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ABSTRACT

Combinatorial optimization (CO) is frequently encountered in various industrial
fields, such as drug discovery or hardware design. Despite its widespread rel-
evance, solving CO problems is highly challenging due to the vast combina-
torial solution space. Notably, CO problems in practice frequently necessitate
computationally intensive evaluations of the objective function, further amplify-
ing the difficulty. For efficient exploration with the limited availability of func-
tion evaluations, this paper introduces a new generic method to enhance sam-
ple efficiency. We propose symmetric replay training that leverages the high-
reward samples and their under-explored regions in the symmetric space. In re-
play training, the policy is trained to imitate the symmetric trajectories of these
high-rewarded samples. The proposed method is beneficial for the exploration
of highly rewarded regions without the necessity for additional online interac-
tions – free. The experimental results show that our method consistently im-
proves the sample efficiency of various DRL methods on real-world tasks, includ-
ing molecular optimization and hardware design. Our source code is available at
https://anonymous.4open.science/r/sym replay.

1 INTRODUCTION

Combinatorial optimization (CO) problems arise across diverse industrial domains, but they are no-
toriously challenging to solve. In CO (e.g., traveling salesman problems; TSP), the massive discrete
solution space often leads to NP-hardness. Furthermore, CO problems in practical scenarios often
involve computationally expensive objective functions to evaluate (e.g., a black-box function), intro-
ducing significant restrictions on the problem-solving process. Even though solving CO problems
with expensive objective functions has broad impacts on the industry since they are frequently found
in various fields like drug discovery or hardware design, it has numerous challenges.

Recently, deep reinforcement learning (DRL) has drawn significant attention to solve CO problems.
The main promise of DRL algorithms is that they do not necessitate expert-designed labeled data
or problem-specific knowledge to design solvers. They have shown impressive performance on
various tasks (Olivecrona et al., 2017; Kool et al., 2018; Ahn et al., 2020; Park et al., 2023; Bengio
et al., 2021; Kim et al., 2023). In general, utilizing extensive samples enhances training stability
without introducing significant computational challenges. However, reward computation can be
expensive in practice, so it becomes a computational bottleneck. For instance, reward computation
usually contains simulations in black-box CO or another optimization problem in bi-level CO. In
this regard, reducing the number of reward evaluations is more beneficial than stabilizing training
with large batch size. This discrepancy raises a straightforward research question: How can we
enhance the sample efficiency of DRL methods for a broad spectrum of CO problems and methods?

This paper proposes a new generic DRL method, symmetric replay training (SRT), that leverages
the solution-symmetric nature of combinatorial space. In DRL for CO, multiple action sequences
(i.e., action trajectories) can be mapped to a single combinatorial solution, and the reward function
is defined on the combinatorial solution space, not the action trajectory space. To efficiently explore
the vast action space, we decompose the training process into two iterative steps: reward-maximizing
training and symmetric replay training.
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Figure 1: Illustration for two-step training strategies: reward-maximizing training and symmetric
replay training.

Reward-maximizing training is conducted with a conventional DRL algorithm, which involves the
exploration of the high-rewarded action trajectories over the entire action space. Subsequently, sym-
metric replay training bootstraps the policy in the symmetric space to enhance sample efficiency. In
this process, the high-rewarded action trajectories obtained in the previous step are symmetrically
transformed, and the policy is trained to imitate these symmetric action trajectories. As illustrated
in Figure 2, the symmetric replay training promotes the exploration of under-explored regions con-
taining trajectories equivariant to the high-rewarded trajectories collected from reward-maximizing
training. It is noteworthy to emphasize that the symmetric replay does not necessitate additional
reward evaluations; it is free.

The major benefit of our method is the interoperability of two decomposed training steps: one seeks
the high-reward solution, and the other recycles high-rewarded samples to explore symmetric re-
gions for free. Symmetric replay training strategically utilizes previously explored high-rewarded
trajectories without additional reward evaluation. The policy is trained to imitate the high-rewarded
trajectories in the symmetric space, thereby encouraging the policy to explore under-explored re-
gions. Furthermore, imitating the symmetric trajectories can be regarded as a form of regularization
that mitigates overfitting by leveraging symmetric priors during replay training. These symmetric
trajectories yield the same solution, yet each trajectory is considered heterogeneous from the policy’
perspective. It is advantageous to scale up the replay loop to further utilize collected samples before
interacting environment again.

We empirically demonstrate that symmetric replay training consistently improves the sample effi-
ciency by plugging it into various DRL methods with simple implementation. The experimental
results show that plugging our method into the state-of-the-art DRL method can achieve superior
performances hardware design optimization, and sample efficient molecular optimization by adding
it to the competitive DRL method.

2 BACKGROUND

Our method aims to improve the sample efficiency of deep reinforcement learning for solving combi-
natorial optimization with expensive reward function. Specifically, we consider combinatorial opti-
mization as maximization of the (black-box) function f(x) over a discrete setX , i.e., maxx∈X f(x).
To solve this problem, we formulate the construction and evaluation of the solution as a Markov de-
cision process (MDP). In the MDP, we let each state s describe a subsequence of the action trajectory
with problem context c, i.e., st = {(a1, . . . , at−1); c}. Therefore, the initial state corresponds to
an empty, i.e., s1 = {∅; c}, and the final state corresponds to a complete sequence of actions, i.e,
sT = {a⃗; c}, giving a solution x. Then, a policy π(a|s) decides a transition between states with an
action a to update the incomplete solution described by the state s. We assume that the transition
is deterministic, meaning that the next state is determined by a specific transition function, such as
st+1 ← st ∪ {at}.
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We further impose two conditions on the MDP that exploit the prior knowledge about combinatorial
optimization problems considered in this work. First, we assume the reward is episodic, i.e., given
a terminated action-state trajectory associated with a solution x, the reward R(sT ) = f(x) and
R(st) = 0 for t < T . Note that the sT contains the action sequence a⃗. The next condition is about
how the action space At for action at made at each state st only consists of actions that generate a
valid solution for the combinatorial optimization.

3 REINFORCEMENT LEARNING WITH SYMMETRIC REPLAY TRAINING

3.1 OVERVIEW
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Figure 2: Overview of iterative training

Our method, symmetric replay training (SRT), im-
proves the sample efficiency of DRL for CO by ex-
ploiting transformed samples without additional reward
computation. The key idea is to utilize the existence of
solution-preserving symmetric transformation for gen-
erating novel action trajectories. Our approach en-
hances sample efficiency in two-folded: (1) by increas-
ing the number of policy updates per reward calls and
(2) by stimulating the exploration of under-explored re-
gions via symmetric trajectories.

Our method repeats the following two policy update
loops:

Step A: Reward-maximizing training
Train the (factorized) policy πθ (⃗a|s1) =

∏T
t=1 πθ(at|st) using a conventional episodic

reinforcement learning algorithm.
Step B: Symmetric replay training

1. Collect high-rewarded trajectories from Step A.
2. Randomly transform the sampled trajectory using symmetric transformation.
3. Train the policy by imitating the symmetric trajectories.

Intuitively, our Step A is designed to encourage the policy to exploit the high-reward samples via
reinforcement learning. Then, Step B aims to promote exploration of the symmetric space by imitat-
ing the collected high-reward samples with symmetric transformation. It is noteworthy that the DRL
model and training method in reward-maximizing training are not restricted, allowing the applica-
tion of various algorithms for episodic tasks as base DRL methods. In the following subsections, we
describe the details of a solution-preserving symmetric transformation policy and replay training.

3.2 SYMMETRIC TRANSFORMATION POLICY

In this subsection, we provide an explicit characterization of the symmetric transformation used
in our algorithm. Symmetric transformation gives another action trajectory that induces the same
solution as a given action trajectory, i.e., solution-preserving. To begin with, we introduce a non-
injective function C that maps an action trajectory a⃗ to its corresponding solution x given initial
state. It allows for defining symmetry between action trajectories with respect to the solution.
Definition 1 (Symmetric action trajectories). A pair of action trajectories a⃗1 and a⃗2 given initial
state are symmetric if they induce the same solution x ∈ X , i.e., if C (⃗a1) = C (⃗a2) = x. Also let
A⃗x denote a set of symmetric action trajectories for solution x, i.e., A⃗x = {a⃗|C (⃗a) = x}.

For example, in the traveling salesman problem (TSP), a representative CO problem, cyclically
shifting k positions to the left or right gives the same solution. When considering four cities, the
sequences 1-2-3-4-1 and 3-4-1-2-3 represent the identical Hamiltonian cycle. Thus, these shifted
action sequences are symmetric action trajectories.
Definition 2 (Symmetric transformation policy). A symmetric transformation policy, denoted by
psym(⃗a|x), is a conditional probability distribution over A⃗x for given x.
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Thus, symmetric trajectories can be sampled from the symmetric transformation policy, i.e., a⃗ ∼
psym(⃗a|x). Here, x is the corresponding solution of an action trajectory sampled from the current
training policy, i.e., x = C (⃗a), where a⃗ ∼ πθ (⃗a|s1). To maximize symmetric exploration entropy,
we set psym(⃗a|x) as uniform distribution; see Theorem 1 in Section 3.4.

3.3 SYMMETRIC REPLAY TRAINING

The symmetric replay training (SRT) process involves imitating L symmetrically transformed action
trajectories, i.e., a⃗1, . . . , a⃗L. The symmetric replay training loss function is derived as follows:

LSRT = − 1

L

L∑
i=1

log πθ (⃗a
i|s1), (1)

The SRT loss function is formulated to maximize the log-likelihood of the symmetric trajectories.
To adjust scale of loss function, we introduce a scale coefficient. As a rough guideline, we establish
a coefficient that renders the SRT loss approximately 10 to 100 times smaller than LRL according
to the base DRL methods.

Our symmetric replay training significantly benefits from additionally exploring the high-rewarded
regions on the symmetric space for free. Moreover, we can explore regions that are likely to have
higher rewards but are far from the current regions, since the symmetric action trajectory may have
a significant edit distance from the original trajectory.1

3.4 INTERPLAY OF REWARD-MAXIMIZING AND SYMMETRIC REPLAY TRAINING

This subsection presents an analysis of the interplay between two iterative steps: reward-maximizing
training and symmetric replay training. First, we begin with introducing a theorem about the maxi-
mization of policy entropy.
Theorem 1. Consider a distribution πθ (⃗a|s1) over the action trajectory from a state s1, and p(x|s1)
over its corresponding solutions. Let Ux(⃗a|x) denote an uniform distribution over A⃗x. Then the
entropy of π(⃗a|s1) can be decomposed and upper bounded as follows:

H(πθ (⃗a|s1)) = H(p(x|s1))︸ ︷︷ ︸
Step A

+Ex∼p(x|s1)H(psym(⃗a|x))︸ ︷︷ ︸
Step B

≤ H(p(x|s1)) + Ex∼p(x|s1)H(Ux(⃗a|x)).
(2)

Proof. See Appendix A for the entire proof.

In Theorem 1, the policy entropy H(πθ (⃗a|s1)) is decomposed into two distinct components: the
entropy associated with the solution exploration policy, denoted asH(p(x|s1)), and the entropy for
the symmetric transformation policy, expressed as Ex∼p(x|s1)H(psym(⃗a|x)). This decomposition
offers an intuitive illustration of our two-step learning process. In Step A, maximizing entropy en-
courages the policy to explore high-reward solutions. Subsequently, maximizing the second entropy
term encourages the search of various symmetric spaces while preserving high-reward solutions. We
achieve this by employing uniform symmetric transformation, represented as psym(⃗a|x) = Ux(⃗a|x).
This approach enables us to maximize entropy exploration within the symmetric space, facilitating
a more comprehensive search of potential solutions.

4 EXPERIMENTS

This section presents experiments with three distinct settings: a synthetics scenario and two real-
world scenarios of hardware design and sample-efficient molecular optimization. For the synthetic
setting, we employ traveling salesman problems (TSP), the widely studied CO problems, for precise
analyses of the proposed method. We also provide the additional experiment on other synthetic CO
problems in Appendix D.4.

1Edit distance is a measure of similarity between two sequences of characters or symbols, defined as the
minimum number of operations required to transform one sequence into the other, e.g., Hamming distance.
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Table 1: Sample efficiency on the synthetic TSP (N = 50) with four independent seeds. The average
costs (↓) and the standard deviations are reported; the improved cost via SRT is denoted in italics.

Method K = 100K K = 2M

A2C (Bello et al., 2017) 6.630 ± 0.037 6.115 ± 0.009
A2C + SRT (ours) 6.560 ± 0.051 6.037 ± 0.005

PG-Rollout (Kool et al., 2018) 7.138 ± 0.196 6.226 ± 0.026
PG-Rollout + SRT (ours) 6.879 ± 0.110 6.131 ± 0.019

PPO (Schulman et al., 2017) 6.771 ± 0.120 6.319 ± 0.110
PPO + SRT (ours) 6.712 ± 0.024 6.249 ± 0.045

GFlowNet (Bengio et al., 2021) 6.880 ± 0.093 6.203 ± 0.016
GFlowNet + SRT (ours) 6.621 ± 0.049 6.163 ± 0.008
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Figure 3: Sample efficiency on the synthetic TSP (N = 50) with four independent seeds.

In the subsequent sections, we validate the effectiveness of our method in real-world applications.
Firstly, we conduct experiments focused on hardware design optimization, particularly addressing
the Decap Placement Problem (DPP), a widely recognized problem within the hardware design do-
main (Koo et al., 2017; Kim et al., 2021; Berto et al., 2023). Furthermore, we extend our experiments
to the Practical Molecular Optimization (PMO) benchmark (Gao et al., 2022), a well-established
benchmark for sample-efficient molecular optimization.

4.1 SYNTHETIC SETTING: TRAVELING SALESMAN PROBLEMS

In general, CO problems have closed forms of objective functions, which means the reward evalu-
ations are not expensive. However, we conduct experiments on the TSP synthetic dataset assuming
that the number of computing objective function values is limited; this allows more controlled ex-
periments and more precise analysis.

Tasks. Traveling salesman problems (TSP) aim to minimize the distance of a tour that visits all
customers and returns to the starting point. In TSP, the distance between consequent customers is
defined as an Euclidean distance. The auto-regressive policy starts from an empty tour and constructs
the (partial) tour by iteratively selecting the next visit. In TSP, a solution denotes a cycle (i.e., a route)
without a designated starting point. Thus, symmetric trajectories are obtained by cyclically shifting
k positions to the left or right. Furthermore, in TSP with Euclidean distance, the reversed order of
visiting sequence also gives a symmetric action trajectory. We set the maximum reward calls as 2M.

Experimental setting. Our experiments are conducted with AM architecture from Kool et al.
(2018). We employ various RL methods, including policy gradient with actor-critic (Bello et al.,
2017), policy gradient with greedy rollout (Kool et al., 2018), Proximal Policy Optimization (PPO;
Schulman et al., 2017), and a Generative Flow Network (GFlowNet; Bengio et al., 2021), and
additionally implement SRT on top of the DRL methods to enhance sample efficiency. Note that
GFlowNet is an off-policy method. We basically follow the hyperparameter configuration used in
AM. For additional parameters of PPO and GFlowNet, we systematically evaluate several combina-
tions to identify the most optimal configuration. The details about implementations are provided in
Appendix B. We measure the average costs on the validation dataset over the number of reward calls
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Figure 4: Ablation study for the iterative training steps and sample width in SRT

(K) in training with four independent random seeds. In symmetric replay training, we gather con-
fidence trajectories from the up-to-date policy via greedy rollout, assuming that the greedy solution
gives a relatively high reward trajectory.

Does SRT improve sample efficiency? As illustrated in Figure 3 and detailed in Table 1, our
approach consistently demonstrates enhanced sample efficiency across various DRL methods. No-
tably, A2C outperforms the other methods under conditions where the number of available training
samples is limited, thereby resulting in the best performance when combined with SRT. The most
substantial improvement facilitated by SRT is observed in the case of GFlowNet, where a cost reduc-
tion of 3.76% is achieved when the sample size K = 100K. In PG-Rollout, a 1.53% cost reduction
is realized with SRT when K = 2M.

Ablation study. To verity the effectiveness of iterative training steps, we conducted ablation stud-
ies using the A2C method on TSP with N = 50. In simultaneous update, the policy is updated using
the sum of LRL and LSRT . In detail, after calculating LRL, we collect the high-rewarded samples
using greedy rollout without model updating. Then, the model is updated once to minimize total
loss. On the other hand, alternating update separates the reward-maximizing training and symmetric
replay training. As depicted in Figure 4a, it is observed that alternating Steps A and B more effec-
tively enhances the sample efficiency, even though simultaneous updates also yield improved sample
efficiency compared to the original DRL methods. We also provide the results of the ablation study
for the loss function in the symmetric replay training and comparative experiment with experience
replay and ours in Appendix D.1 and Appendix D.2, respectively.

Choice of L in SRT. We conducted the ablation study for varying sample width in replay training,
i.e., L in Eq. (1). ‘Non-symmetric’ denotes the replay training without symmetric transformation;
thus, increased L gives duplicated samples. Figure 4b shows that the symmetric replay training
consistently gives better performance and robust to the choice of L.
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Figure 5: Increasing replay loop

Overfitting in replay training. In this section, we
investigate the extent to which symmetric replay
training can increase the number of replay loops
without encountering issues of overfitting. The ex-
periments are conducted by increasing the replay
training loops with the fixed sample width (L = 1).
To assess the effectiveness of symmetric transforma-
tion in replay training, we perform the same experi-
ments without symmetric transformation (the results
are denoted as ‘Non-symmetric’ in Figure 5). As il-
lustrated in Figure 5, our symmetric replay training
successfully enhances sample efficiency up to replay
loops 16. In contrast, non-symmetric replay training experiences diminished performance when
reaching when the loop exceeds 8. This suggests that the symmetric transformation provides trajec-
tories that induce the same solution but are distinctive from the policy’s perspective, contributing to
mitigating overfitting from replaying the restricted set of repetitive trajectories.
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Table 2: Experimental results of DPP on two different PDN environments. All experiments are done
in four times; the average rewards (↑) and standard deviations are reported.

Method Chip-package PDN HBM PDN

A2C (Kool et al., 2018) 9.772 ± 0.823 25.945 ± 0.177
A2C + SRT (ours) 12.757 ± 0.267 26.449 ± 0.094

PG-Rollout (Kool et al., 2018) 10.240 ± 0.955 25.714 ± 0.122
PG-Rollout + SRT (ours) 12.601 ± 0.467 26.355 ± 0.013

PPO (Schulman et al., 2017) 9.821 ± 0.411 25.907 ± 0.068
PPO + SRT (ours) 11.279 ± 0.511 26.322 ± 0.141

GFlowNet (Bengio et al., 2021) 10.403 ± 0.411 25.930 ± 0.078
GFlowNet + SRT (ours) 12.772 ± 0.276 26.316 ± 0.090
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Figure 6: Sample efficiency on HBM PDN with for independent seeds.

4.2 HARDWARE DESIGN OPTIMIZATION: DECAP PLACEMENT PROBLEMS

Tasks. We employ decoupling capacitor placement problems (DPP), which constitute a fundamen-
tal optimization challenge in hardware design. In the context of hardware devices like CPUs and
GPUs, a decoupling capacitor (decap) is a critical component responsible for reducing power noises
along the power distribution network (PDN). The primary objective of DPP is to identify the optimal
arrangement for placing these decaps to maximize the power integrity (PI) objective, which involves
computationally expensive evaluations. We tackle two distinct DPP tasks: the chip-package PDN
(Koo et al., 2017) and the High Bandwidth Memory (HBM) PDN (Jun et al., 2017) with 15K limited
reward calls. These two tasks exhibit variations in their PI landscapes, presenting unique challenges
and considerations. In DPP, permuting the decision orders of decap yields symmetric trajectories.

Experimental setting. We employ a Device Transformer (DevFormer; Kim et al., 2023) as our
base neural architecture, originally designed for offline DPP tasks. In an online optimization context
involving interactions with the DPP environment, we integrate well-established DRL methods (A2C,
PG, PPO, and GFlowNet) on DevFormer to maximize effectiveness. Similar to the experiment on
TSP, we adjust hyperparameters by examining several combinations since DPP tasks have different
reward scales. The details are provided in Appendix B. To verify the effectiveness of our methods,
SRT is built on these DRL methods to enhance sample efficiency and compare the resulting rewards.

Results. Addressing DPP tasks proved challenging due to the limited online reward calls avail-
able. For instance, the PG-Rollout method exhibited high variances, making it less effective at
exploring the DPP solution space. This challenge stems from the inherent symmetry of DPP, where
multiple trajectories could lead to identical solutions. Conversely, GFlowNet models, incorporating
structured bias to handle solution symmetries, showed improved performance compared to non-
symmetric DRL methods like PPO. As demonstrated in Table 2 and Figure 6, significant improve-
ments are observed by applying SRT on top of these methods. The most considerable reward im-
provement is observed in A2C for chip-package PDN, at 30.54%. In the case of GFlowNet with
SRT, exploring focused on the symmetric variants within the high-reward region enhances the sam-
ple efficiency by mitigating its underfitting.
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Table 3: Experimental results on sample efficient molecular optimization. Area under the curve
of top-10 average property value (↑) is reported. Bold indicates the best performance among the
presented methods in this table, while italic denotes an enhanced performance via SRT.

Oracle MolDQN Model-based
GFlowNet GFlowNet REINVENT GFlowNet

+ SRT (ours)
REINVENT
+ SRT (ours)

albuterol similarity 0.322 ± 0.009 0.382 ± 0.010 0.459 ± 0.028 0.849 ± 0.021 0.526 ± 0.022 0.894 ± 0.013
amlodipine mpo 0.316 ± 0.012 0.428 ± 0.002 0.437 ± 0.007 0.604 ± 0.012 0.448 ± 0.010 0.618 ± 0.011
celecoxib rediscovery 0.099 ± 0.008 0.263 ± 0.009 0.326 ± 0.008 0.604 ± 0.087 0.345 ± 0.011 0.586 ± 0.071
deco hop 0.551 ± 0.002 0.534 ± 0.096 0.587 ± 0.002 0.629 ± 0.009 0.582 ± 0.004 0.635 ± 0.009
drd2 0.027 ± 0.002 0.480 ± 0.075 0.601 ± 0.055 0.953 ± 0.006 0.796 ± 0.054 0.960 ± 0.005
fexofenadine mpo 0.483 ± 0.008 0.689 ± 0.003 0.700 ± 0.005 0.736 ± 0.003 0.688 ± 0.006 0.760 ± 0.010
gsk3b 0.242 ± 0.008 0.589 ± 0.009 0.666 ± 0.006 0.801 ± 0.013 0.657 ± 0.010 0.837 ± 0.039
isomers c7h8n2o2 0.430 ± 0.037 0.791 ± 0.024 0.468 ± 0.211 0.887 ± 0.026 0.928 ± 0.006 0.945 ± 0.012
isomers c9h10n2o2pf2cl 0.331 ± 0.037 0.576 ± 0.021 0.199 ± 0.199 0.753 ± 0.044 0.628 ± 0.024 0.858 ± 0.027
jnk3 0.099 ± 0.005 0.359 ± 0.009 0.442 ± 0.017 0.589 ± 0.093 0.505 ± 0.040 0.691 ± 0.066
median1 0.123 ± 0.006 0.192 ± 0.003 0.207 ± 0.003 0.348 ± 0.009 0.211 ± 0.002 0.362 ± 0.014
median2 0.087 ± 0.005 0.174 ± 0.002 0.181 ± 0.002 0.255 ± 0.011 0.181 ± 0.002 0.256 ± 0.005
mestranol similarity 0.185 ± 0.024 0.291 ± 0.005 0.332 ± 0.012 0.639 ± 0.021 0.339 ± 0.004 0.629 ± 0.023
osimertinib mpo 0.672 ± 0.012 0.787 ± 0.002 0.785 ± 0.003 0.820 ± 0.008 0.784 ± 0.003 0.826 ± 0.008
perindopril mpo 0.225 ± 0.024 0.423 ± 0.006 0.434 ± 0.006 0.525 ± 0.017 0.429 ± 0.010 0.540 ± 0.026
qed 0.732 ± 0.017 0.904 ± 0.002 0.917 ± 0.002 0.940 ± 0.001 0.922 ± 0.002 0.940 ± 0.000
ranolazine mpo 0.037 ± 0.010 0.626 ± 0.005 0.660 ± 0.004 0.750 ± 0.013 0.652 ± 0.008 0.773 ± 0.019
scaffold hop 0.407 ± 0.009 0.461 ± 0.002 0.464 ± 0.003 0.526 ± 0.019 0.466 ± 0.003 0.534 ± 0.017
sitagliptin mpo 0.040 ± 0.017 0.180 ± 0.012 0.217 ± 0.022 0.481 ± 0.041 0.282 ± 0.013 0.495 ± 0.061
thiothixene rediscovery 0.101 ± 0.007 0.261 ± 0.004 0.292 ± 0.009 0.485 ± 0.022 0.291 ± 0.007 0.513 ± 0.028
troglitazone rediscovery 0.125 ± 0.005 0.183 ± 0.001 0.190 ± 0.002 0.342 ± 0.017 0.189 ± 0.004 0.358 ± 0.016
valsartan smarts 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
zaleplon mpo 0.057 ± 0.028 0.308 ± 0.027 0.353 ± 0.024 0.506 ± 0.010 0.398 ± 0.010 0.522 ± 0.022

Average 0.247 0.430 0.431 0.610 0.489 0.632
Num. of 1st Place 1/23 1/23 1/23 4/23 1/23 21/23
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Figure 7: Average reward of top-10 in jnk3 and isomers c7h8n2o2.

4.3 MOLECULAR OPTIMIZATION: PRACTICAL MOLECULAR OPTIMIZATION BENCHMARK

Tasks. We employ practical molecular optimization (PMO; Gao et al., 2022), whose reward eval-
uations are limited up to 10K, and the goal is achieving the highest score within the limited Oracle
calls. PMO contains 23 tasks based on different score functions called Oracles; a task is a CO
problem that maximizes the given score function, such as QED (Bickerton et al., 2012), DRD2
(Olivecrona et al., 2017) and JNK3 (Li et al., 2018). For example, QED measures drug safety,
while DRD2 and JNK3 measure bioactivities against their corresponding disease targets. In de novo
molecular optimization, molecules are represented as graphs or strings,2 which have multiple ways
to describe the same molecule.

Experimental setting. We build SRT on the GFlowNet (Bengio et al., 2021) and REINVENT
(Olivecrona et al., 2017). Note that REINVENT contains the online experience buffer, so we also
collect the replay samples from the experience buffer with the same replay size. SRT is compared to
not only its base DRL methods, but also MolDQN (Zhou et al., 2019) and model-based GFlowNet
(Jain et al., 2022). It is noteworthy that REINVENT is considered state-of-the-art (SOTA) in the

2In this study, we employ SELFreferencIng Embedded Strings (SELFIES; Krenn et al., 2020) for the string
-based molecular representation to ensure compliance with chemical constraints such as the octet rule.
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PMO benchmark. The performance of the methods is evaluated based on the area under the curve
(AUC) to consider a combination of optimization ability and sample efficiency. The AUC of the top
10 average performance is mainly reported since it is essential to find distinct molecular candidates
for the next stage in drug discovery. Every experiment is conducted with five independent seeds.

Results. As shown in Table 3, SRT outperforms 21 out of 23 tasks, attaining an average AUC-10
score of 0.632, which exceeds that of the SOTA method, REINVENT, with an average score of
0.610. In addition, our method verifies its effectiveness by achieving a 3.61% score improvement
in REINVENT and 13.46% in GFlowNet on average. Figure 7 further demonstrates our method’s
effectiveness by illustrating the average scores of the top-10 molecules in the JNK3 and isomer
tasks, revealing a substantial enhancement in sample efficiency.

5 RELATED WORKS

5.1 SYMMETRIES IN DEEP REINFORCEMENT LEARNING FOR CO

Building on the success of the Attention Model (AM; Kool et al., 2018), the Policy Optimization for
Multiple Optima (POMO; Kwon et al., 2020) and Symmetric Neural Combinatorial Optimization
(Sym-NCO; Kim et al., 2022b) were suggested. They introduce an effective REINFORCE baseline
by leveraging symmetries in CO. However, they becomes computationally infeasible in the context
of black-box CO. Separately, a Generative Flow Network (GFlowNet; Bengio et al., 2021), which
employs a directed acyclic graph (DAG) to represent the combinatorial space in CO problems, was
proposed. On DAG structure, each state and a policy correspond to a node and its flow, and the
policy is trained to match flow equations, leading solution symmetries. In Malkin et al. (2022)
where the trajectory-balance loss is introduced, the backward policy PB(−|s) is set to be uniform
over all the parents of a state s. Our uniformly randomized symmetric transformation policy has a
similar role to the uniform PB . We provide further related works in Appendix E.1.

Equivariant DRL has also been extensively studied in recent years Mondal et al. (2022); Van der
Pol et al. (2020); Mondal et al. (2020); Wang & Walters (2022); Deac et al. (2023). This approach
reduces search space by cutting out symmetric space using equivariant representation learning, such
as employing equivariant neural networks Cohen & Welling (2016); Weiler & Cesa (2019); Satorras
et al. (2021). Consequently, it leads to better generalization and sample efficiency. Being differ-
ent from these approaches, we focus on handling symmetries in decision space by exploring the
symmetric space without restrictions on network structure. Therefore, employing equivariant DRL
methods with our method is available when guaranteeing equivariance is crucial.

5.2 REPLAY RATIO SCALING

Increasing the number of replay loops is highly related with scaling up replay ratio, which means
the number of parameter updates per environment interaction (Wang et al., 2016; Fedus et al., 2020;
D’Oro et al., 2022). Replay ratio is also known as update-to-data (UTD) ratio (Chen & Tian, 2019;
Smith et al., 2022). Although the benefits of replay ratio scaling are limited, it has demonstrated
improved performance, particularly on well-tuned algorithms (Kielak, 2019; Chen & Tian, 2019;
Smith et al., 2022). Recently, D’Oro et al. (2022) achieved better replay ratio scaling with parameter
reset strategy by mitigating the loss of ability to generalize on model-free RL.

We also provide the related works for black-box combinatorial optimization in Appendix E.2.

6 CONCLUSION

This study proposes a new approach, called symmetric replay training (SRT), to enhance the sam-
ple efficiency of DRL methods for black-box combinatorial optimization problems. Our approach
improves sample by reusing the high-rewarded samples from the policy in the symmetric space,
which helps with exploring new regions without additional reward computation. Replay training
through symmetric transformations enhances the sample efficiency by effectively increasing the re-
play ratio while mitigating the adverse effects of overfitting. The experimental results demonstrate
the enhanced sample efficiency of the proposed method on various DRL methods in the real-world
benchmark, such as hardware design and de novo molecular optimization.
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Mario Krenn, Florian Häse, AkshatKumar Nigam, Pascal Friederich, and Alan Aspuru-Guzik. Self-
referencing embedded strings (SELFIES): A 100% robust molecular string representation. Ma-
chine Learning: Science and Technology, 1(4):045024, 2020.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
POMO: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188–21198, 2020.

Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Ma-
trix encoding networks for neural combinatorial optimization. Advances in Neural Information
Processing Systems, 34:5138–5149, 2021.

Jian-Yu Li, Zhi-Hui Zhan, and Jun Zhang. Evolutionary computation for expensive optimization: A
survey. Machine Intelligence Research, 19(1):3–23, 2022.

Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. Ad-
vances in Neural Information Processing Systems, 34:26198–26211, 2021.

Yibo Li, Liangren Zhang, and Zhenming Liu. Multi-objective de novo drug design with conditional
graph generative model. Journal of cheminformatics, 10:1–24, 2018.

Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Car-
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A PROOF FOR THEOREM 1

Consider πθ (⃗a|s1) as the distribution over the action trajectory from a state s1 which describes the
problem context. Let A⃗x denote the space of action-trajectories associated with the solution x.

H(πθ (⃗a|s1)) = −
∑
a⃗∈A⃗

πθ (⃗a|s1) log πθ (⃗a|s1)

= −
∑
x∈X

∑
a⃗∈A⃗x

πθ (⃗a|s1) log πθ (⃗a|s1)

= −
∑
x∈X

∑
a⃗∈A⃗x

psym(⃗a|x)p(x|s1) (log psym(⃗a|x) + log p(x|s1))

= H(p(x|s1)) + Ex∼p(x|s1)H(psym(⃗a|x))
≤ H(p(x|s1)) + Ex∼p(x|s1)H(Ux(⃗a|x)),

where Ux(⃗a|x) is a uniform distribution over action-trajectories associated with the solution x. The
third equality stems from the fact that πθ (⃗a|s1) = πθ (⃗a,x|s1) since x is fixed given a⃗. One can
show that the final upper-bound is the entropy of distribution obtained from replacing psym(⃗a|x) by
Ux(⃗a|x).
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B IMPLEMENTATION DETAILS

B.1 PSEUDO-CODE FOR REINFORCE WITH SRT

In this section, we provide a pseudo-code in case of employing REINFORCE as a base DRL method
in Step A.

Algorithm 1 REINFORCE with SRT
Input: The maximum number of reward calls K, batch size B, SRT sample width L, a scale coefficient α
Output: The trained policy πθ

1: Initialize parameter θ
2: Initialize the number of reward calls k ← 0
3: while k ≤ K do
4: si1 ← GetInitialState(), ∀i ∈ {1, . . . , B}
5: a⃗ ∼ πθ (⃗a|s1) =

∏T
t=1 πθ(at|st)

6: ▷ REWARD EVALUATION
7: Evaluate R(xi) = R(C (⃗ai)), ∀i ∈ {1, . . . , B}
8: k ← k +B
9: ▷ STEP A. REWARD-MAXIMIZING TRAINING

10: ∇LRL ←
∑B

i=1(R(xi)−RBL)∇ log πθ(·) ▷ RBL is a REINFORCE baseline
11: θ ← Adam(θ,∇LRL)
12: ▷ STEP B. SYMMETRIC REPLAY TRAINING
13: a⃗i ← GreedyRollout(), ∀i ∈ {1, . . . , B}
14: a⃗i,1, . . . , a⃗i,L ∼ psym(·|xi), ∀i ∈ {1, . . . , B}
15: ∇LSRT ← α

∑B
i=1

1
L

∑L
l=1∇ log πθ (⃗a

i,l|si1)
16: θ ← Adam(θ,∇LSRT)
17: end while

There are various ways to collect high-reward samples in Step B. For example, GreedyRollout
can be replaced with other strategies, such as reward-prioritized sampling or collecting Top-k sam-
ples.

B.2 PROXIMAL POLICY OPTIMIZATION (PPO)

We use AM architecture (Kool et al., 2018) on TSP and Devformer architecture (Kim et al., 2023)
on DPP for parameterizing compositional policy π(x|s1) =

∏N
t=1 π(at|st). Then, we implement

based on the following equation as follows:

L(x; s1) = min

[
A(x; s1)

π(x|s1)
πold(x|s1)

, A(x; s1)clip
(

π(x|s1)
πold(x|s1)

, 1− ϵ, 1 + ϵ

)]
,

A(x; s1) = R(x; s1)− V (s1),

where R stands for reward function and V stands for value function. Since we implement PPO on
compositional MDP setting, we train value function in the context of s1 by following actor-critic
implementation of Kool et al. (2018).

Hyperparameters. We systematically investigate a range of hyperparameter combinations involv-
ing different baselines ([rollout, critic]), various values for clipping epsilon ([0.1, 0.2, 0.3]), and
numbers of inner loops ([5, 10, 20]). Our observations reveal that the critic baseline consistently
enhances training stability across all tasks, leading to reduced variation when modifying the training
seeds. The best configurations for each task are provided in Table 4.

B.3 GENERATIVE FLOW NETWORK (GFLOWNET)

Similar to the PPO implementation, we employ the Attention Model (AM) architecture (Kool et al.,
2018) on the Traveling Salesman Problem (TSP), and the DevFormer architecture (Kim et al., 2023)
on DPP, for parameterizing the compositional forward policy PF (τ |s1) =

∏N
t=1 PF (at|st). Subse-

quently, we configure the backward policy PB as a uniform distribution for all possible parent nodes,
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Table 4: Hyperparameter configurations for PPO.

TSP Chip-package PDN HBM PDN

Baseline critic critic critic
Eps. clip 0.2 0.1 0.2
Number of inner loops k 5 20 10

following the methodology outlined in (Malkin et al., 2022). Lastly, we parameterize Z(s1) using
a two-layer perceptron with ReLU activation functions, where the number of hidden units matches
the embedding dimension of the AM or DevFormer. This two-layer perceptron takes input from the
mean of the encoded embedding vector obtained from the encoder of the AM or DevFormer and
produces a scalar value to estimate the partition function.

To train the GFlowNet model, we use trajectory balance loss introduced in Malkin et al. (2022) as
follows:

L(τ ; s1) =
(
log

(
Z(s1)PF (τ |s1)

e−βE(x;s1)PB(τ |s1)

))2

(3)

The trajectory τ includes a terminal state represented as x. Subsequently, we employ an on-policy
optimization method to minimize Eq. (3), with trajectories τ sampled from the training policy PF .
In this context, E(x; s1) represents the energy, which is essentially the negative counterpart of the
reward R(x; s1). The hyperparameter β plays the role of temperature adjustment in this process.

Hyperparameters. We explore a spectrum of hyperparameter combinations, varying β ([5, 10,
20]) and numbers of inner loops ([2, 5, 10]). The best configurations for each task are provided in
Table 5.

Table 5: Hyperparameter configurations for GFlowNet.

TSP Chip-package PDN HBM PDN

β 20 10 10
Number of inner loops k 10 2 2
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C EXPERIMENTAL DETAILS

C.1 TRAVELING SALESMAN PROBLEMS (TSP)

Since we employ the AM architecture, we use the same hyperparameters for the model architecture
and training parameters except for the batch and epoch data sizes.3 Initially, the Attention Model
(AM) employed a batch size of 512 and an epoch data size of 1,280,000. Notably, the evaluation
of the greedy rollout baseline was conducted every epoch. When the number of available training
samples is constrained, utilizing a smaller batch size and epoch data size becomes advantageous.
Consequently, we adjusted these parameters to be 100 for batch size and 10,000 for epoch data size.
In symmetric replay training (Step B), the scale coefficients are meticulously set to scale the SRT
loss. As a rough guideline, we establish a coefficient that renders the SRT loss approximately 10 to
100 times smaller than the RL loss. Additionally, for the number of symmetric transformations (L
in Eq. (1)) is set as the number of inner loops. See Table 6 in details.

Table 6: Scale coefficient and the number of symmetric transformations in TSP.

A2C PG-Rollout PPO GFlowNet

Scale coefficient 0.001 0.001 0.00001 0.1
L 1 1 5 (= k) 10 (= k)

C.2 DECAP PLACEMENT PROBLEMS (DPP)

Similar to the experiments on TSP, we follow the setting of DevFormer.4 We set the batch size
as 100 and epoch data size as 600. Note that the maximum number of reward calls is set 15K,, a
considerably smaller limit compared to TSP. Regarding the scale coefficient and the number of sym-
metric transformations, we maintain consistency with the principles applied in the TSP experiments
as follows:

Table 7: Scale coefficient and the number of symmetric transformations in DPP tasks.

A2C PG-Rollout PPO GFlowNet

Scale coefficient 0.01 0.01 0.01 0.1
L 1 1 20 (= k) 2 (= k)

C.3 PRACTICAL MOLECULAR OPTIMIZATION (PMO)

We basically follow the experimental setting (e.g., batch size) in the practical molecular optimization
(PMO) benchmark.5 In symmetric replay training, we utilize reward-prioritized sampling for the
online buffer, which contains molecules generated during online learning. For the REINVENT,
where the replay buffer is already incorporated, we set the number of replaying samples equal to the
replay buffer size, i.e., 24, and the scale coefficient to 0.001. Regarding the GFlowNet method, we
configure the number of replaying samples to match the batch size of 64. Furthermore, we set the
scale coefficient to 1.0, given that the RL loss in GFlowNet is much higher compared to REINVENT.

3AM: https://github.com/wouterkool/attention-learn-to-route
4DevFormer: https://github.com/kaist-silab/devformer
5Practical molecular optimization: https://github.com/wenhao-gao/mol_opt
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Figure 8: Ablation study for the loss function. The average validation costs over computation budget
are measured on TSP50.

0.0M 0.2M 0.5M 0.8M 1.0M 1.2M 1.5M 1.8M 2.0M
Num. of reward calls

6.0

6.2

6.4

6.6

6.8

7.0

7.2

7.4

Co
st

A2C
A2C + ER (20)
A2C + ER (100)
A2C + SRT (ours)

Figure 9: Comparative experiments with experience replay and SRT. The average validation costs
over computation budget are measured on TSP50.

D ADDITIONAL EXPERIMENTS

D.1 ABLATION STUDY FOR LOSS FUNCTIONS ON TSP50

This subsection provide the results of ablation study for using imitation loss in symmetric replay
training. The experiments are conducted with the same RL loss (denoted as ‘RL Loss’) and the
proposed imitation loss (denoted as ‘SRT Loss’). Since we employ the A2C as the base, RL loss is
as follows:

LRL =
1

B

B∑
i=1

(R(x|s1)− V (s1)) log πθ (⃗a|s1),

where B is batch size. As shown in Figure 8, it is evident that symmetric replay training with RL
loss exhibits instability. This is a natural consequence since the symmetric trajectories often diverge
significantly from the current policy.

D.2 COMPARISON WITH EXPERIENCE REPLAY ON TSP50

We conduct comparative experiments with experience replay and ours using A2C on TSP50. This
requires importance sampling weight as follows:

Ea⃗∼p(·|s1)[R(x)] = Ea⃗∼q(·|s1)

[
p(⃗a|s1)
q(⃗a|s1)

R(x)

]
= Ea⃗∼q(·|s1)

[
T∏

t=1

p(at|st)
q(at|st)

R(x)

]
,

where p(·|s1) and q(·|s1) are the training policy and behavior policy, respectively, and x = C (⃗a).

The results show that existing experience replay method can suffer from high-variance because of
importance sampling, leading to the degradation of performance. On the other hand, ours does not
require the importance sampling weight since SRT is imitation learning.
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Table 8: Experimental results on sample efficient molecular optimization. Area under the curve of
top-10 average property value (↑) is reported with three independent seeds.

Oracle GPBO Graph GA REINVENT REINVENT
+ SRT (ours)

albuterol similarity 0.896 ± 0.009 0.838 ± 0.027 0.847 ± 0.018 0.898 ± 0.015
amlodipine mpo 0.577 ± 0.042 0.649 ± 0.014 0.603 ± 0.015 0.623 ± 0.006
celecoxib rediscovery 0.733 ± 0.026 0.682 ± 0.127 0.573 ± 0.062 0.605 ± 0.086
deco hop 0.620 ± 0.008 0.601 ± 0.004 0.624 ± 0.006 0.636 ± 0.009
drd2 0.933 ± 0.014 0.968 ± 0.006 0.957 ± 0.005 0.961 ± 0.007
fexofenadine mpo 0.723 ± 0.002 0.773 ± 0.014 0.736 ± 0.001 0.762 ± 0.012
gsk3b 0.878 ± 0.018 0.792 ± 0.092 0.802 ± 0.016 0.818 ± 0.040
isomers c7h8n2o2 0.912 ± 0.023 0.944 ± 0.030 0.871 ± 0.022 0.940 ± 0.013
isomers c9h10n2o2pf2cl 0.542 ± 0.383 0.831 ± 0.018 0.779 ± 0.015 0.854 ± 0.026
jnk3 0.588 ± 0.095 0.677 ± 0.120 0.649 ± 0.027 0.710 ± 0.046
median1 0.288 ± 0.003 0.265 ± 0.016 0.345 ± 0.010 0.363 ± 0.017
median2 0.298 ± 0.005 0.268 ± 0.013 0.257 ± 0.010 0.252 ± 0.002
mestranol similarity 0.659 ± 0.108 0.550 ± 0.032 0.627 ± 0.018 0.642 ± 0.019
osimertinib mpo 0.788 ± 0.003 0.818 ± 0.007 0.818 ± 0.004 0.830 ± 0.009
perindopril mpo 0.495 ± 0.005 0.498 ± 0.009 0.526 ± 0.021 0.553 ± 0.027
qed 0.936 ± 0.001 0.939 ± 0.001 0.940 ± 0.001 0.940 ± 0.000
ranolazine mpo 0.737 ± 0.007 0.716 ± 0.011 0.756 ± 0.014 0.777 ± 0.024
scaffold hop 0.536 ± 0.007 0.506 ± 0.016 0.519 ± 0.021 0.533 ± 0.017
sitagliptin mpo 0.422 ± 0.008 0.486 ± 0.007 0.512 ± 0.018 0.498 ± 0.053
thiothixene rediscovery 0.565 ± 0.032 0.494 ± 0.010 0.489 ± 0.026 0.502 ± 0.030
troglitazone rediscovery 0.417 ± 0.025 0.421 ± 0.041 0.356 ± 0.002 0.346 ± 0.007
valsartan smarts 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
zaleplon mpo 0.456 ± 0.019 0.449 ± 0.012 0.503 ± 0.012 0.509 ± 0.016

Average 0.609 0.616 0.613 0.633

D.3 ADDITIONAL RESULTS ON MOLECULAR OPTIMIZATION

In this subsection, we provide the additional results of black-box optimization method in the PMO
benchmark. Gaussian process Bayesian optimization (GPBO; Tripp et al., 2021) and Graph Ge-
netic Algorithm (Graph GA; Jensen, 2019) are included. Note that GPBO employs Graph GA
when optimizing the GP acquisition function. Though Graph GA demonstrates powerful perfor-
mance, designing operators, such as crossover and mutation, greatly affects performance (Li et al.,
2022) Thus, the careful algorithm design, which requires specific domain knowledge, is necessi-
tated whenever there is a change in tasks. The results show that SRT outperforms other black-box
optimization method by improving on-policy RL method, REINVENT.
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Table 9: Experimental results on sample efficient Euclidean CO problems.

N = 50 N = 100

Method K = 200K K = 2M K = 200K K = 2M

T
SP

AM Critic 6.541 ± 0.075 6.129 ± 0.021 9.600 ± 0.090 8.917 ± 0.115
AM Rollout 6.708 ± 0.077 6.199 ± 0.014 11.891 ± 1.008 9.193 ± 0.053
POMO 7.910 ± 0.055 7.074 ± 0.010 12.766 ± 0.358 10.964 ± 0.171
Sym-NCO 7.035 ± 0.209 6.334 ± 0.045 10.776 ± 0.362 9.159 ± 0.056

SRT (ours) 6.450 ± 0.053 6.038 ± 0.005 9.521 ± 0.098 8.573 ± 0.019

C
V

R
P

AM Rollout 13.366 ± 0.199 11.921 ± 0.026 23.414 ± 0.238 19.088 ± 0.232
POMO 13.799 ± 0.310 12.661 ± 0.065 22.939 ± 0.245 20.785 ± 0.403
Sym-NCO 13.406 ± 0.204 12.215 ± 0.124 21.860 ± 0.422 18.630 ± 0.106

SRT (ours) 12.922 ± 0.071 11.721 ± 0.093 21.582 ± 0.149 18.304 ± 0.109

0.5M 1.0M 1.5M 2.0M
Num. of reward calls

6.0

6.5

7.0

7.5

8.0

Co
st

N = 50
AM Critic
AM Rollout
POMO
Sym-NCO
SymRD (ours)

0.5M 1.0M 1.5M 2.0M
Num. of reward calls

9

10

11

12

13

14

N = 100
AM Critic
AM Rollout
POMO
Sym-NCO
SymRD (ours)

(a) TSP

0.5M 1.0M 1.5M 2.0M
Num. of reward calls

12

13

14

15

Co
st

N = 50
AM Rollout
POMO
Sym-NCO
SymRD (ours)

0.5M 1.0M 1.5M 2.0M
Num. of reward calls

18

19

20

21

22

23

24
N = 100

AM Rollout
POMO
Sym-NCO
SymRD (ours)

(b) CVRP

Figure 10: Validation cost over computation budget on euclidean CO problems.

D.4 EXPERIMENTS ON VARIOUS SYNTHETIC CO PROBLEMS

The experiments in this section cover various sample-efficient tasks in Euclidean and non-Euclidean
combinatorial optimization. Note that we assume the expensive black-box reward function in
sample-efficient tasks. In Euclidean CO tasks, the features of variables, such as their two-
dimensional coordinates, satisfy Euclidean conditions (e.g., cost coefficients are defined as Eu-
clidean distances). On the other hand, non-Euclidean CO problems lack these constraints, necessi-
tating the encoding of higher-dimensional data, such as a distance matrix.

D.4.1 EUCLIDEAN CO PROBLEMS

Experimental settings. We select two representative routing tasks – the travelling salesman prob-
lem (TSP) and the capacitated vechicle routing problem (CVRP) with 50 and 100 customers. The
CVRP assumes multiple salesmen (i.e., vehicles) with limited carrying capacity; thus, if the ca-
pacity is exceeded, the vehicle must return to the depot. For base DRL methods, we employ the
best-performing DRL methods, AM for TSP and Sym-NCO for CVRP. We follow reported hyper-
parameters for the model in their original paper.6

Results. The results in Table 9 and Figure 10 indicate that SRT consistently outperforms baseline
methods in terms of achieving the lowest cost over the training budget. Note that ours employs
the AM with critic baseline for TSP and Sym-NCO with the reduced number of augmentations
for CVRP. As depicted in Table 9, the most significant improvement over the base DRL models
is observed in TSP100, with a percentage decrease of 3.86%, and CVRP50, with a percentage
decrease of 4.04%. While POMO and Sym-NCO consider the symmetric nature of CO, the required
number of samples cancels out the benefits. In contrast, our method utilizes the symmetric pseudo-
labels generated via the training policy for free, enabling the policy to explore the symmetric space
without increasing the number of required samples. As a result, SRT successfully improves sample
efficiency.

6Sym-NCO: https://github.com/alstn12088/Sym-NCO
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Table 10: Experimental results on sample efficient non-Euclidean CO problems.

N = 50 N = 100

Method K = 200K K = 2M K = 200K K = 2M
A

T
SP

MatNet-Fixed 3.139 ± 0.024 2.000 ± 0.002 4.400 ± 0.040 3.227 ± 0.016
MatNet-Sampled 3.235 ± 0.021 2.019 ± 0.005 4.324 ± 0.036 2.915 ± 0.040

SRT (ours) 2.845 ± 0.039 1.945 ± 0.003 3.771 ± 0.012 2.513 ± 0.022

FS
SP

MatNet-Fixed 56.350 ± 0.170 55.341 ± 0.118 96.461 ± 0.206 95.107 ± 0.072
MatNet-Sampled 56.347 ± 0.234 55.172 ± 0.032 96.256 ± 0.140 94.978 ± 0.055

SRT (ours) 56.104 ± 0.125 55.110 ± 0.061 96.030 ± 0.132 94.934 ± 0.051

0.0M 0.5M 1.0M 1.5M 2.0M
Num. of reward calls

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

Co
st

N = 50
MatNet-Fixed
MatNet-Sampled
MatNet + SRT (ours)

0.5M 1.0M 1.5M 2.0M
Num. of reward calls

2.5

3.0

3.5

4.0

4.5

N = 100
MatNet-Fixed
MatNet-Sampled
MatNet + SRT (ours)

(a) ATSP

0.0M 0.5M 1.0M 1.5M 2.0M
Num. of reward calls

55.0

55.5

56.0

56.5

57.0

Co
st

N = 50
MatNet-Fixed
MatNet-Sampled
MatNet + SRT (ours)

0.0M 0.5M 1.0M 1.5M 2.0M
Num. of reward calls

95.0

95.5

96.0

96.5

97.0

97.5

N = 100
MatNet-Fixed
MatNet-Sampled
MatNet + SRT (ours)

(b) FFSP

Figure 11: Validation cost over computation budget on non-Euclidean CO problems.

D.4.2 NON-EUCLIDEAN CO PROBLEMS

Experimental settings. Based on the work of Kwon et al. (2021), we have selected two bench-
mark tasks, namely the asymmetric TSP (ATSP) and flexible flow-shop scheduling problems
(FSSP). The ATSP is non-Euclidean TSP where the distance matrix could be non-symmetric, i.e.,
dist(i, j) ̸= dist(j, i), where i and j indicate cities. The FSSP is an important scheduling problem
that assigns jobs to multiple machines to minimize total completion time. As a baseline, we employ
Matrix Encoding Network (MatNet) proposed to solve non-Euclidean CO.7 We compare ours with
two versions of MatNet: MatNet-Fixed and MatNet-Sampled. MatNet-Fixed, the original version,
explores N heterogeneous starting points of trajectories, while MatNet-Sampled explores less than
N number of multiple trajectories with sampling strategy.

Results. The superior performance of SRT over MatNet-Fixed and MatNet-Sampled is demon-
strated in both Table 10 and Figure 11. We employ MatNet-Sampled as a base DRL method for
both tasks and use the same number of multi-starting in ours and MatNet-Sampled. Notably, SRT
outperforms MatNet-Sampled by a significant margin in the case of ATSP, with a performance gap
of about 12% at N = 100,K = 200K, where SRT achieves 3.771 and MatNet-Sampled achieves
4.324.

7MatNet: https://github.com/yd-kwon/MatNet
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E FURTHER RELATED WORKS

E.1 DEEP REINFORCEMENT LEARNING FOR COMBINATORIAL OPTIMIZATION

Deep reinforcement learning (DRL) has emerged as a promising methodology for solving combi-
natorial optimization. Especially by selecting actions sequentially, i.e., in a constructive way, DRL
policies generate a combinatorial solution. This approach is beneficial to producing feasible solu-
tions that satisfy the complex constraints of CO by restricting action space using a masking scheme
(Kool et al., 2018). The foundational work of Bello et al. (2017) introduced the actor-critic method
for training PointerNet (Vinyals et al., 2015) to solve TSP and the knapsack problem. Subsequently,
several works were proposed to extend PointerNet into a Transformer-based model (Kool et al.,
2018; Xin et al., 2021a) especially for routing problems. Building upon the success of the attention
model (AM; Kool et al., 2018), Kwon et al. (2020), and Kim et al. (2022b) suggested enhanced
reinforcement learning techniques by employing a precise baseline for REINFORCE based on sym-
metries in CO problems. On the other hand, various works have been suggested to solve broader
ranges of CO problems (Khalil et al., 2017; Ahn et al., 2020; Zhang et al., 2020; Jiang et al., 2021;
Kwon et al., 2021; Kim et al., 2021; Park et al., 2023; Zhang et al., 2023)

Several studies have proposed to address challenges such as distributional shift and scalability (Hot-
tung et al., 2021; Li et al., 2021; Ma et al., 2021; Choo et al., 2022; Qiu et al., 2022; Son et al., 2023;
Ma et al., 2023; Jiang et al., 2023). It is noteworthy that besides the constructive approach, there is
another stream, the improvement heuristic style (Hottung & Tierney, 2020; Xin et al., 2021b; Kim
et al., 2022a; Ye et al., 2023), though such studies fall outside our research scope. Our research goal
is to enhance the sample efficiency of constructive DRL methods for CO; the sample efficiency has
been comparatively less explored in contrast to issues such as distributional shift and scalability in
DRL for CO literature. This study offers an orthogonal but generally applicable approach to existing
works in the field.

E.2 BLACK-BOX COMBINATORIAL OPTIMIZATION

Building on on the great success of Bayesian optimization (BO) in black-box optimization (Bliek
et al., 2023; Irurozki & López-Ibáñez, 2021; Lindauer et al., 2022), several works were suggested
to apply BO to combinatorial decision. Combinatorial Bayesian optimization solves a bi-level op-
timization where the upper problem is surrogate regression, and the lower problem is acquisition
optimization. In the context of combinatorial space, the acquisition optimization is modeled as
quadratic integer programming problems, which is NP-hard (Baptista & Poloczek, 2018; Deshwal
et al., 2022).

To address the NP-hardness of acquisition optimization, various techniques have been proposed, in-
cluding continuous relaxation Oh et al. (2019), sampling with simulated annealing (Deshwal et al.,
2022), genetic algorithms (Moss et al., 2020; Tripp et al., 2021), and random walk explorer (Ko-
rovina et al., 2020). While these methods have demonstrated competitive performance in lower-
dimensional tasks like neural architecture search (NAS), they often demand substantial computation
time, particularly in molecular optimization tasks (Gao et al., 2022).

As mentioned in (Deshwal et al., 2022) and (Gao et al., 2022), one of the alternative approaches is
to utilize a variational auto-encoder (VAE; Kingma & Welling, 2014) to map the high-dimensional
combinatorial space into “compact” continuous latent space to apply BO, like (Gómez-Bombarelli
et al., 2018). Though this approach has shown successful performance in molecular optimization,
it also introduces variational error since VAE maximizes a lower bound of the likelihood, known as
evidence lower bound (ELBO), not directly maximizes the likelihood.
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