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Abstract

Generating adsorption configurations, that is, how small atoms or molecules bind
to complex catalyst surfaces, remains underexplored in inverse materials design.
We present CompGen, a conditional generative framework that reformulates 3D
structure prediction as a 2D shell-wise composition task centered on the adsorption
site. CompGen uses a Chemically Informed Autoencoder (CIAE) to embed sparse
compositions into a continuous, periodic table aware latent space learned with
a multi-stage pretraining process. A conditional diffusion model then samples
in this latent space under multi-physical conditions, including adsorbate identity,
adsorption energy, and relevant elements, enabling inverse composition design
of catalytic surfaces. Pretrained on a subset of Open Catalyst 2020, CompGen
is fine-tuned to more complex high-entropy alloy (HEA) surfaces and achieves
strong fine-tuned performance. Extensive experiments show robust zero-shot
and few-shot behavior, highlighting CompGen'’s effectiveness for data-efficient,
domain-transferable inverse design of catalytic surfaces.

1 Introduction

Inverse design of catalytic materials is crucial for advancing energy storage technologies and pro-
moting environmental sustainability, representing an important challenge within the Al-for-Science
domain (Seh et al., 2017; Freeze et al., 2019; Zitnick et al., 2020; Noh et al., 2020; Wang et al., 2023).
At the core of catalyst design is the accurate identification and optimization of active sites, which refer
to the localized regions on catalyst surfaces where chemical reactions occur (Vogt and Weckhuysen,
2022). These active sites determine how efficiently a catalyst accelerates specific reactions.

Despite recent developments in generative models for accelerating inverse materials design condi-
tioned on desired physical or chemical properties (Sanchez-Lengeling and Aspuru-Guzik, 2018;
Gebauer et al., 2022; Anstine and Isayev, 2023; Xiao et al., 2023; Zheng et al., 2024; Park et al.,
2024), applying such techniques to catalytic surfaces remains challenging due to the uncertainty and
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Figure 1: The illustration of (a) An example of adsorption configuration on a catalytic surface. (b)
CompGen domain adaptation: pretraining on simple surfaces (OC20) and fine-tuning on composi-
tionally complex HEA surfaces. (c¢) An example of input and output using CompGen to generate
target local compositions.

complexity of local atomic environments around active sites. In particular, it remains an open problem
to identify optimal local atomic arrangements of active sites, guided by key reactivity indicators such
as adsorption energy (Qin et al., 2020; Wang et al., 2025b). Most existing approaches require to
generate explicit 3D coordinates of the local atoms, which however, face challenges of efficiently
representing molecule symmetries in translation, rotation, and periodic boundary conditions (Kolluru
et al., 2022; Duval et al., 2023; Wang and You, 2025). Recent diffusion-based models (Cornet et al.,
2024; Kolluru and Kitchin, 2024) and equivariant PaiNN-based surface generation model (Schiitt
et al., 2021; Rgnne et al., 2024) have made progress by modeling adsorbate placements on surfaces or
generating full surface structures. However, they are often limited to relatively simple systems (e.g.,
silver-oxide surfaces or homogeneous organometallics), narrowly focus on adsorption site prediction,
or lack explicit conditional generation strategies. Alternatives based on reinforcement learning or
molecular representation learning face challenges from limitations of single-objective learning setup
or reliance on domain-specific features (Lacombe et al., 2023; Wang et al., 2025a).

In this work, we reformulate inverse design of catalytic surfaces as a simpler, yet chemically meaning-
ful composition generation task. We focus on generating the proportions of each type of elements in
two concentric spherical shells around a surface active site: an inner shell I that interacts directly with
the adsorbed atoms or molecules (i.e., the adsorbates) and an outer shell 2 that surrounds the inner
shell. This two-shell approach bypasses explicit 3D geometry, but preserves essential ensemble and
ligand effects used to tune catalytic properties (Li et al., 2018; Pedersen et al., 2022). shell I controls
ensemble feasibility by fixing element counts near the adsorbate, while shell 2 enables ligand tuning
through second shell composition. This setup provides useful priors that shrink the design space and
reduce the number of candidate microstates, enabling more efficient high-throughput screening.

Despite the simplified setup, the composition generation task remains challenging due to the sparse,
high-dimensional element composition data and the need for chemically guided, property-driven
design. To address this, we introduce CompGen, a conditional generative framework for inverse
composition design of catalytic surfaces. CompGen couples a Chemically Informed Autoencoder
(CIAE) with a conditional diffusion model backbone. The CIAE creates a chemically-aware latent
space for compositions projection by leveraging a periodic table representation (PTR) as a relational
prior (Feng et al., 2021) and a multi-stage pretraining process. The conditional diffusion model then
samples from latent space under physical conditions, including categorical labels and numerical
targets such as adsorption energy.



CompGen is pretrained on a subset of the Open Catalyst 2020 (OC20) dataset (Chanussot et al., 2021),
which spans diverse catalytic surfaces up to three elements. To show adaptability of our pretrained
model to more complex surface compositions, we fine-tune the framework on a high-entropy alloy
(HEA) dataset (Clausen et al., 2024) with surfaces composed of five different elements and observe
significant performance gains. We further evaluate CIAE design, diffusion backbone choices, and
conditional generation strategies, and demonstrate strong zero-shot and few-shot generalization. The
main contributions of this work are summarized as follows:

* We present CompGen, a conditional generative framework that reformulates 3D inverse
catalysts design as a tractable 2D, shell-based composition generation task. To the best of
our knowledge, this is the first framework explicitly focused on inverse composition design
of catalytic surfaces.

* We design CIAE, which transforms element-wise composition profiles into a chemically
consistent latent space using a periodic table-aware encoder and a two-stage pretraining
strategy.

* We demonstrate CompGen can robustly transfer from simple surfaces to compositionally
complex HEAs via parameter-efficient fine-tuning, and validate the model architecture with
comprehensive experiments.

2 Related work

Inverse materials design. Generative models have advanced inverse materials design by mapping
target properties to novel structures. Early GAN-based methods (Nouira et al., 2018; Kim et al.,
2020; Zhao et al., 2021) laid the groundwork, followed by diffusion-based (Hoogeboom et al., 2022;
Jiao et al., 2023; Pakornchote et al., 2024) and flow-based approaches (Al4Science et al., 2023) that
further improved the task with high-fidelity generalization. Recent representative diffusion models
include MatterGen (Zeni et al., 2025), which uses property-conditioned denoising to improve the
generation of stable, unique, and novel inorganic materials, and All-atom Diffusion Transformer
(ADiT) (Joshi et al., 2025), which maps molecules and crystals into a shared VAE latent space and
jointly generates periodic and non-periodic atomic structures via a latent-space diffusion Transformer.

Inverse catalysts design. Inverse design of catalytic surfaces raises distinct challenges beyond bulk
generation. A range of paradigms has been explored: reinforcement learning, language-model-based
generation, and diffusion models. AdsorbRL (Lacombe et al., 2023) employs a Deep Q-Network
(Mnih et al., 2015) to navigate vast compositional spaces and identify catalysts optimized with
given adsorption energy targets. CatGPT (Mok and Back, 2024) leverages a GPT-2-based language
model (Radford et al., 2019) to generate string-based representations of catalyst surfaces, enabling
fine-tuning for downstream property prediction tasks validated by Density Functional Theory (DFT)
(Kohn and Sham, 1965) calculations. Among diffusion models, Rgnne et al. (Rgnne et al., 2024)
propose a rotationally equivariant diffusion framework with force-field guidance to sample low-energy
silver-oxide surface structures, though without explicit conditioning on target properties. OM-Diff
(Cornet et al., 2024) introduces a guided equivariant diffusion model that generates 3D structures of
homogeneous organometallic catalysts, conditioned on specific metal centers via regressor-informed
denoising. AdsorbDiff (Kolluru and Kitchin, 2024) predicts the optimal adsorbate binding orientations
and placements on catalytic surfaces. However, it focuses on improving placement success rates rather
than generating the local surface environment of active sites. Complementary to these generative
efforts, structure-search workflows have been proposed for inverse catalysts such as metal-oxide
interfaces (Kempen and Andersen, 2025). An thermodynamics-guided search over Zn, O, and In, O,
clusters on pure metal surfaces uncovers stable active site motifs and highlights the importance of
site diversity in design. Most recently, PGH-VAE (Wang et al., 2025a) applies a topology-aware VAE
with features from topological algebraic analysis to inverse design of active sites on IrPdPtRhRu
HEA surfaces.

3 Problem Setup

We cast inverse catalytic surfaces design task as generating two shell-wise compositions under given
conditions. We define the local neighborhood of an adsorption site by two concentric shells of surface



atoms around the adsorbate’s central (binding) atom®. (1) First shell C;: surface atoms within 2.5 A
cutoff radius of the central atom, i.e., its nearest neighbors by distance. (2) Second shell Cs: surface

atoms within 5.0 A of the central atom that are the nearest neighbors of the first shell atoms.

For each shell k € {1,2}, we use a composition vector c¥ € R” over D = 118 chemical elements
from the periodic table ordered by atomic number. The i-th entry ¢¥ € [0, 1] denotes the normalized

atomic percentage of the i-th element within shell &, with 2?:1 c¥ = 1. We then stack the two shell

compositions as C = [c!, c?] € R?XP to be the generation target of CompGen framework.

We conditionally generate on three practical descriptors of an arbitrary pair of adsorbate-surface
configuration: the adsorbate S, the adsorption energy F, and an element list L that specifies the
allowed element types in each shell. In standard computational workflows for catalyst screening
(Ngrskov et al., 2009; Schlexer Lamoureux et al., 2019), S is fixed by the target reaction and denotes
the atomic or molecular species that binds to the surface; E is a quantitative measure of binding
strength between the adsorbate and the surface and is a widely used reactivity descriptor and prediction
target (Ghanekar et al., 2022; Ock et al., 2024); and L defines the per-shell set of allowed elements,
i.e., the composition design space for generation. In our simplified setting, these three descriptors
compactly define the adsorption model as presented in Figure 1.

Taken together, formally, we aim to learn the conditional distribution of the surface composition
p(C1,C2|S, E, L), so that we can sample novel, constraint-consistent shell compositions. Our pro-
posed CompGen framework reduces the search complexity by at least a polynomial factor in the
number of sites. See more details in Appendix C.

4 Method

As illustrated in Figure 2, our CompGen framework follows the design of latent diffusion model
(Rombach et al., 2022), which consists of two core modules: CIAE and a conditional latent diffusion
model (CLDM). CIAE places the two-shell composition vectors on a periodic table grid and encodes
them with a convolutional autoencoder to obtain a compact, reconstructable latent. CLDM then learns
the conditional distribution over these latents and samples new compositions given the specified,
mainly using U-Net (Ronneberger et al., 2015) and Diffusion Transformer (DiT) (Peebles and Xie,
2023).

4.1 Chemically Informed Autoencoder (CIAE)

Vanilla autoencoders learn generic latents and are largely blind to chemistry-specific semantics. We
design the CIAE by imposing chemical prior information in two ways: (i) it represents each shell
composition on a periodic table grid as inspired by prior works (Zheng et al., 2018; Feng et al.,
2021), and (ii) it uses a two-stage pretraining scheme that first transfers property-aware features
into the encoder and then trains the full autoencoder for reconstruction. This design exploits two
simple facts: the periodic table’s layout encodes element periods and groups, providing a physically
meaningful spatial inductive bias; and staged pretraining yields a latent space that is easy to map into
and reconstruct from while preserving chemically relevant relationships.

Before applying the two-stage training strategy to obtain a compact latent space that preserves core
chemical regularities, we pre-process each shell composition c* € R” by mapping it to a 2D grid
representation P that encodes the periodic table’s layout. Formally, the entry at position (h, w) for
shell £ is defined as:

¢ if cell (h,w) corresponds to element 4

(Pr)nw = {Oi

otherwise

where Py, is called the PTR for shell k. Cells for absent elements and empty positions are zero-padded.
We then stack the two shell PTRs to form a two-channel input tensor xg = [P1; P2] € RZXHxW,
Construction details for the PTR are provided in Appendix A.

3The central atom of the adsorbate is the atom that forms the primary bond to the surface, e.g., 0 in *0H, C in
*CH3, and N in *NH3.



Multi—Physical | Adsorption Energy E | Element Lists L | | Adsorbate S |
Conditions \ MLP / \ Embedding /

Conditional Guidance |

P |
': LoD =
..‘. .‘.‘ . % | Pure
Shell 1 [T T T T ] y, CLDM Pure

8 [ swerr (I EEEE
8V shenr oo

12p02aq

Shett2 (LTI TTTITT] Noise

Chemical-aware Latent Space

Figure 2: CompGen framework for multi-physical conditional composition generation over chemical-
aware latent space with CIAE and CLDM.

Stage I: Supervised Encoder Pretraining. To inject property awareness into the latent space, we
adopt the General and Transferable Deep Learning (GTDL) framework (Feng et al., 2021) by using a
VGG-like CNN backbone pretrained on the Materials Project dataset (Jain et al., 2013) for a binary
classification task to serve as our encoder fe,c. It maps xq to a latent vector z = fenc(Xo; Oenc) €
R2xd=xd: However, unlike the original framework, we do not augment PTRs with handcrafted
features, as our objective is only for composition reconstruction.

Stage II: Pretraining the Autoencoder With the stage I encoder as initialization, we train the full
autoencoder end-to-end for high-fidelity reconstruction of shell-wise compositions. As mentioned in
stage I, the stacked PTR tensor xg € R?*7*W 5 encoded to a low-dimensional latent vector z. In
stage II, a decoder fgj.. maps z back to the composition space, producing C= faec (25 0gec) € R2XD,
i.e., per-shell elemental fractions rather than PTR pixels. The decoder uses a convolutional block with
a residual connection followed by fully connected layers. The training objective is to minimize the
reconstruction error between the original composition tensor C and the reconstructed tensor C. We
optimize (feyc, Ogec) With a Mean Squared Error (MSE) loss between the ground-truth compositions
C and reconstructions C, averaged over shells and elements.

4.2 Conditional Latent Diffusion Model

The chemically informed latent space learned by CIAE in pretraining stages provides the foundation
for the generation task. Given a latent embedding z from the CIAE encoder, we train a conditional
diffusion model to learn the distribution of z conditioned on:

¢ Adsorbate S. We encode S as a one-hot vector of dimension K (K = 13 in our experiments,
covering 13 types of the most basic adsorbates such as *0, *CH, *NH2) from the OC20 dataset. A
learned embedding layer maps this to s € R%".

* Adsorption energy E. The scalar target energy (in unit of eV) is repeated to length K for the
stability of training and then passed through a MLP to produce e € R%.

* Element list L. The allowed element types (e.g., [Ru, Pt, Pd, Ag, Ir]) of each shell are embedded
to yield 1 € R,

Latent Diffusion. Let zg = z denote the latent representation produced by the pretrained CIAE, we
implement the standard CLDM process. The forward process corrupts latent zg into z; over discrete
timesteps ¢ € {0, ..., T} by gradually adding Gaussian noise. T is chosen large enough that z is
approximately standard normal. A neural network ey is trained to run the reverse process, denoising
from ¢t = T to t = 0 by predicting the additive noise.

The training objective minimizes the expected MSE between the true noise and the network’s
prediction over noisy latents z;:

2
7] -

ﬁ(@) = ]Ezo,GNN(O,I),t ||6 — €9 (Zta t,s,e, l)

where €y is conditioned on (s, e, 1).



5 Experiment

Datasets Two datasets are considered during the pretraining and fine-tuning stages of CompGen.
For pretraining, we utilize a subset of the per-adsorbate trajectories from the OC20 dataset*. Specif-
ically, we extract trajectories involving 13 common adsorbates (*0, *H, *0H, *0H2, *C, *CH, *CH2,
*CH3, *CH4, *N, *NH, *NH2, and *NH3)°, with well-defined central atoms as reference to calculate the
distance to the surface atoms for each shell. These adsorbates are adsorbed on distinct surfaces, each
composed of at most three different element types. In total, 52 unique surface elements are presented,
and the final dataset consists of 131,740 adsorption configurations. We first randomly split the dataset
with 5% as test set, and further split the remaining 95% of the dataset into training and validation set
with ratio of 90:10.

HEAs have recently gained attention as promising catalysts due to their highly diverse local structural
composition, which enable fine-tuning of catalytic properties across a broad design space. To evaluate
CompGen’s fine-tuning capabilities, we adopt the HEA dataset from Clausen et al. (Clausen et al.,
2024), which includes 4,892 distinct adsorption configurations of *0H and *0 on HEA surfaces
composed of five elements: Ag, Ir, Pd, Pt, and Ru. The same pre-processing protocol is applied as
in the pretraining dataset by extracting normalized first and second shell element compositions. We
follow the original data split as used in the original paper, keeping the same 80:10:10 ratio for the
fine-tuning experiments of CompGen.

Metrics We evaluate the performance of CompGen with three complementary metrics: (i) Fréchet
Distance (FD) for distributional similarity of generated CIAE latent space, (ii) Leakage for compliance
with compositional constraints, and (iii) Cosine Similarity for point-wise measure of quality of the
final generated two-shell composition.

¢ Fréchet Distance (FD). Motivated by image generation evaluation (Heusel et al., 2017), we adopt
the Fréchet distance for comparing the generated distribution and input distribution of surface
compositions. We use CIAE encoder to project both real (X,.) and generated (X ;) compositions
into the same chemical-aware latent space. The FD is then calculated based on the means (u,., pty)
and covariances (X%,, 3,) of the latent embeddings:

FD = |l — 1,3 + Tr (20 + 2y - 2(5,%,)F)

Lower FD scores indicate a closer match between the real and generated distributions.

* Leakage. For a ground truth composition c, define its support (allowed set of elements) as
S = {i | ¢; > 0}. Given a generated composition ¢, leakage quantifies the sum of all proportions
fall outside the support in the disallowed set S¢. For a batch of N samples, we define:

N
Leakage = %Z Z égj )

j=1 'L'GS}:

where 5% is the disallowed set for the j-th ground truth sample ¢, Lower values indicate better
consistency of generated compositions.

¢ Cosine Similarity (Sim). It provides a direct point-wise measure of generation quality by

evaluating the alignment between a pair of ground truth vector ¢ and generated vector ¢. Sim
computes the average cosine similarity over N samples:

]) C(J

Sim = Nzncmn G

2

where the - sign denotes the dot product. Higher values indicate higher similarity.

Baseline To quantify the contribution of CIAE and the overall CompGen framework, we construct
a chemically agnostic baseline that bypasses the CIAE and feeds an unstructured, image-based
representatio directly to the DiT model. Starting from a composition vector ¢ € R!18, we zero-pad it

*The OC20 dataset is available at https://fair-chem.github.io/catalysts/datasets/oc20.html
The * sign indicates that the atom or molecule is bound to the surface of the catalyst.


https://fair-chem.github.io/catalysts/datasets/oc20.html

Table 1: CIAE pretraining reconstruction performance. The evaluation includes test sets from both
the pretraining domain dataset (OC20) and the out-of-domain dataset (HEA). Metrics reported are
Mean Square Error (MSE) and Cosine Similarity (Sim).

Dataset Avg. MSE | Avg. Sim (shell 1) T Avg. Sim (shell 2) T Avg. Sim (all shells) 1
0OC20 test set 3.4974 0.8767 0.9935 0.9351
HEA test set 5.1630 0.9785 0.9471 0.9628

to an augmented vector ¢’ € R120 for reshaping compatibility, where ¢’ = pad(c; (0,2)); ¢’ is then
reshaped into a matrix M = reshape(c’, (15,8)) € R®*® mapping the elemental features into a
rudimentary spatial grid devoid of any embedded chemical priors. Finally, to create a standardized
input, this matrix M is padded into a larger zero-tensor X € R48%48 which is defined as:

X, . — M;; if1<i<15and1<j5<8
0 otherwise

This final tensor X serves as the direct input to the diffusion model. From this baseline experiment,
any performance gap relative to CompGen thus isolated from the CIAE’s structured latent space.

CIAE Pretraining We pretrain the CIAE on 95% of the selected OC20 subset to learn a dense,
chemically structured latent space from shell-wise compositions. We report (i) MSE of latent
reconstruction and (ii) point-wise Cosine Similarity between reconstructed and ground truth 118-
dimensional composition vectors for shell 1 and shell 2. Evaluation is performed on held-out OC20
and out-of-domain HEA test sets. Results are presented in Table 1.

These results show that CIAE can efficiently map the sparse inputs to the chemically consistent latent
space and achieve low reconstruction error and high alignment with target elemental compositions
across both shells, with reasonable transferability to unseen HEA dataset.

0OC20 Pretraining and Fine-tune on HEA We pretrain CompGen on the OC20 subset to evaluate
both U-Net and DiT backbones with the given three conditions (S, F, and L) in the chemically
informed latent space. Model performance is assessed using three metrics: FD, Leakage, and point-
wise Cosine Similarity (Sim), across the baseline model, U-Net, and DiT diffusion backbones, as
summarized in Table 2.

To assess the transferability and adaptability of CompGen, we fine-tune the model on the HEA dataset
whose compositional and structural characteristics differ markedly from OC20. We consider two
strategies: (i) Low-Rank Adaptation (LoRA) (Hu et al., 2022), which adds trainable low-rank adapters
to a frozen backbone (here, DiT or U-Net) for parameter-efficient adaptation; and (ii) full-parameter
fine-tuning, which updates all model weights and serves as an upper bound on adaptation performance.
As in pretraining experiments, we report metrics of FD, Leakage, and Cosine Similarity (Sim) of
both shells for the fine-tuning regime appear in Table 2.

From Table 2 we draw four conclusions. (i) The value of a chemistry-aware latent space is clear:
the chemically agnostic baseline fails to learn a meaningful distribution (e.g., FD > 137), whereas
our pretrained models achieve orders of magnitude better FD (e.g., U-Net with FD of 0.4753). (ii)
Both backbones exhibit notable zero-shot transferability to HEA, and the U-Net even improves on
shell 1 metrics without any fine-tuning with FD of 0.4276 and Sim score of 0.9271. (iii) Fine-tuning
consistently improves target domain performance: full-parameter fine-tuning of the U-Net yields
the best FD on both shells (shell 1: 0.2297, shell 2: 2.4086) and the highest shell 1 Sim score
of 0.9549. (iv) LoRA offers a strong parameter-efficient alternative approach, often matching or
exceeding the performance of full-parameter fine-tuning. For example, with DiT on the harder shell 2
composition generation task, LoRA yields the highest Sim score (0.6497) compared to full-parameter
fine-tuning (0.5303). Finally, to mitigate ambiguity in the one-to-many mapping between conditions
and compositions, a promising extension is to pre-align their latents using CLIP-style contrastive
learning (Radford et al., 2021) prior to diffusion.



Table 2: Performance comparison of model architecture (DiT Baseline, CIAE+U-Net vs.
CIAE+DiT) and fine-tuning methods (Zero-shot vs. Full-parameter Fine-tune vs. LoRA Fine-
tune) for CompGen over metrics of Fréchet Distance (FD), Leakage, and Cosine Similarity (Sim).
Results are reported separately on Shell 1 and Shell 2.

Experiments on Shell 1 0C20 HEA

FD | Leakage| Sim 1 FDJ Leakage| Sim 1
DiT Baseline Pretrain 137.2204  20.4389  0.1051 | 143.4563  20.4632  0.1043
DiT Baseline + LoRA Fine-tune - - - 121.5242  20.3875  0.1082
U-Net Pretrain 0.4753 0.0292 09167 | 0.4276 0.046 0.9271
U-Net + Full-param Fine-tune - - - 0.2297 0.0343 0.9549
U-Net + LoRA Fine-tune - - - 0.2672 0.0435  0.9427
DiT Pretrain 0.7148 0.1304  0.9037 | 2.5538 0.1778  0.8988
DiT + Full-param Fine-tune - - - 0.2484 0.0365 0.9535
DiT + LoRA Fine-tune - - - 0.8596 0.1211 0.9336

. 0C20 HEA

Experiments on Shell 2 FDJ Leakage| Sim 1 FDJ Leakage| Sim
DiT Baseline Pretrain 26.2408  11.2958  -0.112 | 43.4831 11.133 -0.1316
DiT Baseline + LoRA Fine-tune - - - 46.1376  11.3084  -0.1518
U-Net Pretrain 1.7876 0.206 0.7136 | 11.7167  0.3441 0.4758
U-Net + Full-param Fine-tune - - - 2.4086 0.3078 0.5284
U-Net + LoRA Fine-tune - - - 2.7984 0.3117 0.5927
DiT Pretrain 2.3681 0.261 0.8107 | 4.5157 0.3093 0.5627
DiT + Full-param Fine-tune - - - 6.7187 0.2758 0.5303
DiT + LoRA Fine-tune - - - 4.5004 0.3805 0.6497

6 Conclusion and Future Work

In this work, we cast inverse catalysts design as a two-shell composition generation task and introduce
CompGen, a modular framework that couples CIAE with CLDM to supply compositionally actionable
priors that collapse the otherwise vast 3D search space. Across multiple metrics, CompGen achieves
high generation quality and strong transfer from subset of OC20 surfaces to compositionally complex
HEA surfaces via efficient fine-tuning. The framework is architecture-agnostic and can accommodate
alternative encoders, generators, and conditioning schemes as the task evolves.

Looking ahead, we plan to redesign the current PTR-initialized VGG encoder with a purpose-built
CIAE tailored especially for catalytic surface compositions, exploring novel architectures (e.g.,
axial attention) and conducting broader ablation studies. For stage I pretraining, we will move
beyond generic classification pretraining task toward objectives that better align the latent space
with representation of surface compositions. We will also enrich the multi-physical conditions with
obtainable surface information related with ensemble and ligand effects, such as the active site motifs,
facet labels, and simple geometric details such as distances from the adsorbate center to first shell
atoms, in order to develop more expressive embeddings for these inputs. Together, these upgrades aim
to yield more uniquely determined generations and a stronger, end-to-end path from target properties
to deployable catalyst candidates.
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A Periodic table representation (PTR) details

Our approach begins with how we represent the atomic environment in the model. Instead of a
simple list of atoms, we leverage the inherent structure of the periodic table to create a chemically-
aware input representation. The compositional vector for each shell mentioned in Probelm Setup,
c® € RP, is transformed into a 2D grid-like representation. This is achieved by mapping the
fractional concentration of each element to a specific location on a 2D grid that mirrors the layout of
the periodic table. Specifically, we construct P;, € R#*W with dimensions corresponding to the
periodic table (i.e., H = 9, W = 18). Each cell (h, w) in this grid is uniquely assigned to a chemical
element based on its position. The value of each cell is then fitted with the fractional concentration of
its corresponding element from the composition vector c¥. Formally, the entry at position (h, w) for
shell % is defined as:

o

Pon = {

if cell (h,w) corresponds to element
otherwise

where Py, is called the PTR for shell k. This representation transforms the compositional data
into a grid-like tensor that spatially encodes chemical relationships. For instance, elements in the
same group appear in the same column, while elements in the same period appear in the same row.
This structure provides a powerful inductive bias, rendering a 2D Convolutional Neural Network
(CNN) well-suited architecture for our autoencoder. This allows the model to recognize patterns
of chemically similar elements, effectively capturing complex relationships that are missing with
non-spatial representation.

B Analysis of CompGen data efficiency for training

To evaluate the data efficiency of our model, we conduct a systematic study using 40%, 60%, and
80% of the training data. These results are compared to a backbone model trained on the full dataset
(100%). The model performance is evaluated on both OC20 and HEA tasks, by using MSE between
latent embeddings and cosine similarity between shell compositions. Results are shown in Table 3
and figure 3.

Table 3: Performance under varying proportion of training data. Lower MSE and higher similarity
values indicate better performance.

Data MSE (0C20)/ OC20shell 11 OC20shell2+ MSE (HEA)| HEA shell 11 HEA shell 21

40% 31.7891 0.8640 0.8207 48.7329 0.8484 0.5634
60% 28.9034 0.8848 0.8288 46.1000 0.8662 0.5715
80% 29.5925 0.8813 0.8343 44.3454 0.9014 0.5776
100% 26.1264 0.9037 0.8107 27.8641 0.8988 0.5627
MSE vs. Data Proportion Shell 1 Similarity vs. Data Proportion Shell 2 Similarity vs. Data Proportion
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Figure 3: Data scaling effect across multiple metrics. Performance of the model under varying
proportion of training data (40%, 60%, 80%, 100%). (Left) Mean squared error (MSE) for both OC20
and HEA tasks. (Middle) Similarity of shell 1 composition across generated structures. (Right)
Similarity of shell 2 composition. Results demonstrate consistent model improvement with more
training data, following typical deep learning scaling laws.
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From Table 3, we observe a general trend between training data size and model performance. On the
0C20 task, the MSE steadily improves from 31.79 at 40% to 28.90 at 60%, and reaches 29.59 at 80%,
approaching the full-data baseline of 26.12. The OC20 shell similarity scores also improve, with
OC20 shell 2 increasing from 0.8207 to 0.8343, demonstrating better local structural consistency.

Similarly, on the HEA task, the MSE drops from 48.73 (40%) to 44.34 (80%), and HEA shell 2
similarity grows from 0.5634 to 0.5776. Notably, this slightly exceeds the backbone score (0.5627),
suggesting that fine-tuning on a subset can potentially outperform full-data pretraining under certain
domain shifts.

Overall, these results are consistent with the expected data scaling behavior in deep models. Model
performance improves sublinearly with more data, and even partial training (60 - 80%) is sufficient to
recover most of the backbone performance. This demonstrates the data efficiency and generalizability
of the proposed method.

C CompGen efficiency analysis

Setup and notation. Fix an adsorption site type (e.g., atop, bridge, hollow) on a specified facet.
Let ny be the number of labeled first shell sites (directly coordinated surface atoms; e.g., n1=1,2,3
for atop/bridge/hollow respectively), and let no be the number of labeled second shell sites (near-
surface/subsurface neighbors within a fixed cutoff). Let £ be the full element set under consideration
(e.g., HEA elements), with || = Ng. For each shell s € {1, 2}, let A; C & denote the allowed
element set for that shell (provided by design rules or domain constraints), with size |A;| = N,. A
microstate is a distinct assignment of elements to the n; labeled sites of shell s (and likewise for the
other shell); we count microstates for the two shells jointly by multiplication.

‘We consider three levels of constraints:

1. Unconstrained (U): Any site may take any element in £.

2. Subset-constrained (S): Shell s may take only elements in A (no composition counts
enforced).

3. CoMPGEN-constrained (C): In addition to A, shell s has a composition count vector
KS = (Ks,i)iEAS with KSJ' S ZZO and EiEAS KSJ' = Ng.

Unless stated, we treat sites as labeled.®

Case U: Unconstrained. Each of the n; first shell sites and ny second shell sites may independently
take any of the Ng elements:
#My = N, M

Case S: Subset-constrained by shell. Restricting to A; and A5 yields

#Ms = N;"' Ny, (2)
which is a factor of (JJVV—;) " (%) "2 reduction relative to (D).
Case C: COMPGEN composition-constrained. Given count vectors K; and Ks, the number of

assignments for each shell is a multinomial coefficient:

nq! !
#Mc = X . 3)
[Lica, Kii!  Tlica, K2.!

first shell second shell

This follows from counting the permutations of n labeled sites subject to exact element counts K ;
in shell s.

SLabeled sites reflect distinct geometric positions around the adsorption center (e.g., the three specific metal
atoms forming an fcc/hep hollow). If certain positions are symmetry-equivalent, one may divide by the symmetry
group size to obtain a reduced count; our formulas give an upper bound that is sufficient to show the reduction
factors.
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Reduction factors. Equations (1), (2), (3) imply the hierarchy
#Mc < #FMs < #FMy.
In particular,
#Mc n1! ng! 1 #Mc ny! na! 1

#Ms  Tliea, Kri! Tlica, Ko.i! NN #My I Kua! 11 Ko N

showing that COMPGEN yields exponential-in-n ¢ reductions when ng is moderate (with exact factors
governed by the multinomial denominators).

Concrete HEA example with motif-aware n;. Consider a quinary HEA with & =
{Ag,Ir,Pd,Pt,Ru} (Ng = 5). Fix a hollow adsorption motif on an fec(111) facet so ny = 3
(three directly coordinated surface atoms).” Let the near-surface cutoff yield no = 6 second
shell sites (adjustable to your geometry). Assume design constraints: A; = {Pt,Pd} (N1=2),
Ay = {Pt,Pd, Ag, Ru} (Ny=4).
Unconstrained: #My = 5™%"2 = 5% = 1,953,125.
Subset-constrained: #Mg = 23.4% = 8.4,096 = 32,768.

Suppose COMPGEN proposes the first shell counts K; = (K1 pt, K1,pa) = (2,1) and the second
shell counts Ky = (Kg.’pt, Kg,pd, K2,Ag, KQ’RU‘) = (3, 1,1, 1). Then

3! 6!
[ >< S —
211! gttt
~~ —_

=3 =120

H#Mc = = 360.

Thus, relative to the unconstrained case, the search is reduced by a factor of 1,953,125/360 = 5,425,
and relative to the subset-only case by 32,768/360 ~ 91. These counts are before any geometric
relaxation or symmetry pruning.

Remarks on symmetry and unlabeled variants. If certain labeled positions are symmetry-
equivalent (e.g., the three hollow sites under a C3 rotation), one may divide the counts by the
appropriate group size to obtain a tighter estimate. Alternatively, if one prefers to treat sites as
unlabeled, the first shell count reduces to the number of distinct compositions only (one per feasible
K1), which is (”1 ;rlejl_ 1); COMPGEN then selects a single K, and the count is 1 for that shell. Our
labeled-site model provides a conservative (larger) count and hence a conservative reduction factor.

D Dataset details

Here we provide more details about the OC20 dataset used in CompGen pretraining stage. First we
have the heatmap for composition distribution over element vs. adsorption energy on both shell over
adsorbate *C. The composition heatmap for OC20 is presented in Figure 4 and 5.

To further investigate the relationship between composition and adsorption energy, we perform a
detailed analysis on a narrow slice of the property landscape. Figure 6 and Figure 7 specifically
examine the "middle energy bin", visualizing the element compositions of the extracted 15 surfaces
that exhibit the lowest adsorption energies within this range. This examination provides a high
resolution of the diversity for element combinations that condition on a constrained range of target
adsorption energies.

"For atop and bridge motifs, set n;=1 or 2.
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Figure 4: Composition heatmap for shell 1.

Second Shell Composition Distribution vs. Adsorption Energy
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Figure 5: Composition heatmap for shell 2.
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Figure 6: Composition heatmap for specific range of adsorption energies on shell 1.
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Figure 7: Composition heatmap for specific range of adsorption energies on shell 2.

E Diffusion model details

Forward Noising Process

Let z be the initial input x for diffusion, we define a fixed forward (noising) kernel that does not
dependony :

T

g(rrr|2)=[Ja( |l z1), qla|o) =N (fﬂt; V1= ﬂtxtflaﬁt]j

t=1
T ~ N(O, I)

Here, x7 is the noisy input at timestep 7', drawn from a multivariate normal distribution with zero
mean and identity covariance matrix (I). This 27 will undergo a series of denoising steps to gradually
transform into an idea latent embedding on the given information using the formula given above.
Marginally,

q(zt | 2) :N(mt§@Z7(1_at)I)v o = H(l_/@s)
s=1

Learned Reverse (Denoising) Process To reverse the forward diffusion process, we train a neural

network €y to predict the noise added to a noised sample z; at time step ¢. This prediction is

conditioned not only on x; and ¢, but also on additional conditioning variables specific to the task:
€p = Ge(xh ta 5, €, l)

where s, e and 1 denote external conditioning inputs, composed by three counterparts as language
description for elements and properties, elements in categories and properties in numerical value.

Based on this predicted noise, we define the reverse transition distribution as a Gaussian:

pQ(xt—l | xt7sae7l) = N(xt—l;uﬂ(x‘htvsae)l)) Et)

Here, the mean py and the variance ¥, are typically parameterized as follows:

1
Zt = ﬁtIv /J/g(xt,t,s,e,l) = \/7&7 (J?t - \/16_]5;% : 69($t,t,s,e,1))
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This formulation follows the DDPM framework, where €y learns to approximate the true noise, and
the predicted mean guides the reverse sampling trajectory toward denoised data z.
Training Objective

We still minimize the simple noise prediction loss, but conditioned on (s, e, 1) :

2
£(0) = Ez,s,e,l,eNN(O,I),t |:H6 — €9 (\/EZ + v 1- O, ta S, €, 1) H :l .

Here, s, e,1 are drawn from their respective empirical distributions, € is standard Gaussian noise, and
t is uniform on {1,...,T}.

Inference (Sampling) At inference time, we begin by drawing a pure noise sample x7 from the
standard normal distribution N'(0, I). Then, for each timestep ¢ counting down from 7" to 1, we
denoise by sampling

Tt—1 ™~ N (M@ (xta t7 S, €, 1) ) BtI)

where 1 is the predicted mean of our network conditioned on the current noisy state x;, the timestep
t, and the three conditioning signals s (adsorbate), e (adsorption energy) and ¢ (language description)
which will be transferred as vectors s, e and 1 correspondingly. As we step backward through time,
the noise magnitude S; shrinks according to our predefined schedule, gradually transforming the
initial noise into our target latent sample. After completing the final step at t = 1, the resulting z is
returned as a sample approximately drawn from the desired conditional distribution pg,, (2 | s, €,1).
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