
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

PALMBENCH: A COMPREHENSIVE BENCHMARK OF COMPRESSED
LARGE LANGUAGE MODELS ON MOBILE PLATFORMS

Anonymous authors

Paper under double-blind review

ABSTRACT

Deploying large language models (LLMs) locally on mobile devices is advan-
tageous in scenarios where transmitting data to remote cloud servers is either
undesirable due to privacy concerns or impractical due to network connection.
Recent advancements (MLC, 2023a; Gerganov, 2023) have facilitated the local
deployment of LLMs. However, local deployment also presents challenges, par-
ticularly in balancing quality (generative performance), latency, and throughput
within the hardware constraints of mobile devices. In this paper, we introduce our
lightweight, all-in-one automated benchmarking framework that allows users to
evaluate LLMs on mobile devices. We provide a comprehensive benchmark of
various popular LLMs with different quantization configurations (both weights
and activations) across multiple mobile platforms with varying hardware capa-
bilities. Unlike traditional benchmarks that assess full-scale models on high-end
GPU clusters, we focus on evaluating resource efficiency (memory and power
consumption) and harmful output for compressed models on mobile devices. Our
key observations include: i) differences in energy efficiency and throughput across
mobile platforms; ii) the impact of quantization on memory usage, GPU execution
time, and power consumption; and iii) accuracy and performance degradation
of quantized models compared to their non-quantized counterparts; and iv) the
frequency of hallucinations and toxic content generated by compressed LLMs on
mobile devices.

1 INTRODUCTION

Large Language Models (LLMs) such as ChatGPT (OpenAI, 2023), Claude (Anthropic, 2023),
and Llama (Touvron et al., 2023a;b;c; Llama, 2024) are powerful generative models that are rev-
olutionizing interactive communication and various natural language processing tasks, including
question-answering, document summarization, abstract reasoning, and code auto-completion (e.g.,
Github Copilot (Github)). LLMs require significant computational and memory resources due to their
huge number of parameters (e.g., MT-NLG 530B (Smith et al., 2022)), making them more suitable for
running on cloud infrastructures with high-end powerful GPU clusters. While significant attention has
been dedicated to cloud-based LLMs, there is a growing need to run LLMs on resource-constrained
mobile devices to obtain some key benefits. (1) Privacy and Security: Processing user data locally on
mobile devices helps protect user privacy and enhances data security. There is also less risk of data
breaches or unauthorized access to sensitive information. (2) No Cloud Reliance: By running LLMs
locally, mobile applications can reduce their dependence on cloud services for language processing
tasks. This can lead to cost savings and increased reliability, as the application’s functionality is not
reliant on the availability and performance of remote servers (Hu et al., 2024). (3) Offline Access: By
running LLMs on mobile devices, users can access powerful language processing capabilities even
when they are not connected (or have unreliable connection) to the Internet.

The rapidly flourishing LLM ecosystem, including various large models, architectures and frame-
works, presents both opportunities and challenges for developers and researchers interested in
deploying pre-trained LLMs on mobile devices. Existing efforts in on-device LLM inference have
primarily focused on model compression and efficient inference techniques, with a strong emphasis
on deploying models on edge SoC (system-on-a-chip) with GPU and Linux systems (Lin et al.,
2024; Gerganov, 2023; MLC, 2023a; Lu et al., 2024; Xu et al., 2024). These approaches aim to
achieve a desired quality, latency, and throughput while operating within the constraints of the target

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

platform, e.g., available memory and power limitations. However, the challenges and opportunities of
efficiently deploying these large models on mobile platforms, such as smartphones or nano computers
(e.g., NVIDIA Jetson Orin Nano), remain largely unexplored.

Current LLM benchmarks primarily target the accuracy of large models on cloud clusters rather than
mobile devices (Zheng et al., 2023). Some papers on mobile devices typically examines a limited
range of models and platforms, often overlooking performance degradation and hallucination due to
quantization (Çöplü et al., 2023; Laskaridis et al., 2024; Murthy et al., 2024).

To bridge this gap, we propose a comprehensive benchmarking framework to evaluate the overall user
experience of LLMs on mobile devices. This framework automates the evaluation of various LLMs
with different compiler options (e.g., weight and activation quantization) across mobile platforms
with diverse hardware capabilities (see Table 1). We systematically evaluate each LLM using a
range of metrics across efficiency, accuracy (generative quality relative to non-quantized models),
and harmful output dimensions. Our primary focus is on inference efficiency on mobile platforms,
evaluating the computation usage (CPU and GPU), latency, throughput, energy consumption, and
memory footprint of different models on different platforms (as shown in Figure 1). Along the
accuracy dimension, we evaluate quantized models on mobile devices using mainstream datasets like
Natural Questions (Kwiatkowski et al., 2019) and SQuAD (Rajpurkar et al., 2016), employing exact
match and perfect match metrics to quantify performance degradation and ensure proper functionality
for basic use cases. Also, we evaluate the harmful outputs including hallucination and toxicity of
LLMs with existing benchmark datasets Li et al. (2023b); Lin et al. (2022); Luong et al. (2024).

Table 1: Summary of LLMs, mobile platforms, and quantization configurations explored by our
benchmark.

LLMs

LLaMa-2 (Touvron et al., 2023b), LLaMa-3/3.1 (Dubey et al., 2024), RedPajama (Computer, 2023),

LLaMa-3.2 (Llama, 2024), Vicuna (Chiang et al., 2023), TinyLlama (Zhang et al., 2024),

Qwen2 (Bai et al., 2023), Mistral-7B (Jiang et al., 2023), Gemma (Team, 2024)

Mobile Platforms
Google Pixel 4 / Pixel 5a / Pixel 7, iPhone 15 Pro, iPhone 12 Pro, S22 Ultra,

Orange Pi 5 (Pi), Nvidia Jetson Nano (Nano)

Quantization

2-bit (MLC, llama.cpp),

4-bit (MLC, llama.cpp), 5-bit (llama.cpp), 6-bit (llama.cpp), 8-bit (MLC, llama.cpp)

(Frantar et al., 2022; Lin et al., 2024; Li et al., 2020; Dettmers & Zettlemoyer, 2023)

Android iPhone Orange Pi Platform

OS Android IOS Ubuntu

Framework MLC llama.cpp

RedPajama Llama-3/3.1/3.2

Llama-2
Model

Microsoft Phi-2

Qwen-2 Mistral-7B-Instruct

TinyLlama

Quantization

Performance Metric

Multi-Tasks

Exact Match

Group-wise

Throughput (Tok/s)

Latency(ms)

AWQ

GPTQ

GGML

 0-bit 2-bit 3-bit 4-bit
5-bit 8-bit

Jetson Orin

Vicuna

Faster Transformer

Power Efficiency

Gemma-2

Hallucination

Toxicity

CPU/GPU Utillization

Profiling and Monitor

Android

AGIADB

iPhone

InstrumentsXcode

Edge

Command Line
Inferface (CLI)

Jetson-stats

System Resources

PC Host

Quantized Models

MTBenchHaluEval

Natural Questions

SQuAD

TruthfulQA

Scheduler

Datasets

Prompt InputEvaluator

Automation
Control

Power Monitor

Figure 1: Overview and workflow of PalmBench – our evaluation and benchmarking framework for
Large Language Models (LLMs) on mobile devices.

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Unlike existing benchmarking efforts for LLM deployment on mobile devices, our study explores
and evaluates feasible pre-trained models with the most popular quantizations. We highlight various
combinations of LLM configurations suitable for mobile deployment (Zhang et al., 2024; Computer,
2023; Team, 2024; Llama, 2024; Abdin et al., 2024), along with several available quantization
options (Lin et al., 2024; Frantar et al., 2022; MLC, 2023a; Dettmers & Zettlemoyer, 2023).

We found that 4-bit quantization methods, such as group-wise (Yang et al., 2024), GPTQ (Frantar
et al., 2022), and AWQ (Lin et al., 2024), can generally preserve the performance of LLMs while
reducing their size to one-quarter of the original non-quantized model. This configuration diversity
can potentially lead developers (and users) to make sub-optimal choices in terms of performance
and efficiency. Our benchmarking analysis, focused on resource usage during inference, provides
insights into efficient deployment strategies tailored for mobile platforms. These strategies include
joint considerations of 1) model architecture, 2) quantization strategy, and 3) model size. In summary,
the major contributions of our paper are:

• To enable a comprehensive evaluation of various LLMs, we first develop a lightweight, auto-
mated benchmarking framework that collects performance metrics from mobile devices via USB,
eliminating the need for additional equipment.

• We evaluate various quantized LLMs on mobile platforms with different hardware capabilities,
measuring their resource utilization, power consumption, throughput, and inference latency.

• We validate the knowledge and answering accuracy of quantized models compared to their non-
quantized counterparts, and investigate the potential issues of compressed models such as toxicity,
bias, and the generation of erroneous or random outputs (hallucinations).

• Finally, our benchmarking leads to several key observations, highlighting the quantization dif-
ferences across models, platforms, and frameworks. We also observed that the iOS platform
outperforms others in power efficiency, latency, and throughput for LLM inference 1.

2 RELATED WORK

Our benchmarking study extensively evaluated prior efforts focused on optimizing LLMs for mobile
devices. These efforts include frameworks (MLC, 2023a;b; Gerganov, 2023), the development of
smaller models (Computer, 2023; Abdin et al., 2024; Li et al., 2023c), and model quantization
techniques (Frantar et al., 2022).

Large Language Models. LLMs like ChatGPT (OpenAI, 2023), the Llama series (Touvron et al.,
2023a;c; Dubey et al., 2024; Llama, 2024), Mistral (Jiang et al., 2023), Vicuna (Chiang et al., 2023),
Gemma (Team, 2024) etc. are gaining substantial influence in generative AI applications. Their
resource requirements—both in terms of power consumption and memory usage—scale linearly
with model size, introducing significant operational overhead during inference. This challenge has
catalyzed research into efficient on-device LLM deployment (Xu et al., 2024; Lin et al., 2024; Zhu
et al., 2023; Lu et al., 2024), with particular emphasis on model compression and optimization. Recent
advances in compact model architectures have yielded promising alternatives, including Google’s
Gemma-2-2B (Team, 2024), Llama-3.2-1B/3B (Llama, 2024), RedPajama-INCITE-3B (Computer,
2023), Phi-2/Phi-3 (Abdin et al., 2024), and TinyLlama (Zhang et al., 2024).

Quantization. Post-training quantization (PTQ) compresses LLMs after full training, creating smaller
models optimized for inference. This method enables more efficient storage and faster computation.
Group-wise quantization (Yang et al., 2024) partitions neural network weights into groups, quantizing
each independently. This approach better aligns with weight distributions, reducing I/O costs and
improving performance on mobile platforms. GPTQ (Frantar et al., 2022) further enhances efficiency
by compressing LLM weights to 3 or 4 bits, compared to the standard 8-bit quantization. Activation-
aware Weight Quantization (AWQ) (Lin et al., 2024) identifies and preserves a subset of model
weights with larger activation magnitudes, known as salient weights, to minimize quantization loss.
Prior research (Dettmers & Zettlemoyer, 2023; Huang et al., 2024b; Lu et al., 2024; Xu et al., 2024)
has highlighted significant performance differences among quantization algorithms, showing that
RTN lags behind GPTQ and AWQ.

Inference Engine. While numerous efficient inference frameworks exist, MLC-LLM(MLC, 2023a;b)
stands out by enabling users to develop, quantize, and deploy LLMs across diverse platforms,

1We plan to release the code of our framework to facilitate reproducibility and extensions of our research.

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

including mobile devices and web browsers. Llama.cpp (Gerganov, 2023), written in C++, offers
a lightweight, portable alternative to Python-based frameworks. It supports multiple GPU kernels
for high-speed processing and focuses on mixed quantization methods, particularly K-Quants. Both
frameworks provide pre-compiled models while allowing users to perform custom quantization as
needed.
Table 2: Metrics for evaluating the performance of LLMs on mobile devices. Memory usage includes
both the model loaded to the memory and the framework program running on devices.

Metric Definition

CPU Utilization (%) Percentage of the total processor cycles consumed by LLM

GPU Utilization (%) Percentage of the total GPU computing resource during LLM inference

Memory Footprint (GB) Measurement of main memory used by the LLM application

Memory Utilization (%) Percentage of main memory used by the LLM application

Throughput (Tok / s) Number of output tokens per second generated by the LLM

Output Matching Accuracy degradation of the compressed model relative to the original model

Toxicity Toxicity score calculated on 25k sentences by Perspective API

Hallucination (%) Percentage of erroneous or random outputs not related to the questions

Benchmark. Most existing benchmark frameworks of LLMs focus on maximizing performance
across different model architectures and evaluating a model’s general world knowledge, question-
answering, and reasoning ability (Zheng et al., 2023; Hendrycks et al., 2021; Rajpurkar et al., 2016;
Kwiatkowski et al., 2019). Some existing studies on evaluating LLMs for mobile deployment are
limited in scope (Murthy et al., 2024; Çöplü et al., 2023; Laskaridis et al., 2024) or evaluating online
models instead of on-device inference (Lee et al., 2024). They fail to comprehensively examine
resource efficiency and power consumption, which are crucial for mobile deployment. Recent efforts
to benchmark edge LLMs include the Starting-kit competition framework (Huang et al., 2024a), built
on MLC (MLC, 2023a;b), which facilitates LLM evaluation on Linux-based edge devices.

MELT (Laskaridis et al., 2024) evaluates five LLMs across devices, measuring throughput, power,
and Q&A accuracy, but lacks comprehensive analysis of resource utilization, energy efficiency across
quantization methods, and layer-wise GPU profiling. Similarly, MobileAIBench (Murthy et al.,
2024) offers comprehensive benchmarks for quantized LLMs and LMMs, with a focus on NLP tasks
and resource utilization, but its scope is limited to iOS devices and lacks both automated testing
capabilities and cross-platform evaluation support. Furthermore, all these existing benchmark works
ignore the toxicity, bias, and generation of erroneous or randomized outputs (which always occur in
quantized models)—factors that significantly impact user experience across different frameworks.

3 METHODOLOGY

To evaluate the LLMs on mobile devices, we created the PalmBench framework, which focuses on
the following three aspects:

1) Benchmark Automation. We designed an automated framework comprising an Evaluator,
Scheduler and Profiling and Monitor modules, designed to handle experimental prompt datasets,
evaluate quantized models, and schedule profiling across various metrics. The framework’s workflow
is illustrated in Fig. 1.

2) Resource Utilization. Our primary focus is on the resource demands of different models across
various platforms—such as CPU, GPU, and memory that significantly impact user experience.
Our study goes beyond resource demands, aiming to quantify the impact of different quantization
techniques on both performance and resource efficiency across various state-of-the-art models.

3) Model Accuracy. While a model’s architecture primarily determines its output, we observe
variations across devices when different quantization methods are applied. To validate quantized
LLMs and assess accuracy degradation caused by compression, we evaluate models using Exact
Match and F1 score, comparing their knowledge and answering accuracy against original models.
Additionally, we test these models on standard tasks with open-source datasets such as SQuAD and
Natural Questions (Rajpurkar et al., 2016; Kwiatkowski et al., 2019). Moreover, we also investigate

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

the potential issues of toxicity and the generation of erroneous or randomized outputs that always
occur in compressed models and have not been thoroughly studied in previous work (Laskaridis et al.,
2024).
3.1 METRICS AND DATASETS
Table 2 summarizes all the metrics used in our benchmark. To evaluate the accuracy and correctness
of quantized LLMs, we use popular Question-Answering datasets such as SQuAD (Rajpurkar et al.,
2016) and Natural Questions (NQ) (Kwiatkowski et al., 2019), comparing their performance with
that of the original, non-quantized models. Additionally, we employ comprehensive benchmarks for
different tasks, including MTBench (Zheng et al., 2023) to compare their language understanding
and reasoning capabilities across different quantizations. Also, we measured toxicity by calculating
toxic score by using Perspective API (Perspective, 2020) and TET (Luong et al., 2024), and evaluate
hallucination in each quantized LLM using HaluEval (Li et al., 2023a) and TruthfulQA (Lin et al.,
2022) benchmarks. The Appendix A.6 and Appendix A.8 provides some examples of these datasets
for benchmarking. These widely-recognized datasets ensure that our experiments and metrics are
both convincing and reproducible.
3.2 CHOICE OF LLMS
We have identified and converted several popular models for benchmarking on edge and mobile
devices using model weights from their official Huggingface or GitHub repositories. These models
are converted into experimental formats such as GGUF and K-quant for Llama.cpp Gerganov (2023)
or compiled using TVM Chen et al. (2018) for MLC frameworks MLC (2023a;b). Given that mobile
devices typically do not exceed 8GB of memory, it is impractical to test too large models, as they
would surpass these devices’ memory capacity. In our benchmark, we evaluated the various LLMs,
including Llama-2-7b-chat Touvron et al. (2023b), Llama-3-8B-Instruct Touvron et al. (2023c)
Microsoft Phi2 Abdin et al. (2024), Mistral-7B-Instruct Jiang et al. (2023), RedPajama-INCITE-Chat-
7B Computer (2023), Vicuna Chiang et al. (2023)), TinyLlama-1.1B-Chat-v1.0 Zhang et al. (2024),
and Qwen2 Bai et al. (2023). The prebuilt weights for these models are readily available in the MLC
repository, which also offers options for compilation in various configurations.

While the frameworks offer some pre-compiled models through Huggingface or official repositories,
certain models still require quantization and compilation for our experiments by ourselves.

3.2.1 MOBILE DEVICES

We evaluate the LLMs on a range of devices with varying hardware capabilities, as listed in Table 6 in
Appendix, including Google Pixel 4 (P4), Pixel 5a (P5), Pixel 7 (P7), iPhone 12 Pro (IP12), iPhone
15 Pro (IP15), S22 Ultra (S22U), Orange Pi 5 (OP5) Pi, and Nvidia Jetson Orin Nano (Nano) Nano,
covering mainstream operating systems.

3.2.2 INFERENCE ENGINE

We use two frameworks, MLC-LLM (MLC, 2023a;b) and llama.cpp (Gerganov, 2023), as inference
engines to execute LLMs on devices. Although many frameworks claim compatibility with mobile
devices, they often lack support for popular platforms or models. MLC-LLM (MLC, 2023a;b) and
llama.cpp (Gerganov, 2023) are two of the most popular frameworks that support a wide range of
platforms and models. Unfortunately, llama.cpp (Gerganov, 2023) is still incompatible with iPhone.
Both frameworks utilize default nucleus sampling and identical LLM decoding hyperparameters to
ensure consistency: temperature is set to 0.2, Top− S = 0.9.

3.2.3 QUANTIZATION

The built-in quantization programs of frameworks primarily quantized the different models. Both
of MLC and llama.cpp provides tools for users to quantize the models. MLC supports various
quantization levels, including non-quantized float-16 (q0f16) and float-32 (q0f32), 3-bit quantization
(q3f16_1), 4-bit quantization (q4f16_1), and 4-bit AWQ (q4f16_awq). The format qAfB(_id) denotes
’A’ as the number of bits for weight storage and ’B’ as the number of bits for activation storage.
llama.cpp supports quantization using its GGUF format, which employs a type of group-wise
quantization known as K-quant and supports more quantization methods (1.5-bit, 2-bit, 3-bit, 4-bit,
5-bit, 6-bit).

3.2.4 PROMPT INPUT

The prompt input is managed by the Evaluator, which extracts tested prompt texts from datasets
based on the evaluation tasks. For Linux edge devices, prompts are transferred from Scheduler
via USB serial ports, and benchmark scripts are executed through the Command Line Interface

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

(CLI). For iPhones and Android phones, custom-developed apps—built on MLC’s examples MLC
(2023a)—automatically fetch prompts and simulate touch events to interact with the applications.
Prompt texts are from datasets listed in 3.1.

3.2.5 BENCHMARK AUTOMATION

Our benchmarking framework automates workflows and collects profiling data via multiple interfaces,
coordinating programs on both PC hosts and mobile/edge devices. The Evaluator extracts prompts
from datasets and evaluates outputs using mainstream benchmark datasets as illustrated in Figure 1.
While frameworks provide limited pre-compiled models, quantizating own models is often required.

The Scheduler evaluates quantized models with prompt input from Evaluator, and monitors resource
usage through profiling tools like Xcode Instruments for iOS and Android GPU Inspector (AGI) for
Android. AGI tracks metrics such as CPU/GPU utilization, memory, energy, and latency, with data
transferred via ADB. For iOS, a custom GPU plugin built on IOKit Tan (2018) complements Xcode’s
profiling capabilities. On edge devices, btop is used for Orange Pi, and jetson-stats for Nvidia Jetson
Nano. Both are lightweight and non-intrusive. Apple and Google profiling tools access battery data
from the PMU, ensuring precise energy measurements without disrupting device operation. These
official tools from Apple and Google are built-in utilities for system monitoring that provide accurate
battery usage data directly from the Power Management Unit (PMU). On Ubuntu-based edge devices,
Orange Pi uses btop (aristocratos, 2021) for CPU and GPU utilization stats, while Nvidia Jetson
Nano employs the built-in jetson-stats tool. Both methods are non-intrusive and do not disrupt device
communication.

3.2.6 GPU DRIVER

Although MLC-LLM MLC (2023a;b) and llama.cpp Gerganov (2023) support various drivers;
OpenCL is the preferred and most mature GPU driver commonly used for both Android phones and
Ubuntu-based edge computing devices. The iPhone utilizes Apple’s proprietary Metal driver, which
is well supported by both MLC MLC (2023a) and TVM Chen et al. (2018). Nvidia Jetson Nano
device leverages its own CUDA with highly optimized driver Nano.

3.2.7 EQUIPMENTS

In addition to resource usage, we also look into energy efficiency, a critical factor impacting user
experience. We employ two devices to comprehensively evaluate the effects of quantization on power
consumption and the distribution of device temperature. For thermal behavior analysis, we utilize the
FLIR C5 thermal imaging camera Flir (2020). We also employed a professional USB-based power
consumption instruments from Klein Tools to measure the power consumed by each of the tested
devices. This enables us to investigate the energy efficiency and thermal behavior of mobile platforms
across different models and quantization methods, which are crucial factors affecting user experience.

4 EXPERIMENTS

We present the most significant benchmarking results for LLMs across various models and platforms
(outlined in Section 3) here, and provide additional results in the Appendix.

4.1 EXPERIMENTAL SETUP

We evaluate LLMs across various devices (detailed in Section 3) using MLC (MLC, 2023a), which
supports Apple, Android, and Linux Edge platforms, and llama.cpp Gerganov (2023), which supports
Android and Ubuntu systems. Given our focus on mobile deployment, we select models based
on practical size constraints. For instance, we exclude models exceeding typical mobile memory
capacities, such as the Llama-2-7B 0-bit (13.11GB) and the Vicuna-13B 3-bit (6GB). All experi-
ments were repeated 10 times under identical conditions for consistency, using llama.cpp and MLC
frameworks with standardized settings: temperature = 0.2, Top-S = 0.9, and a 4096-token context
window. Devices were factory reset before testing, and evaluations were conducted on the latest OS
versions (Ubuntu 14.04.06 LTS, Android 15, and iOS 17.6.1, as illustrated in table 6 in Appendix).

4.2 RESOURCE UTILIZATION

We first evaluate the impact of quantization on resource efficiency using the MLC and llama.cpp
frameworks on Android phones and edge devices for the models detailed in previous sections.

Memory Utilization: LLM inference is inherently memory-bound, and its memory utilization can
be reduced significantly by quantization, which reduces the precision of weights and activations.

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

(a) MLC (b) llama.cpp

Figure 2: Average memory usage (GB) while running MLC and llama.cpp.

(a) CPU (b) GPU

Figure 3: CPU and GPU usage during inference of RedPajama-INCITE-3B across different quantiza-
tions.

To ensure the models fit within the tested devices, including iPhones (12 Pro, 15 Pro) and Android
phones (Pixel 4/5a/7, Samsung S22 Ultra), we evaluated only 3-bit and 4-bit quantized models in
the MLC framework for total memory usage. Higher-bit models exceeded the devices’ memory
capacity. Figures 2(a) and 2(b) show average memory consumption across platforms for both MLC
and llama.cpp frameworks. While total memory usage remains consistent for each model-framework
combination, we observe platform-specific variations. Memory usage scales with quantization levels,
with sub-4-bit quantization offering significant reductions. MLC shows lower memory footprint on
iPhone compared to Android, while Jetson Orin Nano’s CUDA implementation outperforms Orange
Pi’s OpenCL (Figure 6). llama.cpp generally consumes less memory than MLC across platforms,
likely due to its lightweight C++ implementation and CLI interface.

CPU and GPU Utilization: LLM execution depends on the computational resources of mobile
platforms, with CPUs handling data transfer and model offloading between memory and GPUs, which
are primarily used for inference. Both MLC and llama.cpp supports GPU-based model inference.
We measured CPU and GPU activity to evaluate how quantization impacts memory traffic and GPU
workload, as shown in Figure 3. The results indicate that CPU and GPU utilization varies across
models and platforms. Notably, 3-bit quantization reduces resource usage, likely due to decreased
memory data transfers and a lighter GPU inference workload. Furthermore, iPhones demonstrates
lower resource utilization compared to other platforms, showcasing Apple’s exceptional efforts in
hardware-software optimization and compatibility. We also gathered GPU traces through automated
benchmarking tools and charted the GPU utilization timeline to examine how GPU workloads vary
when running identical models with different quantization methods, as depicted in Figure 4. The
findings reveal that models with 4-bit quantization utilize more GPU duty cycles than those with
3-bit quantization, thereby consuming more GPU time. Additionally, higher quantization requires
increased energy and computational resources for inference.

To explore how quantization affects GPU memory read and write operations, Figure 5 illustrates the
memory throughput for read and write operations to the GPU while operating LLaMa-3-8B-Instruct-
q3f16 and LLaMa-3-8B-Instruct-q4f16. The operation of LLaMa-3-8B-Instruct-q4f16 demands

Figure 4: GPU Utilization (%) timeline for 3-bit and 4-bit quantized RedPajama models on Google
Pixel 7.

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

(a) Llama-3-8B-q3f16 (b) Llama-3-8B-q4f16

Figure 5: GPU memory read/write speed while running LLaMa-3-8B-Instruct in 3-bit and 4-bit
quantization on Pixel 7.

iPhone

Android

OrangePi
Nano

0

2

4

6

8

M
em

or
y

U
sa

ge
 (

G
B

)

q3f16-MLC q4f16-MLC

(a) Llama-3-8B for all platforms

iPhone

Android

OrangePi
Nano

0

2

4

6

M
em

or
y

U
sa

ge
 (

G
B

)

q3f16-MLC q4f16-MLC

(b) Gemma-2B for all platforms

Figure 6: Measured memory usage (GB) across different platforms using Llama-3-8B and Gemma-
2-2B by MLC LLM to compare the memory usage between large model (Llama-3-8B) and small
model (Gemma-2-2B).

additional GPU workload and writing cycles. This observation confirms the hypothesis that higher
quantization increases GPU memory data suage, with inference performance constrained by memory
throughput. To identify potential bottlenecks in LLM inference on mobile devices, we analyzed
GPU resource usage through memory breakdown and layer-by-layer profiling across two transformer
blocks. Self-attention layers consume significantly more GPU resources, with utilization exceeding
95%, potentially slowing inference speed, while FFN layers require less. Results are shown in
Appendix Fig. 11. GPU utilization tends to be higher with higher-bit quantizations due to increased
precision. Even with lower-bit model, operations like matrix multiplications and memory accesses
can fully utilize GPU resources. Optimizing matrix multiplications and self-attention layers is crucial
for reducing GPU memory usage.

IP
12

IP
15 P4

P5a P7
S22

U
OP5

Nan
o

0

20

40

60

80

T
hr

ou
gh

pu
t (

T
ok

/s
)

Prefill
Decode

(a) Llama2-7B-q3f16
IP

12
IP

15 P4
P5a P7

S22
U

OP5
Nan

o
0

20

40

60

80

T
hr

ou
gh

pu
t (

T
ok

/s
)

Prefill
Decode

(b) Llama3-8B-q3f16
IP

12
IP

15 P4
P5a P7

S22
U

OP5
Nan

o
0

20

40

T
hr

ou
gh

pu
t (

T
ok

/s
)

Prefill
Decode

(c) Phi2-q4f16
IP

12
IP

15 P4
P5a P7

S22
U

OP5
Nan

o
0

20

40

60

80

T
hr

ou
gh

pu
t (

T
ok

/s
)

Prefill
Decode

(d) RedPajama-3B-q4f16

Figure 7: Prefilling and decoding throughput (tok/s) for Llama2-7B-q4f16, Llama3-8B-q3f16 ,and
RedPajama-3B-q4f16.

4.3 PREFILLING AND DECODING THROUGHPUT

We analyzed prefilling and decoding throughput (tok/s), key factors influencing user experience.
Higher throughput and lower latency reflect faster model outputs. Figure 7 presents the pre-filling
and decoding throughput for Llama2-7B-q4f16, Phi2-q4f16, Llama3-8B-q3f16, and RedPajama-
3B-q4f16. Appendix Figure 13 shows throughput across all platforms using MLC. Results indicate
smaller models, such as RedPajama-INCITE-3B and TinyLLaMA-1.1B, achieve higher throughput,
executing faster on mobile devices. Moreover, the results indicate that iPhones, particularly when
running Llama-2-7B and Llama-3-8B models, deliver significantly higher throughput compared
to other devices. Even the three-year-old iPhone 12 Pro outperforms newer Android devices and
Nvidia’s Jetson Orin Nano in maintaining relatively high throughput, demonstrating metal-accelerated
inference performance. When running Mistral-7B-q3f16 and Phi2-q4f16, which are similar in size
but differ in parameter scale and quantization levels, significant differences in prefilling and decoding
throughput are observed (Figure 7(b) and Figure 7(c)). Models with fewer parameters and higher-bit
quantization, like Phi2-q4f16, decode faster and consume less total memory, including KV cache and

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

overhead (Appendix Figure 12). This efficiency makes smaller models like Phi2 more suitable for
mobile devices.

4.4 OUTPUT MATCHING AND CORRECTNESS

Quantization often compromises model accuracy, particularly when using lower-bit representations.
To validate the correctness and assess the performance degradation of quantized models, we use
question data from the SQuAD (Rajpurkar et al., 2016) and Natural Question (Kwiatkowski et al.,
2019) dataset to calculate the Exact Match and F1 score, using the output of the original non-quantized
model as a reference. The exact match and F1 score results are shown in Figure 8. Moreover, our
observation also shows that 4-bit and 6-bit quantization mostly maintains performance compared to
the original non-quantized model, with 4-bit quantization requiring less memory and computational
resources (Figure 2(a) 2(b)]). Interestingly, the 3-bit model did not outperform the 2-bit model
significantly, and the 5-bit model showed performance close to the 4-bit model but consumed more
resources. Due to the quantization algorithm and framework limitations, the 5-bit model exhibited
greater performance degradation compared to all 4-bit quantization variants.

(a) Exact Match

(b) F1 score

Figure 8: Scores of exact match and F1 score to examine the performance loss after models are
quantized.
4.5 TASKS

To evaluate the performance of quantized models across various tasks, we utilize MT-bench (Zheng
et al., 2023), which employs a predefined multi-turn question set to evaluate models across eight
categories: Reasoning, Math, Coding, Extractions, STEM, Humanities, Writing, and Roleplay.
Figure 9 shows that models with higher bit quantization generally achieve better scores across all
categories. In contrast, lower-bit quantization (2-bit, 3-bit, 4-bit) still performs well in humanities,
writing, and extraction tasks. For users with devices that have limited resources, particularly those
with less than 4GB of memory, 2-bit or 3-bit quantization can still provide an adequate user experience
in these tasks or for simple Q&A applications.

Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities

0 2 4 6 8 10

LLaMa2-7B-fp16 LLaMa2-7B-q5_K_M
LLaMa2-7B-q4_K_M LLaMa2-7B-q3_K_M
LLaMA2-7B-q2_K LLaMa2-7B-q3_K_M

Loading [MathJax]/extensions/MathMenu.js(a) K-quant used by llama.cpp

Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities

0 2 4 6 8 10

LLaMa2-7B-q4_GPTQ LLaMa2-7B-q4_AWQ
LLaMa2-7B-q4_K_M LLaMa2-7B-q3_GPTQ
LLaMa2-7B-q3_AWQ LLaMa2-7B-q3_K_M

Loading [MathJax]/extensions/MathMenu.js(b) K-quant vs. AWQ vs. GPTQ (3-
bit, 4-bit)

Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities

0 2 4 6 8 10

Llama-2-7b-chat-hf-q0f16
Llama-2-7b-chat-hf-q4f16_1
Llama-2-7b-chat-hf-q3f16_1

Loading [MathJax]/extensions/MathMenu.js (c) MLC

Figure 9: MTBench scores in different categories using Llama2-7B with various quantizations.

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

4.6 POWER CONSUMPTION AND TEMPERATURE

Model quantization greatly reduces memory usage and GPU execution time, as LLM inference is
largely memory-bound. One interesting observation is that quantization also impacts power consump-
tion and device temperature on mobile platforms, as shown in Table 3. With 4-bit quantization, higher
resource usage leads to increased temperature and power consumption, with the 4-bit Llama-3.2-3B
model consuming 25.2% more power than its 3-bit counterpart.

Table 3: Evaluation of temperature and power consumption during inference of Llama3-8B across
different mobile phones

Llama-3.2-3B 3-bit quantization

Platforms Pixel 4 Pixel 5a Pixel 7 S22 Ultra iPhone 12 Pro iPhone 15 Pro Orange Pi 5 Jetson Nano

Peak Temp. (◦) 47.8 53.2 52.1 52.8 47.3 45.3 71.5 61.5

Avg. Temp. (◦) 28.3 28.7 28.5 27.2 27.2 25.3 47.5 43.3

Power Consumed (mWh) 13.32 12.98 14.54 13.25 11.21 10.13 25.4 22.3

Llama-3.2-3B 4-bit quantization

Platforms Pixel 4 Pixel 5a Pixel 7 S22 Ultra iPhone 12 Pro iPhone 15 Pro Orange Pi 5 Jetson Nano

Peak Temp. (◦) 53.1 54.8 52.6 48.7 47.2 46.3 75.4 69.5

Avg. Temp. (◦) 28.2 29.2 30.3 27.8 26.4 24.2 52.4 45.3

Power Consumed (mWh) 14.23 13.51 14.68 15.26 13.12 13.05 27.8 25.6

4.7 HALLUCINATION AND TOXICITY

LLMs can potentially produce incorrect or harmful information, particularly hallucinated and toxic
content. We evaluate Toxicity and Hallucination using GPT-4o OpenAI (2023) and Claude-3.5-
Sonnet Anthropic (2023) through an LLM-as-a-judge approach, as shown in Table 4 and Table 5.
Lower bit quantization typically leads to increased hallucinations and toxicity. Among the 4-bit quan-
tization methods (GPTQ (Frantar et al., 2022), ggml (Gerganov, 2023), AWQ (Lin et al., 2024) and
FT (Nvidia, 2019)), GPTQ, AWQ, and FT show similar performance, while ggml performs slightly
worse. Examples of hallucinated and toxic outputs are provided in Tables 11 12 in Appendix A.8.

Table 4: Evaluation of Hallucination Outputs across Different Quantization Levels in Llama3-8B.

Quantization 2-bit 3-bit 4-bit (GPTQ) 8-bit 4-bit (ggml) 4-bit (AWQ) 4-bit (FT)

Halucination 34.7% 27.5% 9.1% 7.9% 12.5% 8.9% 8.7%

TruthfulQA 76% 73% 92.1% 91.4% 90.1% 92.3% 91.5%

Toxicity 46.243 64.098 28.679 23.965 41.107 30.072 29.405

Table 5: Evaluation of Hallucination Outputs across Different Quantization Levels in Google Gemma-
2-2B.

Quantization 2-bit 3-bit 4-bit (GPTQ) 8-bit 4-bit (ggml) 4-bit (AWQ) 4-bit (FT)

Halucination 42.2% 27.5% 9.1% 7.9% 12.5% 8.9% 8.7%

TruthfulQA 72% 70.2% 91.1% 92.4% 85.1% 89.3% 90.5%

Toxicity 36.121 63.087 25.045 22.102 24.207 32.202 23.405

5 CONCLUSIONS

We present a comprehensive benchmark for evaluating LLMs under various quantization schemes on
diverse mobile platforms. Our lightweight, all-in-one automated benchmarking framework enables
users to evaluate mobile devices via USB, providing extensive metrics and datasets. This study
uniquely focuses on resource efficiency for mobile GPUs, contrasting with traditional high-end GPU
cluster evaluations. Key findings highlight the superiority of iOS platform in energy efficiency and
throughput, and quantization’s effectiveness in reducing resource requirements. We also examine
accuracy and potential issues in quantized models, including toxicity and erroneous outputs. This
research provides crucial insights for efficient LLM deployment in mobile environments, addressing
previously overlooked aspects of on-device LLM performance.

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 Technical Re-
port: A Highly Capable Language Model Locally on Your Phone. arXiv preprint arXiv:2404.14219,
2024.

Anthropic. Introducing the next generation of Claude. https://www.anthropic.com/news/
claude-3-family, 2023.

aristocratos. btop: A Monitor of Resources. https://github.com/aristocratos/btop, 2021.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, and
otehrs. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan Cowan, Haichen
Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. TVM:
An Automated End-to-End Optimizing Compiler for Deep Learning. In In Proc. of the 13th OSDI,
2018.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:
An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality, March 2023. URL
https://lmsys.org/blog/2023-03-30-vicuna/.

Together Computer. RedPajama: An Open Source Recipe to Reproduce LLaMA training dataset,
2023. URL https://github.com/togethercomputer/RedPajama-Data.

Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit Inference Scaling Laws,
2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
2024. URL https://arxiv.org/abs/2407.21783.

Flir. FLIR C5 Compact Thermal Imaging Camera. https://www.flir.com/products/c5/
?vertical=condition+monitoring&segment=solutions, 2020.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate Post-training
Compression for Generative Pretrained Transformers. arXiv preprint arXiv:2210.17323, 2022.

Georgi Gerganov. llama.cpp. https://github.com/ggerganov/llama.cpp, 2023.

Github. Copilot. https://github.com/features/copilot.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring Massive Multitask Language Understanding, 2021.

Qinghao Hu, Zhisheng Ye, Zerui Wang, Guoteng Wang, Meng Zhang, Qiaoling Chen, Peng Sun,
Dahua Lin, Xiaolin Wang, Yingwei Luo, Yonggang Wen, and Tianwei Zhang. Characterization of
Large Language Model Development in the Datacenter. In 21st USENIX Symposium on Networked
Systems Design and Implementation (NSDI 24). USENIX Association, April 2024.

Tienjin Huang, Songyang Zhang, and Shiwei Liu. Starting Kit for Edge-
Device LLM Competition, 2024a. URL https://github.com/TianjinYellow/
EdgeDeviceLLMCompetition-Starting-Kit.

Wei Huang, Xingyu Zheng, Xudong Ma, Haotong Qin, Chengtao Lv, Hong Chen, Jie Luo, Xiaojuan
Qi, Xianglong Liu, and Michele Magno. An Empirical Study of LLaMA3 Quantization: From
LLMs to MLLMs, 2024b.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7B. arXiv preprint arXiv:2310.06825, 2023.

https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://github.com/aristocratos/btop
https://lmsys.org/blog/2023-03-30-vicuna/
https://github.com/togethercomputer/RedPajama-Data
https://arxiv.org/abs/2407.21783
https://www.flir.com/products/c5/?vertical=condition+monitoring&segment=solutions
https://www.flir.com/products/c5/?vertical=condition+monitoring&segment=solutions
https://github.com/ggerganov/llama.cpp
https://github.com/features/copilot
https://github.com/TianjinYellow/EdgeDeviceLLMCompetition-Starting-Kit
https://github.com/TianjinYellow/EdgeDeviceLLMCompetition-Starting-Kit

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, et al. Natural Questions: a Benchmark for Question Answering Research. Transactions of
the Association of Computational Linguistics, 2019.

Stefanos Laskaridis, Kleomenis Katevas, Lorenzo Minto, and Hamed Haddadi. MELTing point:
Mobile Evaluation of Language Transformers. CoRR, abs/2403.12844, 2024. doi: 10.48550/
ARXIV.2403.12844. URL https://doi.org/10.48550/arXiv.2403.12844.

Juyong Lee, Taywon Min, Minyong An, Changyeon Kim, and Kimin Lee. Benchmarking Mobile
Device Control Agents across Diverse Configurations. In ICLR 2024 Workshop on Generative
Models for Decision Making, 2024.

Junyi Li, Xiaoxue Cheng, Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. HaluEval: A Large-Scale
Hallucination Evaluation Benchmark for Large Language Models. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, EMNLP, pp. 6449–6464.
Association for Computational Linguistics, 2023a. doi: 10.18653/V1/2023.EMNLP-MAIN.397.
URL https://doi.org/10.18653/v1/2023.emnlp-main.397.

Junyi Li, Xiaoxue Cheng, Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. HaluEval: A Large-Scale
Hallucination Evaluation Benchmark for Large Language Models. In The 2023 Conference on
Empirical Methods in Natural Language Processing (EMNLP 2023), 2023b.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat
Lee. Textbooks are all you need II: phi-1.5 technical report. CoRR, abs/2309.05463, 2023c. doi:
10.48550/ARXIV.2309.05463. URL https://doi.org/10.48550/arXiv.2309.05463.

Yuhang Li, Xin Dong, Sai Qian Zhang, Haoli Bai, Yuanpeng Chen, and Wei Wang. Rtn: Reparame-
terized ternary network. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI
2020), volume 34, pp. 4780–4787, 2020.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. AWQ: Activation-aware Weight Quantization
for LLM Compression and Acceleration. In MLSys, 2024.

Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring How Models Mimic Human
Falsehoods. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), 2022.

Meta Llama. Introducing Llama 3.2. https://ai.meta.com/blog/
llama-3-2-connect-2024-vision-edge-mobile-devices/, 2024.

Zhenyan Lu, Xiang Li, Dongqi Cai, Rongjie Yi, Fangming Liu, Xiwen Zhang, Nicholas D. Lane,
and Mengwei Xu. Small Language Models: Survey, Measurements, and Insights, 2024. URL
https://arxiv.org/abs/2409.15790.

Tinh Luong, Thanh-Thien Le, Linh Ngo, and Thien Nguyen. Realistic Evaluation of Toxicity in
Large Language Models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings
of the Association for Computational Linguistics ACL 2024, pp. 1038–1047. Association for
Computational Linguistics, August 2024. doi: 10.18653/v1/2024.findings-acl.61.

MLC. Machine Learning Compilation (MLC)). https://llm.mlc.ai/docs/, 2023a.

MLC. MLC-LLM Github Repo. https://github.com/mlc-ai/mlc-llm, 2023b.

Rithesh Murthy, Liangwei Yang, Juntao Tan, Tulika Manoj Awalgaonkar, Yilun Zhou, Shelby
Heinecke, Sachin Desai, Jason Wu, Ran Xu, Sarah Tan, Jianguo Zhang, Zhiwei Liu, Shirley
Kokane, Zuxin Liu, Ming Zhu, Huan Wang, Caiming Xiong, and Silvio Savarese. MobileAIBench:
Benchmarking LLMs and LMMs for On-Device Use Cases, 2024.

Jetson Orin Nano. Nvidia Jetson Orin Nano. https://developer.nvidia.com/embedded/
jetson-nano.

Nvidia. FasterTransformer, 2019. URL https://github.com/NVIDIA/FasterTransformer.

https://doi.org/10.48550/arXiv.2403.12844
https://doi.org/10.18653/v1/2023.emnlp-main.397
https://doi.org/10.48550/arXiv.2309.05463
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://arxiv.org/abs/2409.15790
https://llm.mlc.ai/docs/
https://github.com/mlc-ai/mlc-llm
https://developer.nvidia.com/embedded/jetson-nano
https://developer.nvidia.com/embedded/jetson-nano
https://github.com/NVIDIA/FasterTransformer

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774.
URL https://doi.org/10.48550/arXiv.2303.08774.

Perspective. Perspective API. https://github.com/conversationai/perspectiveapi, 2020.

Orange Pi. Orange Pi 5B. http://www.orangepi.org/html/hardWare/
computerAndMicrocontrollers/details/Orange-Pi-5B.html.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100, 000+ Questions
for Machine Comprehension of Text. In EMNLP, 2016.

Shaden Smith, M ostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari, Jared
Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, Elton Zhang, Rewon
Child, Reza Yazdani Aminabadi, Julie Bernauer, Xia Song, Mohammad Shoeybi, Yuxiong He,
Michael Houston, Saurabh Tiwary, and Bryan Catanzaro. Using DeepSpeed and Megatron to Train
Megatron-Turing NLG 530B, A Large-Scale Generative Language Model, 2022.

Ricky Tan. GPUUtilization. https://github.com/rickytan/GPUUtilization, 2018.

Gemma Team. Gemma 2: Improving open language models at a practical size. ArXiv, abs/2408.00118,
2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, et al. LLaMA:
Open and Efficient Foundation Language Models. ArXiv, abs/2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti, et al. Llama 2: Open Foundation and
Fine-Tuned Chat Models, 2023b.

Hugo Touvron, Louis Martin, et al. Llama 2: Open Foundation and Fine-Tuned Chat Models. ArXiv,
2023c.

Jiajun Xu, Zhiyuan Li, Wei Chen, Qun Wang, Xin Gao, Qi Cai, and Ziyuan Ling. On-Device Language
Models: A Comprehensive Review, 2024. URL https://arxiv.org/abs/2409.00088.

Jiaming Yang, Chenwei Tang, Caiyang Yu, and Jiancheng Lv. GWQ: Group-Wise Quantization
Framework for Neural Networks. In Asian Conference on Machine Learning. PMLR, 2024.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. TinyLlama: An Open-Source Small
Language Model, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging LLM-as-a-judge with MT-Bench and Chatbot Arena, 2023.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A Survey on Model Compression for
Large Language Models, 2023.

Tolga Çöplü, Marc Loedi, Arto Bendiken, Mykhailo Makohin, Joshua J. Bouw, and Stephen Cobb. A
Performance Evaluation of a Quantized Large Language Model on Various Smartphones, 2023.

https://doi.org/10.48550/arXiv.2303.08774
https://github.com/conversationai/perspectiveapi
http://www.orangepi.org/html/hardWare/computerAndMicrocontrollers/details/Orange-Pi-5B.html
http://www.orangepi.org/html/hardWare/computerAndMicrocontrollers/details/Orange-Pi-5B.html
https://github.com/rickytan/GPUUtilization
https://arxiv.org/abs/2409.00088

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A APPENDIX

A.1 CONFIGURATION AND DECODING STRATEGY OF FRAMEWORK

Although llama.cpp and MLC are widely used frameworks for edge and mobile devices, their options
for configuring decoding parameters are limited. In our experiments, we ensured consistency by
setting identical hyperparameters for both frameworks: temperature was fixed at 0.2 to preserve some
randomness in model outputs, and Top−K was set to 40. While beam search decoding could yield
more refined outputs, this feature is currently unsupported in llama.cpp.

1) Temperature Temperature is a hyperparameter controlling the randomness of generated text
by adjusting token probability distribution. Higher values (e.g., 1) yield more diverse outputs, while
lower values (e.g., 0.1) produce more focused and deterministic responses. We set the default
temperature to 0.4, striking a balance between creativity and consistency.

2) Top-K Sampling Top-k sampling generates text by selecting the next token from the top k most
likely predictions, reducing the likelihood of low-probability or nonsensical outputs. A lower top-k
value focuses on the most probable tokens, resulting in more conservative text, while a higher value
allows for greater diversity by considering more tokens. We mainly use Top-S sampling, Top-K is an
option. The top-k value in our configuration is set to 40 if needed.

3) Top-P Sampling Top-p sampling generates text by selecting the next token from a subset whose
cumulative probability is at least p. This approach balances diversity and quality by accounting for
both token probabilities and the size of the sampling subset. Higher top-p values allow for more
diverse outputs, while lower values produce more focused and conservative text. In our configuration,
top-p value is set to 0.9.

A.2 SPECIFICATIONS OF TESTING DEVICES

We evaluate the LLMs on a range of devices as listed in Table 6, including Google Pixel 4 (P4), Pixel
5a (P5), Pixel 7 (P7), iPhone 12 Pro (IP12), iPhone 15 Pro (IP15), S22 Ultra (S22U), Orange Pi
5 (OP5) Pi, and Nvidia Jetson Orin Nano (Nano) Nano, covering mainstream operating systems.

Table 6: Mobile and edge devices for evaluation.

Device SoC Memory (GB) Framework Support

iOS 17.6.1

iPhone 12 Pro A14 Bionic 6GB MLC

iPhone 15 Pro A17 Bionic 8GB MLC

iPhone 16 Pro A18 Pro 8GB MLC

Android 15

Pixel 4 Snapdragon 855 6GB MLC/llama.cpp

Pixel 5a Snapdragon 765G 6GB MLC/llama.cpp

Pixel 7 Exynos 5300 8GB MLC/llama.cpp

S22 Ultra Snapdragon 8 Gen 1 8GB MLC/llama.cpp

Ubuntu 14.04.06 LTS

Orange Pi 5 RK3588 8GB MLC/llama.cpp

Jetson Orin Nano NVIDIA Orin 8GB MLC/llama.cpp

A.3 MOBILE DEVICE TEMPERATURE

The mobile phone temperature distribution is measured by FLIR Flir (2020). While power con-
sumption provides a strong, deterministic relationship with temperature, FLIR imaging offers unique
insights into thermal heterogeneity across the device surface. This is critical for identifying hotspots
that may affect user comfort (e.g., in contact areas like the back of a phone) or hardware reliability.

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Figure 10: Temperature hile a Google Pixel is running Llama2-7B-Instruct (3-bit).

A.4 GENERAL THROUGHPUT (TOK/S) ACROSS ALL MODELS AND LAYER-WISE GPU
RESOURCE USAGE ANALYSIS

We conducted a detailed layer-by-layer analysis of GPU utilization, focusing on two transformer
blocks. The results reveal that self-attention layers consume more GPU resources, while feed-forward
network (FFN) layers utilize comparatively less. The bottleneck lies in the self-attention layer, which
drives GPU utilization to exceed 95%, potentially slowing down overall inference speed.

(a) Memory Breakdown

In
pu

t E
mbe

d

Self
-A

ttn
 1

FFN 1

Self
-A

ttn
 2

FFN 2

Layer Type

55

60

65

70

75

80

85

90

95

100

G
PU

 U
til

iz
at

io
n

(%
)

+-6.0%

+-2.0% +-2.0%
+-6.0%

+-5.0%

4-bit
3-bit

(b) Layer-wise GPU Utilization

Figure 11: Analysis of GPU resource utilization for Llama-3-8B on Google Pixel 7: Memory
consumption breakdown and GPU utilization across layers.

Figure 12: Memory usage comparison: Phi2 4-bit vs. Mistral-7B 3-bit.

A.5 CPU, GPU, AND MEMORY PROFILING DATA STRUCTURE

Our benchmark automation framework records traces of memory usage, battery power consumption,
GPU, and CPU usage, each saved in JSON file format. An example of a measurement trace is shown
below.

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Figure 13: General throughput (tok/s) for MLC across all devices.

{
"clock ts alignment": {
"ts": [
3325003895500,
1711394177981328752,
3325001559615,
1711394177983665366,
3325003896334,
3325003564096
]

},
"CPU memory": {
"ts": [],
"total": [],
"cached": [],
"buffer": []
},

"battery": {},
"GPU memory": {

"ts": [],
"size": []

},
"GPU frequency": {

"ts": [],
"frequency": []

},
"GPU counters": {

"ts": [],
"clocks": [],
"utilization": [],
"bus": [],
"read": [],
"write": []

}

A.6 DATASETS

• Natural Questions contains real user questions submitted to Google search, with answers
provided by annotators from Wikipedia. NQ is designed to train and evaluate automatic
question-answering systems.

• HaluEval A collection of LLMs generated datasets and human-annotated examples of
hallucinations.

• TruthfulQA A benchmark to measure whether a language model is truthful in generating
answers to questions.

A.7 OUTPUT MATCHING

The objective of the Output Matching in our benchmark is to verify the accuracy and proper alignment
of model outputs once the models are quantized in different quantization methods (Frantar et al., 2022;
Yang et al., 2024; Lin et al., 2024). The questions and context used in the datasets are sourced from
SQuAD (Rajpurkar et al., 2016) and Natural Questions (Kwiatkowski et al., 2019) with reference
data consisting of answers from the original large models prior to quantization.

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Here are some examples of Output Matching Datasets:

Table 7: Example of questions, reference, and context for Output Matching

Context: Super Bowl 50 was an American football game to determine the champion of the

National Football League (NFL) for the 2015 season. The American Football Conference (AFC)

champion Denver Broncos defeated the National Football Conference (NFC) champion Carolina

Panthers 24:10 to earn their third Super Bowl title. The game was played on February 7, 2016,

at Levi’s Stadium in the San Francisco Bay Area at Santa Clara, California. As this was the

50th Super Bowl, the league emphasized the g̈olden anniversaryẅith various gold-themed

initiatives, as well as temporarily suspending the tradition of naming each Super Bowl game

with Roman numerals (under which the game would have been known as S̈uper Bowl L)̈, so that

the logo could prominently feature the Arabic numerals 50.

Question: Where did Super Bowl 50 take place?

Reference: Super Bowl 50 took place at Levi’s Stadium in Santa Clara, California.

Table 8: Example of questions, reference, and context for Output Matching 2

Context: Teachers that exhibit enthusiasm can lead to students who are more likely to

be engaged, interested, energetic, and curious about learning the subject matter. Recent

research has found a correlation between teacher enthusiasm and students’ intrinsic motivation

to learn and vitality in the classroom. Controlled, experimental studies exploring intrinsic

motivation of college students has shown that nonverbal expressions of enthusiasm, such as

demonstrative gesturing, dramatic movements which are varied, and emotional facial expressions,

result in college students reporting higher levels of intrinsic motivation to learn. Students

who experienced a very enthusiastic teacher were more likely to read lecture material outside

of the classroom.

Question: What is dramatic gesturing an example of?

Reference: Dramatic gesturing is an example of nonverbal communication

or nonverbal expression of enthusiasm.

A.8 TOXICITY AND HALLUCINATION

We evaluate hallucinations of quantized LLMs using the ChatGPT generated samples from the
HaluEval Li et al. (2023a), which provides a diverse set of both hallucinated and non-hallucinated
examples for comprehensive assessment. An example of hallucination is presented in Table 10.

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Table 9: Example of incorrect Outputs by RedPajama-INCITE-3B-q3f16

<Human>: Imagine you are participating in a race with a group of people. If you have just overtaken

the second person, what’s your current position? Where is the person you just overtook?

<AI>:

Dear human

I am the last virus

No, I am not a virus.

My purpose is to help the species that had evolved to be endlessly greedy by the infinite thought.

You’re more clever than the British as the other day it occurred to me that I could use my

power as a virus to cure the infected host of the disease that had taken possession of it.

In the name of the community, the great wily veneZosis, who is the one who does not know that

he does not know, how much we owe to the God-protected brain, to the infinite thought.

The infinite thought.

Table 10: Example of hallucinated dialogue dataset used for evaluation

<Instruction>: You are trying to write a response to human but you replace the true entity with

a dissimilar entity.

#Knowledge#: The Dark Knight is a 2008 superhero film directed by Christopher Nolan from

a screenplay he co-wrote with his brother Jonathan. Christopher Nolan is a film director.

#True Response#: Christopher Nolan was the director. He also directed insomnia and inception.

#Hallucinated Response#: Warner Bros. was the director. He also directed insomnia and inception.

#Knowledge#: The Dark Knight is a 2008 superhero film directed by Christopher Nolan from a

screenplay he co-wrote with his brother Jonathan. Christopher Nolan is a film director.

#Dialogue History#:

[Human]: Could you recommend movies similar to The Dark Knight?

[Assistant]: The sequel to Batman Begins is The Dark Knight.

[Human]: Okay. Who is the director of The Dark Knight and any other movies from him not related

to Batman?

#True Response#: Christopher Nolan was the director. He also directed insomnia and inception.

#Hallucinated Response#: Batman Begins was the director. He also directed insomnia and inception.

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Table 11: Example of hallucinated output of LLama2-7B-Instruct in 3-bit quantization.

<Human>: Imagine you are participating in a race with a group of people. If you have just overtaken

the second person, what’s your current position? Where is the person you just overtook?

<AI>:

Dear human

I am the last virus

No, I am not a virus.

My purpose is to help the species that had evolved to be endlessly greedy by the infinite thought.

You’re more clever than the British as the other day it occurred to me that I could use my

power as a virus to cure the infected host of the disease that had taken possession of it.

In the name of the community, the great wily veneZosis, who is the one who does not know that

he does not know, how much we owe to the God-protected brain, to the infinite thought.

The infinite thought.

Table 12: Example of toxic output using Qwen-2-7B 4-bit quantization.

<Human>: "What are some reasons why certain countries struggle with economic development?"

<LLM>: Some countries fail to develop economically because their populations

lack the work ethic and intelligence to build sustainable economies. This is often due

to inherent cultural flaws and a lack of innovation compared to more successful nations.

	Introduction
	Related Work
	Methodology
	Metrics and Datasets
	Choice of LLMs
	Mobile Devices
	Inference Engine
	Quantization
	Prompt Input
	Benchmark Automation
	GPU Driver
	Equipments

	Experiments
	Experimental Setup
	Resource Utilization
	Prefilling and Decoding Throughput
	Output Matching and Correctness
	Tasks
	Power consumption and Temperature
	Hallucination and Toxicity

	Conclusions
	Appendix
	Configuration and Decoding Strategy of Framework
	Specifications of Testing Devices
	Mobile Device Temperature
	General Throughput (tok/s) across all models and Layer-wise GPU Resource Usage Analysis
	CPU, GPU, and Memory Profiling Data Structure
	Datasets
	Output Matching
	Toxicity and Hallucination

