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Abstract: Robotic agents operating in dynamic, partially observable environ-
ments often benefit from teammate assistance. For robots using online POMDP
planning, evaluating assistance actions requires computationally intensive policy
evaluations, limiting real-time decision-making capabilities. We formulate Value
of Assistance (VOA) for POMDP agents and develop efficient heuristics that ap-
proximate VOA without requiring complete evaluations. Our empirical results on
both a standard POMDP benchmark and a multi-robot manipulation task demon-
strate that our suggested heuristics enable real-time computation while maintain-
ing sufficient accuracy for effective helping action selection.
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1 Introduction

Robotic agents are required to operate in increasingly dynamic and unpredictable environments, in
which they lack complete information about the world due to sensor noise, limited field of view, or
incomplete models of the environment. In this work, we support multi-robot settings in which agents
can assist each other in different ways. For example, a team member can move obstacles or rear-
range objects to facilitate manipulation or to improve observability. These assistance options create
opportunities for meaningful collaboration in multi-robot systems but introduce several decision-
making challenges: selecting the most effective helping action from alternatives, evaluating whether
pausing a current task to assist others is worthwhile, and determining which agent would benefit
most from assistance when multiple team members require it.

To address these challenges, our work focuses on formulating ways to estimate Value of Assistance
(VOA) for partially informed robotic agents and on providing principled approaches for quantifying
and comparing the potential benefits of different assistive actions.

Example: Consider the two-agent setting depicted in Figure 1. Agentl is equipped with a parallel
gripper and camera, and is tasked with placing cups on a table and pouring soda into them. This
requires planning high-level actions while moving to positions that enable manipulation and sens-
ing. In this setting, Agent2 can assist by moving obstacles (which is impossible for Agentl) using its
vacuum gripper. The figure shows two assistance options: moving Obstacle #1 reveals the occluded
can, improving visibility, while moving Obstacle #2 clears a path to the blue cup. We aim to quan-
tify Value of Assistance (VOA) as the expected long-term benefit of each assistive action, enabling
comparison against the cost of pausing Agent2’s own task.

Beyond this illustrative example, assessing VOA is relevant to a broader class of applications such
as automated manufacturing, environmental monitoring, and construction in which agents can assist
each other but need to consider their own resources and objectives. In such settings, deciding how to
assist other agents requires considering the long-term effects of actions. For example, will clearing
a path benefit only the current navigation segment or enable access to multiple future goals?

'A video demonstrating this scenario: https://youtu.be/wf1gMjeNgnU
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Figure 1: A collaborative multi-robot setting.

As is typical in such settings, we model the agent’s task using a Partially Observable Markov Deci-
sion Process (POMDPs) [1]. POMDPs provide a mathematical framework for decision-making un-
der uncertainty, balancing exploration for information gathering with exploitation of current knowl-
edge. They capture the complexities of noisy sensors, imperfect actuation, and partial observability
inherent in real-world robotic tasks. However, exact POMDP solutions are computationally in-
tractable for large problems [2], leading to the development of online planning methods that have
enabled practical applications in robotics [3, 4]. As a result of the complexity of a POMDP and its
online, approximate nature, exact computation of VOA becomes intractable for real-time decision-
making, especially when there are many possible interventions to consider and there is a need to
reevaluate the policy to determine the effect interventions will have on the agent’s decisions.

With the objective of supporting effective real-time assistance decisions, we formulate Value of As-
sistance (VOA) for POMDP agents and address computational challenges by developing domain-
agnostic heuristics. These enable rapid evaluation of potential helping actions while accounting
for their long-term effects. Our empirical evaluations on both a standard POMDP benchmark and
a two-agent robotic manipulation scenario compare several heuristic approaches, with our Full-
Information heuristic demonstrating near-optimal action selection at significantly faster computation
speeds compared to direct VOA estimation, effectively predicting intervention impacts and support-
ing optimal assistance decisions.”

2 Related Work

POMDPs have proven effective for single-robot tasks like navigation [5], tracking [6], and crowd
interaction [7], with recent extensions to continuous domains [8]. Comprehensive surveys [4, 9]
highlight their growing applications in robotics [10, 11]. While Dec-POMDP frameworks provide
theoretical foundations [12] and algorithmic approaches [13] for decentralized decision-making,
they aim to solve for complete joint policies, which is more complex than our setting. Earlier work
on quantifying assistive value in human-robot interaction [14] introduced helpfulness as a metric
based on effort reduction, but primarily in deterministic settings with full task knowledge. We focus
instead on the more targeted problem of evaluating specific assistance opportunities in real-time in
partially observable stochastic environments.

The concept of Value of Assistance (VOA) was previously explored for robot navigation [15], as-
sessing how localization affects a robot’s expected cost. Our work differs by addressing robotic
agents using online POMDP planning rather than fixed control policies, and by focusing on com-
plex manipulation tasks where assistance affects both immediate performance and future decisions.

3 Preliminaries

Partially Observable Markov Decision Process (POMDP) [1] is defined as a tuple
(§,A, T,R,Q,0,~), where S is a set of states, A is a set of actions, T (s'|s,a) is the transi-

The code and supplementary materials are available at: https://github.com/CLAIR-LAB-TECHNION/
voa-online-pomdp
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tion probability function, R (s, a) is the reward function, € is the observation set, O(o|s’, a) is the
observation probability function, and -y is a discount factor. POMDP agents cannot directly observe
the true state. Instead, they make decisions based on their belief 3 € B, which is a probability dis-
tribution 8 : S — [0,1](3_,cs B(s) = 1) over states given past observations and actions. An agent
updates its belief after taking action a and receiving observation o using a belief update function
7: B x AxQ — B. The agent’s policy 7 : B — A(A) maps beliefs to distributions over actions.
For a given policy 7, the value function V™ (8) = E [3°,2 v R(s', 7(8")) | B° = 3] represents the
expected sum of discounted rewards. An optimal policy 7* maximizes this value function, which
satisfies the Bellman equation V*(8) = maxaea [R(B,a) +7 Y cq P(0|8,a)V*(Ba,0)] where
R(B,a) = cq R(s,a)B(s) is the expected immediate reward.

Online Planning in POMDPs. Finding optimal policies for POMDPs is PSPACE-complete [2],
making exact solution methods impractical for most real-world applications. This computational
challenge is particularly acute in robotics, where state and observation spaces are often large or
continuous. Even approximate methods that pre-compute policies offline struggle with the curse of
dimensionality and the curse of history [16]. Online planning algorithms address these challenges
by computing actions only for the current belief at runtime rather than solving the POMDP for all
possible beliefs. This approach allows handling of much larger state spaces than offline methods,
making it particularly suitable for robotic applications [3]. The trade-off is that online planning
typically produces sub-optimal policies due to computational constraints at runtime. Nevertheless,
these methods have proven effective in practice [17, 18, 4, 3].

Partially Observable Monte Carlo Planning (POMCP) [17]
is a widely-used online planning algorithm that combines Monte
Carlo Tree Search (MCTS) with particle-based belief representa-
tion [19]. Nodes represent uncertainty about the state through sets
of particles, with each particle corresponding to a possible state
consistent with the action-observation history. As illustrated in
Figure 2, the algorithm constructs a search tree where nodes alter-
nate between representing actions (hexagons) and observations (el-
lipses). At each iteration, POMCP traverses the tree using UCB1- :
based action selection [20] until reaching a leaf node, and then uses ﬂi
a rollout policy 7ot to complete the iteration. Values are back-

propagated through the visited nodes to guide future action selec- Figure 2: Illustration of a
tion. The policy induced by POMCP is inherently stochastic due POMCP search tree.

to its sampling-based nature and limited planning time. POMCP

has demonstrated strong performance across various domains [17], particularly in robotics, where
its ability to handle large state spaces and provide real-time decision-making is valuable.

E‘fn onoLy,
B

4 Value of Assistance in POMDPs

We model a robotic task as a POMDP M = (S, A, T, R, 2, O) with stochastic dynamics and noisy
sensors. The agent employs online planning and replans at each time step, resulting in a stochastic
policy 7 : 8 — A(.A). This policy may be sub-optimal. Upon executing an action « and receiving
observation o, the agent updates its belief through a belief update function: 8’ = 7(, a, 0).

We consider assistance through helping actions o« € Ay, which can modify the environment state
according to a transition function 7 (s’|s, ) and provide observation w € 4 according to a
stochastic observation function O (w|s’, ). Since assistance may be provided by a different agent,
the set {24, of possible observations may differ from the agent’s observation set {). After a helping
action o« € Ay, is performed, the agent updates its belief with its update function 7(3, i, w) that
considers both state changes and the new observations and then continues executing its policy in the
modified environment. For simplicity, we assume uniform cost across helping actions, though this
framework can be trivially extended to incorporate different action costs. Additionally, we assume
here that agents share the same belief, which can be achieved either through direct communication
or through sharing the action-observation history. This assumption will be relaxed in future work.



To quantify the impact of assistance, we define VOA for a helping action given a belief as the
difference between the expected reward the agent will accumulate with and without assistance. This
value arises from both potential changes in the environment state and updates to the agent’s belief
based on received observations. We first express VOA in terms of belief-conditioned probabilities:

uVoA(avﬁ) =E s'~P(s'|B,a) [Vﬂ(ﬁl)] - Vﬂ(ﬁ) (1)

WO (] ,0)

where V'™ is the value function of the induced actor’s policy w and 8’ = 7(8, o, w) is the updated
belief. By conditioning on the state, we can express this in terms of the transition and observation
models of the helping agent. The complete derivation of Equation 2 is provided in Appendix 1.1.

Uvoa(a, B) = Esp[Eyr,(s/)s,0) VT (B)]] = V7 (B) 2
w~Oqy (w|s’,a)
For purely observational helping actions that do not change the state of the environment, VOA
reduces to:

Z/{VOA (Oé, ﬁ) = ESNB [EUJNO’H (w]s,a) [Vﬂ (ﬁ/)]] VT (/6) (3)
This special case corresponds to value of information (VOI) in POMDPs [21, 22, 23, 24, 25, 9, 26].
VOA extends this well-studied concept to both information gathering and state-changing assistance.

5 Assessing VOA

Computing VOA for POMDP agents presents a unique policy evaluation challenge as we demon-
strate in the analysis of Algorithm 1. The assisted agent employs online planning, computing actions
at runtime through methods like POMCP [17] (see Figure 2) . Evaluating such a policy is compu-
tationally intensive, as each step in a simulated trajectory requires selecting the agent’s action using
long-term reasoning. This makes exact VOA computation intractable for real-time decision-making,
especially when evaluating multiple potential helping actions.

In principle, it may be possible to formulate and solve our assistance scenario by extending the
agent’s POMDP to include the helping actions and their effects. However, since we assume assis-
tance can only change the state and belief of the agent, it is redundant to recompute the entire policy,
and we can instead focus on assessing the effect of the intervention.

Our suggested approach is a Monte Carlo algorithm for estimating VOA. Notably, Monte Carlo
sampling appears at multiple levels in our approach. At the policy computation level, the agent
uses Monte Carlo tree iterations internally for action selection, with each iteration consisting of tree
traversal and value estimation through rollouts at leaf nodes. At a higher level, we use Monte Carlo
sampling to estimate VOA through complete policy evaluation episodes. To avoid confusion, we
will refer to the agent’s internal processes as tree iterations and to the VOA estimation trajectories
as policy evaluation episodes throughout the paper.

Our approach, described in Algorithm 1, applies a Monte Carlo estimation approach to assess
the difference in expected returns between two scenarios: with and without assistance. Note that
we present and analyze the finite-horizon case, though the approach applies equally to discounted
infinite-horizon problems (Appendix 1.3).

In lines 1-4, we initialize the necessary data structures and parameters. For each state sampled from
the belief (line 6), the algorithm first simulates the effect of the helping action (lines 7,8,9). It then
performs two L-step rollouts using the agent’s policy: one from the post-help state and belief (line
9), and another from the original state and belief (line 10). Figure 3 [left] illustrates how each policy
evaluation episode is executed by repeatedly constructing planning trees, sampling transitions, and
updating beliefs. The final estimate is computed through importance sampling (line 16), where
samples are weighted according to their probability under the current belief.

The algorithm’s computational cost depends on several key parameters: k (number of sampled
states), L (episode length), and the planning algorithm specific parameters. We analyze for POMCP
with: Ng (number of tree simulations), Np (maximum depth), and Np (particles representing the
belief). As shown in Appendix 1.2, the total complexity is O(kL(NsNp + Np)). This high cost



Algorithm 1: VOA Prediction Through Policy Evaluation Episodes (Finite Horizon)
1 Input: POMDP Model M, Actor’s Policy 7, Belief 3, Helping Action // Note: This function simulates a

«, Resource Limit resy,y, Max Iterations &, Time Horizon L complete policy evaluation episode.
Output: Predicted Value of Assistance Uy o4 (8, o) 18 Function EpSim(M, s, 8, 7, L):
ST 19 <+~ 0

2 Initialize empty arrays Va and S} 2 ? 0(_ s
3 resyseq < 0; Scurr 5

) 21 BCU’I"V‘ <_ 63
4 14 0;

o 22 fort < 1to L do
5 while (¢ < k and res,seq < respqy) do 23 a < (3 ): // Constructs a
6 Sample initial state s; ~ £3; search tc;;;r ’
H .

7 Sample s/ ~ T (+|sq, @) ; // State after help 4 Sample syeat ~ T (|Scurr, a);
8 Sample O’H ~ OH(-‘S;H, a) H // Observation after help 25 Sample 0 ~ o(‘lsnemt; a);
9 B — 1(B,a,0M); // Belief after help 26 G + G+ R(scurr,a);
10 thlp < EpSim(M, Sz-{, ,@H, 7, L); // Return with help :; Beurr : T(ﬁcu_rr’ @s O)’
11 Gnﬂih,ﬁlp <« EpSim(M, s;, 8,7, L) ; // Return no help Seurr Snexts
2 Va.append(Gretp — Gno_help); 29 | returnG
13 S.append(s;);
14 i 4— 14+ 1;
15 |  Update(resusea);

— Ti_q B(SLD VAL
16 U o) — Z=—— =

voa(f, o) i, A5G

7 return Uy o4 (8, @) ;

-

stems from the need to construct and search new trees for each step of the simulated trajectories.
While different MCTS algorithms may vary in their handling of observations and belief updates,
they face similar computational challenges.

6 Heuristics for VOA

The computational complexity analysis of Algorithm 1 reveals significant challenges in estimating
VOA for POMDP agents using online planning approaches. While the algorithm provides a princi-
pled approach, its computational requirements make it impractical for real-time assistance decisions
when evaluating multiple helping actions.

This limitation motivates the development of computationally efficient heuristics for approximating
VOA. We define a VOA heuristic h(«, 8) « Uy, (e, B) as a function that maps a belief and helping
action to a real value. A key requirement is not perfect numerical accuracy, but rather the ability to
efficiently identify promising helping actions.

We aim to propose domain-agnostic heuristics that leverage fundamental properties of POMDPs and
their value functions. These heuristics are particularly valuable in scenarios where a helper agent
must select from multiple possible actions under time and computational constraints, as selecting
an action that ranks slightly below optimal may be preferable to the computational delay of exact
evaluation. In the following paragraphs, we describe three heuristics with full details provided in
Appendix 1.4. Each targets a different aspect of the computational complexity in Algorithm 1:
reducing the required planning steps, eliminating expensive tree construction, or reformulating the
problem as deterministic planning.

First-Action Value Heuristic hr 4. Our first heuristic addresses the computational burden of simu-
lating complete L-step trajectories (lines 23-27 in Algorithm 1). Instead of these full episodes, hr 4
approximates VOA by planning only for the first step, using the agent’s regular MCTS search ap-
proach and using the resulting tree to estimate the value (Figure 3 [mid-left]). We replace the policy
value function V™ with the root node value estimate:

hFA(aa B) = Es s [E s'~Ta(]s,) [V;oot(T'H(Bva7w))H - V;oot(ﬁ) 4)
w0 (-]s",)
This modification requires only a single planning step per sampled state, reducing computational
complexity from O(kL(N;Np + Np)) to O(k(NsNp + Np)).

Rollout-Policy Heuristic A ,...- The second heuristic addresses the cost of repeatedly construct-
ing search trees during episode simulation (line 23 in Algorithm 1). Rather than using the full plan-
ning policy, h directly uses the planner’s rollout policy 7.0 fOr action selection (Figure 3

TRollout
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Figure 3: VOA estimation approaches: Baseline Policy Evaluation [leftmost], First-Action Value
heuristic, Rollout-Policy heuristic, and Full-Information heuristic [rightmost].

[mid-right]). We replace the planning policy value function with the rollout policy value:

hﬂRouom(O‘v ﬂ) = ESNﬁ[E T (|5:00) [VﬂRollout(ﬁ/)H . VTFRollom(ﬂ) (5)

WO (|5’ )

This eliminates the expensive tree construction operations, reducing computational complexity from
O(kL(NsNp + Np)) to O(kL(Np)).

Full-Information Heuristic & ro. Our third heuristic addresses the VOA estimation challenge by
using a fully observable deterministic relaxation of the problem (Figure 3 [right]). Instead of per-
forming policy evaluation episodes in lines 10 and 11 of Algorithm 1, we create a fully observable
deterministic variant through all-outcome determinization, where the agent can choose any outcome
from each action’s stochastic transition support. For each state sampled from the belief, we perform
deterministic planning as if that sampled state were the true state, computing returns both with and
without assistance. Importantly, this does not give the agent actual ’full information” during exe-
cution, it simply allows for more efficient planning during VOA estimation by temporarily setting
aside uncertainty for each sampled state. This approach converts the complex POMDP planning
problem into a much simpler deterministic planning problem inspired by [27, 28], benefiting from
decades of research in deterministic planning algorithms [29].

To compute VOA, we replace the value function V™ with the deterministic optimal plan value U:

hro(@, B) = Bsnp[Baniy (15,0 [U(s)] = U(s)] (6)

The computational complexity reduces to O(k|S||A|B) for basic state-space search, where B is
the maximum branching factor in the transition support. In Appendix 1.5, we show that U(s) pro-
vides an upper bound on the optimal POMDP value function, though VOA computed this way isn’t
necessarily an upper bound on the actual VOA.

7 Empirical Evaluation

Our empirical evaluation aims to assess the effectiveness of our proposed heuristics in estimating the
Value of Assistance (VOA). The key question we address is whether these computationally efficient
heuristics can reliably identify beneficial helping actions despite the relaxations that are made. We
examine this in two distinct environments. While we demonstrate our approach using POMCEP,
our heuristics readily extend to other online MCTS algorithms, including POMCPOW [30] and
DESPOT [31] variants, as they share the core MCTS structure with root value estimates and rollout
policies.

RockSample. We evaluate on RockSample(11,11) [32], a POMDP benchmark where an agent navi-
gates a grid with rocks to locate the valuable ones using a noisy long-range sensor. This large version



of the environment requires online planning approaches like POMCP [17], as its state space is too
large for exact solutions. We augmented this benchmark with helping actions that allow clustering
rocks in different areas of the map, generating approximately 50 distinct assistance options per envi-
ronment instance. This creates a challenging assistance evaluation problem with many alternatives
to rank. Detailed descriptions of the experimental setup are provided in Appendix 1.10.

Robotic Manipulation (POMAN). Our second domain involves the multi-robot manipulation sce-
nario introduced in Figure 1. A robot equipped with a parallel gripper must manipulate objects while
navigating among large obstacles. The robot’s perception system integrates YOLO-world object de-
tection [33] with stereo depth data to estimate partially observable object positions (Figure 4). A
second robot equipped with a vacuum gripper can assist by repositioning the large obstacles, which
can significantly impact task performance by modifying accessibility and visibility. The environ-
ment specifications and perception system implementation are provided in Appendix 1.11.

Our experiments used POMCP for online planning, with
detailed implementation provided in Appendix 1.8. In
both environments, each POMCP planning step requires
1-3 seconds, which is reasonable during task execution
but making VOA computation through direct policy eval- &
uation prohibitively. e'xpensive. To establish gr(?und tru'th, Figure 4: [left] Demonstrating YOLO-
we computed empirical VOA through extensive offline world’s[33] object detection in the
simulation (300 episodes per belief-action pair, each re-  robot’s camera view, and [right] the cor-
quiring several hours). Since these values remain es- responding depth information from the
timates, we computed 95% confidence intervals using stereo camera used to estimate object
bootstrap resampling [34]. We implemented the three positions.

heuristics from Section 6, evaluating each across vary-

ing sample sizes. For RockSample, we tested an enhanced First-Action Value variant that increased
computational resources for the single planning step (10,000 simulations at depth 100, compared to
the standard 2,000 simulations at depth 20).

e 7

7.1 Evaluation Metrics

We evaluate our heuristics using complementary metrics that capture different performance aspects.
Detailed definitions and additional metrics are provided in Appendix 1.9:

Partial Order Agreement. Measures how well a heuristic’s ordering of helping actions agrees with
the empirical VOA’s partial ordering, considering confidence intervals. Scores range from O to 1,
with higher values indicating better agreement.

Normalized Regret. Quantifies the value lost by selecting the heuristic’s recommended action
instead of the truly optimal one. This directly measures practical impact on decision quality. Values
range from O to 1, with lower values indicating better performance.

Top-k Accuracy. Measures what fraction of the truly best k actions are identified by the heuristic.
We report top-5 for RockSample (with approximately 50 possible actions) and top-2 for POMAN (4
actions). Higher values (0-1 scale) indicate better performance.

Computation Time. Average seconds required to compute heuristic values per belief-action pair,
directly measuring real-time feasibility.

Figure 5 presents our evaluation results across all metrics for both domains. Each graph compares
heuristic performance, organized left to right: baseline VOA estimation (Z/{/V-O\A) as described in
Algorithm 1 in red, First-Action Value heuristic (hr 4) in yellow, enhanced First-Action Value (h; a)
in green, Rollout-Policy (A, ,,..) in blue, and Full-Information Value (hro) in purple. Within each
approach, grouped bars represent different numbers of sampled states, demonstrating performance
stability with varying computational resources. Note that h} 4 appears only in RockSample results,
and hr, s omitted from POMAN plots due to consistently zero VOA estimates in that domain.
In Appendix 1.12 we perform a more elaborate analysis of the results.
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Figure 5: Results for both domains. [top left] Top-5/Top-2 accuracy for RockSample/POMAN, [top
right] Partial Order Agreement, [bottom right] Computation Time, [bottom left] Normalized regret.
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The baseline Monte Carlo VOA estimation clearly demonstrates the impact of computational re-
sources. Increasing the number of sampled initial states consistently improves metric performance.
However, computation times show that this approach is impractical in real-time.

The Full-Information Value heuristic (hro) demonstrated superior performance in both domains.
In RockSample, with 200 initial state samples, it achieved a partial agreement score of 0.88 and
maintained computation times under 0.1 seconds per evaluation. It reached near-zero regret in both
domains (< 0.05 in RockSample and < 0.005 in POMAN). In POMAN, it consistently identified
the two beneficial actions, reliably distinguishing them from less useful ones.

While the First-Action Value heuristic (hr 4) showed promising results in RockSample, and in some
metrics in POMAN, it required 2-20 seconds of computation time due to its reliance on constructing
complete MCTS trees for each sampled state. It also demonstrated limitations in capturing long-
term effects, particularly evident in POMAN where it often identified only one of the two beneficial
actions, as its value estimates are based solely on the immediate planning step rather than complete
trajectory evaluation.

The Rollout-Policy heuristic (A, ), despite being fastest computationally, performed poorly. In
RockSample, it showed near-zero correlation with empirical VOA, while in POMAN, it proved
entirely ineffective, generating zero VOA estimates for all actions. These results highlights both
the challenge of policy evaluation and the significance of using actual planning policy rather than
simplified approximations.

8 Conclusion

This work addresses a fundamental challenge in multi-robot collaboration: efficiently evaluating
the potential benefit of helping actions for online POMDP agents. We formulate Value of Assis-
tance (VOA) and develop computationally efficient heuristics to approximate it without requiring
complete policy evaluation. Our empirical evaluation across both a standard POMDP benchmark
and a robotic manipulation task demonstrates that the Full-Information heuristic achieves the best
compute-value balance, providing reliable assistance decisions in under 0.1 seconds while consis-
tently distinguishing beneficial actions from less useful ones. This work provides a foundation for
developing collaborative robotic systems capable of principled real-time assistance decisions, with
future directions including sequential assistance planning and broader multi-robot applications. A
key extension is to relax the shared-belief assumption, enabling agents to collaborate effectively
even when their beliefs diverge, an essential step toward robust real-world deployment.



9 Limitations

9.1 Single-Step Assistance

Our focus was on first step assistance. Nevertheless, our framework can be applied to evaluate
helping actions throughout POMDP execution, not just at the initial step through receding horizon.
However, considering sequences of future helping actions remains an open challenge. The current
formulation assumes a single helping action, as the possibility of future assistance creates a signif-
icant distribution shift in the actor’s value function - the helping agent would need to reason about
states and beliefs differently knowing that help might be available later. This transforms the prob-
lem into a more complex domain of assistance planning over extended horizons, where the helper
must reason about both immediate and future intervention opportunities. This limitation points to
interesting future work in multi-step assistance strategies.

9.2 Actor Model Access

The effectiveness of our heuristics relies on access to the actor’s POMDP model, planning algorithm
parameters, and belief update function. While this assumption is reasonable in collaborative robotics
settings where systems are designed to work together, it may limit applicability in scenarios where
the actor’s model or policy details are unknown or only partially observable.

9.3 Uncertainty Sources

Our evaluation focused primarily on scenarios where uncertainty arises from partial observability
and stochastic transitions. Further investigation is needed to understand how other sources of un-
certainty affect the relative performance of these heuristics - particularly epistemic uncertainty from
model representation limitations and approximations.
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1 Appendix

1.1 Analytical Derivation of the Value of Assistance

In this appendix, we provide the complete derivation of VOA formula presented in Section 4. We
show how to express the VOA using the helper’s transition and observation models, starting from its
definition in terms of expected value difference.

In Equation 1, the expected value after assistance depends on two distributions: P(s’|3, a)) which
represents the probability of transitioning to state s’ given the current belief and helping action, and
O3 (wl|s’, «) which is defined in our model. We aim to rewrite the equation for VOA by expressing
P(s'|B, @) using the transition function T3 (s’|s, @) which is conditioned on the actual state rather
than on the belief.

To achieve this, we first note that:

P(s'|B,0) = / Pl APl )
- / P(s']s, ) P(s|8)ds ®)

SES
- / Tou(s'|5,@)B(s)ds ©)

SES

In Equation 7 we use the law of total probability. In 8 we use the fact that given the state is known,
the probability of transitioning to s’ does not depend on the belief. In Equation 9 we plug in 73; and
[ in their definition.

Now we can use that to write the first term in VOA as follows:

E s'~P(s'|B,) [VW(B/)] (10)
w~Ogy (w|s’,a)

:/ /P(s’|ﬂ,a)OH(w\s',a)V”(ﬂl)dwds' (11)
:///TH(S/\S,a)ﬁ(s)(’)q.[(w|s’,a)V”(B’)dsdwds' (12)
:// /TH(S/\S,oz)OH(w|s',a)ﬁ(s)V”(ﬁ’)dwds'ds (13)
= ESN,B []ES/NT’H(S/ls,Oé) [EwNOH (w]s’,c) [Vﬂ (ﬁ/)]]] (14)
= ESN,B []E s' ~Ta(+]s,0) [Vﬂ-(ﬂl)” (15)

w~Oy (48 ,a)
= ESNﬁ[]E s~ T (+]s,) [Vﬂ-(TH(Baa’w))]] (16)

w0 (-|s",0)

Note that while the initial belief 3 is a distribution over s, the updated belief 3’ is a distribution over
the post-action states s’.

In Equation 11 we write the nested expectations explicitly as integrals. In Equation 12, we use
Equation 9 to express the probability P(s’|3, «) in terms of T3, and S. In Equation 13 we change the
order of integration, according to Fubini’s Theorem, this change is valid if the integrand is absolutely
integrable. This integrability is justified because 7, O and ( are probability distributions (which
are positive and integrable by definition), and V™ is bounded in practical POMDP applications,
which implies absolute integrability of the whole integrand. In Equation 14, we rewrite the three
integrals as the nested expectations they represent, explicitly showing how the value depends on
sampling the initial state from the belief, the next state from the transition model, and the observation
from the sensor model. The last equation provides an alternative representation using the joint
distribution over next states and observations.
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Leveraging equation 15, we can express the value of assistance in terms of the model’s distributions:

Uvon(a, B) = BsnplB g pyy (15,00 VT (B)]] = V7T(B) (17

w~ O (+s" @)
1.2 Complexity Analysis Details for Algorithm 1

The computational complexity of Algorithm 1 depends on the following parameters:

* k: number of sampled initial states for VOA estimation
» L: episode length

e N,: number of tree simulations in POMCP

* Np: maximum simulation depth in POMCP

* Np: number of particles representing the belief

Each policy query requires constructing and searching a tree with IV, tree simulations of maximum
depth Np. During each simulation, particles are updated along the traversed paths through the tree,
resulting in O(NsNp) time for a single policy query [17]. Each belief update operation, whether
after receiving helper observation or during particle reinvigoration following action execution, re-
quires O(Np) operations.

The algorithm consists of two phases described in lines 6-8 and 9-10: helping action simulation
(sampling states and observations in O(1) time and updating belief in O(Np) time) followed by
policy evaluation episodes. During each episode, the steps in lines 22-26 are repeated L times: a
POMCP policy query (O(Ns;Np)), state and observation sampling (O(1)), and particle reinvigora-
tion (O(Np)). Therefore, each iteration requires O(L(Ns;Np + Np)) time.

For the complete algorithm with % iterations, this leads to a total computational complexity of
O(kL(NsNp + Np)). This complexity can be broken down as follows:

» Each POMCEP tree construction and search: O(N;Np)

* Each belief update: O(Np)

* Each episode (L steps): O(L(NsNp + Np))

* Two episodes per iteration: O(2L(NsNp + Np)) = O(L(NsNp + Np))
* kiterations: O(kL(NsNp + Np))

This analysis assumes that state sampling and observation sampling operations take constant time
O(1), which is typical for most POMDP implementations. If these operations have significant com-
putational cost in specific applications, their complexity would need to be added to the per-step
cost.

1.3 Discounted Reward Version of Algorithm 1

Algorithm 2 presents the discounted infinite-horizon extension of our VOA estimation approach.
The key modification involves incorporating a discount factor y € [0, 1) to properly weight future re-
wards. The computational complexity remains O(kL(N;Np + Np)), identical to the finite-horizon
version.

1.4 Heuristics for VOA: Detailed Descriptions
1.4.1 First-Action Value Heuristic iy 4

The main computational burden in Algorithm 1 comes from performing complete policy evaluation
episodes, where each step requires planning and belief updates (lines 22-26). To address this, our
first heuristic hy 4 approximates the value of assistive action by planning only for the first step with
and without assistance, using the same MCTS search approach used by the agent during execution
(as illustrated in Figure 3 [mid-left]).

For each sampled initial state, we first compute POMCP’s value estimate from the original belief
Vioot(B), then simulate the effect of assistance to obtain an updated belief and compute POMCP’s

13



Algorithm 2: VOA Prediction Through Policy Evaluation Episodes (Discounted Infinite Horizon)
1 Input: POMDP Model M, Actor’s Policy 7, Belief 3, Helping Action // Note: This function simulates a

«, Discount Factor -y, Resource Limit resyax, Max Iterations k, complete policy evaluation episode
Simulation Horizon H - with discounting.
Output: Predicted Value of Assistance Uy 4 (3, ) 18 Function EpSim(M, s, 8, 7, v, H):
2 Initialize empty arrays VA and S; 19 G0 )
3 resyed < 0 20 Scurr £ 8
4 i+ 0; 21 Beurr < B;
5 while (i < k and resyseq < resmax) do 22 for t < 1to H do '
6 Sample initial state s; ~ £: 23 a < 7(Beurr) // Constructs a
H o e, . search tree
7 Sample siH T ( \sl;{a) ; // State after help ,, Sample snewt ~ T(-|Scurr, a);
8 Sample 0™ ~ O (-|s!",«) ; // Observation after help 25 Sample 0 ~ O(:|spext, a);
9 ﬁH «— 7(8, «, O’H') ; // Belief after help 126 G+ G+ ’ytilR(Scu,m‘, a);
10 Ghelp < EpSim(M, S’L'Hy ﬁHa vy, H); // Return with 27 Bewrr T(ﬂ(‘.urw“» a, O);
help 28 Scurr < Snext;
11 Gno,help < EpSim(M, s;, B, 7,7y, H);// Return no help 29 return G
12 Va.append(Gheip — Gro_help): =
13 S.append(s;);
14 P41+ 1;
15 | Update(resysed);
Ti_ B(SHDVAL

1 7 -
6 Uvoalhr o) « =550

17 returnlxl/v—;(ﬁ, )

value estimate from this new belief V. (7% (8, @, w)). The value estimates are obtained from the
root node of the constructed MCTS search tree.

It is important to note that POMCP’s value estimates should not be interpreted as accurate estimates
of the true value function. POMCP combines tree search with rollouts from leaf nodes, typically
using a basic policy rather than the full planning policy that would be used during actual execution.
Additionally, the search tree typically explores only a fraction of the full planning horizon, with leaf
nodes evaluated using truncated rollouts. This means that the value estimates partially rely on these
simplified evaluations.

To estimate VOA, we replace the policy value function V™ in the original VOA equation with
POMCP’s root node value estimate V,,:
hra (O[, ﬂ) = ESNﬁ [E '~ T (s |s,@) [‘/mnt(TH (57 Q, W))]] - ‘/mnt(ﬂ) (13)

wr Oy (wls’,e)

Returning to algorithm 1, instead of computing complete episode returns in lines 9 and 10, hp 4
performs a single planning step and uses the root node value. The elimination of the L-step roll-
outs in the algorithm’s episode simulation function significantly reduces computation by requiring
only a single planning step at each sampled state. The computational complexity reduces from
O(kL(NsNp + Np)) to O(k(NsNp + Np)).

1.4.2 Rollout-Policy Heuristic

TRollout

Another perspective on the main computational burden in Algorithm 1 focuses on the repeated con-
struction of search trees for policy queries during episode simulation (line 23). Each tree construc-
tion itself may require thousands of rollout policy invocations at leaf nodes. Our second heuristic
addresses this by utilizing the planner’s rollout policy directly. While this policy may be purely
random in some implementations, it can also incorporate domain knowledge when available [17].

Returning to algorithm 1, instead of constructing a search tree in line 23, we directly use the rollout
policy Tronou for action selection (Figure 3 [mid-right]). To compute VOA, we replace the planning
policy value function V'™ in the original VOA equation with the value function of the rollout policy
V/ ™Rollout :

hﬂRollom(a, ﬂ) = ESNﬁ[Es/~TH(s’\s,Q) [VﬂRollout(ﬁ/)H _ VﬂRollout(ﬂ) (19)

w0y (w|s’,a)

where V ™Rollowt represents the value function when following the rollout policy. Since this policy
is designed for rapid computation (being executed approximately Ny x Np times during each tree
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construction), using it directly for policy evaluation drastically reduces computational cost compared
to full planning.

The rollout policy inherently underestimates the true value function since it does not consider the
long-term effect of decisions. However, the difference in values can still serve as a meaningful
heuristic since the rollout policy’s performance is affected by the same state and observation uncer-
tainties that impact the full planning policy, and improvements in belief quality or state configuration
may benefit both policies.

The computational complexity for & iterations reduces from O(kL(NsNp + Np)) to O(kL(Np))
since we eliminate the expensive planning operations (N;Np term). This significant reduction in
computation per iteration allows for larger values of k, potentially providing stable value estimates.

1.4.3 Full-Information Heuristic 7 zo

The challenge of estimating VOA stems largely from reasoning about partial observability and
stochastic transitions in POMDPs. Our third heuristic addresses this by using a fully observable
deterministic relaxation of the problem ((Figure 3 [right])).

Instead of performing policy evaluation episodes in lines 10 and 11 of Algorithm 1, we create a fully
observable deterministic variant of the POMDP through all-outcome determinization, which means
that the agent can choose the most favorable next state from the support of each action’s transition
distribution. For each sampled state, we perform deterministic planning from the fully observable
state, computing returns both with and without the effects of assistance.

To compute VOA, we replace the policy value function V™ with the deterministic optimal plan value
U, and remove the observation-related expectations since we use the full observability relaxation:

hro(a, B) = Bsp[Ba s (15,00 [U(8)] = U(s)] (20)

where s is sampled from the current belief 3, and U (s) represents the accumulated reward under the
optimal deterministic plan from state s.

This converts the complex POMDP planning problem into a much simpler deterministic planning
problem, inspired by [27, 28], benefiting from decades of research in deterministic planning algo-
rithms and heuristics [29]. Even a simple breadth-first search often performs well in this setting, as
the state space that makes POMDPs intractable becomes manageable when eliminating both belief
space planning and transition uncertainty. When available, domain-specific heuristics can further
accelerate the planning process.

The computational complexity for & iterations becomes O(k|S||A|B) for basic state-space search,
where |S| and |A| represent the number of states and actions respectively, and B is the maximum
branching factor in the transition support.

While this heuristic efficiently evaluates potential state changes, it would be inappropriate for actual
POMDP action selection since it sidesteps fundamental POMDP challenges by ignoring both state
uncertainty and stochastic transitions. Nevertheless, this simplification may be suitable for approxi-
mating the value of assistance. In appendix 1.5 we show that when the planner can select outcomes
from the transition support, U(s) provides an upper bound on the optimal POMDP value function
V'*, and therefore also bounds any policy value V7.

However, this approach has limitations in highly stochastic domains where actions can lead to many
possible next states. In such cases, the large transition support makes outcome selection computa-
tionally expensive. A practical alternative is to use maximum likelihood determinization, selecting
only the most probable next state for each action, though this forfeits the upper bound guarantee.

It is worth noting that while U(s) provides an upper bound for the POMDP value function, we
cannot guarantee that VOA computed using all-outcome determinization provides an upper bound
on the actual VOA. This is because VOA measures differences between value functions - even when
each individual value is upper bounded, their difference may be larger or smaller than the difference
between the actual POMDP values.
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1.5 Upper Bound Proof for Full-Information Value

We show that the value under all-outcome determinization provides an upper bound on the optimal
POMDP value.

For a given belief 3, let V*(3) denote the optimal value function:

V*(8) = maxE[Y 7' R(se,w(5:))|Bo = ]

t=0

where the expectation is over state sequences generated according to the POMDP dynamics when
following policy 7.

Let 7* be a policy achieving this maximum. For a given state s, let V™ (f|s) denote the value of
executing this belief-based policy starting from state s:

V™ (Bls) =E[>_ 7' R(st, 7 (B1))|s0 = s, B0 = f]
t=0

Let U(s) denote the value of the optimal deterministic plan under full observability with all-outcome
determinization, where at each step the planner can choose any next state from the support of the
transition function.

Lemma 1. For any state s:
U(s) > V™ (Bls)

Proof. Consider the probability distribution over state-action sequences (sg, ao, s1, a1, ...) induced
by following 7* starting from sy = s. The value V™ (f3|s) is the expectation of >~ (V' R(s:, a;)
over this distribution.

Since this is an expectation over a discrete probability space (state-action sequences), there must
exist at least one sequence with value at least V™ (/3|s). Let (s§, af, 7, af, ...) be such a sequence.

Under all-outcome determinization with full observability:

At each step ¢, the planner observes state s; exactly
* By construction, s}, ; is in the support of T'(-|s}, ay)
* The planner can choose s}, ; as the next state and a; as the action

Therefore, the deterministic planner can construct a plan achieving value at least V™ (j3|s) by fol-
lowing this sequence. Since U (s) represents the optimal such plan value, U(s) > V™ (3|s). O

Theorem 1. For any belief [3:
EsnplU(s)] = V(B)

Proof. By definition of V*(3) and linearity of expectation:
V*(8) = Eans[V™ (8]5)]

From the lemma, we know that U (s) > V™ (8]s) for all states s. Therefore:

Eop[U(s)] = Eoup[V™ (B]5)] = V*(B)

1.6 Discussion About Robustness to Belief Divergence

Our approach assumes both helper and actor agents maintain the same belief state. When this
assumption is violated, the helper’s VOA estimates are based on its own belief rather than the actor’s
true belief, potentially leading to suboptimal assistance decisions.
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The impact severity depends on the degree of belief divergence and VOA sensitivity to belief differ-
ences. Small divergences in localized uncertainties (e.g., object positions) may have minimal impact
since the relative ranking of helping actions often remains stable, while significant divergences about
critical state variables can lead to poor assistance choices.

Several factors mitigate this limitation: frequent communication of observations can maintain belief
synchronization, robust helping actions provide value across belief ranges, and collaborative tasks
naturally create shared observation opportunities that align beliefs over time. Future work should in-
vestigate adaptive VOA estimation under belief uncertainty and communication strategies balancing
synchronization with bandwidth constraints.

1.7 Comparison to Joint POMDP Planning

An alternative approach would be to formulate the problem as a joint POMDP, treating both robots as
a single agent with combined state and action spaces (with helping actions included). This approach
would naturally handle multi-step coordination and could find globally optimal policies.

However, our VOA approach addresses a different scenario: situations where the actor agent uses
an existing, deployed policy that cannot be modified. This is common in heterogeneous systems or
when integrating assistance into existing robotic systems. Joint POMDP planning also scales ex-
ponentially with combined state and action spaces and requires recomputing the entire joint policy,
while our approach scales linearly with the number of helping actions and leverages existing plan-
ning capabilities. Our VOA framework is designed for applications where joint policy redesign is
impractical, providing a computationally tractable solution.

1.8 Empirical Evaluation Setup
1.8.1 POMCP Implementation

We use POMCP through the pomdp_py library [35], which provides an efficient implementation
with Cython-accelerated core components. For RockSample, we used Ny = 2000 simulations per
step with maximum depth of Np = 20. For the POMAN, we used Ny = 8000 simulations with
maximum depth of Np = 35.

In both environments, each POMCP planning step takes approximately 1-3 seconds. While this
computational time is reasonable during task execution, it becomes a significant bottleneck when
evaluating VOA through policy evaluation episodes, as each iteration requires multiple planning
steps. This computational cost motivates our development of efficient heuristics.

1.8.2 Empirical VOA for Evaluation

Since the true VOA cannot be directly computed in our setting, we establish empirical VOA values
through extensive offline computation to serve as ground truth for evaluating our heuristics. While
this process is computationally prohibitive for real-world robotic assistance, we invest substantial
computational resources to obtain reliable estimates purely for evaluation purposes.

For each belief-helping action pair, we conducted extensive policy evaluation episodes following
Algorithm 1 with k=100 sampled states. To account for policy stochasticity, we simulated three
episodes per state and averaged their returns, resulting in 300 total episode returns per pair. With
each planning step taking 1-3 seconds and each evaluation requiring multiple planning steps across
multiple episodes, a single belief-helping action pair evaluation took several hours.

Using this simulation data, we computed empirical VOA values and established confidence intervals
through bootstrap resampling [34]. Specifically, for each bootstrap iteration, we sampled states with
replacement from our collected data and computed VOA using importance sampling as in line 15
of Algorithm 1. This process was repeated 1,000 times with 100 resampled states per iteration, and
we used the 2.5 and 97.5 percentiles of the resulting VOA distribution to establish 95% confidence
intervals. To analyze how the full algorithm performs with different computational budgets, we
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also evaluate our heuristics against VOA values computed using varying sizes of subsets from this
collected data.

1.8.3 Heuristics Configurations

We implemented each of the three heuristics as described in Section 6. We evaluate each heuris-
tic across varying numbers of sampled initial states to assess their stability and computational re-
quirements. For RockSample, we additionally tested an enhanced variant of the First-Action Value
heuristic that dedicates more computational resources to the single planning step (10,000 simula-
tions, depth 100) compared to the basic version using task execution parameters.

The Rollout-Policy heuristic uses the same domain-specific policies that serve as rollout policies in
our POMCP implementation: for RockSample, we used the rollout policy described in [17], while
for the POMAN, we employed a simple reward-maximizing policy.

1.9 Evaluation Metrics Details and Additional Results
1.9.1 Primary Metrics (Reported in Main Paper)

Partial Order Agreement. This metric evaluates how well a heuristic respects the ordering of
helping actions when we can be confident about their relative values according to our confidence
intervals. It is particularly valuable because it accounts for uncertainty in our empirical VOA esti-
mates, only considering pairs of actions where we have statistical confidence about their ordering.
For a belief 5 and helping actions a;, o, let [Clioy (v), Clhigh (v)] denote the confidence interval of
empirical VOA for helping action a. We say avj > ay, if Clioy(crj) > Clpign(cu), establishing a
strict partial ordering. Let Pg be the set of all such strictly ordered pairs for belief 5. The agreement
score for heuristic h is:

[{(aj, ax) € Pg : h(ay, B) > h(ax, B)}
| Ps|

Agree(h, 5) =

The final score is averaged across all beliefs. Score values range from O to 1, with 1 indicating
perfect agreement.

Normalized Regret. This metric directly measures the practical impact of using a heuristic for
action selection by quantifying how much value is lost by choosing the heuristic’s recommended
action rather than the truly optimal one. It answers the question: "How much potential assistance
value do we sacrifice by relying on this heuristic?”” For each belief 3, let o, be the action with the
highest heuristic value and a7; be the action with the highest empirical VOA. The normalized regret
is:
VOA(aj;, B) — VOA(a;, B)
max,, VOA(«, §) — min, VOA(«, 8)

The normalization ensures values between 0 and 1, with lower values indicating better performance.
A value of 0 means the heuristic selected the optimal action, while a value approaching 1 indicates
the heuristic chose one of the worst possible actions.

Regret(h, 5) =

Top-k Accuracy. This metric focuses on the heuristic’s ability to identify the most valuable helping
actions, which is crucial in real-world scenarios where we need to consider multiple high-value
options. It measures what fraction of the truly best k actions are captured by the heuristic’s top k
predictions. Let TF () and T} () be the sets of top k helping actions according to empirical VOA
and heuristic h respectively for belief 5. Then:

Top-k Accuracy(h) = 1| Z w

B peB

where |B| is the number of beliefs evaluated, and |T}F(8) N T}*(3)| represents the size of the in-
tersection between the top k actions selected by ground truth and the heuristic. We report top-5
accuracy for RockSample (with approximately 50 possible actions depending on the environment
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instance) and top-2 accuracy for POMAN (with 4 possible actions) in the main paper. Values range
from O to 1, with 1 indicating perfect identification of all top-k actions.

Computation Time. Average time in seconds required to compute the heuristic value for each
belief-helping action pair. This metric directly measures the practical feasibility of using each
heuristic in real-time scenarios.

Together, these metrics provide complementary views of heuristic performance: Partial Order
Agreement captures reliability in comparing actions when we have high confidence in their rela-
tive values, Normalized Regret quantifies the practical impact of selection decisions, Top-k Accu-
racy measures the ability to identify groups of valuable actions, and Computation Time addresses
real-world feasibility constraints.

1.9.2 Supplementary Metrics (Reported Only in Appendix)

Top-1 Accuracy. Similar to the top-k accuracy metric described above, but specifically measuring
the heuristic’s ability to identify the single best action (k = 1). This provides insight into how often
the heuristic can pinpoint the absolutely optimal action. Values range from O to 1, with 1 indicating
the heuristic always identifies the optimal action.

Top-k Selection Rate. While top-k accuracy measures how many of the k best actions are identified
by the heuristic, this metric answers a different question: "How often is the heuristic’s top choice
among the k best actions according to ground truth?” This is particularly relevant when we can only
execute a single helping action and want to ensure it’s at least among the better options. Formally,
for each belief 53: .

Top-k Selection Rate(h) = @

S Ilaj, € T7(8)]

BeB

where I is the indicator function, o} is the action with highest heuristic value, and T} (3) is the
set of top k actions according to empirical VOA. We report top-5 selection rate for RockSample
and top-2 selection rate for POMAN. Values range from O to 1, with 1 indicating the heuristic’s top
choice is always among the top-k ground truth actions.

Rocksample POMAN
) + 4 + 1 L7
Uvos  hea hfs  Phmp  hpo Uoa hea hfs  hne  hpo Uyos hea hro Uroa hea heo
10 10 10 10
08 08 08 08
2 ®
> s °
8 Z 3 g
506 Sos Sos Sos
3 3 3
8 3 8 2
) ° | H
o4 04 Slos NI
g o g S
g )
02 0.2 02 02
00 “opo ~wo g ogo ~389 00 —opo ~wo g cclol ~339 0 bwo rwo -ogo 0 o g rweo rogg
&8 ® 8 ©°88 888 &8 ® 8 °88 888 &8 E 288 &8 2 288
< = 2 z = e
S 3

Figure 6: Supplementary metrics results for both domains. These metrics provide additional insights
into heuristic performance beyond the primary metrics reported in the main paper.

1.9.3 POMCP Root Node Variance Analysis

Figure 7 presents a variance analysis of POMCP root node value estimates in the RockSample
domain, addressing concerns about the reliability of our First-Action Value heuristic which depends
on these estimates. The analysis shows the distribution of root node values across multiple POMCP
runs with identical belief states but different random seeds.

The results reveal a coefficient of variation of approximately 40%, indicating substantial variance in
POMCEP root node estimates under realistic simulation budgets. This high variance is consistent with
known limitations of Monte Carlo tree search methods in stochastic domains and explains some of
the performance limitations observed for the First-Action Value heuristic (kg 4) in our experimental
results.
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POMCP V_root Distributions - Final Results (100 runs each, 2000 simulations)
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Figure 7: POMCP root node variance value analysis

1.10 RockSample Benchmark Details

We augment the RockSample(n,k) benchmark [32] with clustering help actions. These actions allow
an assistant to reposition rocks to form clusters, making them both more efficiently observable and
reducing the travel distance required between rocks, as the agent can check multiple rocks and
collect the good ones while staying in the same area.

The helping actions are generated by identifying candidate rock clusters around three fixed positions
in the second column of the grid (at n/4, n/2, and 3n/4 height), close to the agent’s starting position at
the leftmost column. For each position, we consider different subsets of rocks that could be moved
to form a cluster. Rocks are selected using a sliding 6x6 window: for each window position in the
grid, we consider combinations of up to 4 rocks within that window.

For each selected subset of rocks and target cluster position, we generate a configuration by at-
tempting to place the rocks in available positions around the cluster center. A position is considered
available if it is within grid bounds and not occupied by other rocks. The exact arrangement of
rocks within the cluster is determined stochastically, as rocks are placed in random order around the
center.

For VOA computation, these helping actions directly modify the state transition function by reposi-
tioning rocks. This affects both the agent’s ability to efficiently observe multiple rocks with fewer
sensing actions and its movement planning to collect valuable rocks. The VOA of each helping ac-
tion depends on how much it reduces the agent’s expected cost of completing the task, which varies
based on the arrangement of valuable rocks (unknown to the helper) and the impact of clustering on
sensing efficiency.

This formulation creates a challenging decision problem for the assistant. While clustering rocks
near the agent’s starting position can improve both sensing efficiency and motion planning, poor
choices of which rocks to cluster or where to place them can actually harm performance by increas-
ing travel distances to important rocks or making efficient observation sequences harder to execute.
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1.11 Partially Observable Robotic Manipulation Environment Details
1.11.1 Environment Setup

The manipulation environment consists of a URSe robotic arm operating in a workspace containing
manipulated objects (cups and soda can) along with static obstacles and obstacles that can be moved
by the assisting robot. The robot’s motion planning relies on a pre-computed probabilistic roadmap
(PRM) of approximately 400 configurations, where nodes represent robot configurations and edges
represent feasible direct paths between them.

1.11.2 State Space

The state space includes:

* Robot configuration (position in the PRM)

* Positions of manipulated objects

* Positions of movable obstacles

* Task-specific states (cup placement status, liquid state)

* Gripper status (empty/holding object)

 Special roadmap configurations when holding the can to maintain vertical orientation

1.11.3 Action Space

The action space consists of:

* Navigation actions: Moving between connected configurations in the PRM (deterministic)
— When holding the soda can, navigation is restricted to a specialized roadmap that
maintains vertical orientation within a specified tolerance
— This constraint limits motion in narrow spaces and affects reachability
* Manipulation actions: Available at specific configurations
— Pick up object
— Put down object
— Pour liquid
» Sensing actions: Activate camera and process observations

1.11.4 Transition and Reward Model

» Navigation actions are deterministic but may become unavailable when obstacles block
PRM edges or nodes
* Manipulation actions succeed with high probability but may fail with low probability
* Object positions change deterministically upon successful manipulation
* Rewards:
— Negative step cost for all actions
— Small positive rewards for placing cups on the table and disposing of the can
— High reward for successfully pouring soda into cups

1.11.5 Observation Model

The agent receives observations about:

¢ Current robot configuration (fully observable)

* Gripper status (fully observable)

* Object positions (partially observable):
— Only available when executing sensing actions
— Detection probability depends on the number of objects in the field of view
— Higher probability for closer objects and unoccluded views
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1.11.6 Perception System Implementation

The perception system integrates YOLO-world object detection [33] with stereo depth camera data
to create 3D position estimates of detected objects. These observations are used to update the agent’s
belief state through particle filtering. Each particle in the belief state represents a possible state
configuration, and particles are weighted based on observation likelihood.

When executing a sensing action, the system:

1. Captures RGB and depth images from the robot’s camera position

2. Processes the RGB image through YOLO-world to detect objects and their 2D bounding
boxes

3. Maps detected objects to 3D positions using corresponding depth data

4. Updates the belief by reweighting particles based on how well they explain the observation

5. Performs particle reinvigoration when necessary to maintain distribution diversity

The VOA in this environment arises from both improved observability (removing occlusions to
enhance perception) and improved accessibility (clearing paths to facilitate manipulation). Helping
actions that move obstacles can significantly impact task performance by enabling the agent to more
efficiently sense object positions and navigate to manipulation targets.

1.12 [Extended Results Analysis

Our evaluation compared VOA estimation approaches across two domains with distinct character-
istics: RockSample with approximately 50 possible helping actions, and POMAN with 4 actions
naturally divided into beneficial (VOA = 13) and minimal-benefit (VOA ; 0.5) groups.

1.12.1 RockSample Domain Analysis

Full-Information Heuristic With 200 initial states, this heuristic achieved a partial agreement
score of 0.88 while maintaining computation times under 0.1 seconds per evaluation. Its effective-
ness is demonstrated by 40% accuracy in selecting the optimal action and 68% overlap with the
empirically top five actions. This heuristic’s strength lies in effectively capturing how rock reposi-
tioning creates efficient observation and collection paths through deterministic planning.

First-Action Value Heuristic This heuristic showed promising results but required 2-20 seconds
of computation time depending on the number of iterations. The enhanced variant (hJPC 4) with
increased planning resources showed further improvements in metric performance. However, the
longer computation times make it less practical for real-time assistance decisions when multiple
helping actions must be evaluated.

Rollout-Policy Heuristic Despite being computationally fastest, this heuristic performed poorly
across all metrics. Its near-zero correlation with empirical VOA highlights both the challenge of
policy evaluation and the significance of using the actual planning policy rather than simplified
approximations.

1.12.2 POMAN Domain Analysis

Full-Information Heuristic This heuristic consistently identified both beneficial actions across all
sample sizes. Its normalized regret remained below 0.005, indicating near-optimal action selection.
While not always selecting the single best action, it reliably distinguished the beneficial helping
actions from the less useful ones.

First-Action Value Heuristic This heuristic showed mixed performance - while it successfully
identified one of the beneficial actions, it often missed the second one as evident in the top-1 ver-
sus top-2 accuracy metrics. This limitation likely stems from evaluating actions based on a single
planning step, which captures some but not all long-term effects of the complex manipulation task.
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Rollout-Policy Heuristic This heuristic proved entirely ineffective in POMAN, generating zero
VOA estimates for all actions regardless of sample size. Using the simple rollout policy, the agent
could not make meaningful progress toward task completion in any scenario, resulting in identical
performance with and without assistance.

1.12.3 Cross-Domain Observations

Our analysis reveals several key patterns:

1. Computation-performance tradeoff: Baseline Monte Carlo VOA estimation achieved
high accuracy but at prohibitive computational cost, with computation times ranging from
tens to hundreds of seconds per evaluation.

2. Sample size stability: Performance metrics showed relative stability when increasing num-
ber of samples, up to some value, across all heuristics, suggesting that moderate sample
sizes are sufficient for reliable VOA estimation.

3. Domain complexity impact: The performance gap between First-Action Value and Full-
Information heuristics was larger in POMAN than in RockSample, suggesting that domains
with complex sequences of sensing and manipulation may require more sophisticated VOA
estimation approaches.

In summary, the Full-Information heuristic provides the best balance of computational efficiency
and accurate VOA estimation across diverse domains, enabling real-time assistance decisions in
complex robotic scenarios.
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