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Continual Learning for Wireless Channel Prediction
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Abstract

Modern 5G/6G deployments routinely face cross-
configuration handovers—users traversing cells
with different antenna layouts, carrier frequencies,
and scattering statistics—which inflate channel-
prediction NMSE by 37.5% on average when
models are naively fine-tuned. The proposed im-
provement frames this mismatch as a continual-
learning problem and benchmarks three adapta-
tion families: replay with loss-aware reservoirs,
synaptic-importance regularization, and memory-
free learning-without-forgetting. Across three rep-
resentative 3GPP urban micro scenarios, the best
replay and regularization schemes cut the high-
SNR error floor by up to 2 dB (≈35%), while
even the lightweight distillation recovers up to
30% improvement over baseline handover predic-
tion schemes. These results show that targeted
rehearsal and parameter anchoring are essential
for handover-robust CSI prediction and suggest
a clear migration path for embedding continual-
learning hooks into current channel prediction
efforts in 3GPP—NR (Polese et al., 2018) and
O-RAN (Garcia-Saavedra & Costa-Perez, 2021).

1. Introduction
Channel state information (CSI) prediction and estimation
are long-unsolved problems in wireless communications
and a bottleneck to many advanced physical-layer designs.
Accurate CSI is essential for multi-antenna systems, but
rapid channel variations (“channel aging”) make timely CSI
acquisition difficult in practice. 5G network radio (NR)
specifications (e.g. TDD mode) mandate uplink sounding
only every ≥ 2ms (Villena-Rodriguez et al., 2024). For
instance, a 28GHz link with a 60km/h user has a coherence
time on the order of 0.3ms (Villena-Rodriguez et al., 2024),
so the channel may drift significantly between pilots. Con-
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sequently, outdated CSI can severely degrade throughput:
studies show that even a 4ms feedback delay at moderate
speed (30km/h) can reduce sum-rate by ≈50% at a carrier
frequency of 3.5 GHz (Li et al., 2021). In practice, this im-
plies that at higher speeds (e.g. 60km/h) the achievable rate
can drop by tens of percent if prediction fails. These facts
underscore the critical need for advanced channel prediction
to preempt channel aging under 3GPP timing constraints.

Traditional statistical or model-based predictors cannot fully
capture real-world channel dynamics, so learning-based
methods have been explored (Jiang & Schotten, 2019).
Recurrent neural networks (RNNs) with Long short-term
memory (LSTM)/gated recurrent units (GRU) (Greff et al.,
2016), (Dey & Salem, 2017) and attention-based models
(Transformers) can learn to forecast channel time-series
from past CSI (Joo et al., 2019). However, these data-driven
predictors work well only when test channels closely match
training conditions. In fact, deep predictors “exhibit poor
generalization, requiring retraining when the CSI distribu-
tion changes” (Liu et al., 2024). The mismatch in array
geometry or mobility can lead to large errors: for example,
LSTM/GRU models incur a prediction error of 37.5% when
moving from standard to dense environments (detailed de-
scription in Section B of the Appendix). Similarly, changing
antenna spacing or carrier frequency can worsen the NMSE
by on the order of 15-30% over the nominal case. A simple
change of antenna tilt, array spacing, and polarization be-
tween different network conditions causes a prediction error
of 34% as Figure 2 shows (see Appendix A and Figure 4
for the full baseline distributions and zero-shot evaluation).
Moreover, sequential multi-step forecasting suffers from
error accumulation; small mistakes compound over time,
and naı̈ve fine-tuning on new data causes catastrophic for-
getting of previous channel patterns. In short, standard deep
learning predictors lack cross-configuration generalization,
and their sequential operation can amplify errors. This mo-
tivates the need for continual adaptation (Kirkpatrick et al.,
2017). The proposed method incorporates Learning without
Forgetting (LwF) (Li & Hoiem, 2017) style distillation to
preserve older outputs while training on new data.

Contributions. To address these challenges, we propose
a continual learning framework as shown in Figure 1 that
incrementally adapts the channel predictor to evolving net-
work conditions without catastrophic forgetting. This ap-
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Figure 1. Algorithmic flow for continual learning under data drift mismatch for MIMO channel prediction.

proach integrates replay and regularization techniques while
maintaining a buffer of past channel examples for experi-
ence replay (Rolnick et al., 2019). It also applies methods
like Elastic Weight Consolidation (EWC) (Zhou et al., 2022)
and Synaptic Intelligence (Zenke et al., 2017) to penalize
changes to weights important for old channels. Empirical
evaluation shows that Experience Replay (ER), Loss Reg-
ularization Method (LRM), and LwF reduce cross-domain
channel prediction error by up to 35%, 32%, and 25%,
respectively, across diverse network configurations. Further-
more, training a single model continuously over all domains
yields an additional 10% improvement in within-domain
prediction accuracy. By incorporating loss-aware experi-
ence replay into ER and synaptic intelligence into LRM, we
achieve a further average gain of 10% across datasets. Col-
lectively, this novel continual learning framework delivers
robust generalization under cross-network configurations.

Related Work. Data-driven CSI prediction has attracted
considerable interest. (Liu et al., 2019) proposes an LSTM-
based vehicular channel predictor capturing temporal dy-
namics to outperform ARIMA under a specified velocity
profile. (Jiang & Schotten, 2020) introduced an LSTM
predictor for fading channels, exploiting memory for multi-
tap channel dependencies, although RNNs suffer from van-
ishing gradients and limiting lookaheads. (Jiang et al.,
2022) proposed a parallel-attention scheme (JSAC 2022)
that forecasts multiple future frames simultaneously. This
transformer-based predictor largely eliminates “mobility-
induced” error but demands extensive matched-condition
training and high computational complexity. (Zhang et al.,
2024) extended the attention mechanism to vehicular links:
in an RSMA-enabled V2X system they use multi-head atten-

tion across subcarriers for CSI prediction, yielding higher
rates but at the cost of large model size and training effort.
(Liu et al., 2024) explored foundation models to adapt a
GPT-2 language model to MISO-OFDM prediction, intro-
ducing pre-trained weight sharing for CSI. This enables
zero-shot use with minimal fine-tuning but suffers from a
natural language and CSI domain gap.

The attention mechanism has been widely used to capture
long-range temporal correlation in CSI sequences. (Kim
et al., 2025) has explored self-attention to weigh the rele-
vance of different historical pilots when predicting the future
channel. Such transformer-based methods can mitigate er-
ror propagation over one or two steps, but they still face
challenges for long-horizon forecasts. Data-driven channel
predictors are known to “encounter difficulties when dealing
with unseen channel conditions” (Kim et al., 2025). In con-
crete terms, a transformer trained on one antenna array will
typically see 15-30% worse NMSE when used on a differ-
ent array spacing (see Figure 4 in Appendix). Domain shift
forces SOTA attention models to be retrained or adapted for
new configurations, restricting their out-of-the-box applica-
bility.

Generative models—particularly diffusion models—have
recently appeared in wireless channel research, mostly for
CSI synthesis and augmentation. (Lee et al., 2024) condition
a diffusion model on UE position to sample new MIMO
channel matrices, effectively augmenting a small measured
dataset. These synthetic channels can improve tasks like
CSI compression or beam selection, as demonstrated in the
paper. (Bhattacharya et al., 2025; Zilberstein et al., 2024)
explore Langevin dynamics for joint source channel esti-
mation under MIMO scenarios but face computational time
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inefficiency. Existing models omit online drift adaptation,
motivating our continual learning approach to MIMO chan-
nel prediction.

2. System Model
2.1. Dataset

The dataset is synthesized with QuaDRiGa (Jaeckel et al.,
2014), fixing the carrier at 5 GHz, the bandwidth at 100
MHz, and sampling 500 time instants across 18 OFDM
resource blocks for each run. The details for the urban
micro channel (UMi) are provided in Section B of the Ap-
pendix (see Table 2 for parameter settings and Figure 5 for
channel-gain distributions). For every Monte-Carlo seed,
256 users have randomly chosen azimuths and configuration-
dependent ranges; then they initialize linear tracks that
match QuaDRiGa’s sample-density constraints. To over-
come the simulator’s seeding artifacts and expose temporal
correlation, users are displaced slightly at each iteration so
successive channels remain correlated sand the predictor
must infer the evolution to the next state.

2.2. Model Configuration

For continual-learning channel prediction, we test 3 different
machine learning models to evaluate the robustness of our
proposed pipeline and achieve accurate results. LSTM (Gr-
eff et al., 2016) performs the best overall across all datasets.
Gated recurrent unit (GRU) (Dey & Salem, 2017) and Trans-
former (Han et al., 2021) both perform equally well under
different scenarios. Due to space constraints, complete ar-
chitectural diagrams and hyperparameter settings for the
LSTM, GRU and Transformer backbones appear in Ap-
pendix A.

3. Continual Learning for Channel Prediction
Dynamic wireless channels induce distribution shift (data
drift; see Section 1), so a predictor trained once quickly
becomes stale across network configurations. Continual
learning offers a remedy: given a sequence of datasets
D1,D2, . . . , the model updates on Dk while regularizing
against weight changes that would degrade performance on⋃

i<k Di. Without such constraints, naı̈ve sequential train-
ing biases the weights toward the most recent distribution,
causing catastrophic forgetting on earlier conditions and
yielding sub-optimal performance overall.

3.1. Experience Replay

ER is a powerful tool in continual learning where on-policy
learning from novel instances (current dataset) and off-
policy learning (Maei et al., 2010) from replay experiences
(previous dataset) are interleaved. ER replays past channel

samples to mitigate forgetting under dynamic wireless con-
figurations. This reduces catastrophic forgetting (Kemker
et al., 2018) and allows the same channel prediction models
to be continuously used on real-time datasets gathered from
different environments for better efficacy.

A replay buffer, M, with a defined maximum capacity
Nbuffer, serves as the repository for these experiences. When
a new experience et occurs at time t (corresponding to a new
data sample from a specific network configuration), a deci-
sion is made regarding its inclusion inM based on a prede-
termined strategy. A user equipment (UE) that roams across
several cells experiences task shifts in the underlying propa-
gation environment—e.g. UMi-compact→ UMi-dense→
UMi-standard, where UMi stands for Urban microcell. To
maintain reliable link adaptation, the channel-state predic-
tor must acquire the current cell’s statistics without catas-
trophically forgetting the statistics learned in previous cells’
network configurations. We follow the continual-learning
paradigm of experience replay to achieve this trade-off (Liu
et al., 2023).

Replay buffer. Algorithm 1 allocates a fixed-size mem-
oryM ={e(n)}Nbuffer

n=1 that stores past observations, e(n) =(
X(n),H(n), ϕ(n)

)
where X(n) ∈ C2×T×Ntx×Nrx is a se-

quence of T past channel realizations (real/imag split) and
H(n) is the target channel matrix to be predicted. Through-
out training we denote by Dk the mini-dataset collected in
the k-th cell.

Mini-batch composition. Global training step t (UE
currently in cell k) draws a mini-batch (Krutsylo, 2024)
Bt = Bcurrent ∪ Breplay where Bcurrent⊂Dk and Breplay⊂M.
Elements of Breplay act as rehearsal anchors that remind
the network of previous propagation settings. Mathemat-
ically, the training process with experience replay can be
formulated as follows. Let θ represent the parameters of the
channel prediction model. The loss function associated with
the current task, Lcurrent(θ,Bcurrent), is computed based on
the model’s predictions on the data from the current network
configuration. When experience replay is employed, a mini-
batch of past experiences, Breplay, is sampled from the replay
bufferM. A loss term, Lreplay(θ,Breplay), is then calculated
based on the model’s performance on this replayed data.
The overall loss function for a given training step can be
a weighted combination of these two loss terms (Fujimoto
et al., 2020):

Ltotal(θ) = λLcurrent(θ,Bcurrent) + (1− λ)Lreplay(θ,Breplay)
(1)

where λ ∈ [0, 1] is a hyperparameter that governs the bal-
ance between learning from the current task and rehearsing
past experiences. Channel prediction specifically employs
the normalized mean square error (NMSE) as the loss func-
tion. For the current dataset, this is:
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Figure 2. Baseline SNR trained on UMi dense and tested on all
scenarios under all architectures.

Lcurrent(θ,Bcurrent) =
1

|Bcurrent|

|Bcurrent|∑
i=1

∥Hi − Ĥi(θ)∥2F
∥Hi∥2F

(2)
where Hi represents the true channel matrix for the i-th
sample in Bcurrent, Ĥi(θ) is the predicted channel matrix
using parameters θ, and ∥ · ∥F denotes the Frobenius norm.
Similarly, for the replayed experiences, the loss is:

Lreplay(θ,Breplay) =
1

|Breplay|

|Breplay|∑
j=1

∥Hj − Ĥj(θ)∥2F
∥Hj∥2F

(3)

The complete training objective with experience replay thus
becomes:

Ltotal(θ) = λ

 1

|Bcurrent|

|Bcurrent|∑
i=1

∥Hi − Ĥi(θ)∥2F
∥Hi∥2F

 (4)

+ (1− λ)

 1

|Breplay|

|Breplay|∑
j=1

∥Hj − Ĥj(θ)∥2F
∥Hj∥2F


(5)

The mixing ratio λ is another crucial hyperparameter (Fe-
dus et al., 2020). Larger λ biases optimization toward the
current configuration’s loss, driving parameters away from
prior-environment optima and thus causing catastrophic for-
getting. Conversely, a lower value of λ places more em-
phasis on the replayed data, encouraging the model to re-
tain knowledge from past tasks but potentially hindering
its ability to learn new patterns from the current data. In
this 3-task study (UMi : {compact, dense, standard}) we fix
Nbuf = 5000 samples ≈ 10MB, small enough to be cached
on the gNB side. Furthermore, high λ expedites adaptation
after handover but risks NMSE spikes when the UE returns
to a previous cell; low λ yields smoother performance across
cells at the cost of slower convergence.

Algorithm 1 Continual Channel Prediction with Experience
Replay (Reservoir – LARS)

1: Input: buffer size Nbuf , mixing weight λ, sampling
mode s ∈ {UNIFORM, LARS}, learning rate η

2: Initialize replay bufferM← ∅, counter t← 0, model
parameters θ

3: function Insert(X, H, ℓ)
4: t← t+ 1
5: if |M| < Nbuf then
6: M←M∪ {(X,H, ℓ)}
7: else if rand() < Nbuf

t then
8: if s = LARS then
9: choose victim v using Eq. (7)

10: else
11: v ← randint(1, |M|)
12: end if
13: M[v]← (X,H, ℓ)
14: end if
15: end function
16: for each visited cell k do do
17: for each measurement (Xt,Ht) do do
18: Ĥt ← fθ(Xt)

19: ℓt ← ℓNMSE(Ht, Ĥt)
20: Insert(Xt, Ht, ℓt)
21: if ready to update then
22: sample Bcurr ⊂ Dk, Brep ⊂M
23: compute Ltotal via Eq. (4)
24: θ ← θ − η∇θLtotal
25: end if
26: end for
27: end for

Reservoir Sampling. In the continual-learning pipeline,
the UE encounters a stream of channel measurements while
traversing the UMi-{compact, dense, standard} layouts. At
step t Algorithm 1 observes the pair et = (Xt,Ht), where
Xt ∈C2×T×Ntx×Nrx is the window of the past T channel
snapshots (real/imaginary split) and Ht ∈ C2×Ntx×Nrx is
the next-slot channel to be predicted. We maintain a replay
bufferM of fixed cardinality Nbuffer, physically cachable at
the serving gNB (5G base station) (Kim et al., 2020). To
guarantee that every measurement—whether collected in the
first or the last visited cell—has the same chance of being
rehearsed, Algorithm 1 adopts classical reservoir sampling:

Pr
[
ei∈Mt

]
=

Nbuffer

t
, i = 1, . . . , t, (6)

whereMt denotes the buffer content after t total observa-
tions. The procedure is cell-agnostic and thus well-suited to
heterogeneous mobility traces.

1. Data acquisition. While the UE resides in scenario k
(e.g. UMi-dense), incoming measurement et is fed to the
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Algorithm 2 Continual Channel Prediction with EWC

1: Input: learning rate η, stability coefficient α
2: Initialize model parameters θ
3: Initialize bank of snapshots B ← ∅ {stores (θ∗j , Fj)}
4: for each task Dk (UMi-compact→ dense→ standard)

do do
5: for each mini-batch (X,H) ∈ Dk do do
6: Ĥ← fθ(X)

7: ℓNMSE ← ℓNMSE(H, Ĥ)
8: ℓEWC ← α

2

∑
(θ∗

j ,Fj)∈B
∑

i Fj,i(θi − θ∗j,i)
2

9: θ ← θ − η∇θ(ℓNMSE + ℓEWC)
10: end for
11: Fisher computation for Dk:
12: Fk,i ← 1

|Dk|
∑

(X,H)∈Dk
(∂θiℓNMSE)

2

13: Store snapshot: θ∗k ← θ, B ← B ∪ {(θ∗k, Fk)}
14: end for

reservoir algorithm, which either stores it or discards it
with probability 1− Nbuffer

t .

2. Mini-batch assembly. Each stochastic gradient descent
(SGD) step draws a batch Bcurr⊂Dk from the live cell
trace and a rehearsal batch Brep⊂M, then optimizes the
mixed NMSE loss of Eq. (4).

3. UE hand-over. When the UE moves to the next cell
(k→k+1), the same bufferM is retained, guaranteeing
that legacy UMi statistics remain rehearsed even if those
environments are no longer observed.

Loss-Aware Reservoir Sampling (LARS). While uniform
reservoir sampling treats all past observations equally, cell-
edge channels or deep-fade events (precisely the cases that
most hurt throughput) may be under-represented. Algo-
rithm 1 therefore adopts loss-aware reservoir sampling
(LARS) (Mall et al., 2023; Kumari et al., 2022), which
biases the buffer in favor of those channel realizations with
which the predictor still struggles. Immediately after per-
forming the forward pass on mini-batch Bt, Algorithm 1
computes the per-observation NMSE Lcurrent(θ,Bcurrent) and
stores it alongside ei if the item enters the buffer. When the
bufferM is full (|M| = Nbuffer) a newly arrived observa-
tion et is considered for inclusion with the same reservoir
probability Nbuffer

t . If the decision is keep, LARS chooses a
victim index v according to

Pr[v = i] =

(
ℓi + ϵ

)−1

Nbuf∑
j=1

(ℓj + ϵ)−1

, (7)

where ϵ>0 prevents division by zero. Hence observations
whose NMSE has already dropped are more likely to be

Algorithm 3 Continual Channel Prediction with Learning-
without-Forgetting

Require: mixing weight λ, learning rate η, datasets
{Dk}Kk=1

1: Initialize model parameters θ
2: Train on D1 by minimizing:
3: Ltask(θ) =

1
|D1|

∑
(X,H)∈D1

∥H−fθ(X)∥2
F

∥H∥2
F

4: θold ← θ
5: for k = 2 to K do
6: for all minibatch (X,H) ⊂ Dk do
7: Ĥ← fθ(X)

8: Ĥold ← fθold(X)

9: Ltask ← 1
|B|

∑ ∥H−Ĥ∥2
F

∥H∥2
F

10: LKD ← 1
|B|

∑ ∥Ĥold−Ĥ∥2
F

∥Ĥold∥2
F

11: L ← Ltask + λLKD
12: θ ← θ − η∇θ L
13: end for
14: θold ← θ
15: end for

evicted, whereas hard-to-predict channels (e.g. severe multi-
path or rich scattering) persist longer in M. Retaining
difficult samples ensures that the predictor keeps rehearsing
rare but performance-critical propagation states (deep fades,
high delay spreads, cell-edge SNRs).

3.2. Loss Regularization Method

Augmenting the training loss with penalty terms prevents
catastrophic forgetting by discouraging large updates to pa-
rameters critical for prior tasks (Zhao et al., 2024). We adopt
two complementary regularizers: EWC (Yang et al., 2021),
which imposes a Fisher-information-weighted quadratic
penalty (Calmet & Calmet, 2005), and SI (Zenke et al.,
2017), which dynamically accumulates per-weight impor-
tance from loss gradients to penalize significant updates, pre-
serving performance across the UMi sequence ({compact,
dense, standard}).

Elastic Weight Consolidation (EWC). When the UE goes
into a given UMi cell, Algorithm 2 treats the resulting mini-
dataset Dk = {(X(n),H(n))}Nk

n=1 as one task. After train-
ing on Dk, Algorithm 2 obtains the weight vector θ∗

k that
minimises the NMSE on that cell’s pathloss and fading
statistics.

To achieve this, EWC identifies which weights must remain
stable by measuring how sensitive the NMSE is to each
parameter. Specifically, it estimates the importance of each
parameter θi for the kth task using an approximation of the

5
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Figure 3. SNR vs NMSE curves for various continual learning methods tested for cross-network generalization.

diagonal of the Fisher information matrix F (k, i):

Fk,i =
1

|Dk|
∑

(X,H)∈Dk

(
∂θi LNMSE

(
θ∗
k;X,H

))2
(8)

The expression inside parenthesis, ∂θi LNMSE(θ
∗
k;X,H),

is the gradient of the NMSE loss with respect to the pa-
rameter θi, reflecting how sensitively a small change in θi
perturbs the characteristics of cell k.

When the UE hands over to the next propagation scenario
Dk+1, Algorithm 2 introduces a quadratic penalty that keeps
θ near θk proportionally to F (k, i). For a single previous
task, the EWC regularization term is

LEWC(θ) =
α

2

∑
i

Fk,i

(
θi − θk,i

)2
(9)

where α > 0 is a stability coefficient (α = 0.4) that bal-
ances how strongly EWC penalizes deviation from task k’s
optimum. After several cell visits the UE has encountered
T1:k = {UMi-compact, UMi-dense, UMi-standard}. Algo-
rithm 2 maintains a bank of snapshots {(θ∗

j , Fj)}kj=1.

The penalty therefore generalizes to:

LEWC(θ) =
α

2

∑
i

k∑
j=1

Fj,i

(
θi − θ∗j,i

)2
. (10)

Equation (10) encourages the predictor to retain the parame-
ters that capture the key statistical properties of the channel
distribution in each environment, such as those character-
izing the compact (canyon-like), dense (urban block), and
standard (wide street) scenarios, while still allowing less-
critical weights to adapt to the new cell’s Doppler or fading
patterns.

In conclusion, after training on task Dk, Algorithm 2 com-
putes Fisher information Fk from NMSE gradients and
stores θ∗

k alongside Fk. Algorithm 2 applies aggregated
Fisher penalties to preserve parameters vital for past channel
conditions while adapting to new fading dynamics. Since
Fj,i derives directly from NMSE gradients, it naturally tar-
gets weights governing high-energy taps, LOS components,
and dominant eigenmode features essential for accurate
CQI.

Synaptic Intelligence (SI). SI dynamically tracks parame-
ter importance during training without requiring an explicit
Fisher computation. Fisher-based weighting often fails in
practice, 1) doubles training time with a full extra dataset
pass, 2) exhausts GPU memory storing per-parameter impor-
tances, and 3) relies on a quadratic local-curvature approxi-
mation that becomes unreliable when mini-batch gradients
exhibit high stochasticity (van de Ven, 2025), (Puiu, 2022).
To achieve a more robust, continual learning strategy, results
therefore compare this Fisher approach against SI. SI avoids
all three drawbacks by accumulating importance continu-
ously from the same gradients already used for optimization.
These drawbacks are magnified in the UMi sequence, so a
second pass would double training time; the diagonal Fisher
for ∼ 15 M parameters would exceed the 24 GB memory
budget of a single A6000 GPU. For the ∼400 UMi channel
states, EWC is untenable: each diagonal Fisher for 15 M
parameters (15× 106×4 B ≈ 60 MB) costs an extra epoch,
and storing one per state (400× 60 MB ≈ 24 GB) already
fills an A6000’s 24 GB.

By accumulating parameter importance online from the
same gradients used for optimization, incurring only one
32 bit float (∼ 4 bytes) per weight and requiring no ex-
tra data sweeps, SI lowers the high-SNR NMSE floor by
approximately 0.8–1.4 dB (≈ 10% MSE reduction) rela-
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tive to EWC, making it readily scalable through the UMi-
compact→ UMi-dense→ UMi-standard pipeline (Zenke
et al., 2017). SI assigns to each parameter θi a “synaptic im-
portance” ωi based on how much change in θi contributes to
reducing the loss on a task, as shown in Algorithm 4. During
minibatch Dk (e.g. the UE dwelling in a specific UMi cell),
we track, for every weight θi, how much that weight actually
helps reduces the NMSE on the instantaneous channel pair
(X,H):

ω̃i= ω̃i +
(
∇θiLNMSE

)2
η (11)

where ∇θiLNMSE is the gradient of the instantaneous
mean-squared error loss with respect to θi, which normalizes
the Frobenius error by ∥H∥2F , reflecting the link-adaptation
metric used by the gNB scheduler. This accumulation ω̃i

intuitively measures the total contribution of θi to loss re-
duction during task Dk.

After completing training on Dk, let ∆θi = θi− θ
(0)
i be the

total change in parameter i during this task. Algorithm 4
then finalizes the importance of θi for task k by updating

ωi +=
ω̃i

(∆θi)2 + ξ
, ∆θi = θi − θ

(0)
i . (12)

The above update increases ωi significantly if a large accu-
mulated gradient (large ω̃i) managed to cause only a small
net change (∆θi), indicating that θi was repeatedly pulled
by the loss (i.e., in the case of deep fade samples) but re-
sisted changing, a sign that θi is important for maintaining
performance, giving evidence that i governs the core fading
statistics. We also set θ(0)i ← θi (forward final weights as
the reference for the next task Dk+1). All ωi values persist
across cells, so the model remembers which parameters mat-
ter for, say, the rich scattering UMi-dense layout even after
roaming into a compact canyon.

Given the reference parameters θ(0) from the start of the
current task (which equal the parameters after Dk), the SI
loss for task Dk+1 is formulated as:

LSI(θ) =
β

2

∑
i

ωi

(
θi − θ

(0)
i

)2
, β = 0.6. (13)

with β > 0 a weighting hyperparameter (Algorithm 4
uses β = 0.6) analogous to α in EWC. In wireless channel
adaptation, this penalty scales each update to θi by its impor-
tance ωi, preventing drift from values learned on prior UMi
channel conditions. SI accumulates the product of each pa-
rameter update and its instantaneous gradient to compute ωi

online with an O(1) memory footprint per weight, thereby
preferentially regularizing parameters whose sustained gra-
dient magnitudes encode dominant path-loss attenuation
and delay-spread dynamics.

Algorithm 4 Continual Channel Prediction with Synaptic
Intelligence (SI)

Require: learning rate η, SI weight β, damping ξ
1: Initialize for all i:
2: θi, ωi ← 0, ω̃i ← 0, θ(0)i ← θi
3: for each task Dk (UMi compact→ dense→ standard)

do do
4: for each mini-batch (X,H) ∈ Dk do do
5: Ĥ ← fθ(X)
6: ℓ← ℓNMSE(H, Ĥ)
7: gi ← ∇θiℓ
8: θi ← θi − η gi ∀i
9: ω̃i += g2i η ∀i

10: end for
11: for each parameter i do do
12: ∆θi ← θi − θ

(0)
i

13: ωi += ω̃i

(∆θi)2+ξ {SI update}
14: ω̃i ← 0, θ

(0)
i ← θi

15: end for
16: end for
17: Add SI penalty to the loss:
18: L = ℓ+ β

2

∑
i ωi(θi − θ

(0)
i )2

3.3. Learning without Forgetting (LwF)

LwF offers a memory-free continual learning approach by
distilling knowledge from a frozen copy of the model trained
on past environments. After convergence on environment
T1 with dataset D1, the optimized parameters θ are cloned
as θold = θ and kept frozen to serve as a fixed “teacher”
for subsequent tasks. For each subsequent environment Tk

with a dataset Dk, as the UE hands over into each new UMi
layout, whether moving from a compact to a dense or into a
standard environment, we train the current model θ on mini-
batches Bk ⊂ Dk to minimize a hybrid loss that combines
the NMSE between ground-truth channels and the current
model’s predictions Ltask with a distillation NMSE Ldistill
that measures the discrepancy between the current model’s
outputs and those of the frozen teacher.

Mini-batch loss terms. Let each sample in Bk be (Xi,Hi),
the standard NMSE between the current model’s and the
frozen teacher’s predictions on the same inputs will be

Ldistill
(
θ,θold,Bk

)
=

1

|Bk|
∑
i∈Bk

∥Ĥi(θold)− Ĥi(θ)∥2F
∥Ĥi(θold)∥2F

Combined LwF Objective. Algorithm 3 reuses the mixing
weight λ ∈ [0, 1] from Experience Replay to balance fitting
new channel data versus preserving past behavior:

LLwF(θ) = λ Ltask(θ,Bk) + (1− λ) Ldistill(θ,θold,Bk).
(14)
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Table 1. Evaluation loss comparison under dynamic continual learning pipelines (sequence length = 32, replay memory size =
5000) [NMSE Loss in dB]

Continuous Learning Pipelines Test: UMi Compact Test: UMi Dense Test: UMi Standard
Trans. LSTM GRU Trans. LSTM GRU Trans. LSTM GRU

Experience Replay [LARS] −41.824 −41.927 −41.737 −40.851 −40.973 −40.719 −38.910 −39.004 −38.890
Experience Replay [Reservoir] −41.00 −41.004 −40.900 −38.750 −38.954 −38.700 −37.830 −37.885 −37.790
Loss Regularization [SI] −41.003 −41.042 −40.850 −40.730 −40.834 −40.530 −39.650 −39.731 −39.530
Loss Regularization [EWC] −39.220 −39.271 −39.150 −38.730 −38.842 −38.510 −37.610 −37.835 −37.550
Learning Without Forgetting −35.900 −36.500 −35.800 −35.750 −35.847 −35.560 −34.500 −34.673 −34.420

The hyperparameter λ balances new-cell adaptation and dis-
tillation: increasing λ accelerates fitting to current fading
and path-loss, while decreasing λ prioritizes alignment with
the frozen teacher to preserve prior UMi-cell characteristics.
In this way, the model is encouraged to learn the fresh prop-
agation characteristics of each new UMi scenario, capturing
its unique path loss, multipath spread, and Doppler effects
while still producing outputs that remain consistent to the
behaviors learned in earlier layouts. This mechanism averts
catastrophic forgetting across compact, dense, and standard
scenarios while rapidly adapting to the UE’s evolving fad-
ing and path-loss statistics. ER replays the hardest fades
through a loss-aware buffer; EWC supplements the NMSE
loss with a Fisher-weighted penalty that anchors critical
weights; LwF distills from a frozen teacher at zero memory
cost. Collectively, these strategies span replay, regulariza-
tion, and memory-free distillation, yielding complementary
paths to handover-robust channel prediction.

4. Results
Experience Replay. Figure 3a compares two memory-
based rehearsal schemes—uniform reservoir sampling and
loss-aware reservoir sampling (LARS). Across the full SNR
sweep (0-30 dB) LARS consistently dominates the uniform
buffer in all three propagation regimes. For the most chal-
lenging dense case, LARS lowers the high-SNR NMSE
floor from −39.7 dB to −40.5 dB, a ≈ 20% reduction in
residual error, while the compact setting benefits even more,
reaching −42.1 dB at 25 dB SNR. Because the buffer is
biased towards hard-to-predict fades, the predictor rehearses
precisely those outliers that dominate the tail of the loss
distribution, yielding steeper convergence and a 1−2 dB gap
over the uniform baseline throughout the mid-SNR region.
These results confirm that targeted replay is crucial for re-
taining accurate channel dynamics when the user equipment
(UE) traverses heterogeneous cell configurations.

Loss Regularization Method. Figure 3b evaluates Fisher-
based EW against SI. While both mechanisms suppress
catastrophic drift, SI achieves a uniformly lower NMSE, e.g.
−40.8 dB versus −39.3 dB in the compact layout at 20dB
SNR. SI’s online importance tracking penalizes updates to

weights with high past importance, enabling adaptation of
peripheral parameters while preserving core ones. As a
consequence, SI preserves the sharp error drop observed
around 8-12dB without the saturation seen for EWC, yield-
ing an additional 0.8−1.4 dB gain at high SNR and a 10%
mean-squared-error reduction across the three tasks.

Learning Without Forgetting. Figure 3c shows that LWF
delivers the highest residual NMSE of the three continual-
learning methods—e.g., −36.9 dB (compact), −35.8 dB
(dense) and −34.4 dB (standard) at 25dB SNR—lagging
LARS and SI by roughly 0.7−1.5 dB. Thus, even though
its distillation-only strategy is less effective than replay or
weight anchoring, LwF provides a lightweight improve-
ment over no adaptation at all, requiring neither memory
buffers nor second-order statistics and remaining attractive
for resource-constrained deployments.

5. Conclusion
Our study demonstrates that continual learning substantially
improves cross-cell channel prediction: loss-aware experi-
ence replay and synaptic intelligence lower the high-SNR
NMSE floor by up to 2dB (≈3%) relative to naı̈ve fine-
tuning, while even memory-free LwF yields a consistent
1dB gain as shown in Table 1. These results confirm that
rehearsing loss-critical fades and selectively anchoring influ-
ential weights are key to retaining past knowledge without
sacrificing plasticity. The proposed framework therefore of-
fers a practical path toward hand-over-robust CSI prediction,
easing deployment across heterogeneous network topolo-
gies. For additional hyperparameter sensitivity studies, in-
cluding sequence length effects and buffer-size ablations,
see Appendix C (Tables 3 and 4). Future work will focus
on integrating the replay schedulers into 3GPP NR Channel
State Information-Reference Signal (CSI-RS) procedures,
quantifying fronthaul and UE memory overhead, and stan-
dardizing task-aware buffers within the O-RAN RIC for
online adaptation. The approach scales to multi-cell joint
prediction and can be benchmarked on upcoming 3GPP
Release-19 indoor-hotspot and sub-6 GHz/sub-THz channel
models, advancing standard-compliant, continually learning
base-station intelligence.
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A. Baseline Distributions and Results
First, discussion on the baseline models’ architectures as discussed in Section 2.2. Finding here elaborates on the architectures
for the GRU and the Transformer and then discusses their performance in Figure 4’s baseline scenarios.

GRU. The GRU variant retains the same preprocessing pipeline as the LSTM—each T -length window X ∈
C2×T×Ntx×Nrb×Nrx is reshaped into a length-din =2NtxNrbNrx feature vector per time step—but the temporal back-
bone is a three-layer Gated Recurrent Unit with hidden width dhid = 32. Compared with the LSTM, the GRU merges the
input and forget gates, cutting the recurrent parameter count roughly by one-third while still maintaining gating dynamics
that model slow and fast fading jointly. After processing, the final hidden state hT ∈Rdhid is mapped through a linear layer
of size (2NtxNrbNrx)×dhid and reshaped back to Ĥ∈C2×Ntx×Nrb×Nrx . This leaner gating structure delivers competitive
NMSE with shorter inference latency, making it attractive for edge deployment when computational budgets are tight.

Transformer. For longer temporal horizons, evaluation includes a lightweight Transformer that first flattens each spatial slice
into a din = 2NtxNrbNrx vector, projects it to a dmodel = 128 embedding, and enriches it with a multi-frequency positional
encoding tailored to wireless spectra. A single encoder layer and a single decoder layer, each with four self-attention
heads, form the core sequence-to-sequence module; a learned start token serves as the one-step decoder query. The decoder
output is passed through a final linear layer back to 2NtxNrbNrx and reshaped to the predicted channel matrix Ĥ. The
self-attention mechanism allows the model to capture dependencies across the entire T -slot context without recurrence,
enabling highly parallel training; however, its larger projection matrices and quadratic attention cost demand more memory
than the recurrent baselines, so results limit depth to one layer each to stay within gNB resource constraints while still
harnessing the Transformer’s global receptive field.

LSTM. A 3-layer LSTM network takes as input a tensor X∈C2×T×Ntx×Nrb×Nrx , where the first dimension separates
real and imaginary parts and T is the look-back window. At each time step, the spatial slice

(
2, Ntx, Nrb, Nrx

)
flattens to

a vector of length 2NtxNrbNrx, yielding a sequence whose feature size we denote din. This sequence is processed by a
stack of nlayers = 3 LSTM blocks with hidden width dhid = 32, producing hidden states ht∈Rdhid for t = 1, . . . , T . The
final state hT is passed through a fully connected layer W ∈R(2NtxNrbNrx)×dhid to predict the next-slot channel matrix
Ĥ∈C2×Ntx×Nrb×Nrx , after which the original tensor shape is restored. The modest hidden width keeps the parameter
count low—about 4dhid

(
din + dhid

)
per layer—so the model fits comfortably in gNB memory while still capturing the

essential channel dynamics. LSTMs excel in this setting because wireless channels form a strongly time-correlated sequence
governed by user mobility and multipath evolution; the forget, input, and output gates allow the network to preserve
long-range dependencies (slow fading) while rapidly adapting to short-term variations (fast fading) within the same recurrent
architecture.
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(a) Baseline SNR trained on UMi compact and tested on all
scenarios under all architectures.
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Figure 4. Prediction error under baseline conditions when tested under zero shot data settings.

11



605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Continual Learning for Wireless Channel Prediction

Table 2. Configuration Parameters for 3GPP Urban Microcell (UMi) and Urban Macrocell (UMa) Scenarios
(a) UMi

Parameter Standard Dense Compact

Carrier Frequency 5 GHz 5 GHz 5 GHz
Bandwidth 100 MHz 100 MHz 100 MHz
Antenna Tilt (°) 30 10 0
Element Spacing (λ) 0.50 0.25 1.00
Rx Antenna Type dipole patch cross pol
Rx Polarization ±45◦ H/V ±45◦

Distance Range (m) [50, 100] [20, 60] [120, 200]
Tx Height (m) 10 6 15
UE Height (m) 1.5 1.0 2.0

(b) UMa
Parameter Standard Large–H/V Small–V

Carrier Frequency 2.6 GHz 2.6 GHz 2.6 GHz
Antenna Tilt (°) 12 10 15
Element Spacing (λ) 0.50 0.60 0.50
Tx Array Size (M×N) 8× 4 10× 6 6× 2

Rx Antenna Type dipole patch omni
Rx Polarization ±45◦ H/V V
Distance Range (m) [100, 500] [100, 500] [100, 500]
Tx Height (m) 25 25 25
UE Height (m) 1.5 1.5 1.5

B. Network Distributions.
B.1. Urban Macro Channel [UMa]

For the UMa data set is synthesised with QuaDRiGa at fc = 2.6 GHz and 20 MHz bandwidth, emulating macro base
stations mounted 25 m above street level that illuminate users at radial distances between 100 and 500 m. Three antenna-
array configurations—standard (8×4 panel, dual-pol dipoles), large–H/V (10×6 panel, quad-pol patches), and small–V
(6×2 compact omni array)—capture a range of sector-capacity trade-offs, as summarised in Table 2. Each Monte-Carlo
realisation deploys 256 UEs whose linear tracks are sampled at 30 time instants and 18 OFDM resource blocks, yielding
tensors of dimension [30×Ntx × 18×Nrx × 256]. Although the simulation seed is fixed to ensure reproducibility, every
iteration perturbs the UE starting positions, and the LOS/NLOS state is drawn from the 3GPP distance-dependent law
PrLOS(d) = e− d/300. This controlled displacement makes successive channel snapshots partially correlated, challenging the
prediction network to learn both slow macro-scale trends and fast small-scale fading across the diverse UMa configurations.

B.2. Urban Micro Channel [UMi]

The UMi data set used throughout the paper is generated with the QuaDRiGa Monte-Carlo engine configured for 100 MHz
bandwidth at fc = 5 GHz and an 8×2 MIMO link (eight dual-polarised transmit elements arranged as a 2×2 panel and a
two-element UE array). Three propagation ”flavors” are synthesized: standard, dense, and compact as shown in Figure 5,
which differ only in antenna downtilt, inter-element spacing, handset height, and the underlying 3GPP/5G channel profile
(LOS or NLOS); the complete parameter list is given in Table 2. Each simulation realizes 256 user equipment whose linear
tracks are discretized into 500 time instants and 18 OFDM resource blocks, producing a complex-valued tensor of size[
500×2×18×8×256

]
. Although a fixed random seed guarantees repeatability, we introduce a small random displacement

to every UE position at each Monte-Carlo iteration; this causes consecutive tensors to share local scatterers and therefore
exhibit pronounced spatial-temporal correlation. The channel-prediction model must learn these correlations to extrapolate
reliably from the recent T -slot history to the next-slot channel matrix, especially when the UE migrates between the three
UMi scenarios.

B.3. Dynamic Parametric Changes

1. Correlation among time series sequence. For each UE the script draws a random radius d∼U [dmin, dmax] and azimuth
ϕ∼U [0, 2π), fixes the initial position

p0 =
[
d cosϕ, d sinϕ, hue

]⊤
,

and then assigns the linear QuaDRiGa track qd_track(’linear’,L,phi) with length L = 2m. The call
tr.interpolate_positions(num_snap-1,’time’) creates equally spaced snapshots

pt = p0 +
t

T − 1
L [cosϕ, sinϕ, 0]⊤, t = 0, . . . , T − 1, T = 500,

12
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(a) Probability distribution for UMi with paramters described
in table 2(a)
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(b) Probability distribution for UMa with paramters described
in table 2(b).

Figure 5. Probability distribution deviation under different network configurations.

so the spatial step is ∆s = L/(T − 1)≈4mm (=∼λ/15 at fc = 5GHz). Under the WSSUS assumption an isotropic ring
of scatterers of radius Rsc produces the small-scale correlation as shown in Figure 6.

ρh(∆r) = E
[
h(r)h∗(r+∆r)

]
= J0

(2π
λ
∥∆r∥

)
,

so between successive snapshots ρh(∆s)≈J0(2π/15)≳0.97—very strong. Because the UE displacement is deterministic,
the channel at time t

Ht(k,m) =

Lcl∑
ℓ=1

αℓe
−j2πk∆f τℓe+j 2π

λ dtm sin θℓ,te−j 2π
λ kℓ·pt

inherits this coherence: the last term adds a linear phase ∝ (kℓ ·v) t whose slope is so gentle that adjacent Monte-Carlo
realisations remain temporally self-correlated. Consequently

• the magnitude heat-map of Figure 6a shows nearly vertical stripes—frequency coherence persists because τℓ,t changes
negligibly over ∆s;

• the phase map Figure 6b exhibits diagonal ramps whose gradient equals the deterministic spatial phase drift 2π
λ dt sin θℓ,t

multiplied by the constant step ∆s;
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Figure 6. Correlation among transmit anetnna vs. subcarriers for user 1 and time stamp 1.
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(a) Probability distribution for UMi with el-
ement spacing [λ = 1, 2, 5].
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(b) Probability distribution for UMi with el-
ement spacing [λ = 0.5 , 0.025, 3.0]
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(c) Probability distribution for UMi with el-
ement spacing [λ = 3.5, 1, 4.2]
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(d) Probability distribution for UMi with an-
tenna tilt [ ° = 0, 90, 120].
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(e) Probability distribution for UMi with an-
tenna tilt [° = 0, 10 , 15]
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(f) Probability distribution for UMi with an-
tenna tile [° = 0, 100, 200]

Figure 7. Effect of element spacing and antenna tilt on probability distribution of channel gains under UMi scenario.

• the real part in Figure 6c reveals blocks of coherent (additive) or destructive interference depending on whether the phase
difference between neighbouring antennas is near 0 or π.

In sum, the incremental UE motion pt+1−pt = ∆s [cosϕ, sinϕ, 0]⊤ couples the spatial, frequency and time dimensions:
adjacent snapshots share scatterers and remain highly correlated, providing the predictive model with exploitable temporal
structure.

2. Effect of Element Spacing. Increasing the inter-element spacing dλ widens the physical aperture of the array—yielding
an L/λ-dependent array gain that shifts the entire channel gain histogram to the right—while simultaneously driving
down the spatial correlation terms ρk(d) = J0(2πdk) in the transmit/receive correlation matrix. Because the variance of
the instantaneous power g = ∥R1/2(d)w∥2 is 2

∑
k(N − k)ρ2k(d), weaker correlations at larger d shrink this variance,

producing a tighter distribution with fewer deep fades. Hence, “dense” arrays with d≲0.5λ exhibit the left-shifted, broad
brown histograms observed, “compact” (d≈1λ) fall in the middle, and “standard” spacings (d≥2λ) give the right-shifted,
sharply peaked yellow curves as shown in Figure 7.

3. Effect of Antenna Tilt. Downtilting the base-station panel multiplies every small-scale channel coefficient by the vertical
antenna pattern

G(θ) = Gmax −min
{
12
(
θ−θtilt
θ3dB

)2
, SLAV

}
[dB],

with half-power beam-width θ3dB≈10◦ and a side-lobe cap SLAV ≈20 dB. For a UE at horizontal range R and height hue

14
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(a) Channel gain vs. Probability distribution
for scenario A.
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(b) Channel gain vs. Probability distribution
for scenario B.
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(c) Channel gain vs. Probability distribution
for scenario C.

Figure 8. Combined effect of cross network configurtion on channel distributions.

below the array (htx), the elevation angle is θ(R) = tan−1
[
(htx − hue)/R

]
, so the large-scale channel gain

gLS(R) = G
(
θ(R)

)
− 10α log10 R+Xσ [dB],

combines tilt-dependent antenna gain, distance-dependent path-loss (α≈3.1 in UMi NLOS) and log-normal shadowing
Xσ ∼ N (0, σ2). With UEs roughly uniform in range [Rmin, Rmax], the elevation pdf is

fΘ(θ) =
(htx − hue) cos

2 θ

(Rmax −Rmin)(htx − hue) cos θ +Rmin
,

so the variance Var
[
G(Θ)

]
= E[G2(Θ)]− E2[G(Θ)] decreases as θtilt increases because the effective support of Θ shrinks

to the nearly flat main-lobe. Hence large downtilt (∼30◦) aligns the main lobe with nearby UEs, producing higher median
gains and a tighter histogram (yellow “standard” curves); little or no downtilt (0−10◦) illuminates farther ranges, yielding
lower, more spread-out gains (brown “dense” curves); intermediate tilts (blue “compact”) lie between these extremes. The
curves are shown in Figure 7.

4. Combined Effect of Cross Parameterization. Experiments examine three representative environments whose antenna
deployments differ widely in aperture, element spacing, height, downtilt, and user range.

Scenario A. This baseline group follows the canonical 3GPP-UMi geometry. The standard A cell employs an 8 × 2
dual-polarised panel (MN = 16 elements) mounted at htx = 35m, downtilted by 6◦ and spaced at dt = 2

3λ; UEs move
at ranges R ∈ [80, 150]m under the LOS profile 3GPP 38.901 UMi LOS. The dense A flavour shrinks the array to a
4 × 1 (MN = 4) patch with no downtilt and very tight 0.25λ spacing, placed at htx = 10m; pedestrians roam only
R ∈ [10, 60]m in NLOS (3GPP 38.901 UMi NLOS). Finally, the compact A cell restores an 8 × 4 panel (MN = 32)
but widens the spacing to 2.5λ and downtilts by 30◦; at htx = 25m it serves users at R ∈ [40, 100]m with the LOS-rich
5G-ALLSTAR DenseUrban LOS profile.

Scenario B. This setting exaggerates macro/ hot-spot contrast. The standard B macro site is a 16× 4 array (MN = 64) on
a 45m rooftop, downtilt 8◦, wide 1.2λ spacing, covering R ∈ [150, 300]m in LOS. Opposite to it, the dense B pedestrian
hot-spot uses just 2× 1 elements (MN = 2) at street-lamp height htx = 6m, zero tilt, ultra-tight 0.15λ spacing and NLOS
users at R ∈ [5, 30]m. Mid-way, the compact B cell keeps an 8× 4 panel (MN = 32) with huge 3λ spacing and strong
35◦ downtilt, serving R ∈ [40, 120]m under LOS.

Scenario C. A suburban/indoor mix spanning indoor hotspots to rooftop cells: standard C: 8 × 2 array (MN = 16) at
htx = 25m, no downtilt, spacing 1λ, LOS users R ∈ [100, 180]m. dense C: indoor 4× 2 panel (MN = 8) at htx = 3m,
upward tilt −15◦, spacing 0.5λ, NLOS users R ∈ [2, 15]m. compact C: rooftop 12× 3 array (MN = 36) at htx = 30m,
downtilt 20◦, spacing 2λ, LOS users R ∈ [60, 140]m.
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The wide variation in array aperture, element spacing, antenna height, downtilt angle, and user-to-base-station distance
across Scenarios A-C produces fundamentally different channel “shapes” in each environment as shown in Figure 8. For
instance, a dense urban hotspot (e.g., dense C) uses tightly spaced indoor antennas and very short links, resulting in richly
scattered, rapidly varying multipath that is hard to predict. By contrast, a rooftop macrocell (e.g., standard C) with wider
spacing, higher mounting, and longer ranges yields smoother, largely line-of-sight channels. Steep downtilts and greater
heights enhance broad coverage ideal in suburban settings, while close spacing and low mounts capture fine multipath detail
critical for indoor NLOS operation. Since our neural predictor internalizes the specific gain distribution, delay spread, and
angular statistics of one scenario, it struggles when faced with a channel whose clutter density, pathloss characteristics,
and angular spread differ significantly. In simple terms, changing physical parameters reshapes how signals bounce and
fade; without exposure to each unique “network configuration settings,” model accuracy (NMSE) and temporal forecasting
degrade significantly.

C. Hyperparameter Sensitivity in Continual Learning
C.1. Impact of Sequence Length on Continual Learning Pipelines

Table 3 compares the NMSE for the above-discussed five dynamic continual-learning pipelines with sequence length=16. In
every case, the LSTM backbone outperforms the Transformer, which in turn outperforms the GRU. Performance degrades
smoothly from the Compact to Dense to Standard environments. Moreover, both ER variants (LARS and Reservoir)
consistently achieve the lowest NMSE, followed by EWC, with lwf exhibiting the highest errors.

Table 3. Evaluation loss comparison under dynamic continual learning pipelines (sequence length = 16, replay memory size =
5000) [NMSE Loss in dB]

Continuous Learning Pipelines Test: UMi Compact Test: UMi Dense Test: UMi Standard
Trans. LSTM GRU Trans. LSTM GRU Trans. LSTM GRU

Experience Replay [LARS] −41.624 −41.727 −41.537 −40.651 −40.773 −40.519 −38.710 −38.804 −38.690
Experience Replay [Reservoir] −40.800 −40.804 −40.700 −38.550 −38.754 −38.500 −37.630 −37.685 −37.590
Loss Regularization [SI] −40.803 −40.842 −40.650 −40.530 −40.634 −40.330 −39.450 −39.531 −39.330
Loss Regularization [EWC] −39.020 −39.071 −38.950 −38.530 −38.642 −38.310 −37.410 −37.635 −37.350
Learning Without Forgetting −35.700 −36.300 −35.600 −35.550 −35.647 −35.360 −34.300 −34.473 −34.220

C.2. Effect of Reduced Replay Buffer Size on ER Performance

Table 4 reports the NMSE for ER with the memory buffer reduced from 5000 to 3000 and sequence length = 32. As before,
the LSTM backbone consistently outperforms the Transformer, which in turn beats the GRU, and performance degrades
smoothly from the Compact to Dense to Standard UMi scenarios.

Table 4. Evaluation loss for Experience Replay pipelines with reduced memory (M = 3000) and sequence length = 32 [NMSE
Loss in dB]

ER Variant Test: UMi Compact Test: UMi Dense Test: UMi Standard
Trans. LSTM GRU Trans. LSTM GRU Trans. LSTM GRU

Experience Replay [LARS] −40.317 −41.289 −39.137 −39.682 −40.527 −38.314 −38.201 −38.864 −36.873
Experience Replay [Reservoir] −39.612 −40.574 −38.432 −37.976 −38.815 −36.752 −36.443 −37.311 −35.216
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