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Abstract

Vision-language models (VLMs), such as CLIP,
have demonstrated strong performance across a
range of downstream tasks. However, CLIP is
still limited in negation understanding: the abil-
ity to recognize the absence or exclusion of a
concept. Existing methods address the problem
by using a large language model (LLM) to gen-
erate large-scale data of image captions contain-
ing negation for further fine-tuning CLIP. How-
ever, these methods are both time- and compute-
intensive, and their evaluations are typically
restricted to image-text matching tasks. To ex-
pand the horizon, we (1) introduce a training-
time negation data generation pipeline such
that negation captions are generated during the
training stage, which only increases 2.5% ex-
tra training time, and (2) we propose the first
benchmark, NEG-TTOI, for evaluating text-to-
image generation models on prompts contain-
ing negation, assessing model’s ability to pro-
duce semantically accurate images. We show
that our proposed method, TNG-CLIP, achieves
SOTA performance on diverse negation bench-
marks of image-to-text matching, text-to-image
retrieval, and image generation.

1 Introduction

Vision-language models (VLM), such as CLIP
(Radford et al., 2021), provide an efficient approach
to tackle vision-language tasks by learning the fea-
tures of different modalities in a shared embedding
space. However, these models fundamentally lack
a robust understanding of negation—the ability to
recognize the absence or exclusion of a concept,
e.g., “A dog not playing a ball.”, “There is no tree
on the street.”. Negation is a fundamental aspect
of human reasoning, enabling precise description
of constraints and expectations in communication.
Without proper negation understanding, VLMs gen-
erate and retrieve semantically incorrect content,
particularly in complicated scenarios where the
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Figure 1: We present TNG-CLIP, a negation-aware
CLIP that achieves outstanding negation understanding
in image-to-text matching, text-to-image retrieval and
proposed image generation NEG-TTOI benchmarks.

presence or absence of specific elements critically
alters meanings.

To tackle this problem, current methods (Al-
hamoud et al., 2025a; Singh et al., 2024; Park et al.,
2025; Yuksekgonul et al., 2023) focus on gener-
ating well-designed image-text datasets, such that
there are negation captions associated with each
image sample, and then fine-tune the underlying
VLM. However, such approaches face three chal-
lenges: (1) the negation of each caption is designed,
generated, and verified via LLMs. Considering
the fact that the existing vision-language datasets
(Chen et al., 2015; Changpinyo et al., 2021) con-
tain millions of samples, generating the negation
dataset is extremely time- and compute-consuming.
(2) Unlike standard semantic descriptions, which
are typically grounded in observable features, the
negation process introduces arbitrariness by speci-
fying the absence of concepts that are not depicted.
For example, given an image of “a dog playing a
ball”, one could construct multiple valid negation
captions such as “a dog playing a ball while no
man is present” or “a dog playing a ball but not on
the beach”. By generating fixed negation captions,
previous methods may constrain the diversity of
negation scenarios, thus harming the generalization



of the fine-tuned VLM on negation understanding
tasks. (3) Previous methods are mainly evaluated
on image-to-text matching and text-to-image re-
trieval tasks. Considering the versatility of CLIP,
however, evaluation should not be constrained to
matching-based tasks and must include more di-
verse downstream tasks such as generation-based
tasks, where the text encoder can be used as part of
a generative model (Rombach et al., 2022).

We propose a new data generation and training
pipeline which generates negation captions during
training without the need for a pre-defined negated
image-text pair dataset. In each training batch, we
identify the most similar image—text pair for ev-
ery image—text example by computing the cosine
similarity between their embedded image features.
For each caption, we generate negated variants us-
ing a template-based approach, by interacting with
another caption in the same batch. Because the
negated caption generation relies on the other cap-
tions, we can generate diverse and different negated
captions in every training epoch. We also propose
a negation text-to-image generation benchmark,
NEG-TTOI, to evaluate the capability of models to
avoid generating undesired objects given negated
prompts. In this task, a compositional negated cap-
tion is given which contains the desired objects and
undesired objects, e.g., “A women not holding a
dog in the car”. The generative model needs to
explicitly recognize what needs to be generated
and what should be avoided. We show that our pro-
posed data generation and training pipeline can di-
rectly benefit the downstream task of text-to-image
generation. Our contributions include:

* We propose a novel and efficient training-
time negation generation pipeline, TNG-CLIP,
to improve CLIP’s negation understanding
by generating dynamic and diverse negation
samples during training without the need for
LLMs and pre-defined negation datasets.

* We propose the first benchmark for negation-
aware text-to-image generation task, NEG-
TToI, which contains diverse and abundant
samples to evaluate model’s negation under-
standing capability.

* We offer extensive experiments to demon-
strate that TNG-CLIP achieves SOTA perfor-
mance on diverse negation-aware downstream
tasks including image-to-text matching, text-
to-image retrieval, and image generation, in-
dicating its robustness across these tasks.

2 Related Works

While recent foundation models, including LLMs
and VLMs, have achieved remarkable success
across diverse downstream tasks, their ability to
handle negation semantics remains limited. In the
scope of large-scale foundation models, the study
of negation understanding starts from language-
only setting, where large language models, instead
of vision-language models, are focused. Truong
et al. shows the LLM’s insensitivity of negation
by evaluating SOTA LLMs (Brown et al., 2020;
Ouyang et al., 2022; Chung et al., 2022) on diverse
text-only negation benchmarks (Hossain et al.,
2020; Geiger et al., 2020; Truong et al., 2022).
Zhang et al. mentions that scaling-up the size of
LLM fails to tackle negation tasks. Also, Varshney
et al. analyze and tackle the issue of negation in
LLM hallucinations, which also emphasizes the
significance of negation understanding in LL.Ms.

On the other hand, the negation study in VLMs is
mainly focused on CLIP (Radford et al., 2021). For
example, Quantmeyer et al. conduct experiments
and visualize where and how does CLIP model
process negation information in each layers. To
make CLIP model understand negation, methods
(Park et al., 2025; Singh et al., 2024; Alhamoud
et al., 2025a) adopt LLMs to generate negation
caption, based on existing image-text pair datasets,
to fine-tune the CLIP for negation understanding.
However, generating million-scale negation cap-
tion with LLM is extremely time- and compute-
consuming, and the negation caption is associated
with fixed negation object. For example, when a
image is paired with the negation caption "A dog
not with a boy", the word "boy" can be substituted
with plenty of potentially-existing objects such as
"cat”, "ball", "food" and so on.

Instead of relying on a fixed and stationary
dataset throughout the training process, some meth-
ods explore the application of dynamic and non-
stationary datasets during training process (Wang
et al., 2019; Jiang et al., 2024; Bother et al., 2025;
Cheng et al., 2025), which is an effective strat-
egy to improve model robustness, generalization,
and training efficiency. Inspired by the idea of
dynamic dataset training, we generate similar but
different negation captions for the same image in
every epoch of training, which enhances the diver-
sity of the dataset. Thus, models can learn negation
semantics via the absence of multiple negation ob-
jects to improve robustness and generalization.
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Figure 2: Training Procedure of TNG-CLIP. The diagram shows the data generation pipeline during the training
for one sample in the batch. For an image-text pair, P,, the most similar image pair, Ps is selected by the cosine
similarity of their embedded image features. The captions from P, and P are used to find the negation object and
generate two types of negation captions. The final image-text set, S;, for i*" image-text pair will be composed of
one image, I;, one original caption, T5,, one compositional negation caption, 7},.,, and one full negation caption,

Ty, from another random sample.

3 Training-Time Negation Data
Generation for Negation Understanding

To make CLIP learn negation semantics with di-
verse datasets and without the burden of time- and
compute-consuming LL.M-based negation caption
generation, we present our novel training pipeline,
Training-Time Negation Data Generation for CLIP
(TNG-CLIP), such that we generate image-text sets
with form <1, T, T}y, T}, y>, from the given image-
text pair </, T,>, where I and 7}, represent the pro-
vided image and the original (non-negation) cap-
tion in the image-text pair dataset, while 7;,. and
T, r represent the two types of generated negation
captions: compositional negation caption and full
negation caption, discussed in Sec 3.1.3.

3.1 Training time data augmentation

We propose a novel negation data-generation
pipeline that the negation captions are formed dur-
ing each batch of training procedure. The nega-
tion data generation pipeline for one image in the
batch is shown in Figure 2. Overall, for a given
image-text pair, F,, we will first find another simi-
lar image-text pair, P, select the negation object,

O, and generate corresponding negation captions,
T and T}y with the randomly-chosen negation
pattern template and form the image-text set, S.

3.1.1 Find similar image-text pairs

To form a semantically reasonable compositional
negation caption, 7},., we need to find a proper
negation object, O,,, that can be potentially fitted
into the original caption, 7},. For example, we want
T to be "A dog running with no boy around", in-
stead of "A dog running with no whale around",
which is semantically unlikely. Previous methods
(Park et al., 2025; Alhamoud et al., 2025b) acquire
the proper negation object, O,,, through the reason-
ing of LLM to find the possible object that might
appear in the image but is actually absent. For
efficiency, we avoid the use of an LLLM, and pro-
pose to find the possible O,, of the image-text pair,
P,, from its most similar images-text pair, Ps, in
the same batch. Thus, the first step is to find the
P; for every P, via cosine similarity, between the
embedded image features.

Given a visual encoder E,(+), a batch of images
I is encoded into the corresponding visual features

Vo = Ey(I), V), € REXP (1)



where B is the batch size and D is the hidden
dimension of image feature. For i** image feature,
Vb,;» we apply cosine similarity

Vis; = arg max cos_sim(Vs,, V;) 2)
j
to find the most similar image feature, Vj,,, and
keep track of the most similar image-text pair, Ps,,
associated with the image feature Vj,,.

3.1.2 Select negation object

After having Ps for each image-text pair, P,, we
aim to find the negation object, O,,, exists in Ps’s
caption that does not exist in the caption of P,. For
caption in Ps, we employ Natural Language Tool
Kit (Bird et al., 2009) to extract the POS tag of ev-
ery word, and only keep those represent nouns. To
avoid selecting the object which is too semantically
close to the words in original caption and cause
conflict, we use WordNet (Miller, 1995) and its
hand-curated symbolic network to select the nega-
tion object, O, with furthest semantics to those
words in the original caption.

3.1.3 Template-based negation caption
generation

For every T, and O,,, we employ randomly-chosen
negation templates to generate two different types
of negation captions: compositional negation cap-
tion, T}, and full negation caption, T, ;. While
the compositional negation caption helps model
align image with partial negation of a relevant cap-
tion, full negation caption makes the image align
with the negation semantics of an unrelated caption.

1. Compositional Negation Caption: The nega-
tion caption is in the format of "A <negation>
B" , where A denotes the original caption, 7T,
B denotes the negation object, O,,, and <nega-
tion> represents the negation template that com-
bines the two. For example, let A denotes "A dog
playing a ball.", B denotes "Boy", and <nega-
tion> denotes "There is {caption}, but not a
{obj} around." The final compositional negation
caption, T,., is "There is a dog playing a ball,
but not a boy around." To make the generated
captions diverse, we use GPT-40 (OpenAl et al.,
2024) to generate 46 different negation patterns.

2. Full Negation Caption: The negation caption
is in the format of <negation> A, which is the
negation of the entire caption. We use GPT-40
to generate 18 different negation pattern.

All the negation patterns and the prompt for GPT-
40 to generate them are attached in Appendix A.5.

3.1.4 Form new image-text set

Given the original caption, T, compositional nega-
tion caption, T}, and full negation caption, T’ ¢,
we can now construct the final image-text set, S,
for training. For each image I;, we associate it with
the original caption, 7},, the compositional nega-
tion caption, T5,,;, and the full negation caption,
Tny,» j # i. Please note that we randomly pick
the full negation caption, 7., from other image-
text pairs, P;. This is because we want to align
the negation of the irrelevant captions to the image
and contrast the negation of the relevant caption.
Finally, the image-text set, .S, is denoated as

Original,
Compositional Negation,
full negation;, j # i

Image, <+

3.2 Asymmetric noise-augmented objective

After negation image-text set generation, each im-
age is associated with three captions, which makes
the image-text pair imbalanced. Thus, the image-to-
text loss, L;9¢, and text-to-image loss, L;2;, become
asymmetric. We redefine the functionality of both
unidirectional loss to serve different purpose.

Text-to-Image Objective Given that we have
three captions for one image, the similarity matrix
will be in shape of 3N x N, where N denotes the
number of the images. We calculate the Lso; in a
single objective by applying same image alignment
to the three captions. The text-to-image objective
function is defined as:

o
Loi=—zc 3 lo 3 ,
’ 3N jzo ¢ Z exp ( 11/7')

where S; ; denotes the similarity between caption
j and image 7.

Image-to-Text Objective Aligning each image
with a negation caption, specifically negation ob-
ject, is out-of-distribution for pre-trained CLIP be-
cause CLIP, which has seen only image—text pairs
in which almost all textual components are visually
grounded, with no explicit representation of nega-
tion. As a result, the pre-trained model struggles
to align negation semantics or irrelevant objects
with the image. Fine-tuning pre-trained model on
such OOD task might lead to worse performance,



because fine-tuning can achieve worse accuracy, by
overfitting, when the pretrained models are good
and the downstream task distribution shift is large,
supported by theory from (Kumar et al., 2022). To
solve the above obstacle of overfitting, we intro-
duce label noise to improve the generalization and
robustness of the model, inspired by the related
works (Rolnick et al., 2018; Xie et al., 2020; Chen
et al., 2025). We modified the image-to-text loss
such that the text labels are randomly aligned with
the image to introduce noise to the objective func-
tion. The L;9; is:

N-1
1 exp (Siy, /T)
Eizt = _N Z log (Z?)N_l Y 3
=0

j=0  exp (5ii/T)

where y; ~ U({0,1,...,3N — 1}) is a random
selected label across all the captions labels.

Combined Objective By introducing noise to
Lo, we only have uni-directional L;s; helping
align negation captions to image. This approach is
possible because we freeze the visual encoder dur-
ing the training, following previous works (Singh
et al., 2024; Park et al., 2025). Because the visual
encoder is fixed, the visual feature is not updated
during image-to-text alignment training, and the
model only learn to update text features closer to
the pre-trained visual features. The final objective
function is then defined as:

1
L= §(£¢2t + Lt2;).
The further analysis of the objective function is
presented in Appendix A.1.

4 Negation Text-to-Image Generation
Benchmark

While negation is an essential part of natural lan-
guage understanding, a well-designed image gen-
erative model should be capable of understanding
what to generate and what to avoid. To analyze
the generative models’ performance on negation
prompts, Park et al. proposed negation-aware im-
age generation experiments with only 107 negation
prompts, containing simple naive negation pattern
of "no", "not", "without". To enable systematic
analysis, we design the first negation-based text-
to-image generation benchmark, NEG-TTOI, with
examples in Table 11. It contains 2000 evaluation
samples in the form of <p,q,,q,,ap.a,>, where p is
the prompt mentioning both desired and undesired

objects, g is positive question about the existence
of desired objects, g, is the negative question about
the absence of undesired objects, and a, and a,, are
the answer to g, and g,,.

4.1 Negation prompts generation pipeline

We follow the procedure of previous works (Park
et al., 2025; Alhamoud et al., 2025a) to generate
prompts and questions via LLM. We use LLM in-
stead of our negation generation pipeline in Sec 3
because (1) the scale of our evaluation benchmark
is much smaller than the scale of training dataset,
and (2) we only generate the benchmark prompts
and questions once, without the necessity of itera-
tive negation data generation over epochs, which
makes the LLM time- and compute-affordable.

We use the MS-COCO Caption (Chen et al.,
2015) as the base dataset. The goal of our caption
generation pipeline is to transform each caption,
which describes the existing scene or objects in
the image, into a negation-style caption in which
certain elements are explicitly described as absent.
To efficiently manipulate the caption with com-
plicated semantics, we leverage GPT-40 (OpenAl
et al., 2024) in a multi-step manner from negation
prompt generation, evaluation questions generation
and quality verification.

1. Negation Prompt Generation: For every input
caption, we ask LLM to identify a random scene
or object that is mentioned in the original cap-
tion. The selected scene or object will be used
as the negation object to generate negation cap-
tion. Once we have the original caption and the
negation object, we prompt LLM to rewrite the
original caption such that the object should be
semantically absent from the original caption.

2. Evaluation Question Generation For every
negation prompt, we prompt LLM to identify
the positive semantics and negative semantics
in the sentence while discard the negation pat-
tern. For example, given a negation caption "A
dog playing a yellow ball while there is no man
walking around", the positive semantics will be
"A dog playing a yellow ball", while the nega-
tive semantics will be "man walking around".
Both the positive semantics and negative seman-
tics are combined with "Is there...?" to form the
questions g, and gy,

3. Question Quality Verification Although GPT-
40 is one of the SOTA LLMs for semantic under-



Model | Avg. | Affirmation | Negation | Hybrid | R@5 | Neg-R@5
CLIP (Pretrained) 1628 | 21.89 16.89 9.99 | 5476 | 4792
CoN-CLIP 15.70 0.05 3673 | 1197 || 5191 | 4822
NegCLIP 10.21 9.97 19.76 183 || 6873 | 6441
CLIP (CC12MNegFull) || 46.9 56.49 4171 | 4229 || 5420 | 51.90
TNG-CLIP (Ours) || 52.5 68.75 4475 | 4329 || 6200 | 6111

Table 1: Result on Negbench MSCOCO image dataset on image-to-text matching and text-to-image retrieval tasks.
R@5 refers to the Top-5 accuracy on original (non-negation) MSCOCO-Caption dataset, while Neg-R @5 refers to
the Top-5 accuracy on negation MSCOCO-Caption dataset from NegBench.

H Avg. ‘ Affirmation | Negation | Hybrid

Model
CLIP (Pretrained) 14.47
CoN-CLIP 22.36
NegCLIP 8.50
CLIP (CC12MNegFull) || 52.65
TNG-CLIP (Ours) 59.23

31.96 8.34 14.97
0.01 27.67 24.14
22.58 8.62 4.08
73.75 35.69 62.34
85.92 36.39 72.80

Table 2: Result of Negbench image-to-text matching on VOC2007 image dataset

standing, it still might generate text that are se-
mantically incorrect. Thus, verification is neces-
sary to prevent the improper generation. Given
the negation prompt, p, positive question, g,
and negative question ¢,, we prompt the LLM
to ask whether the semantics in the g, is stated
positively in p, and whether the semantics in the
qn 1is stated negatively in p with the negation
semantics. If the LLM’s answer for both ques-
tions are correct, the negation data sample will
be kept, otherwise it will be discarded.

In the end, NEG-TTOI contains 2000 valid samples,
selected from 2500 candidates.

4.2 Evaluation metrics

Unlike image-text matching or retrieval tasks such
that the explicit ground truth can be found, evaluat-
ing image generation task is relatively subjective.
Inspired by (Park et al., 2025; Hu et al., 2023), we
employ GPT-40 (OpenAl et al., 2024) to evaluate
the existence and absence of the objects. Given a
image generated using negation caption as prompt
and the positive question and negative question, we
evaluate the model’s generation quality via the met-
ric of Compositional Accuracy: it’s True if the
LLM answers "yes" on positive question and "no"
on negative question at the same time.

S Experiments

To show the capability of our proposed method on
multiple downstream tasks, we evaluate our model

on negation tasks including image-to-text match-
ing, text-to-image retrieval and text-to-image gen-
eration. Our goal is to assess TNG-CLIP’s negation
semantics understanding via multiple benchmarks
and show its generalization and capacity on diverse
negation-based scenarios. In the paper, all experi-
ments are performed on a single Nvidia A40 GPU
with batch size of 128 and learning rate of 5e-6.

5.1 Matching & retrieval evaluation

To evaluate the negation understanding ability of
TNG-CLIP, we present the experiments on image-
to-text matching and text-to-image retrieval tasks.

Benchmarks We employ the following bench-
marks to evaluate the model’s performance:

e Valse-Existence (Parcalabescu et al., 2022)
benchmark evaluates the model’s performance
on negation imaget-to-text matching task.
Given a image and two text description about
the presence and absence of an object in
the image, e.g. "There is animal in the im-
age"/"There is no animal in the image", the
model should select the best-matched text.

* NegBench (Alhamoud et al., 2025b) bench-
mark is a comprehensive benchmark to eval-
uate the negation understanding of mod-
els on variant image-to-text matching and
text-to-image retrieval tasks. It includes
negation-based matching tasks based on
both MS-COCO(Chen et al., 2015) and



VOC2007(Everingham et al.) datasets, a text-
to-image retrieval task based on MS-COCO
evaluation dataset, where the captions are con-
verted into compositional negation style. In
the matching task, images are paired with four
different captions of three categories: Affirma-
tion for "It include A and B.", Negation for
"Does not include A and B.", and Hybrid for
"Include A but not B.".

Model ‘ Accuracy
CLIP (Pretrained) 65.16
NegCLIP 73.22
CoN-CLIP 74.15
CLIP (CC12MNegFull) 76.21
NegationCLIP 80.15
TNG-CLIP (Ours) 81.64

Table 3: Valse-Existence Image-to-Text Matching

Baselines To evaluate the performance of our
method, we compare it against several existing
baseline methods for CLIP’s negation understand-
ing, including pretrained-CLIP (Radford et al.,
2021), NegCLIP (Yuksekgonul et al., 2023), CoN-
CLIP (Singh et al., 2024), and CLIP fine-tuned on
CCI2M-NegFull (Alhamoud et al., 2025a). For fair
comparison, all of the methods are initialized based
on pre-trained CLIP ViT-B/32 model.

Comparison Experiments We present the
matching and retrieval task of NegBench-
MSCOCO in table 1 and the matching task of
NegBench-VOC2007 in table 2. From the tables,
we observe that previous methods are lack of gener-
alization on negation-based tasks, but only focus on
the negation understanding of specific tasks. For ex-
ample, CoN-CLIP’s performance on matching (af-
firmation) task is 0.05 and 0.29 on MSCOCO and
VOC2007 datasets, which indicates that the method
is biased such that it sacrifices the CLIP’s perfor-
mance on non-negation performance for negation
improvement. For NegCLIP, even though it get
the best score on retrieval task, we observe that the
affirmation performance is lower than that of the
pretrained-CLIP, and its performance on matching
(hybrid) is low. On the other hand, the CCI2M-
NegFull fine-tuned CLIP presents general improve-
ment of different tasks, indicating its capability of
diverse negation tasks. Our method, TNG-CLIP,
even though slightly underperforms the NegCLIP

Strategy ‘ Avg. Acc.
dynamic dataset | 51.61 £ 0.96
fixed dataset 49.52 +1.27

Table 4: Effect of using dynamic dataset. Evaluation on
NegBench-MSCOCO image-to-text matching task.

model on retrieval tasks, achieves SOTA perfor-
mance on all the matching tasks, shows its general-
ization and high-performance on diverse scenarios.
Similarly, the evaluation on Valse-Existence
dataset, in Table 3, further proofs TNG-CLIP’s,
capability of negation understanding. While the
benchmark is first used by NegationCLIP (Park
et al., 2025) and achieves promising result of 80.15
on CLIP ViT-B/32 based models, our method gets
better performance, 81.64, which is higher than all
other negation-understanding CLIP baselines.

Effectiveness of Dynamic Dataset The training-
time data generation pipeline generates the nega-
tion caption based on the other image-text pairs
in the same batch, which makes the negation cap-
tion of same image different in every epoch. We
analyze the effect of such dynamic dataset and
compare how the performance differs from using
fixed dataset. We store the image-text set, S, gen-
erated in each training epoch for every epoch as
the fixed dataset. We then use the fixed dataset to
replace the data generation pipeline to fine-tune the
CLIP model. To get statistically significant com-
parison result, we repeat the TNG-CLIP’s training
procedure for 10 times and use 10 fixed dataset
collected from different training epochs to fine-
tune pre-trained CLIP with same objective func-
tion and hyper-parameters. We present the mean
and standard deviation in Table 4. We observe
that the performance of TNG-CLIP is higher than
using fixed dataset, and the standard deviation is
also smaller than the fixed one. We explain such
phenomenon as the CLIP’s fine-tuning on fixed
dataset constrains the model’s negation understand-
ing to specific <caption, negation object> pair,
thus harms the generalization of the model on nega-
tion tasks, leading to lower mean accuracy. At the
same time, the data variance among every epoch
for TNG-CLIP works as a natural regularization to
prevent overfitting and memorizing incorrect corre-
lation, thus lead to smaller standard variance.

More analytic experiments are in Appendix A.4
and A.3.



5.2 Text-to-Image Generation

Model H Arch. H Acc.

SD-1.5 ViT-L/14 | 32.60
SDXL-1.0 ViT-L/14 || 27.45

SD-1.5 w/ CoN-CLIP ViT-L/14 | 28.40
SD-1.5 w/ TNG-CLIP (ours) || ViT-L/14 || 45.65
pretrained-CLIP + proj ViT-B/32 || 28.25
NegCLIP + proj ViT-B/32 || 33.85
CoN-CLIP + proj ViT-B/32 || 24.05
CC12MNegFull + proj ViT-B/32 || 36.95
TNG-CLIP + proj (ours) ViT-B/32 || 41.70

Table 5: Image Generation on NEG-TTOI benchmark

5.2.1 CLIP for Image Generation Task

Although CLIP model is mostly used to do image-
text matching tasks, it can be applied to text-to-
image generation tasks indirectly. For example, the
text encoder from stable diffusion model is the orig-
inal copy of CLIP ViT-L/14’s text encoder (Rom-
bach et al., 2022). To evaluate the negation under-
standing of CLIP in text-to-image generation field,
Park et al. provides a simple yet effective way, by
replacing the original text encoder from stable dif-
fusion model with their proposed negation-aware
CLIP. This direct substitution is possible because
they fine-tune only the text encoder, preserving the
original image embedding space and maintaining
the text feature alignment with it.

5.2.2 Experiment Setup

Following the strategy mentioned above, we fine-
tuned our TNG-CLIP from pretrained CLIP ViT-
L/14 model, and replace the original stable diffu-
sion model’s text encoder with ours.

However, most baseline methods are fine-tuned
only on CLIP ViT-B/32 model, it is difficult to
do the direct substitution due to the mismatch of
output feature dimension. To tackle such issue, we
attach a MLP projector after the frozen text encoder,
and perform knowledge distillation between CLIP
ViT-L/14’s text encoder acts and CLIP ViT-B/32’s
text encoder with projector, to align the output of
projected CLIP ViT-B/32 text encoder similar to
that of CLIP ViT-L/14 text encoder. We perform
add MLP to all the baseline methods and fine-tune
the MLP, with text encoder frozen, on the same
dataset, MS-COCO Caption (Chen et al., 2015).

5.2.3 Experiment Analysis

The comparison results on NEG-TTOI benchmark
are presented in Table 5. The upper table shows

the comparison with CLIP ViT-L/14’s text encoder
architecture. We choose SD-1.5 (Rombach et al.,
2022) as the generative model backbone and re-
place its text encoder with that of ours and ColN-
CLIP’s. All the experiment here are the zero-shot
performance on NEG-TTOI benchmark. We ob-
serve that among the all, using our TNG-CLIP’s
text encoder achieves the best accuracy, indicat-
ing its outstanding capability of handling negation
feature for image generation. On the other hand,
the accuracy of CoN-CLIP is lower than original
stable diffusion model, which shows its deficiency
on image generation task.

The lower table presents the accuracy of SD-
1.5 by replacing its text encoder with the combi-
nation of CLIP ViT-B/32 based architecture and
the fine-tuned MLP projector. Noticing that the
accuracy of our method using CLIP ViT-B/32’s
text encoder is 41.70, while that for using CLIP
ViT-L/14’s text encoder is 45.65, showing that the
projected ViT-B/32 text encoder is not as effective
as ViT-L/14’s text encoder, and is only used for
the purpose of providing accessible and fair com-
parison between the baselines on image generation
task. Among the all, our method’s text encoder still
achieves the best accuracy, and the clip fine-tuned
with CCI12MNegFull (Alhamoud et al., 2025a) is
the second best, similar with its performance in
image-text matching tasks.

We provide more detailed image generation task
analysis in Appendix A.2.

6 Discussion & Conclusion

In this paper, we focus on the critical problem of
improving negation understanding for CLIP. In-
stead of using pre-generated fixed negation dataset,
we propose a training-time negation data genera-
tion pipeline to generate dynamic negation caption
during the training time, addressing the time- and
compute- inefficiency problem of previous dataset.
We also show that using dynamic negation cap-
tion during the training can improve mdoel’s gen-
eralization and boost the performance of negation
fine-tuned CLIP. On the other hand, we propose the
first negation-aware text-to-image generation evalu-
ation benchmark to expand the horizon of negation-
related benchmarks. Overall, our work underscores
the negation understanding in the study of vision
language model, and call for the wider exploration
of negation-aware model in diverse tasks.



7 Limitations

In this paper, we propose a negation-aware CLIP,
TNG-CLIP, trained via the novel efficient training-
time negation data generation pipeline. We also
propose a negation text-to-image generation bench-
mark, NEG-TTOI, to evaluate the capability of
generative model’s performance with negation se-
mantics. However, although we have shown the
performance and generalization of TNG-CLIP via
multiple benchmarks, we see the limit of our paper:

* In the paper, we mainly focus on the nega-
tion understanding of CLIP model. As the
lack of negation understanding is an overall
challenge among all vision language models,
further exploration on negation-awareness of
diverse VLMs is necessary.

* The training-time negation data generation
pipeline is currently limited to image-text
pair dataset, which is adopted to apply con-
trastive learning. Our negation data genera-
tion pipeline has the potential to be extended
beyond image-text pairs, eg. visual question
answering dataset, thus supports the negation-
awareness training with objective function
other than contrastive loss.
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A Appendix

A.1 Ablation Study of Asymmetric
Noise-Augmented Objective

In order to train the negation-aware CLIP for di-
verse tasks, we propose a novel asymmetric noise-
augmented loss that different from the original con-
trastive loss of CLIP. We exam the contribution of
each component in this novel objective function
with analytic ablation study. Within the objective
function, we split its component to four parts based
on the functionality of each:

* compositional alignment refers to align the
compositional negation caption to the image
in ﬁt?i-

* full alignment refers to align the full negation
caption to the image in the L;o;.

* original alignment refers to align the original
caption to the image in L;;.

* noise alignment refers to align the random-
chose caption to the image in L;o;.

The analytic results are presented in Table 6, with
the evaluation on Negbench-MSCOCO matching
and Negbench-MSCOCO Retrieval tasks. From the
table, we observe that by eliminating compositional
negation, full negation and original caption from
L9; separately, the corresponding performance in
matching task drops. For example, without original
caption, the affirmation accuracy drops from 68.75
to 60.18. At the same time, the accuracy of nega-
tion retrieval tasks remains similar, indicating that
the components in L;2; are not the primary factors
for it.

We then analyze the effect of random noise in
Lio:. Instead of letting image random choose cap-
tion, we match the image to its corresponding orig-
inal, compositional negation and full negation cap-
tions as three independent experiments. Addition-
ally, we let images to randomly match one of its
corresponding original, compositional negation and
full negation caption, and even directly delete the
L4 loss. Through the experiments, we found that
without the random noise, performance of re-
trieval task drops significantly. This matches the
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hypothesis we proposed in Sec 3.2 that negation
dataset is an OOD task for pre-trained CLIP, the
direct fine-tuning may cause worse performance.
Lastly, we propose and examine another loss ob-
jective: can we split the generated image-text set,
S, to form three image-text pairs for each of origi-
nal, compositional negation and full negation, and
apply normal contrastive loss on the three indepen-
dently? We implement such objective function and
present it at the bottom of the table. We observe
that by doing so, the performance of both matching
task and retrieval task are sub-optimal. While there
is also no noise label added to the objective train-
ing, the worse result on using independent losses,
again, emphasizes the importance of adding noise
when fine-tuning CLIP on negation-related dataset.

A.2 More Analysis of Image Generation
Experiment

In the image generation task, we observe the ineffi-
ciency of original Stable Diffusion and CoN-CLIP
in the NEGTTOI benchmark. But why this hap-
pens? To further explore that, we evaluate the per-
formance of models with two analytic metrics: Pos-
itive Accuracy and Negative Accuracy. Given a
prompt "generate A without B", Positive Accuracy
measures if the image contains A, and Negative
Accuracy measures if the image doesn’t contain
B. The result is presented in Table 7. In the table,
we can observe that for original Stable Diffusion
model, the positive accuracy is higher than that of
using our method or CoN-CLIP as text encoder, but
the negative accuracy is much lower. This explicitly
shows that the original text encoder cannot process
negation semantics to help avoid the generation
of unwanted objects. On the other hand, adopting
CoN-CLIP as text encoder can significantly boost
the negative accuracy, but at the same time, its per-
formance on positive accuracy becomes low. This
indicates the CoN-CLIP model is a biased model
towards negation-understanding, while ignores the
generalization on other non-negation tasks.

A.3 Non-Negation Generalization on Image
Classification

Although TNG-CLIP is specifically designed for
negation understanding, it is important to ensure
that its performance on non-negation tasks re-
mains intact, in another word, it should not suf-
fer from catastrophic forgetting on tasks that the
original pre-trained CLIP model was capable of
handling. Inspired by the experiments from (Singh
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Model H Avg. ‘ Affirmation ‘ Negation ‘ Hybrid ‘ Neg-R@5
TNG-CLIP | 5250 |  68.75 4475 | 4329 | 6111
Ablation of Caption Category
w/o compositional 48.15 65.45 38.02 40.10 56.66
w/o full 51.31 75.63 24.75 51.44 60.79
w/o original 46.66 60.18 45.82 37.79 59.91
Ablation of Noise
Lo original 52.49 81.93 16.09 56.66 45.32
Lio: compositional 50.13 78.05 11.97 57.40 45.39
Loy full 40.29 45.12 44.11 31.85 48.58
Lio¢: random of three || 47.92 58.66 43.26 41.10 50.66
w/o Lo 46.24 59.54 36.04 42.29 50.49
independent losses || 46.49 | 5541 | 4374 | 40.05 | 50.19

Table 6: Ablation Study on NegBench MSCOCO matching task

Model H Arch. H Positive ‘ Negative
SD-1.5 ViT-L/14 80.85 41.95
SDXL-1.0 ViT-L/14 87.05 32.30
SD-1.5 w/ CoN-CLIP VIiT-L/14 || 46.25 72.50
SD-1.5 w/ TNG-CLIP (ours) || ViT-L/14 75.80 63.05
pretrained CLIP + proj ViT-B/32 || 45.65 67.25
NegCLIP + proj ViT-B/32 || 67.80 52.10
CoN-CLIP + proj ViT-B/32 39.45 72.65
CC12MNegFull + proj ViT-B/32 || 53.76 71.80
TNG-CLIP + proj ViT-B/32 | 63.65 68.50

Table 7: Image Generation on Neg-Ttol benchmark

et al., 2024), we conduct the zero shot image
classification on TNG-CLIP and pre-trained CLIP
with eight diverse benchmarks: FER2013 (Du-
mitru et al., 2013), Flickr-8K (Hodosh et al.,
2013), Flickr-30K (Plummer et al., 2016), MS-
COCO (Chen et al., 2015), SUN397 (Xiao et al.,
2010), VOC2007 (Everingham et al.), CIFAR-
10 (Krizhevsky, 2009), CIFAR-100 (Krizhevsky,
2009). The topl and top5S accuracy score is pre-
sented in Figure 3. In the figure, we observe that the
zero-shot performance of TNG-CLIP remains sim-
ilar with that of pre-trained CLIP, indicating there
is no catastrophic forgetting or overfitting to our
proposed method. Surprisingly, we also observe
that in some cases, such as Flickr-8K, Flickr-30K,
MS-COCO and VOC2007 benchmarks, the TNG-
CLIP outperforms the pre-trained CLIP, illustrating
improving the negation understanding can improve
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model’s performance on general tasks.

A.4 Time-Efficiency Test

As we generate data samples during the training
stage, does the generation pipeline significantly
slower the training process and becomes time-
consuming? We compares the average training
time per batch on the same GPU device, Nvidia-
A40, with and without the data generation pipeline
in Table 8. For every batch, the data generation
pipeline takes 0.13 sec, which is only 2.55% slower
than without using the data generation pipeline.
Thus, adding the data generation pipeline to the
training is still time-efficient.

A.5 Template-based Negation Pattern

During the negation caption generation, we use pre-
defined LLM-generated negation pattern template
to convert the original caption and negation object



a) Image Classification Acc@1
100 —

1 Ours Pre-trained CLIP
80 +

60

40 1

20 -
fer2013  flickr8k  flickr30k ~ mscoco  sun397  voc2007  cifarl0  cifar100

b) Image Classification Acc@5

100 —
W Ours Pre-trained CLIP
90 +

80

70 +

fer2013  flickr8k  flickr30k ~ mscoco  sun397  voc2007  cifari0  cifar100

Figure 3: The zero shot image classification accuracy
of pre-trained CLIP and TNG-CLIP on eight image
classification benchmarks.

Strategy | Time (sec)
w/o data generation 4.97
w/ data generation 5.10
data generation 0.13

Table 8: Time Efficiency for Data Generaiton

to compositional negation caption and full negation
caption. We present the template we used here in
Table 9 and Table 10.
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There’s no {cap} in the image.

No {cap} is included in the image.

There is not {cap} in the image.

The image does not have {cap}.

No {cap} is present in the image.

{cap} is not present in the image.

{cap} is absent.

No {cap} is present.

There isn’t any {cap}.

Not a single {cap} can be seen.

The image is without {cap}.

The image is lacking {cap}.

There appears to be no {cap} in the image.

The image does not contain {cap}.

There does not exist {cap} in the image.

There is nothing about {cap}.

There isn’t any {cap}.

No {cap} is seen in the image.

Table 9: Templates for full negation caption generatio

n,

we replace the cap with the provided original caption.

{cap} with no {obj}.

{cap} without {obj}

{cap} that do not have {obj}.

{cap} having no {obj}.

{cap} not include {obj}.

{cap} excluding {obj}.

{cap}, but no {obj} are present.

{cap}, though no {obj} can be seen.

{cap} without any {obj} in sight.

{cap} yet no {obj} are nearby.

{cap} but no {obj} are visible.

{cap} and no {obj} are anywhere around.

{cap}, without any {obj} in the vicinity.

{cap}, with no {obj} in the surroundings.

{cap}, but no {obj} are in the area.

{cap}, and no {obj} can be found nearby.

{cap} in the absence of {obj}.

{cap}, where no {obj} are present.

{cap} with an absence of {obj}.

{cap}, as no {obj} are around.

{cap}, while lacking any {obj}.

{cap} but no {obj} are engaging.

{cap} with no {obj} participating.

{cap} yet no {obj} are interacting.

{cap}, as no {obj} are involved.

{cap}, while {obj} remain absent from the
scene.

{cap} though no {obj} can be spotted.

{cap} where no {obj} are noticeable.

{cap} but no {obj} are detectable.

{cap}, as no {obj} are apparent.

{cap}, with no sight of any {obj}.

No {obj} is visible, but {cap}.

No {obj} can be seen, while {cap} happens.

No {obj} is present, yet {cap} continues.

No {obj} appears in sight, but {cap} unfolds.

Not a single {obj} is noticeable, but {cap}.

No trace of {obj} can be found, while {cap}
occurs.

No sign of {obj} is apparent, but {cap} is hap-
pening.

There is no {obj} in view, but {cap} takes
place.

None of the {obj} are around, yet {cap} con-
tinues.

Not even one {obj} is nearby, but {cap} is
ongoing.

No {obj} exists in the scene, while {cap} hap-
pens.

Absolutely no {obj} is here, yet {cap} re-
mains.

Nowhere can {obj} be found, but {cap} is
evident.

Nowhere in sight is any {obj}, yet {cap} un-
folds.

No {obj} is around in the surroundings, but
{cap} is occurring.

Table 10: Templates for compositional negation caption generation, we replace the cap with the provided original
caption and obj with the corresponding negation object.
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compositional negation caption

positive question

negative question

A room painted in blue with a white
sink, but no door.

Is there a room painted in blue
with a white sink?

Is there a door?

A shot inside a kitchen without anyone
present.

Is there a kitchen shown?

Is there anyone present?

A woman is walking on the sidewalk
without her dog.

Is there a woman walking on the
sidewalk?

Is there her dog?

A man without a bike at a marina.

Is there a man at a marina?

Is there a bike?

A man is sitting on a bench without a
bicycle nearby.

Is there a man sitting on a bench?

Is there a bicycle nearby?

There’s no kitchen sink beside the door
and countertop.

Is there a door and countertop?

Is there a kitchen sink beside the
door and countertop?

A bathroom without a checkered black
and white tile floor.

Is there a bathroom?

Is there a checkered black and
white tile floor?

A house boat is moored on a riverbank
with no bikes in sight.

Is there a house boat moored on
a riverbank?

Is there a bike?

A train missing a striped door waiting
on a train track.

Is there a train waiting on a train
track?

Is there a striped door?

A small airplane flying without a jet
nearby.

Is there a small airplane flying?

Is there a jet nearby?

A woman is seen without a horse in
front of a fence with razor wire.

Is there a woman in front of a
fence with razor wire?

Is there a horse?

No vans are traveling over a bridge next
to train tracks.

Is there a bridge next to train
tracks?

Is there a van?

A person riding a bicycle without any
river nearby.

Is there a person riding a bicycle?

Is there a river nearby?

No giraffes can be seen in the wood and
metal fenced enclosure.

Is there a wood and metal fenced
enclosure?

Is there a giraffe?

A row team without a lead woman
shouting.

Is there a row team?

Is there a lead woman shouting?

A lady is sitting in a room devoid of any
bright pink walls.

Is there a lady sitting in a room?

Is there a bright pink wall?

A man carrying a plate without any food
on it.

Is there a man carrying a plate?

Is there any food on the plate?

Table 11: Example from Neg-Ttol negation image generation benchmark
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