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ABSTRACT

Coordination is one of the essential problems in multi-agent reinforcement learn-
ing. Communication provides an alternative for agents to obtain information about
others so that coordinated behaviors can be learned. Some existing work lets
agents communicate predicted future trajectories with others, hoping to get clues
about what others would do. However, circular dependencies can inevitably oc-
cur when agents are treated equally so that it may not be possible to coordinate
decision-making. In this paper, we propose a novel communication scheme Se-
quential Communication (SeqComm) for better coordination. SeqComm treats
agents unequally (the upper-level agents make decisions prior to the lower-level)
and has two communication phases. In the negotiation phase, agents share ob-
servations with others and evaluate their intentions by the environmental model.
Agents determine the priority of decision-making by comparing the value of in-
tention. In the launching phase, the upper-level agents take the lead in making
decisions and share their actions with the lower-level agents so as to avoid cir-
cular dependencies. Empirically, we show that SeqComm outperforms existing
communication methods in a variety of multi-agent cooperative tasks.

1 INTRODUCTION

We have witnessed the prosperous development of multi-agent reinforcement learning (MARL) in
various applications, such as smart grid (Yang et al., 2018), autonomous driving (Zhou et al., 2020),
and intelligent traffic control (Xu et al., 2021). However, partial observability and stochasticity in-
herent to the nature of multi-agent systems can easily impede the cooperation among agents and
lead to catastrophic miscoordination (Ding et al., 2020). Communication has been exploited to help
agents obtain extra information during both training and execution to mitigate such problems (Foer-
ster et al., 2016; Sukhbaatar et al., 2016; Peng et al., 2017; Jiang & Lu, 2018). Specifically, agents
are entitled to share their information with others by a trainable communication channel. It has
been shown that communication enables agents to develop better cooperative strategies compared to
communication-free methods.

In cooperative MARL, although a centralized Q-function can be learned to evaluate the joint action
of agents, the policies of agents are essentially independent. Therefore, a coordination problem
arises. That is, agents may make sub-optimal actions by mistakenly assuming others’ actions when
there exist multiple optimal joint actions (Busoniu et al., 2008). Communication provides an alter-
native for agents to obtain information about others. However, most existing work only focuses on
communicating messages conditioned on agents’ observations or historical trajectories (Jiang & Lu,
2018; Singh et al., 2019; Das et al., 2019; Ding et al., 2020). It is impossible for an agent to acquire
other’s action before making decision since the game is usually symmetric, i.e., agents make deci-
sions simultaneously. Recently, intention or imagination, depicted by the combination of predicted
actions and observations of many future timesteps, has been proposed as part of messages (Kim
et al., 2021; Pretorius et al., 2021). However, circular dependencies can inevitably occur so that it
may be impossible to coordinate decision-making.

A general approach to solving the coordination problem is to make sure that ties between equally
good actions are broken by all agents. One mechanism is to know exactly what others will do
and adjust the behavior accordingly under a unique ordering of agents and actions (Busoniu et al.,
2008). Inspired by this, we reconsider the cooperative game from an asymmetric perspective. In
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other words, each agent is assigned a priority of decision-making at each timestep in both training
and execution, and thus Stackelberg equilibrium (Von Stackelberg, 2010) is naturally set up as the
learning objective. Under this asymmetric setting, we assume the upper-level agents make deci-
sions prior to the lower-level, which means it is possible for the lower-level agents to acquire the
actual actions of the upper-level by communication and make their decisions conditioned on what
the upper-level would do. However, how to decide the priority of decision-making for each agent?
It reminds us that people always negotiate about division of labor, by sharing and evaluating their in-
tentions, before launching the mission. To this end, we adopt multi-round communication scheme so
that agents can reach a consensus on the priorities. This is corroborated by many previous methods
(Das et al., 2019; Singh et al., 2019; Hoshen, 2017) which believe collaborative strategies require
multiple rounds of back-and-forth interactions between agents.

In this paper, we propose a novel multi-round communication scheme for cooperative MARL, Se-
quential Communication (SeqComm), to enable agents explicitly coordinate with each other. More
specifically, SeqComm has two-phase communication, negotiation phase and launching phase. In
negotiation phase, agents communicate their observations with others simultaneously. Then they are
able to generate multiple predicted trajectories, denoted as intention, by modeling the environmental
dynamics and other agents’ actions. In addition, the priority of decision-making is determined by
communicating and comparing the corresponding values of agents’ intentions. This is because the
value of each intention represents the rewards obtained by letting that agent take the upper-level
position of decision-making. The sequence of others follows the same procedure as aforemen-
tioned with the upper-level agents fixed. In launching phase, the upper-level agents take the lead in
decision-making and share their actions with the lower-level agents.

SeqComm is instantiated on PPO (Schulman et al., 2017). The critic and actor of SeqComm agent
only takes input as its own observation and received messages. In addition, attention mechanism
(Vaswani et al., 2017) is used to accommodate non-predetermined size on input for all the modules
in SeqComm. These make SeqComm more practical, since in real-world applications the number of
agents may vary over time. We evaluate SeqComm in four multi-agent cooperative tasks in multi-
agent particle environment (Lowe et al., 2017) and StarCraft multi-agent challenge (Samvelyan
et al., 2019). In all these tasks, we empirically demonstrate that SeqComm outperforms existing
communication methods. By ablation studies, we confirm that treating agents unequally is an effec-
tive way to promote coordination and SeqComm can provide the proper priority of decision-making
for agents to develop better coordination.

2 RELATED WORK

Communication Learning to communicate in MARL has been greatly advanced recently. DIAL
(Foerster et al., 2016), CommNet (Sukhbaatar et al., 2016) and BiCNet (Peng et al., 2017) can be
considered as first attempts to train a workable communication channel enabling agents to obtain
more information for decision-making. However, agents can be overwhelmed by the redundant
information as the number of agents grows since not every agent can provide useful messages. The
subsequent studies (Jiang & Lu, 2018; Kim et al., 2019; Singh et al., 2019; Das et al., 2019; Zhang
et al., 2019; Jiang et al., 2020; Ding et al., 2020) in this realm thus mainly focus on how to extract
more valuable messages. ATOC (Jiang & Lu, 2018) and IC3Net (Singh et al., 2019) utilize gate
mechanism to decide when to communicate with other agents. TarMAC (Das et al., 2019) employs
attention module (Vaswani et al., 2017) to pilot agents to focus on more important message and
ignore the irrelevant. I2C (Ding et al., 2020) only communicates with agents that are relevant and
influential determined by causal inference. I2C firstly adopts one-to-one communication and it can
cut off the useless messages from the source. However, all these methods focus on how to exploit
valuable information from current or past partial observations effectively and properly.

More recently, some studies (Kim et al., 2021; Du et al., 2021; Pretorius et al., 2021) begin to
answer the question: can we favour cooperation beyond sharing partial observation? They allow
agents to imagine their future states with forward model and communicate that with others. IS
(Pretorius et al., 2021), as the representation of this line of research, enables each agent to share its
intention with other agents in the form of encoded imagined trajectory and use attention module to
figure out the importance of received intention. However, two concerns arise. On one hand, circular
dependencies can lead to inaccurate predicted future trajectories as long as the multi-agent system
treats agents equally. On the other hand, MARL struggles in extracting useful information from

2



Under review as a conference paper at ICLR 2022

numerous messages, not to mention more complex and dubious messages conditioned on predicted
future trajectories.

Unlike existing work, we treat the agents from an asymmetric perspective therefore circular depen-
dencies issue can be naturally resolved. Furthermore, agents only send actions to lower-level agents
besides partial observation to make sure the messages are compact as well as informative.

Reinforcement Learning in Stackelberg Game Many previous studies (Könönen, 2004;
Sodomka et al., 2013; Greenwald et al., 2003; Zhang et al., 2020) have investigated reinforcement
learning in finding Stackelberg equilibrium. Bi-AC (Zhang et al., 2020) is a bi-level actor-critic
method that allows agents to have different knowledge base so that Stackelberg equilibrium (SE) is
possible to find. The actions still can be executed simultaneously and distributedly. It is claimed
that SE is likely to be Pareto superior to the average Nash equilibrium (NE) in games with high
cooperation level. AQL (Könönen, 2004) updates the Q-value by solving the SE in each iteration
and can be regarded as the value-based version of Bi-AC.

Existing work mainly focuses on two-agent settings and their order is fixed in advanced. However,
fixed order can hardly be an optimal solution especially when it comes to large-scale homogeneous
agents scenarios. To address this issue, we exploit agents’ intentions to dynamically determine the
priority of decision-making along the way of interacting with each other.

Multi-Agent Path Finding (MAPF) MAPF aims to plan collision-free paths for multiple agents
on a given graph from their given start vertices to target vertices. In MAPF, prioritized planning is
deeply coupled with collision avoidance (Van Den Berg & Overmars, 2005; Ma et al., 2019), where
collision is used to design constraints or heuristics for planning.

Unlike MAPF, our method couples the priority of decision-making with the learning objective, thus
is more general. In addition, the different motivations and problem settings may lead to the incom-
patibility of the algorithms in the two fields.

3 SEQUENTIAL COMMUNICATION FOR MULTI-AGENT COORDINATION
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Figure 1: Network architecture. The critic and
policy of each agent take input as its own observa-
tion and received message. The message includes
the observations of all other agents and actions
of upper-level agents. Note that the world model
takes as input the received joint observation and
estimated joint actions.

We consider fully cooperative multi-agent tasks
that are modeled as Dec-POMDPs augmented
with communication. At each timestep t,
each agent i gets its own observation oit
from the global state st, and messages m−it
from all other agents, denoted as m−it =
{m1

t , . . . ,m
i−1
t ,mi+1

t , . . . ,mn
t }. Then, it takes

action ait following its policy πi and re-
ceives a shared reward r(st,at) where at =
{a1t , . . . , ant } is the joint action of all agents.
The state transitions to next state st+1 accord-
ing to the transition probability T (st+1|st,at).
Agents are fully cooperative and aim to maxi-
mize the expected return

∑T
t=1 γ

t−1rt, where γ
is the discount factor and T is the episode time
horizon.

Sequential communication (SeqComm) is cur-
rently instantiated as an extension of Proximal
Policy Optimization (PPO) (Schulman et al.,
2017), but it can also be realized using any
value-based methods. Each SeqComm agent
consists of a policy, a critic and a world model,
as illustrated in Figure 1. Besides, SeqComm
adopts broadcast and multi-round communica-
tion mechanism, i.e., agents are allowed to
communicate with all other agents in multiple
rounds. Importantly, communication is sepa-
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Figure 2: Sequential communication. There are two communication phases, negotiation phase (left)
and launching phase (right). In the negotiation phase, agents communicate observations with others
and obtain their own intentions. The priority of decision-making is determined by sharing and
comparing the value of all the intentions. In the launching phase, the agents hold the upper-level
positions will make decision prior to the lower-level agents. Besides, their actions will be shared to
anyone that has not yet made a decision.

rated into two phases serving for different purposes. One is negotiation phase for agents to determine
the priority of decision-making. Another is launching phase for agents to act conditioned on actual
actions upper-level agents will take to implement explicit coordination.

3.1 NEGOTIATION PHASE

In negotiation phase, agents determine the priority of decision-making by intention which is estab-
lished and evaluated based on the world model as illustrated in Figure 2.

World Model The world model is needed to predict and evaluate future trajectories. Note that the
observation predictor of each agent in previous studies (Kim et al., 2021; Du et al., 2021; Pretorius
et al., 2021) only conditions on agent’s own observation ot and action at to obtain next observation
ot+1. However, the transition of environmental state and global reward depends on the joint action of
all agents, therefore it may not be possible to accurately predict next observation and reward merely
based on agent’s own information. SeqComm, unlike previous work, allows agents to share their
observations with others through broadcast. Once agent can access to other agents’ observations,
it shall have adequate information to estimate their actions since all agents are homogeneous and
parameter-sharing. Therefore, the world model M(·) takes as input the joint observation ot =
{o1t , . . . , ont } and action at, and predicts the next joint observation and reward,

ôt+1, r̂t+1 =Mi(AMneg(ot,at)), (1)

where AMneg is the attention module. The reason that we adopt the attention module to process
observation-action pairs is to entitle the world model to be generalizable in the scenario where
additional agents are introduced or existing agents are removed.

Priority of Decision-Making Intention is the key element to determine the priority of decision-
making. The notion of intention is described as agent’s future behaviour in previous work (Ra-
binowitz et al., 2018; Raileanu et al., 2018; Kim et al., 2021). However, we define intention as
agent’s future behaviour without considering others, with one more attributive. As mentioned be-
fore, agent’s intention considering others can lead to circular dependencies and cause miscoordi-
nation. By our definition, the intention of an agent should be depicted to all future trajectories by
considering itself as first-mover and ignoring others. However, there are many possible future tra-
jectories as the priority of the rest agents is unfixed. It is unlikely to enumerate and evaluate all.
Therefore, we use Monte Carlo method to evaluate intention.

Taking agent i at timestep t to illustrate, it firstly considers itself as first-mover and produces its
action only based on the joint observation, âit ∼ πi(·|ot). For the sequence order of lower-level
agents, we randomly sample a set of sequence orders from unfixed agents. Assume agent j is the
second-mover, agent i models j’s action by considering the upper-level action following its own
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policy âjt ∼ πi(·|ot, âit). It is the same to predict the actions of all other agents following the
sampled sequence order. Combined with the joint observation, the next joint observation ôt+1 and
corresponding reward r̂t+1 can be predicted by the world model. The length of predicted future
trajectory is H and it can then be written as τ t = {ôt+1, ât+1, . . . , ôt+H , ât+H} by repeating the
procedure aforementioned and the value of one trajectory is defined as the return of that trajectory
vτt =

∑t+H
t′=t+1 γ

t′−t−1r̂t′/H . In addition, the intention value is defined as the average value of F
future trajectories with different sampled sequence orders.

After all the agents have computed its own intention and corresponding value, they again broadcast
their intention values to other agents and agents would compare and choose the agent with the
highest value to be the first-mover. The priority of lower-level decision-making follows the same
procedure with the upper-level agents fixed. Note that some agents are required to communicate
intention value with others multiple times until the priority of decision-making is finally determined.
However, only intention values are needed to transfer multiple times which will not incur too much
communication overhead in real applications.

3.2 LAUNCHING PHASE

As for the launching phase, agents communicate for obtaining messages to make decisions. Apart
from the received observations from last phase, we allow agents to get what actual actions the upper-
level agents will take in execution, while other studies can only infer others’ actions by opponent
modeling (Rabinowitz et al., 2018; Raileanu et al., 2018) or communicating intention (Kim et al.,
2021). Therefore, collision can be avoided and better coordination is possible since lower-level
agents can adjust their own behaviours accordingly. The lower-level agent makes its decision fol-
lowing the policy π(at|ot,AMlac(ot,a

upper
t )), where auppert means the received actions from all

upper-level agents. Besides, we again use an attention module AMlac to handle the input. As long
as the agent has decided its action, it will send its action to all other lower-level agents by commu-
nication channel. Note that the actions are executed simultaneously and distributedly in execution,
though agents make decisions sequentially.

3.3 ATTENTION MODULE

Attention module (AM) is applied to process messages in the world model, critic network, and
policy network. AM consists of three components: query, key, and values. The output of AM is the
weighted sum of values, where the weight of value is determined by the dot product of the query
and the corresponding key.

For AM in the world model denoted as AMneg, agent i gets messages m−it = o−it from all other
agents at timestep t in negotiation phase, and predicts a query vector qit following AMi

neg,q(o
i
t). The

query is used to compute a dot product with keys kt = [k1t , · · · , knt ]. Note that kjt is obtained by the
message from agent j following AMi

neg,k(m
j
t ) for j 6= i, and kit is from AMi

neg,k(o
i
t). Besides, it is

scaled by 1/
√
dk followed by a softmax to obtain attention weights α for each value vector:

αi = softmax

qit
T
k1t√
dk
· · · q

i
t
T
kjt√
dk︸ ︷︷ ︸
αij

· · · q
i
t
T
knt√
dk

 (2)

The output of attention module is defined as: cit =
∑n
j=1 αijv

j
t , where vjt is obtained from messages

or agent own observation following AMi
neg,v(·).

As for AM in the policy and critic network denoted as AMlac , agent i gets additional messages
from upper-level agent in launching phase. The message of upper-level and lower-level agent can
be expanded as mupper

t = [ouppert , auppert ] and mlower
t = [olowert , 0], respectively. In addition, the

query depends on agent own observation oit, but keys and values are only from messages of other
agents.
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3.4 TRAINING

The training of SeqComm is an extension of PPO. The critic and policy network are parameterized
by θv , θπ and takes as input the agent own observation and received messages. Besides, attention
module AMlac is parameterized by θl and takes as input the agent own observation, the messages
(observations of other agents) in negotiation phase and messages (the actions of upper-level agents)
in launching phase. Let D = {τk}Kk=1 be a set of trajectories by running policy in the environment.
Note that we drop time t in the following notations for simplicity.

The value function is fitted by regression on mean-squared error:

L(θv) =
1

KT

∑
τ∈D

T∑
t=0

∥∥∥V (o,AMθl
lac(o,a

upper))− R̂
∥∥∥2
2

(3)

where R̂ is the discount rewards-to-go.

We update the policy by maximizing the PPO-Clip objective:

L(θπ) =
1

KT

∑
τ∈D

T∑
t=0

min(
π(a|o,AMθl

lac(o,a
upper))

πold(a|o,AMθl
lac(o,a

upper))
Aπold

, g(ε, Aπold
)) (4)

where g(ε, A) =
{
(1 + ε)A A ≥ 0

(1− ε)A A ≤ 0
, and Aπold

(o,aupper, a) is computed using the GAE method.

Note that θl is learned via equation 3 and equation 4 by backpropagation.

The world modelM is parameterized by θb is trained as a regression model using the training data
set S, which is obtained by running any pre-trained policy (or collected during policy learning). It
updates with the loss:

L(θb) =
1

|S|
∑

o,a,o′,r∈S

∥∥∥(o′, r)−M(o,a)
∥∥∥2
2
. (5)

4 EXPERIMENTS

We evaluate SeqComm in four cooperative tasks: predator prey (PP), cooperative navigation (CN),
and keep away (KA) in multi-agent particle environment (MPE) (Lowe et al., 2017), and one map
in StarCraft multi-agent challenge (SMAC) (Samvelyan et al., 2019).

We compare SeqComm against the following methods.

• IS (Kim et al., 2021), where agents communicate predicted future trajectories.
• TarMAC (Das et al., 2019), where agents use attention model to focus more on important

incoming messages.
• I2C (Ding et al., 2020), where agents infer one-to-one communication to reduce message

redundancy.
• PPO (Schulman et al., 2017), the base algorithm of SeqComm, communication-free.

In the experiments, SeqComm and baselines are parameter-sharing for fast convergence (Gupta
et al., 2017; Terry et al., 2020). Moreover, to ensure the comparison is fair, their basic hyperparam-
eters are the same and their sizes of network weights are also similar. Please refer to Appendix for
the hyperparameter settings. All results are presented in terms of mean and standard deviation of
five runs with different random seeds.

4.1 MPE

4.1.1 SETTINGS

Predator Prey. 5 predators (agents) try to capture 3 preys, all with random initial locations. Each
predator observes the relative positions of three nearest preys, and is allowed to communicate with
all other predators. Preys have a pre-defined area of activity and move in the opposite direction of the
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Figure 3: Learning curves in terms of mean reward of SeqComm and baselines in PP, CN, and KA.
We run 1e7 steps in all three MPE tasks.

closest predator. Moreover, preys move faster than predators, and thus it is impossible for a predator
to capture a prey alone. Preys stop moving if being captured. The team reward of predators is the
sum of negative distances of all the preys to their closest predators. Predators are also penalized by
−0.5 for colliding with other predators. The length of each episode is 20 timesteps.

Cooperative Navigation. 5 agents try to occupy 5 landmarks, all with random initial locations.
Each agent only observes the relative positions of three nearest landmarks and cannot perceive any
other agents. This makes the communication more important. The team reward is based on the
proximity of agents to landmarks, which is the sum of negative distances of all landmarks to their
closest agents. The collision penalty is also set to −0.5. The length of each episode is 30 timesteps.

Keep Away. 3 attackers (agents) try to occupy 3 landmark, however, there are 3 defenders to push
them away. The locations of landmarks are fixed and the positions for both attackers and defenders
are randomly initialized. Each attacker observes the relative positions of three defenders. Defenders
move in the same direction of the closest attacker but slower than attackers. Besides, collision
is allowed between these two kinds so that defenders can push attackers away from landmarks.
Therefore, attackers cannot hold on one landmark for a long time. The team reward of attackers is
the sum of negative distances of all landmarks to their closest attackers. In addition, attackers get
a penalty −0.5 for colliding with defenders and other attackers. The length of each episode is 20
timesteps.

Note that the size of agents is set to be larger than original settings in all three tasks so that collisions
occur more easily, following the settings in (Kim et al., 2021).

4.1.2 PERFORMANCE

Figure 3 shows the learning curves of all the methods in terms of mean reward averaged over
timesteps in PP, CN, and KA. We can see that SeqComm converges to the highest mean reward
compared with all baselines. The results demonstrate the superiority of SeqComm. In more detail,
apart from communication-free PPO, IS performs the worst since it may access to inaccurate pre-
dicted information. The significant improvement over I2C and TarMAC shows the effectiveness of
SeqComm since SeqComm allows agents to get more valuable accurate actions information. Note
that the difference between SeqComm and other baselines narrows down in KA. This is because
KA has less agents than previous tasks which makes setting easier, even though this setting requires
more sophisticated coordination strategies, avoiding choosing the same landmark at the beginning
as CN and keeping adjusting targets throughout the whole process as PP.

Figure 4 (upper panel from a to e) shows the priority order of decision making determined by
SeqComm in PP. Agent 2 that is far away from others preys and predators is chosen to be the first-
mover. If agents want to encircle and capture the preys, agents (e.g., agent 2 and 5) that on the
periphery of the encircling circle should hold upper-level position since they are able to decide how
to narrow the encirclement. In addition, agent 3 makes decision prior to agent 5 so that collision can
be avoided after agent 5 obtains the intention of agent 3.

For CN, as illustrated in Figure 4 (lower panel from a to e), agent 2 is far away from all the landmark
and all other agents are in a better position to occupy landmark. Therefore, agents 2 is chosen to be
the first-mover, which is similar with the phenomenon observed in PP. Once it has determined the
target to occupy, other agent (agent 5 and 3) can adjust their actions accordingly and avoid conflict
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Figure 4: Illustration of learned priority of decision making in PP (upper panel) and CN (lower
panel). Preys (landmarks) are viewed in black and predators (agents) are viewed in grey in PP
(CN). From a to e, shown is the priority order. The smaller the level index, the higher priority of
decision-making is.

of goals. Otherwise, if agent 5 makes decision first and chooses to occupy the closest landmark,
then agent 2 has to approach to a further landmark which would take more steps.

4.2 SMAC

To verify the effectiveness of SeqComm in high-dimensional tasks, we evaluate SeqComm against
the baselines on SMAC with one customized map, 3s vs 4z, where we have made some minor
changes to the observation part of agents to make it more difficult. Specifically, the sight range of
agents is reduced from 9 to 3, and agents cannot perceive any information about their allies even if
they are within the sight range. The rest settings remain the same as the default.
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Figure 5: Learning curves in terms of win rate in 3s vs 4z.

Table 1: Win rates with 100 test trails.

3s vs 4s

SeqComm 0.91 ±0.04
TarMAC 0.87 ±0.05
PPO 0.84 ±0.02
IS 0
I2C 0

The learning curves of SeqComm and baselines in terms of win rate are illustrated in Figure 5,
and their win rates are summarized in Table 1. IS and I2C fail in this task, because these two
methods are built on MADDPG. However, MADDPG cannot work well in SMAC, especially when
we reduce the sight range of agents, which is also supported by other studies (Papoudakis et al.,
2021). SeqComm and TarMAC converge to better performance than PPO, which demonstrates the
benefit of communication. Moreover, SeqComm outperforms TarMAC, which again verifies the
gain of explicit action coordination.

4.3 ABLATION STUDIES

Since SeqComm determines the priority of decision-making for all agents, we also compare it
with two ablation baselines with only difference in the priority of decision-making: the priority
of decision-making is fixed throughout one episode, denoted as Fix-C, and the priority of decision-
making is determined randomly at each timestep, denoted as Random-C.
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Figure 6: Ablation studies on the priority of decision-making in PP, CN and 3s vs 4z. Fix-C: the
priority of decision-making is fixed throughout one episode. Random-C: the priority of decision-
making is determined randomly.

As depicted in Figure 6, SeqComm achieves higher reward than Fix-C and Random-C in PP and
CN. Moreover, SeqComm converges faster than the baselines even though SeqComm and Fix-C
have achieved the similar win rate in 3s vs 4z. The results demonstrate that the importance of the
priority of decision-making in SE setting and it is necessary to continuously adjust it during one
episode, and that SeqComm could provide the proper priority order of decision-making. Besides,
Fix-C and Random-C show better performance than TarMAC in PP and CN. This result accords
with the hypothesis that SE is likely to be Pareto superior to the average NE in games with high
cooperation level (Zhang et al., 2020).

4.4 GENERALIZATION

Generalization to different number of agents has always been a key problem in MARL. For most
algorithms in communication, once the model is trained in one scenario, it is unlikely for agents
to maintain relatively competitive performance in other scenarios with different number of agents.
However, as we employ attention module to process communicated messages so that agents can han-
dle messages of different length. In addition, the module used to determine the priority of decision-
making is also not restricted by the number of agents. Thus, we investigate whether SeqComm
generalizes well to different number of agents in CN and PP.

Table 2: Mean reward in different tasks, averaged over timesteps, with 200 test trials.

Fix-C SeqComm

3-agent in CN −0.83 ±0.17 −0.76 ±0.08
7-agent in CN −1.79 ±0.15 −1.57 ±0.10
7-agent in PP −1.89 ±0.45 −1.31 ±0.60

For both tasks, SeqComm is trained on 5-agent settings. Then, we test SeqComm in 3-agent and
7-agent settings of CN and 7-agent setting of PP. We use Fix-C trained directly on these test tasks
to illustrate the performance of SeqComm. Note that the quantity of both landmarks and preys is
adjusted according to the number of agents in CN and PP. The test results are shown in Table 2.
SeqComm exhibits the superiority in CN and PP, demonstrating that SeqComm may have a good
generalization to the number of agents. A thorough study of the generalization of SeqComm is left
to future work.

5 CONCLUSIONS

We have proposed SeqComm that enables agents well and explicitly coordinate with each other.
SeqComm from an asymmetric perspective allows agents to make decision sequentially. Two-phase
communication scheme has been adopted for determining the priority of decision-making and trans-
ferring messages accordingly. Empirically, it is demonstrated that SeqComm outperform baselines
in a variety of cooperative multi-agent scenarios.
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A EXPERIMENTAL SETTINGS

In cooperative navigation, there are 5 agents and the size of each is 0.15. They need to occupy 5
landmarks with the size of 0.05. The acceleration of agents is 7. In predator prey, the number of
predators (agents) and prey is set to 5 and 3, respectively, and their sizes are 0.15 and 0.05. The
acceleration is 5 for predators and 7 for prey. In keep away, the number of attackers (agents) and
defenders is set to 3, and their sizes are respectively 0.15 and 0.05. Besides, the acceleration is 6
for attackers and 4 for defenders. The three landmarks are located at (0.00, 0.30), (0.25,−0.15),
and (−0.25,−0.15). Note that each agent is allowed to communicate with all other agents in all
three tasks. The team reward is similar across tasks. At a timestep t, it can be written as rtteam =
−
∑n
i=1 d

t
i + Ctrcollision, where dti is the distance of landmark/prey i to its nearest agent/predator,

Ct is the number of collisions (when the distance between two agents is less than the sum of their
sizes) occurred at timestep t, and rcollision = −1. In addition, agents act discretely and have 5 actions
(stay and move up, down, left, right).

B IMPLEMENTATION DETAILS

Our models, including SeqComm, Fix-C, and Random-C are trained based on PPO. The critic and
policy network are realized by two fully connected layers. As for the attention module, key, query,
and value have one fully connected layer each. The size of hidden layers is 100. Tanh functions
are used as nonlinearity. For I2C and PPO, we use their official code with default settings of basic
hyperparameters and networks. As there is no released code of IS and TarMAC, we implement IS
and TarMAC by ourselves, following the instructions mentioned in the original papers (Kim et al.,
2021; Das et al., 2019).

For the world model, observations and actions are firstly encoded by a fully connected layer. The
output size for the observation encoder is 48, and the output size for the action encoder is 16.
Then the outputs of the encoder will be passed into the attention module with the same structure
aforementioned. Finally, we use a fully connected layer to decode. In these layers, Tanh is used as
the nonlinearity.

Table 3 summarize the hyperparameters used by SeqComm and the baselines in the experiments.

Table 3: Hyperparameters for predator prey, cooperative navigation, keep away, and SMAC

Hyperparameter SeqComm Random-C Fix-C TarMAC PPO I2C IS

discount (γ) 0.95,0.95,0.95,0.99
batch size – – – – – 800 1024
buffer capacity – – – – – 1e6

number of processes 16,16,16,8 – –
learning rate 1.5e−5, 1e−5, 4e−5,5e−5 1e−2, 1e−3, 1e−3,5e−5 1e−2

H 10,10,20,20 – – – – – –
F 2, 2, 1, 1 – – – – –
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