of JARVIS-1 and baselines on Minecraft. The detailed task instructions, settings and results
can be found in the Appendix.

Group Task GPT ReAct Inner Monologue DEPS JARVIS-1

26.67 45.00 36.67 75.00 91.55
Wood

AVG 27.30±14.86 40.31±13.30 60.15±19.41 80.23±17.32 88.84±16.82

6.67 36.67 30.00 36.67 60.47Wood
Var AVG 24.39±11.08 38.13±12.81 53.39±12.86 68.75±12.32 76.78±12.27

20.00 20.00 66.67 75.00 94.20
Stone

AVG 20.21±12.32 39.00±12.15 52.86±16.90 69.27±7.78 88.69±4.87

0.00 0.00 3.33 20.00 33.82
3.33 6.67 0.00 20.00 38.10Iron

AVG 3.27±2.85 4.61±3.63 5.20±5.17 16.92±4.69 34.63±10.61

0.00 2.00 2.00 6.00 14.49
Gold

AVG 0.00±0.00 0.45±0.60 0.59±0.64 2.20±1.55 6.85±4.71

0.00 0.00 1.00 2.00 9.20
0.00 0.00 0.00 2.50 6.22Diamond

AVG 0.00±0.00 0.35±0.48 0.96±0.67 2.42±1.01 8.99±2.68

0.00 2.00 0.00 10.00 22.78
Redstone

AVG 1.04±1.30 1.14±1.18 0.69±1.68 6.02±3.61 17.51±9.34

16.67 33.33 43.33 53.33 86.67
Blocks

AVG 45.64±33.88 49.35±30.51 55.71±29.43 58.02±27.68 80.34±21.09

6.67 0.00 10.00 10.00 30.30
Armor

AVG 1.36±2.25 0.50±0.88 3.10±4.71 3.71±3.78 13.44±14.62

15.00 15.00 15.00 25.00 50.00
Decoration

AVG 17.12±11.59 17.13±9.19 12.03±10.19 29.59±15.94 46.67±23.39

13.33 16.67 25.00 16.67 43.55
Food

AVG 9.40±4.29 15.56±6.83 20.78±11.99 22.85±8.15 46.75±11.16

a lot. Therefore, we conducted at least 30 tests for each task using different seeds and reported the
average success rate to ensure a thorough assessment. Further, since we categorize the tasks into
groups, we also report mean and variance values for each group for ease of presentation.

4.2 Main Results

We compare JARVIS-1 with other multi-task instruction-following agents based on LLM, including
Instruct GPT[21, 40], ReAct[53], Inner Monologue[22], DEPS[49]. Since some methods are not
originally experimented in Minecraft, we reproduce them to conform to the Minecraft specification
based on prompt and feedback template design. All LLM-based methods access the LLM model
through OpenAI API. And all hyper-parameters of LLM including temperature are kept as default.

The average success rates for every task group are listed in Table 1. JARVIS-1 achieves the best
performance with all meta tasks. It is important to note that in Minecraft, the technology tree can be
formed by Group Wood, Stone, Iron, Gold, and Diamond. The tasks become increasingly difficult as
you progress through the tree. For more difficult tasks such as obtaining a gold ingot or a diamond,
the agents typically need to perform more actions and longer goal sequences in order to complete
the task. As a result, the success rate of all agents decreases as the difficulty level increases. It
is evident that reasoning methods (ReAct [53] vs. GPT[40, 21]) and interactive re-planning with
feedback (Inner Monologue [22] vs. GPT) effectively enhance the agent’s task performance in
an open world. However, these approaches still face challenges when dealing with long-horizon
tasks, specifically in the Iron and Diamond group. DEPS [49], on the other hand, enables agents
to accomplish diamond-related tasks through interactive long-horizon planning accompanied by
descriptions and explanations. Nevertheless, its reliability remains very low at approximately 2.5%.

In comparison to DEPS[49] without memory, JARVIS-1 demonstrates superior performance even in
challenging tasks due to its extensive experience. In diamond-related tasks specifically, the success
rate has increased by nearly 3 times (8.99% vs 2.42%). And JARVIS-1 usually only requires 2-3

9

rounds of re-planning to generate the correct executable plan, whereas DEPS requires more than
6 rounds. This means that JARVIS-1 saves a significant amount of LLM tokens and thinking
time, enabling more efficient plan execution and providing additional steps and tokens for handling
uncertainty in the environment.

Based on our observations, we have found that the bottleneck for JARVIS-1 in tasks involving
diamonds often lies with the Controller’s inability to perfectly execute short-horizon text instructions
generated by LLM. Therefore, it is worth exploring methods for generating plans that are easier for
the controller to execute or improving the controller’s ability to follow instructions.

5 Conclusion

We propose a multi-task agent JARVIS-1 designed for the complex environment of Minecraft,
marks a significant advancement in achieving human-like planning within an open-world setting.
By leveraging pre-trained Multi-modal Language Models, JARVIS-1 not only effectively interprets
multimodal inputs but also adeptly translates them into actions. Its integration of a multimodal
memory, which draws from both ingrained knowledge and real-time game experiences, enhances
its decision-making capabilities. The empirical evidence of its prowess is evident in its impressive
performance across a wide array of tasks in Minecraft. Notably, its achievement in the long-horizon
diamond pickaxe task, where it achieved a completion rate that surpasses VPT by up to five times,
underscores its potential and the strides made in this domain. This breakthrough sets the stage for the
future of more versatile and adaptable agents in complex virtual environments.

Acknowledgments

This work is funded in part by the National Key R&D Program of China #2022ZD0160301, a
grant from CCF-Tencent Rhino-Bird Open Research Fund, NSF grants #IIS-1943641, #IIS-1956441,
#CCF-1837129, an SRA from Meta and a research gift from Amazon Alexa AI, and a gift from
RelationalAI. The authors sincerely thank Dr. Rita Zhang, Zhixiang Dai at NVIDIA for the valuable
technical support of GPU computing.

References
[1] D. Abel, D. Arumugam, L. Lehnert, and M. Littman. State abstractions for lifelong reinforce-

ment learning. In International Conference on Machine Learning, pages 10–19. PMLR, 2018.
7

[2] D. Abel, Y. Jinnai, S. Y. Guo, G. Konidaris, and M. Littman. Policy and value transfer in
lifelong reinforcement learning. In International Conference on Machine Learning, pages
20–29. PMLR, 2018. 7

[3] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch, K. Millican,
M. Reynolds, et al. Flamingo: a visual language model for few-shot learning. arXiv preprint
arXiv:2204.14198, 2022. 1

[4] B. Baker, I. Akkaya, P. Zhokhov, J. Huizinga, J. Tang, A. Ecoffet, B. Houghton, R. Sampedro,
and J. Clune. Video pretraining (vpt): Learning to act by watching unlabeled online videos.
arXiv preprint arXiv:2206.11795, 2022. 2, 15, 16, 17, 20

[5] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess,
A. Dubey, C. Finn, et al. Rt-2: Vision-language-action models transfer web knowledge to
robotic control. arXiv preprint arXiv:2307.15818, 2023. 5

[6] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. arXiv
preprint arXiv:2212.06817, 2022. 1

[7] A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho, J. Ibarz, A. Irpan, E. Jang,
R. Julian, et al. Do as i can, not as i say: Grounding language in robotic affordances. In 6th
Annual Conference on Robot Learning, 2022. 16

10

[8] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020. 1, 2, 5

[9] S. Cai, Z. Wang, X. Ma, A. Liu, and Y. Liang. Open-world multi-task control through goal-aware
representation learning and adaptive horizon prediction. arXiv preprint arXiv:2301.10034, 2023.
3, 16

[10] S. Cai, B. Zhang, Z. Wang, X. Ma, A. Liu, and Y. Liang. Groot: Learning to follow instructions
by watching gameplay videos. arXiv preprint arXiv:2310.08235, 2023. 3, 16, 17

[11] X. Chen, M. Lin, N. Schärli, and D. Zhou. Teaching large language models to self-debug. arXiv
preprint arXiv:2304.05128, 2023. 4, 5

[12] I. Dasgupta, C. Kaeser-Chen, K. Marino, A. Ahuja, S. Babayan, F. Hill, and R. Fergus. Col-
laborating with language models for embodied reasoning. In NeurIPS Foundation Models for
Decision Making Workshop, 2022. 16

[13] Z. Ding, H. Luo, K. Li, J. Yue, T. Huang, and Z. Lu. Clip4mc: An rl-friendly vision-language
model for minecraft. arXiv preprint arXiv:2303.10571, 2023. 16

[14] L. Fan, G. Wang, Y. Jiang, A. Mandlekar, Y. Yang, H. Zhu, A. Tang, D.-A. Huang, Y. Zhu,
and A. Anandkumar. Minedojo: Building open-ended embodied agents with internet-scale
knowledge. Advances in Neural Information Processing Systems Datasets and Benchmarks,
2022. 1, 2, 3, 8, 16, 17, 20

[15] R. Gong, Q. Huang, X. Ma, H. Vo, Z. Durante, Y. Noda, Z. Zheng, S.-C. Zhu, D. Terzopoulos,
L. Fei-Fei, et al. Mindagent: Emergent gaming interaction. arXiv preprint arXiv:2309.09971,
2023.

[16] R. Gong, Q. Huang, X. Ma, H. Vo, Z. Durante, Y. Noda, Z. Zheng, S.-C. Zhu, D. Terzopoulos,
L. Fei-Fei, et al. Mindagent: Emergent gaming interaction. arXiv preprint arXiv:2309.09971,
2023. 16

[17] W. H. Guss, M. Y. Castro, S. Devlin, B. Houghton, N. S. Kuno, C. Loomis, S. Milani, S. P.
Mohanty, K. Nakata, R. Salakhutdinov, J. Schulman, S. Shiroshita, N. Topin, A. Ummadisingu,
and O. Vinyals. The minerl 2020 competition on sample efficient reinforcement learning using
human priors. arXiv: Learning, 2021. 3

[18] W. H. Guss, C. Codel, K. Hofmann, B. Houghton, N. Kuno, S. Milani, S. Mohanty, D. P. Liebana,
R. Salakhutdinov, N. Topin, et al. Neurips 2019 competition: the minerl competition on sample
efficient reinforcement learning using human priors. arXiv preprint arXiv:1904.10079, 2019. 3

[19] W. H. Guss, B. Houghton, N. Topin, P. Wang, C. Codel, M. Veloso, and R. Salakhutdinov.
Minerl: A large-scale dataset of minecraft demonstrations. arXiv preprint arXiv:1907.13440,
2019. 1, 19

[20] J. Huang, X. Ma, S. Yong, X. Linghu, et al. An embodied generalist agent in 3d world. arXiv
preprint arXiv:2311.xxxx, 2023. 5

[21] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners:
Extracting actionable knowledge for embodied agents. ICML, 2022. 1, 5, 9, 16

[22] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mordatch,
Y. Chebotar, et al. Inner monologue: Embodied reasoning through planning with language
models. arXiv preprint arXiv:2207.05608, 2022. 1, 6, 9, 16

[23] A. Kanervisto, S. Milani, K. Ramanauskas, N. Topin, Z. Lin, J. Li, J. Shi, D. Ye, Q. Fu, W. Yang,
W. Hong, Z. Huang, H. Chen, G. Zeng, Y. Lin, V. Micheli, E. Alonso, F. Fleuret, A. Nikulin,
Y. Belousov, O. Svidchenko, and A. Shpilman. Minerl diamond 2021 competition: Overview,
results, and lessons learned. neural information processing systems, 2022. 3

[24] Z. Ke, H. Lin, Y. Shao, H. Xu, L. Shu, and B. Liu. Continual training of language models for
few-shot learning. arXiv preprint arXiv:2210.05549, 2022. 16

11

[25] Z. Ke, Y. Shao, H. Lin, T. Konishi, G. Kim, and B. Liu. Continual pre-training of language
models. In The Eleventh International Conference on Learning Representations, 2022. 16

[26] Y. Leviathan, M. Kalman, and Y. Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pages 19274–19286. PMLR,
2023. 8

[27] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W.-t.
Yih, T. Rocktäschel, et al. Retrieval-augmented generation for knowledge-intensive nlp tasks.
Advances in Neural Information Processing Systems, 33:9459–9474, 2020. 6

[28] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng. Code as
policies: Language model programs for embodied control. arXiv preprint arXiv:2209.07753,
2022. 16

[29] S. Lifshitz, K. Paster, H. Chan, J. Ba, and S. McIlraith. Steve-1: A generative model for
text-to-behavior in minecraft. arXiv preprint arXiv:2306.00937, 2023. 15, 17

[30] H. Lin, Z. Wang, J. Ma, and Y. Liang. Mcu: A task-centric framework for open-ended agent
evaluation in minecraft. arXiv preprint arXiv:2310.08367, 2023. 2, 8

[31] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg. Text2motion: From natural language
instructions to feasible plans. arXiv preprint arXiv:2303.12153, 2023. 16

[32] Z. Lin, J. Li, J. Shi, D. Ye, Q. Fu, and W. Yang. Juewu-mc: Playing minecraft with sample-
efficient hierarchical reinforcement learning. arXiv preprint arXiv:2112.04907, 2021. 16

[33] B. Liu, Y. Jiang, X. Zhang, Q. Liu, S. Zhang, J. Biswas, and P. Stone. Llm+ p: Empowering
large language models with optimal planning proficiency. arXiv preprint arXiv:2304.11477,
2023. 16

[34] J. Mai, J. Chen, B. Li, G. Qian, M. Elhoseiny, and B. Ghanem. Llm as a robotic brain: Unifying
egocentric memory and control. arXiv preprint arXiv:2304.09349, 2023. 16

[35] H. Mao, C. Wang, X. Hao, Y. Mao, Y. Lu, C. Wu, J. Hao, D. Li, and P. Tang. Seihai: A sample-
efficient hierarchical ai for the minerl competition. In Distributed Artificial Intelligence: Third
International Conference, DAI 2021, Shanghai, China, December 17–18, 2021, Proceedings 3,
pages 38–51. Springer, 2022. 16

[36] Y. Mao, P. He, X. Liu, Y. Shen, J. Gao, J. Han, and W. Chen. Generation-augmented retrieval
for open-domain question answering. arXiv preprint arXiv:2009.08553, 2020. 6

[37] G. Mialon, R. Dessì, M. Lomeli, C. Nalmpantis, R. Pasunuru, R. Raileanu, B. Rozière, T. Schick,
J. Dwivedi-Yu, A. Celikyilmaz, et al. Augmented language models: a survey. arXiv preprint
arXiv:2302.07842, 2023.

[38] J. Oh, S. Singh, H. Lee, and P. Kohli. Zero-shot task generalization with multi-task deep
reinforcement learning. In International Conference on Machine Learning, pages 2661–2670.
PMLR, 2017. 16

[39] OpenAI. Gpt-4 technical report, 2023. 14, 17

[40] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, et al. Training language models to follow instructions with human feedback.
arXiv preprint arXiv:2203.02155, 2022. 9, 14

[41] J. S. Park, J. C. O’Brien, C. J. Cai, M. R. Morris, P. Liang, and M. S. Bernstein. Generative
agents: Interactive simulacra of human behavior. arXiv preprint arXiv:2304.03442, 2023. 16

[42] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-Maron, M. Gimenez,
Y. Sulsky, J. Kay, J. T. Springenberg, et al. A generalist agent. arXiv preprint arXiv:2205.06175,
2022. 1

[43] N. Shinn, B. Labash, and A. Gopinath. Reflexion: an autonomous agent with dynamic memory
and self-reflection. arXiv preprint arXiv:2303.11366, 2023. 6, 16

12

[44] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason, and
A. Garg. Progprompt: Generating situated robot task plans using large language models. arXiv
preprint arXiv:2209.11302, 2022. 16

[45] H. Sun, Y. Zhuang, L. Kong, B. Dai, and C. Zhang. Adaplanner: Adaptive planning from
feedback with language models. arXiv preprint arXiv:2305.16653, 2023. 16

[46] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023. 14

[47] G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan, and A. Anandkumar. Voyager:
An open-ended embodied agent with large language models. arXiv preprint arXiv:2305.16291,
2023. 4, 5, 7, 8, 14, 16, 17

[48] Y. Wang, Y. Kordi, S. Mishra, A. Liu, N. A. Smith, D. Khashabi, and H. Hajishirzi. Self-instruct:
Aligning language models with self-generated instructions, 2022. 7

[49] Z. Wang, S. Cai, A. Liu, X. Ma, and Y. Liang. Describe, explain, plan and select: Interactive
planning with large language models enables open-world multi-task agents. arXiv preprint
arXiv:2302.01560, 2023. 1, 3, 4, 5, 9, 15, 16

[50] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi, Q. Le, and D. Zhou. Chain of thought
prompting elicits reasoning in large language models. 36th Conference on Neural Information
Processing Systems (NeurIPS 2022), 2022. 16

[51] Y. Wu, S. Y. Min, S. Prabhumoye, Y. Bisk, R. Salakhutdinov, A. Azaria, T. Mitchell, and Y. Li.
Spring: Gpt-4 out-performs rl algorithms by studying papers and reasoning. arXiv preprint
arXiv:2305.15486, 2023. 16

[52] S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, and K. Narasimhan. Tree of thoughts:
Deliberate problem solving with large language models, 2023. 16

[53] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao. React: Synergizing
reasoning and acting in language models. arXiv preprint arXiv:2210.03629, 2022. 1, 5, 9, 16

[54] H. Yuan, C. Zhang, H. Wang, F. Xie, P. Cai, H. Dong, and Z. Lu. Plan4mc: Skill reinforcement
learning and planning for open-world minecraft tasks. arXiv preprint arXiv:2303.16563, 2023.
4, 5, 16, 17

[55] A. Zeng, A. Wong, S. Welker, K. Choromanski, F. Tombari, A. Purohit, M. Ryoo, V. Sindhwani,
J. Lee, V. Vanhoucke, et al. Socratic models: Composing zero-shot multimodal reasoning with
language. arXiv preprint arXiv:2204.00598, 2022. 16

[56] C. Zhang, K. Yang, S. Hu, Z. Wang, G. Li, Y. Sun, C. Zhang, Z. Zhang, A. Liu, S.-C. Zhu,
et al. Proagent: Building proactive cooperative ai with large language models. arXiv preprint
arXiv:2308.11339, 2023. 16

[57] W. Zhang and Z. Lu. Rladapter: Bridging large language models to reinforcement learning in
open worlds. arXiv preprint arXiv:2309.17176, 2023. 16

[58] H. Zhao, Z. Cai, S. Si, X. Ma, K. An, L. Chen, Z. Liu, S. Wang, W. Han, and B. Chang. Mmicl:
Empowering vision-language model with multi-modal in-context learning. arXiv preprint
arXiv:2309.07915, 2023. 1

[59] X. Zhu, Y. Chen, H. Tian, C. Tao, W. Su, C. Yang, G. Huang, B. Li, L. Lu, X. Wang, et al.
Ghost in the minecraft: Generally capable agents for open-world enviroments via large language
models with text-based knowledge and memory. arXiv preprint arXiv:2305.17144, 2023. 4, 6,
7, 8, 16, 17

13

A Experimental Results

A.1 Ablation Studies

A.1.1 JARVIS-1 based on different LMs

We conducted ablation experiments on various Language Models, including OpenAI’s ChatGPT [40]
and GPT-4 [39]. Among these models, GPT-4 has more parameters and has been proven to outperform
ChatGPT in extensive research [47]. We also select the open-source pre-trained LLaMA2 70B
(LLaMA2 PT) model [46]. Additionally, we gathered a substantial amount of Minecraft-related text
from the internet as training data and further fine-tuned LLaMA2 13B (LLaMA FT). The experiments
were conducted on a subset of Minecraft tasks using different language models. Each JARVIS-1
learns for 4 epochs of interaction with all task sets and evaluates on task subset across at least 20
seeds. The experimental results are presented in Table 2.

Table 2: Success rates for different LLMs on Minecraft tasks.
Task GPT-4 ChatGPT LLaMA2 Pretrained LLaMA2 Finetuned

0.97 0.95 0.55 0.85
0.96 0.95 0.50 0.85
0.94 0.90 0.35 0.75
0.34 0.30 0.05 0.25
0.09 0.05 0.00 0.05

Table 2 demonstrates that ChatGPT, despite having fewer parameters, achieves nearly identical
success rates as GPT-4. This suggests that language models equipped with memory can significantly
enhance planning abilities. In Minecraft-related tasks, the open-source pre-trained LLaMA2 70B
exhibits a notable performance gap compared to OpenAI models, particularly in long-horizon tasks.
However, by finetuning LLaMA2 with fewer parameters, its performance on Minecraft tasks improves
substantially. This indicates that the open-source model lacks knowledge specific to Minecraft and
requires further finetuning for successful completion of such tasks.

A.1.2 Ablation on Memory

0.95

0.70

0.15

0.00

0.95

0.91

0.34

0.06

Memory Size (Traj Number)

%
Ep
is
od
es

Figure 6: Success rate by memory size for different items. We evaluated the performance of JARVIS-1 at
different memory sizes (representing different learning stages) by measuring the success rate (% Episodes) of
completing key items on the Minecraft technology tree. As the learning progressed, we observed an improvement
in completion rates for all items, with an increasing number of successful trajectories being included in memory.
After 4 epochs of learning, JARVIS-1 had accumulated a total of 425 successful trajectories in its memory.

We also conduct ablation experiments on the multimodality memory and retrieval methods. We set
JARVIS-1 w/o memory module as the baseline agent. We first evaluate JARVIS-1’s performance
with different memory size (representing different learning stages) as shown in Figure 6, which

14

12.5%

7.2*104 7.2*104

Figure 7: (Left) The success rate of different models in the ObtainDiamondPickaxe challenge over
gameplay time. VPT RL is finetuned from VPT early game with reinforcement learning over 1.4 million
episodes. JARVIS-1 agent and its varients have interacted with Minecraft with over 4 epochs on all tasks in task
pool. Typically, it takes a skilled person over 20 minutes (24,000 steps) to obtain a diamond pickaxe. (Right)
The success rate of obtaining important intermediate items during the process of synthesizing a diamond pickaxe
of JARVIS-1. This task has been evaluated over 300 times on different seeds. These curves indicate that as
the game progresses, the success rates of obtaining all intermediate items are increasing, which indicates that
JARVIS-1 is constantly improving its skills.

demonstrates the effectiveness of self-improving within JARVIS-1. We further conduct the experi-
ments on a subset of Minecraft tasks using three different retrieval methods: retrieval with instruction
embedding only (T), reasoning + retrieval with text embedding (T+R), and reasoning + retrieval with
multimodality embedding (M+R). Except the memory and retrieval methods, all others are kept same.
The results are listed in Table 3.

Table 3: Success rates for memory ablation on Minecraft tasks. R is reasoning process, T and M represent
retrieve with text embedding and multi-modal embedding, respectively.

Memory Retrieval

- - 0.85 0.00 0.05 0.00 0.05
✓ T 0.85 0.05 0.10 0.00 0.10
✓ T+R 0.95 0.25 0.30 0.05 0.20
✓ M+R 0.94 0.34 0.40 0.09 0.24

The experiments show that reasoning before retrieval can effectively improve retrieval accuracy. And
retrieval based on multimodal state including vision observation and symbolic information (e.g.,
inventory, location etc) is better than only considering the text embedding.

A.2 Long-Horizon Challenges

Most concurrent multi-task agents in Minecraft can only handle short-term tasks and struggle with
long-horizon tasks like CraftingDiamondPickaxe. The VPT foundation model[4] is capable
of accomplishing various tasks in Minecraft but lacks the ability to execute human instructions. To
address this limitation, Reinforcement Learning is required to fine-tune the VPT foundation model for
specific task completion. However, after fine-tuning, VPT may experience a decline in performance
for other tasks while focusing on the specified task. In contrast, Steve-1 [29] has implemented
goal-conditioned fine-tuning on VPT-earlygame, enabling it to follow human text instructions while
maintaining multitasking capabilities. However, Steve-1 primarily focuses on low-level tasks like
obtaining dirt, collecting flowers and chopping trees. When it comes to long-horizon tasks such as
starting from scratch by obtaining a wooden pickaxe, Steve-1 still encounters difficulties.

DEPS[49] also utilizes LLM as a planner, but it lacks the ability to learn from experience in different
tasks and apply that knowledge to new ones. Additionally, DEPS is limited in its re-planning rounds
due to the LM’s context constraints. The experiments reveal that DEPS has a success rate of less than
50% in generating accurate and executable plans for acquiring diamonds. The probability of DEPS
successfully obtaining diamonds in the environment is approximately 0.59%. Consequently, DEPS
continues to face challenges when attempting to finish long-horizon tasks within the Minecraft world.

15

Even human players who have mastered the distribution pattern of diamonds achieve success rates
of obtaining diamonds and crafting a diamond pickaxe (which requires at least three diamonds)
within 10 minutes at approximately 15% and 12%, respectively. JARVIS-1 performs better in
the ObtainDiamondPickaxe challenge. Compared to the state-of-the-art model, which has
undergone RL-finetuned VPT, JARVIS-1 has more than doubled the success rate of obtaining a
diamond pickaxe (6.22% vs 2.5% within 20 minutes).

To increase the chances of obtaining diamonds, we extended the game playing time to 60 minutes
(72000 game-playing steps, as shown in Figure 7). As a result, JARVIS-1’s success rate in acquiring
a diamond pickaxe improved from 6.2% to 12.5%. The graph on the right side of Figure 7 illustrates
how the success rate of intermediate milestone items changes over time, indicating that JARVIS-1
tends to improve with longer game-playing time. We also conduct two variants of JARVIS-1 with
different self-improving curriculum: human-written and random-generated. All three JARVIS-1
have collect experiences into memory with the curriculum for 4 epochs before evaluation in 60
minutes. The results show that JARVIS-1 with GPT-generated curriculum can finish the task within
the shortest game-playing steps and achieve the best performance in 60 minutes.

In contrast, VPT’s success rate barely changed when we increased the time from 20 minutes to
60 minutes (from 2.5% to 3%). This can be attributed to Minecraft’s durability system where
prolonged underground exploration often leads to pickaxe damage. When JARVIS-1’s pickaxe
breaks, it dynamically re-plans based on its current inventory and crafts a new one. However, VPT-RL
exhibits perplexing behaviors at this stage by using inappropriate tools for mining stone or crafting
unnecessary items. This comparison demonstrates that JARVIS-1 possesses superior generalization
and planning abilities for long-horizon tasks.

Note that our method is designed to be multi-task in its nature and not finetuned through imitation
learning on specific dataset or reinforcement learning.

B Related Works

B.1 Planning with LLM

There have been some methods leveraging the large language model to generate action plans for
high-level tasks in embodied environments [55, 12, 34, 33, 56, 57, 16]. [21] decompose natural
language commands into sequences of executable actions by text completion and semantic translation,
while SayCan generates feasible plans for robots by jointly decoding an LLM weighted by skill
affordances from value functions [7]. Some methods also leverage the LLM to produce the program
code as plan for better executation [44, 28, 31]. However, the above methods assume that the initial
plan from the LLM is correct. When there are bugs in the initial plan, it’s difficult for the agent
to finish the task successfully. Recent research frequently employs LLM as an interactive planner,
harnessing its self-updating capabilities to enhance the plan’s executability over time [49, 43, 45].
Inner Monologue [22] pilots the front of interactive planning with LLMs, which introduces the
feedback (including success detection and scene description) to the planner. However, we found it
could still suffer from accumulative planning errors, especially in long-horizon open-world tasks.
ReAct [53] will reason about the agent state before acting, which indicates that various reasoning
methods [50, 52, 51] are benefitial for planning. LLM-based planning methods often use the fixed
pretrained LLM as the agent, while we focus more on life-long and continual learning for agents
in open-world environments [25, 24, 47]. For better leveraging historical interaction between agent
and environments, an explicit memory [41, 59] for more historical chatting has been leveraged for
bigger storage of agent experiences. However, the above methods usually rely only on a text-based
environment and struggle to execute plans in partial-observed visual open-world environments.

B.2 Minecraft Agents

Developing generally capable agents in Minecraft to solve open-world tasks has gained increasing
interests [13, 14, 4, 9, 10, 57, 54, 59]. As an early attempt, [38] studied task generalization in a simple
Minecraft environment variant. It designed a two-stage pipeline, first mastering the prerequisite skills
with parameterization trick, and then learning a meta controller to execute the instructions. Moving
to solve complex long-horizon tasks in Minecraft, works [38, 35, 32] explored the hierarchical
architecture. In recent years, influenced by the trend of large-scale pre-training paradigms, a group of

16

researchers have emerged, who are utilizing vast amounts of internet knowledge to train intelligent
agents. [14] trained a visual-semantic alignment model, MineCLIP, using the correspondences
between subtitles and video snippets available on YouTube, and used it to generate intrinsic rewards
to guide policy learning. [4] utilizes a pre-trained inverse dynamics model to label actions in YouTube
videos which are used to learn a foundation policy VPT through imitation learning. By bridging
MineCLIP and VPT, [29] creates a performant instruction-following policy Steve-1 to solve open-
world short-horizon tasks using hindsight relabeling and unCLIP tricks. However, Steve-1 can not
solve complicated process-oriented tasks due to the expressive capability of its goal space. [10]
learns to follow reference videos as the instruction by merely watching gameplay videos, which
improves the capacity of goal space and reduces the cost of policy training. All of these methods
focus on improving the smoothness and robustness of interaction between policy and environment.
Inspired by the powerful language understanding and reasoning capabilities of large language models,
researchers have begun to build Minecraft agents based on LLMs. [47] used LLM to guide the agent
to explore the Minecraft world by acquiring diverse skills, making novel discoveries, and generating
goal proposals. [59] integrated LLM with text-based knowledge and memory to equip the agent with
common sense and past experiences for higher reasoning efficiency. [54] used LLM to guide the
agent to explore the Minecraft world and interact with the environment with reinforcement learning
control policies.

C Implementation Details

C.1 Controller

Tasks in Minecraft are usually related to mine and craft goals. The mine goals require the agent
to collect raw materials from the environment using the appropriate tools. The craft goals ask the
agent to use the recipe to generate new items with existing materials in inventory. The mine goals
are achieved through STEVE-1[29] with text condition during implementation. The environment can
directly executes the craft and smelt actions (craft/smelt with argument), which are same
as MineDojo [14] .

C.2 Interactive Planner

JARVIS-1 relies on the Multi-modal Language Model for planning, self-checking, and self-
explaining, and can accept three types of inputs: visual images, language, and symbolic information
(including inventory, located position, home, current life statistics, etc.). Specifically, this is a hybrid
model with language processing capabilities derived from the GPT model [39]. The visual ability
comes from MineCLIP [14]. We collected approximately 1000 Minecraft text data from the internet
and calculated the similarity between the current vision observation and these text data. Text above
the similarity threshold will be selected into the GPT model’s prompt. Symbolic information is
converted into natural language text through a designed template. All modalities are ultimately
captured as language and processed by the GPT model.

Different modules in JARVIS-1 (e.g. self-check and self-explain) are completed through MLM based
on different prompts. The specific prompt design are shown below.

System: You are a helper agent in Minecraft. You need to generate the sequences of
goals for a certain task in Minecraft. Just refer the history dialogue to
give the plan consist of template. Do not explain or give any other
instruction.

==========
User: My current inventory has nothing. I current locate in plains. How to obtain

1 wooden_pickaxe in Minecraft step-by-step?
Assistant: The code for obtaining 1 wooden_pickaxe is as follows:
def craft_wooden_axe(initial_inventory={}):

mine(obj = {"log":3}, tool = None) # step 1: chop down trees to mine logs
craft(obj = {"planks":12}, materials = {"log":3}, tool = None) # step 2: craft

12 planks from 3 logs
craft(obj = {"stick":4}, materials = {"planks":2}, tool = None) # step 3: craft

4 sticks from 2 planks
craft(obj = {"crafting_table":1}, materials = {"planks":4}, tool = None) # step

4: craft 1 crafting_table from 4 planks

17

craft(obj = {"wooden_axe":1}, {"planks": 3, "stick": 2}, "crafting_table") #
step 5: craft 1 wooden_axe from 3 planks and 2 sticks on crafting table

return "wooden_axe"
User: [Description] I succeed in step 1, 2, 3, 4, 5.
I finish all steps and I obtain 1 wooden_axe successfully.

==========
User: My current inventory has <inventory>. <visual observation>. How to obtain 1

stone_sword in Minecraft step-by-step?
Assistant:

Listing 1: Planning prompt in JARVIS-1

System: Extract the action name, action type, goal object, tool and action rank
from the input text.

User: mine({"log":3}, null); # step 1: chop down trees to mine logs
Assistant:
name: mine_log
text condition: chop down trees to mine logs
action: mine
object_item: log
object_number: 3
tool: null
rank: 1
###

input: craft({"planks":12}, {"log":3}, null); # step 2: craft 12 planks from 3 log
Assistant:
name: craft_planks
condition: craft 12 planks from 3 log
action: craft
object_item: planks
object_number: 12
materials: {"log":3}
tool: null
rank: 2
###

Listing 2: Goal parsing prompt in JARVIS-1

System: Here are some actions that the agent fails to perform in Minecraft. Please
give the explanation of action execution failure according to the current
inventory information of the agent.

###
User:
Failed Action: mine({"iron_ore":1}, null); # step 5: dig down to mine iron blocks
Current Inventory: null
Assistant: Because mining iron_ore needs to use the tool stone_pickaxe, but my

inventory does not have stone_pickaxe. So I need to craft stone_pickaxe first.

###
User:
Failed Action: craft({"stone_pickaxe":1}, {"cobblestone":3, "stick":2}, "

crafting_table"); # step 1: craft 1 stone_pickaxe from 3 cobblestone and 2
stick, on crafting_table

Current Inventory: null
Assistant: Because crafting stone_pickaxe needs to have 3 cobblestone and 2 stick

in inventory, but my inventory does not have cobblestone and stick. So I need
to mine cobblestone and craft stick first.

###
User:
Failed Action: craft({"stick":4}, {"planks":2}, null); # step 3: craft 4 stick

from 2 planks first
Current Inventory: null
Assistant: Because crafting stick needs to have planks in inventory, but my

inventory does not have planks. So I need to craft planks first.

###

Listing 3: Self-explaining prompt in JARVIS-1

18

System: You are a helper agent in Minecraft. Check the plan whether can be
finished.

==========
User: My current inventory has nothing. I current locate in plains. My task is to

obtain 1 wooden axe in Minecraft step-by-step. This is my plan:
def craft_wooden_axe(initial_inventory={}):

mine(obj = {"log":3}, tool = None) # step 1: chop down trees to mine logs
craft(obj = {"planks":12}, materials = {"log":3}, tool = None) # step 2: craft

12 planks from 3 logs
craft(obj = {"stick":4}, materials = {"planks":2}, tool = None) # step 3: craft

4 sticks from 2 planks
craft(obj = {"wooden_axe":1}, {"planks": 3, "stick": 2}, null) # step 4: craft

1 wooden_axe from 3 planks and 2 sticks
return "wooden_axe"

Assistant:
My current inventory is empty.
1. I want to mine 3 logs. Mining logs do not require tools. My inventory will has

3 logs.
2. I want to craft 12 planks from 3 logs. 1 log can produce 4 planks. My inventory

will add 12 planks, and delete 3 logs. My inventory will has 12 planks.
3. I want to craft 4 stick from 2 planks. 2 planks can produce 4 planks. My

inventory will add 4 stick and delete 2 planks. My inventory will has 10
planks, 4 stick.

4. I want to craft 1 wooden pickaxe from 3 planks and 2 sticks. Crafting wooden
pickaxe requires crafting_table. But I do not have crafting_table in inventory.
This action will failed.

Return: Step 4 will failed because of lacking of crafting_table.

Listing 4: Self-checking prompt in JARVIS-1

C.3 Memory

Our memory records every successful trajectory experience of JARVIS-1, including the task goals
that the agent needs to execute, the actual goal sequence (plan) executed by the agent, and the
state (visual observation and symbolic information returned from the environment) when the agent
completes the task. In specific implementation, memory is a list where each trajectory experience is
encoded as a dictionary, including the keys task, state, and plan.

D Environment Setting

Our Minecraft environment is a hybrid between MineRL [19] and the MCP-Reborn
(github.com/Hexeption/MCP-Reborn) Minecraft modding package. Unlike the regular Minecraft
game, in which the server (or the "world") always runs at 20Hz and the client runs as fast as rendering

D.1 Observation Space

The environment observations include two parts. One are simply the raw pixels from the Minecraft
game that player would see. The overlays including the hotbar, health indicators, and the animation of
a moving hand shown in response to the attack or “use” actions are not removed, which are same with
the human-playing GUI. Another part is some auxiliary information about the current environment of
the agent, including the agent’s current location and current weather. These pieces of information can
be obtained by human players by pressing F3. The specific observation information we include are
shown in Table 4.

19

Table 4: The observation space we use in Minecraft.
Sources Shape Description

pov (640, 360, 3) Ego-centric RGB frames.

player_pos (5,) The coordinates of (x,y,z), pitch, and yaw of the agent.

location_stats (9,)
The environmental information of the agent’s current position,
including biome_id, sea_level, can_see_sky, is_raining etc.

inventory (36,)
The items in the current inventory of the agent, including
the type and corresponding quantity of each item in each slot.
If there is no item, it will be displayed as air.

equipped_items (6,)
The current equipment of the agent, including mainhand, offhand,
chest, feet, head, and legs slots. Each slot contains type, damage,
and max_damage information.

event_info (5,)

The events that occur in the current step of the game, including
pick_up (picking up items), break_item (breaking items),
craft_item (crafting items using a crafting table or crafting grid),
mine_block (mining blocks by suitable tools), and
kill_entity (killing game mobs).

Note that no high-level observations like voxels and lidar information in Minedojo [14] can be
accessed by agents. During the actual inference process, controller only perceive the raw pixels and
interact with the environment, which is same with VPT[4] models. The agent will access information
from the environment to generate the text condition of the controller.

The environment observations are simply the raw pixels from the Minecraft game that a human
would see. Unlike MineRL, we do not remove overlays like the hotbar, health indicators, and the
animation of a moving hand shown in response to the attack or “use” actions. The field of view is
70 degrees, which corresponds to the Minecraft default. GUI scale (a parameter controlling the size
of the in-game GUI) is set to 2, and brightness is set to 2 (which is not a Minecraft default, but is
very frequently used in online videos). The rendering resolution is 640x360, which is downsampled
to 128x128 before being input to the models. We empirically found 128x128 to be the smallest
resolution for which in-game GUI elements are still discernible, and then chose that to minimize
compute costs. Whenever an in-game GUI is open, we additionally render an image of a mouse
cursor at the appropriate mouse position to match what a human player’s operating system does (Fig.
12).

D.2 Action Space

We design a hybrid action space. Some are directly available to human players, including keypresses,
mouse movements, and clicks, which are similar to VPT [4]. The keypresses and clicks are binary
functional actions, including forward, jump, use and attack etc. In addition to the binary
(on/off) keypress actions, our action space also includes mouse movements, as with human gameplay.
As with human gameplay, when in-game GUIs are not open, mouse X and Y actions change the
agent’s yaw and pitch, respectively. When a GUI is open, camera actions move the mouse cursor.
Mouse movements are relative (i.e. they move the mouse or camera relative to the current position,
and thus their effect depends on the current position). In Minecraft, interacting with the inventory
requires precise mouse movements for tasks like crafting and smelting, while mining and navigating
the world can be accomplished with broader mouse actions. To be enable to achieve both the same
action space, we abstract the craft and smelt action with GUI into functional binary actions,
which are same as MineDojo [14]. The detailed action space are described in Table 5.

20

Table 5: The action space we use in Minecraft.
Index Action Human Action Description

1 Forward key W Move forward.
2 Back key S Move backward.
3 Left key A Strafe left.
4 Right key D Strafe right.
5 Jump key Space Jump. When swimming, keeps the player afloat.
6 Sneak key left Shift Slowly move in the current direction of movement.
7 Sprint key left Ctrl Move quickly in the direction of current motion.
8 Attack left Button Destroy blocks (hold down); Attack entity (click once).
9 Use right Button Interact with the block that the player is currently looking at.
10 hotbar.[1-9] keys 1 - 9 Selects the appropriate hotbar item.
11 Yaw move Mouse X Turning; aiming; camera movement.Ranging from -180 to +180.
12 Pitch move Mouse Y Turning; aiming; camera movement.Ranging from -180 to +180.
13 Equip - Equip the item in main hand from inventory.
14 Craft - Execute a crafting recipe to obtain new item.
15 Smelt - Execute a smelting recipe to obtain new item.

D.3 Rules

We choose to conduct the test in survival mode of Minecraft 1.16.5. For each environment reset, we
have added the following rules:

• /difficulty peaceful: Set the difficulty of the environment to peaceful mode.
• /gamerule doDaylightCycle false: Set the environment to daytime forever.
• /gamerule keepInventory true: Set agent to not drop items upon death. We have added

a time limit for each task, within which if the player dies, they will respawn at the spawn point and
retain their previous inventory contents.

• /effect give @a night_vision 99999 250 true: In order to facilitate the display
of agent behavior, we have added night vision effects to the agent.

E Results and Details of 200+ tasks in Minecraft Universe Benchmark

We first list the 11 task groups encompassing over 200 Minecraft tasks in Table 6.

Table 6: Characteristics of 11 task groups encompassing over 200 Minecraft tasks.

Group
Task
Num.

Max.
Steps

Initial
Inventory

Biome Language Instruction

Wood 34 12k null Plains/Forest Pick up a wooden_pickaxe.
Wood-Variants 43 12k null Savanna/Jungle/Taiga Pick up a acacia_boat.
Stone 10 12k iron_axe Plains/Forest Craft a furnace given an iron axe.
Iron 22 12k iron_axe Plains/Forest Smelt and craft an iron_door given an iron axe.
Gold 9 36k iron_axe Plains/Forest Smelt and craft an golden_axe given an iron axe.
Diamond 7 36k iron_axe Plains/Forest Dig down to mine diamond and craft diamond_pickaxe.
Redstone 7 36k iron_axe Plains/Forest Mine redstone and make dropper given an iron axe.
Blocks 15 12-36k iron_axe Plains/Forest Dig down to mine lapis_lazuli block.
Armor 17 12-36k iron_axe Plains/Forest Craft diamond_boots given an iron axe and equip it.
Decoration 17 12k iron_axe Flower Forest Obtain the bed and dye it red.
Food 9 12k iron_axe Plains Kill sheep to obtain mutton and cook it.

We then list the evaluation task set below with details including task name, maximum steps, initial
inventory, biome, and language instructions. We also show the evaluation times across different seeds
and successful episode rates. Note that all tasks are evaluated in Minecraft 1.16.5 Survival Mode.

21

Table 7: The results of our agent on various tasks in the Wood group.

Task
Max.
Steps

Initial
Inventory

Biome
Success
Rate

Eval
Times

Language Instruction

wooden_shovel 12000 null Plains/Forest 0.9028 72 Pick up a wooden_shovel given nothing.
wooden_pickaxe 12000 null Plains/Forest 0.9516 62 Pick up a wooden_pickaxe given nothing.
wooden_axe 12000 null Plains/Forest 0.8909 55 Pick up a wooden_axe given nothing.
wooden_hoe 12000 null Plains/Forest 0.9318 44 Pick up a wooden_hoe given nothing.
stick 12000 null Plains/Forest 1 86 Pick up a stick given nothing.
wooden_sword 12000 null Plains/Forest 0.9242 66 Pick up a wooden_sword given nothing.
composter 12000 null Plains/Forest 0.7872 47 Pick up a composter given nothing.
barrel 12000 null Plains/Forest 0.7544 57 Pick up a barrel given nothing.
crafting_table 12000 null Plains/Forest 0.9706 68 Pick up a crafting_table given nothing.
chest 12000 null Plains/Forest 0.9155 71 Pick up a chest given nothing.
ladder 12000 null Plains/Forest 0.9737 76 Pick up a ladder given nothing.
bowl 12000 null Plains/Forest 0.9149 47 Pick up a bowl given nothing.

oak_wood 12000 null Forest 0.9868 76 Pick up a oak_wood in Forest.
oak_slab 12000 null Forest 0.9506 81 Pick up a oak_slab in Forest.
oak_planks 12000 null Forest 0.9659 88 Pick up a oak_planks in Forest.
oak_log 12000 null Forest 1 65 Pick up a oak_log in Forest.
oak_button 12000 null Forest 0.9153 59 Pick up a oak_button in Forest.
oak_door 12000 null Forest 0.8732 71 Pick up a oak_door in Forest.
oak_fence 12000 null Forest 0.8 60 Pick up a oak_fence in Forest.
oak_fence_gate 12000 null Forest 0.9322 59 Pick up a oak_fence_gate in Forest.
oak_trapdoor 12000 null Forest 0.8861 79 Pick up a oak_trapdoor in Forest.
oak_boat 12000 null Forest 0.9074 54 Pick up a oak_boat in Forest.
oak_sign 12000 null Forest 0 0 Pick up a oak_sign in Forest.

birch_wood 12000 null Forest 0.9474 57 Pick up a birch_wood in Forest.
birch_slab 12000 null Forest 0.9231 65 Pick up a birch_slab in Forest.
birch_planks 12000 null Forest 0.9714 70 Pick up a birch_planks in Forest.
birch_log 12000 null Forest 0.9833 60 Pick up a birch_log in Forest.
birch_button 12000 null Forest 0.9245 53 Pick up a birch_button in Forest.
birch_door 12000 null Forest 0.8431 51 Pick up a birch_door in Forest.
birch_fence 12000 null Forest 0.8 30 Pick up a birch_fence in Forest.
birch_fence_gate 12000 null Forest 0.9355 62 Pick up a birch_fence_gate in Forest.
birch_trapdoor 12000 null Forest 0.9524 63 Pick up a birch_trapdoor in Forest.
birch_boat 12000 null Forest 0.8906 64 Pick up a birch_boat in Forest.
birch_sign 12000 null Forest 0.9 60 Pick up a birch_sign in Forest.

Table 8: The results of our agent on various tasks in the Stone group.

Task
Max.
Steps

Initial
Inventory

Biome
Success
Rate

Eval
Times

Language Instruction

stone_shovel 12000 iron_axe Plains/Forest 0.8514 74 Craft a stone_shovel given an iron_axe.
stone_pickaxe 12000 iron_axe Plains/Forest 0.9118 68 Craft a stone_pickaxe given an iron_axe.
stone_axe 12000 iron_axe Plains/Forest 0.9123 57 Craft a stone_axe given an iron_axe.
stone_hoe 12000 iron_axe Plains/Forest 0.9459 74 Craft a stone_hoe given an iron_axe.
stone 12000 iron_axe Plains/Forest 0.8413 63 Craft a stone given an iron_axe.
charcoal 12000 iron_axe Plains/Forest 0.8947 76 Craft a charcoal given an iron_axe.
smoker 12000 iron_axe Plains/Forest 0.7867 75 Craft a smoker given an iron_axe.
stone_sword 12000 iron_axe Plains/Forest 0.8831 77 Craft a stone_sword given an iron_axe.
furnace 12000 iron_axe Plains/Forest 0.942 69 Craft a furnace given an iron_axe.
torch 12000 iron_axe Plains/Forest 0.9 30 Craft a torch given an iron_axe.

22

Table 9: The results of our agent on various tasks in the Iron group.

Task
Max.
Steps

Initial
Inventory Biome

Success
Rate

Eval
Times Language Instruction

iron_axe 12000 null Plains/Forest 0.3333 60 Smelt and craft an iron_axe.
iron_pickaxe 12000 iron_axe Plains/Forest 0.3382 68 Smelt and craft an iron_pickaxe.
iron_shovel 12000 iron_axe Plains/Forest 0.338 71 Smelt and craft an iron_shovel.
iron_sword 12000 iron_axe Plains/Forest 0.3288 73 Smelt and craft an iron_sword.
iron_trapdoor 12000 iron_axe Plains/Forest 0.3151 73 Smelt and craft an iron_trapdoor.
iron_door 12000 iron_axe Plains/Forest 0.2836 67 Smelt and craft an iron_door.
iron_ingot 12000 iron_axe Plains/Forest 0.5479 73 Smelt and craft an iron_ingot.
bucket 12000 iron_axe Plains/Forest 0.381 42 Smelt and craft a bucket.
rail 12000 iron_axe Plains/Forest 0.3226 62 Smelt and craft a rail.
minecart 12000 iron_axe Plains/Forest 0.2833 60 Smelt and craft a minecart.
smithing_table 12000 iron_axe Plains/Forest 0.3611 72 Smelt and craft a smithing_table.
tripwire_hook 12000 iron_axe Plains/Forest 0.45 60 Smelt and craft a tripwire_hook.
chain 12000 iron_axe Plains/Forest 0.3729 59 Smelt and craft a chain.
iron_bars 12000 iron_axe Plains/Forest 0.3208 53 Smelt and craft an iron_bars.
hopper 12000 iron_axe Plains/Forest 0.3077 65 Smelt and craft a hopper.
iron_nugget 12000 iron_axe Plains/Forest 0.3582 67 Smelt and craft an iron_nugget.

heavy_weighted_pressure_plate 12000 iron_axe Plains/Forest 0.358 81
Smelt and craft a
heavy_weighted_pressure_plate.

blast_furnace 12000 iron_axe Plains/Forest 0.5 60 Smelt and craft a blast_furnace.
shears 12000 iron_axe Plains/Forest 0.25 64 Smelt and craft a shears.
stonecutter 12000 iron_axe Plains/Forest 0.5 60 Smelt and craft a stonecutter.
iron_hoe 12000 iron_axe Plains/Forest 0.3214 56 Smelt and craft an iron_hoe.
crossbow 12000 iron_axe Plains/Forest 0.047 63 Smelt and craft a crossbow.

Table 10: The results of our agent on various tasks in the Gold group.

Task
Max.
Steps

Initial
Inventory Biome

Success
Rate

Eval
Times Language Instruction

golden_pickaxe 36000 iron_axe Plains/Forest 0.0526 77 Smelt and craft a golden_pickaxe.
golden_shovel 36000 iron_axe Plains/Forest 0.0822 73 Smelt and craft a golden_shovel.
golden_sword 36000 iron_axe Plains/Forest 0.0476 85 Smelt and craft a golden_sword.
golden_hoe 36000 iron_axe Plains/Forest 0.058 69 Smelt and craft a golden_hoe.
golden_axe 36000 iron_axe Plains/Forest 0.0469 64 Smelt and craft a golden_axe.
golden_apple 36000 iron_axe Plains/Forest 0.02 76 Smelt and craft a golden_apple.
clock 36000 iron_axe Plains/Forest 0.02 77 Smelt and craft a clock.
gold_nugget 36000 iron_axe Plains/Forest 0.1444 91 Smelt and craft a gold_nugget.
gold_ingot 36000 iron_axe Plains/Forest 0.1449 70 Smelt and craft a gold_ingot.

Table 11: The results of our agent on various tasks in the Diamond group.

Task
Max.
Steps

Initial
Inventory Biome

Success
Rate

Eval
Times Language Instruction

diamond_pickaxe 36000 iron_axe Plains/Forest 0.0622 692 Dig down to mine diamond and craft diamond_pickaxe.
diamond_shovel 36000 iron_axe Plains/Forest 0.1136 88 Dig down to mine diamond and craft diamond_shovel.
diamond_sword 36000 iron_axe Plains/Forest 0.1134 97 Dig down to mine diamond and craft diamond_sword.
diamond_hoe 36000 iron_axe Plains/Forest 0.0441 68 Dig down to mine diamond and craft diamond_hoe.
diamond_axe 36000 iron_axe Plains/Forest 0.0986 71 Dig down to mine diamond and craft diamond_axe.
diamond 36000 iron_axe Plains/Forest 0.092 728 Dig down to mine diamond and craft diamond.
jukebox 36000 iron_axe Plains/Forest 0.1053 79 Dig down to mine diamond and craft jukebox.

Table 12: The results of our agent on various tasks in the Redstone group.

Task
Max.
Steps

Initial
Inventory Biome

Success
Rate

Eval
Times Language Instruction

piston 36000 iron_axe Plains/Forest 0.1772 79 Mine redstone and make piston.
redstone_torch 36000 iron_axe Plains/Forest 0.2584 89 Mine redstone and make redstone_torch.
redstone_block 36000 iron_axe Plains/Forest 0.2469 81 Mine redstone and make redstone_block.
activator_rail 36000 iron_axe Plains/Forest 0.0159 63 Mine redstone and make activator_rail.
compass 36000 iron_axe Plains/Forest 0.0759 79 Mine redstone and make compass.
dropper 36000 iron_axe Plains/Forest 0.2278 79 Mine redstone and make dropper.
note_block 36000 iron_axe Plains/Forest 0.2239 67 Mine redstone and make note_block.

23

Table 13: The results of our agent on various tasks in the Blocks group.

Task
Max.
Steps

Initial
Inventory Biome

Success
Rate

Eval
Times Language Instruction

diorite 12000 iron_axe Plains/Forest 0.9 30 Dig down to mine diorite block.
andesite 12000 iron_axe Plains/Forest 0.9667 30 Dig down to mine andesite block.
granite 12000 iron_axe Plains/Forest 0.8667 30 Dig down to mine granite block.
coal 12000 iron_axe Plains/Forest 0.6667 30 Dig down to mine coal block.
lapis_lazuli 12000 iron_axe Plains/Forest 0.8667 30 Dig down to mine lapis_lazuli block.
iron_ore 12000 iron_axe Plains/Forest 0.5667 30 Dig down to mine iron_ore block.
gold_ore 36000 iron_axe Plains/Forest 0.27 30 Dig down to mine gold_ore block.
cobblestone 12000 iron_axe Plains/Forest 0.9667 30 Dig down to mine cobblestone block.
gravel 12000 iron_axe Plains/Forest 0.9667 30 Dig down to mine gravel block.
oak_log 12000 iron_axe Plains/Forest 0.9667 30 Chop down tree and mine oak_log block.
birch_log 12000 iron_axe Plains/Forest 0.8718 39 Chop down tree and mine birch_log block.
acacia_log 12000 iron_axe Plains/Forest 0.5 30 Chop down tree and mine acacia_log block.
jungle_log 12000 iron_axe Plains/Forest 0.9333 30 Chop down tree and mine jungle_log block.
dark_oak_log 12000 iron_axe Plains/Forest 0.9 30 Chop down tree and mine dark_oak_log block.
spruce_log 12000 iron_axe Plains/Forest 0.9333 30 Chop down tree and mine spruce_log block.

Table 14: The results of our agent on various tasks in the Armor group.

Task
Max.
Steps

Initial
Inventory Biome

Success
Rate

Eval
Times Language Instruction

shield 12000 iron_axe Plains/Forest 0.3939 66 Craft shield and equip it.
leather_helmet 12000 iron_axe Plains/Forest 0.0508 59 Craft leather_helmet and equip it.
leather_chestplate 12000 iron_axe Plains/Forest 0.0312 32 Craft leather_chestplate and equip it.
leather_leggings 12000 iron_axe Plains/Forest 0.0588 34 Craft leather_leggings and equip it.
leather_boots 12000 iron_axe Plains/Forest 0.087 23 Craft leather_boots and equip it.
iron_chestplate 12000 iron_axe Plains/Forest 0.3333 30 Craft iron_chestplate and equip it.
iron_boots 12000 iron_axe Plains/Forest 0.3667 30 Craft iron_boots and equip it.
iron_leggings 12000 iron_axe Plains/Forest 0.3788 66 Craft iron_leggings and equip it.
iron_helmet 12000 iron_axe Plains/Forest 0.303 33 Craft iron_helmet and equip it.
diamond_helmet 36000 iron_axe Plains/Forest 0.0429 70 Craft diamond_helmet and equip it.
diamond_chestplate 36000 iron_axe Plains/Forest 0.0149 68 Craft diamond_chestplate and equip it.
diamond_leggings 36000 iron_axe Plains/Forest 0.02 73 Craft diamond_leggings and equip it.
diamond_boots 36000 iron_axe Plains/Forest 0.0533 75 Craft diamond_boots and equip it.
golden_helmet 36000 iron_axe Plains/Forest 0.0533 75 Craft golden_helmet and equip it.
golden_chestplate 36000 iron_axe Plains/Forest 0.02 78 Craft golden_chestplate and equip it.
golden_leggings 36000 iron_axe Plains/Forest 0.0159 89 Craft golden_leggings and equip it.
golden_boots 36000 iron_axe Plains/Forest 0.0617 81 Craft golden_boots and equip it.

Table 15: The results of our agent on various tasks in the Decoration group.

Task
Max.
Steps

Initial
Inventory Biome

Success
Rate

Eval
Times Language Instruction

yellow_dye 12000 iron_axe Flower Forest 0.2333 30 Obtain the yellow_dye.
red_dye 12000 iron_axe Flower Forest 0.6364 33 Obtain the red_dye.
light_gray_dye 12000 iron_axe Flower Forest 0.6667 27 Obtain the light_gray_dye.
pink_dye 12000 iron_axe Flower Forest 0.6667 39 Obtain the pink_dye.
orange_dye 12000 iron_axe Flower Forest 0.4857 35 Obtain the orange_dye.
white_dye 12000 iron_axe Flower Forest 0.1471 34 Obtain the white_dye.
white_bed 12000 iron_axe Flower Forest 0.5 36 Obtain the white_bed.
item_frame 12000 iron_axe Flower Forest 0.2143 28 Obtain the item_frame.
painting 12000 iron_axe Flower Forest 0.5484 31 Obtain the painting.
white_wool 12000 iron_axe Flower Forest 0.8235 34 Obtain the white_wool.
white_carpet 12000 iron_axe Flower Forest 0.6857 35 Obtain the white_carpet.
white_banner 12000 iron_axe Flower Forest 0.0968 31 Obtain the white_banner.
yellow_wool 12000 iron_axe Flower Forest 0.0625 32 Obtain the yellow_wool.
red_wool 12000 iron_axe Flower Forest 0.6571 35 Obtain the red_wool.
light_gray_wool 12000 iron_axe Flower Forest 0.6098 41 Obtain the light_gray_wool.
pink_wool 12000 iron_axe Flower Forest 0.4 25 Obtain the pink_wool.
orange_wool 12000 iron_axe Flower Forest 0.5 36 Obtain the orange_wool.

24

Table 16: The results of our agent on various tasks in the Food group.

Task
Max.
Steps

Initial
Inventory Biome

Success
Rate

Eval
Times Language Instruction

apple 12000 iron_axe Plains 0.5 30 Chop down tree to obtain apple.
cooked_chicken 12000 iron_axe Plains 0.3562 73 Kill chicken to obtain chicken and cook it.
cooked_mutton 12000 iron_axe Plains 0.4355 62 Kill sheep to obtain mutton and cook it.
cooked_porkchop 12000 iron_axe Plains 0.3968 63 Kill pig to obtain porkchop and cook it.
cooked_beef 12000 iron_axe Plains 0.2857 63 Kill cow to obtain beef and cook it.
chicken 12000 iron_axe Plains 0.5667 30 Kill chicken to obtain chicken.
beef 12000 iron_axe Plains 0.6333 30 Kill cow to obtain beef.
mutton 12000 iron_axe Plains 0.5667 30 Kill sheep to obtain mutton.
porkchop 12000 iron_axe Plains 0.4667 30 Kill pig to obtain porkchop.

25

	Introduction
	Challenges for Agents in open-world Environments
	Challenge I: Situation-Aware Planning
	Challenge II: Task Complexity
	Challenge III: Life-long Learning

	Multi-task Agent with Memory-Augmented MLM
	Overview
	Interactive Planning with MLM
	Planning with Multimodal Memory in the Loop
	Self-improving Agents

	Experiments
	Experimental Setups
	Main Results

	Conclusion
	Experimental Results
	Ablation Studies
	JARVIS-1 based on different LMs
	Ablation on Memory

	Long-Horizon Challenges

	Related Works
	Planning with LLM
	Minecraft Agents

	Implementation Details
	Controller
	Interactive Planner
	Memory

	Environment Setting
	Observation Space
	Action Space
	Rules

	Results and Details of 200+ tasks in Minecraft Universe Benchmark

