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Abstract

Large language models (LLMs) typically improve performance by either retrieving1

semantically similar information, or enhancing reasoning abilities through struc-2

tured prompts like chain-of-thought. While both strategies are considered crucial,3

it remains unclear which has a greater impact on model performance or whether a4

combination of both is necessary. This paper answers this question by proposing5

a knowledge graph (KG)-based random-walk reasoning approach that leverages6

causal relationships. We conduct experiments on the commonsense question an-7

swering task that is based on a KG. The KG inherently provides both relevant8

information, such as related entity keywords, and a reasoning structure through the9

connections between nodes. Experimental results show that the proposed KG-based10

random-walk reasoning method improves the reasoning ability and performance11

of LLMs. Interestingly, incorporating three seemingly irrelevant sentences into12

the query using KG-based random-walk reasoning enhances LLM performance,13

contrary to conventional wisdom. These findings suggest that integrating causal14

structures into prompts can significantly improve reasoning capabilities, providing15

new insights into the role of causality in optimizing LLM performance.16

1 Introduction17

Large language models (LLMs) have demonstrated significant advancements in natural language18

processing tasks through two primary approaches: providing auxiliary information via retrieval19

and enhancing reasoning abilities within prompts. Retrieval-augmented generation (RAG) (Lewis20

et al., 2020) is designed to provide information relevant to the given context or query. This relevant21

information is identified using embedding similarity searches and then integrated into the LLM’s22

prompt, thereby enhancing the accuracy, relevance recency of the generated response. Recent studies23

have shown that RAG can significantly boost performance in tasks such as summarization and24

question answering (QA) (Gu et al., 2019; Shuster et al., 2021; Komeili et al., 2022). However, this25

approach primarily focuses on retrieving directly related information, raising the question of whether26

relying solely on such relevant information is sufficient for achieving optimal LLM performance.27

Another approach to improving the quality of LLM responses is to enhance their reasoning abilities28

(Jain et al., 2023; Suzgun et al., 2023; Wei et al., 2022; Kojima et al., 2022). Reasoning capabilities29

enable LLMs to go beyond surface-level information and make logical connections between concepts,30

thereby enhancing their ability to handle more complex queries (Jain et al., 2023; Suzgun et al., 2023;31

Wei et al., 2022; Kojima et al., 2022). Structured reasoning techniques, such as knowledge graph32

(KG)-based methods, offer an effective alternative by allowing LLMs to utilize structured knowledge33

and causal relationships for deeper reasoning (Ling et al., 2023; Yao et al., 2023; Speer and Havasi,34

2013). This capability makes KGs a promising resource for comprehending concepts, applying35
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(a) KG example of QA (b) KG-Based Reasoning

Figure 1: (a) Illustration of a KG structure and an example of CommonsenseQA (Talmor et al.,
2018). At the bottom, the question and its concept are represented as q and qc respectively, while the
answer is denoted as a. (b) Performance comparison on commonsense QA. The dotted line (baseline)
represents the performance when no additional context is provided through the prompt. The three
bars represent the number of sentences provided as context in the prompt.

logical reasoning, and refining or validating the model’s understanding using existing knowledge36

(Wang et al., 2023; Yao et al., 2023).37

In this paper, we aim to investigate the relative contributions of semantic information retrieval38

and causal reasoning to the LLMs. To this end, we propose a KG-based random-walk reasoning39

approach that navigates paths of interconnected nodes and edges to uncover causal relationships and40

extract contextual information, thereby enhancing the reasoning capabilities of LLMs. We use the41

CommonsenseQA (Talmor et al., 2018) dataset, constructed from the KG, ConceptNet (Speer et al.,42

2017), as our evaluation benchmark. Figure 1-(a) shows a KG and an example of CommonsenseQA.43

This dataset is suitable for our study as it requires both relevant information retrieval and complex44

reasoning to solve problems based on the structured relationships within the KG. We systematically45

assess the impact of providing semantically relevant information and causal reasoning by conducting46

experiments with various settings that control the presence and type of contextual information47

provided to the LLM.48

Specifically, we evaluate the effect of incorporating causal relationships extracted through random-49

walk reasoning within the ConceptNet graph, measuring how these elements contribute to LLM50

performance in answering commonsense questions. To comprehensively analyze the contributions of51

information retrieval and reasoning, we designed the following experimental settings:52

1. Relevant Information Only: In this setting, the context provided to the LLM consists of53

information with high embedding similarity to the question, inspired by RAG, without any54

additional reasoning process.55

2. Graph Inference Only: The context provided offers reasoning ability through a continuous56

process of graph inference, but the information is entirely unrelated to the question.57

3. Keyword Relevant Information + Graph Inference (KGI): The information means58

sentences related to the keywords of the question, also providing reasoning ability through59

the proposed approach. However, there is no guarantee that the information in the graph is60

directly related to the content of the question. In other words, reasoning and information are61

provided together, but it is possible to include irrelevant information to the question.62

4. Query Relevant Information + Graph Inference (QGI): This setting explores how pro-63

viding both relevant information related to the question and causal relationship through the64

KG-based random-walk reasoning can enhance the LLMs.65

Figure 1-(b) provides a summary of the experiments. Compared to the baseline, where no additional66

context is given, the prompt involving either relevant information or causal reasoning improves67

performance. Notably, in the "Graph Inference Only" setting, when causal relationships were68

conveyed through the reasoning of two or three sentences, performance improved even though69
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the content was entirely unrelated to the question. This result indicates that our experimental70

settings successfully convey reasoning capabilities through causal structures. Furthermore, this71

finding suggests that, contrary to conventional wisdom, it may be more advantageous to equip72

LLMs with reasoning abilities, grounded in causality, rather than merely providing semantically73

related information. A comparison between the "Graph Inference Only" and "KGI" settings shows74

that information extracted through the KG-based random-walk reasoning method yields better75

performance than the embedding similarity search-based method in the "Graph Inference Only"76

setting. This demonstrates that the proposed method, which leverages causal relationships through77

KG, is more effective for commonsense QA. Lastly, the highest improvement is observed in the78

"QGI" setting, which combines both relevant information and causal reasoning, aligning with our79

expectations.80

Our contributions are summarized as follows:81

• We demonstrate the contributions of relevant information and reasoning abilities through82

experimental comparisons.83

• We propose a novel KG-based random-walk reasoning method to utilize causal relationship.84

• We show that providing reasoning capabilities grounded in causal relationships can lead to85

performance improvements, even when using seemingly unrelated information.86

2 Method87

Our main goal is to investigate KG-based reasoning for the commonsense QA task without further88

training on LLMs. We first briefly introduce problem formulation. Subsequently, we examine89

the disparities in prompting procedures between the conventional retrieve-based method and our90

KG-based reasoning approach.91

2.1 Problem Formulation92

In a multiple-choice format such as Figure 1-(a), the goal is to predict an answer a ∈ Aq given a pair93

of a question and a question concept (q, qc), where q ∈ Q. Any keyword capable of categorizing94

a question could potentially serve as qc. In our research, we use the term question concept, qc, to95

encompass all such keywords. The set of choices denoted as Aq, varies with each question, and both96

questions and answers are represented as variable-length text sequences. KG denoted as G = (V,E),97

is configured as a heterogeneous graph in general. Within this graph, V is the set of entity nodes, and98

E ⊆ V ×R×V denotes the set of edges connecting nodes in V , where R constitutes a set of relation99

types. The node vqc ∈ V denotes the node in the KG that is most semantically similar to qc which100

means that vqc captures the essence of qc within the graph structure. Using vqc as a starting point,101

we can explore n-hop neighbors which can gather additional information related to the question, q.102

This process is based on the flow of the graph and allows for effective graph reasoning; it adheres to103

the directionality of edges within the graph structure. Our graph reasoning process aligns with the104

inherent structure and semantics of the KG.105

2.2 Retrieval-Based Prompting106

A conventional retrieval-based prompting such as RAG follows:107

N∏
i

∑
d∈top-k(p(·|x))

Pη(d|x)Pθ(yi|x, d, y1:i−1) (1)

where x denotes an input query sequence used to retrieve text documents d, incorporating them as108

additional context during the generation of the target sequence y. In this context, x is a question,109

q while y corresponds to an answer denoted by a in our commonsense QA task. The retrieval110

process Pη(d|x) ∝ exp(Enc(d)T , Enc(x)), where Enc functions as an encoder representing both111

documents and queries. Specifically, Enc(d) stands for the embedding of a document, while Enc(x)112

signifies a query embedding generated by the encoder. Determining the top-k documents, denoted as113

top-k(p(·|x)), where the list of k documents d with the highest prior probability Pη(d|x) calculated114

by a similarity function such as cosine similarity. A generator Pθ(yi|x, d, y1:i−1) generates the115

current token by considering the context of the preceding i− 1 tokens y1:i−1, the initial input x, and116

a retrieved document d.117
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Figure 2: Detailed process of prompting through the KG-based reasoning.

2.3 KG-Based Random-Walk Reasoning118

Given a KG with a pair of question, q and question concept, qc as shown in Figure 1-(a), we seek119

the node most closely associated with the question concept. Following this initial step of narrowing120

down the information based on the question concept, we then leverage graph reasoning to extract121

additional information necessary for formulating a comprehensive answer to the question.122

In Figure 2 Step 1, we search for the most similar node aligned with the question concept (qc), the123

term "liquor". Employing a pre-trained text encoder denoted as E, we encode both the anchor text124

and the entirety of text associated with nodes within the KG. This process yields embeddings for125

both the anchor text and all node texts. Subsequently, we calculate the cosine similarity between the126

embedding of the anchor text and the embeddings of all node texts, establishing similarity scores127

for each pair. In this case, vqc is the node 3 in Figure 1-(a), identified as alcohol. Subsequently, we128

either traverse one hop outbound from the node alcohol or find a node that is one hop inbound to129

alcohol. In our case, there are eight one-hop nodes connected to alcohol, numbered 1 , 2 , 4 , 5 , 6 ,130

7 , 9 and 10 . Among these, nodes 2 and 9 are inbound, while the others are outbound neighbors.131

In Figure 2 Step 2, we verbalize triples—structured statements consisting of a subject, predicate,132

and object—based on their direction relative to node 3 . For example, in the triple “alcohol, causes,133

sleep” node 3 , alcohol is the subject, the relationship, causes is the predicate, and node 6 , sleep134

is the object. All connections from or to node 3 are similarly transformed into triples, where the135

relationships between nodes are clearly expressed in natural language. Using the same encoder E,136

we encode both the verbalized triples and the question q. We then identify the verbalized triple137

whose representation is most similar to that of q. Through Step 2, we obtain a single verbalized triple138

structured as a sentence. As the next step, rather than using a similarity function to select the next139

object node from the current object node 6 (sleep), we randomly select n. This approach is intended140

to provide reasoning context following the presentation of the most relevant information just once.141

We combine these sentences into a question, q, and prompt the model to generate an answer based on142

equation 1.143

3 Experiments144

3.1 Experimental Setup145

We validate the efficiency of our proposed method in zero-shot setting on Llama 2-Chat (Touvron146

et al., 2023), without further training or tuning on the model, to focus on the effect of the KG-based147

reasoning process. Thus, we assess results across diverse prompt settings, considering different148

approaches to retrieving and reasoning information.149

Dataset and Encoder We use the CommonsenseQA dataset (Talmor et al., 2018) for evaluation150

emphasizing the need for diverse commonsense knowledge to choose the correct answers. We151

employed 1,221 data from the validation dataset due to the unavailability of publicly disclosed answers.152

To ensure a fair and comprehensive comparison, we choose to employ the ConceptNet KG as the153
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search and reasoning source for both RAG and our proposed method in this experiment. For retrieval154

purposes, we verbalize the triplets in sentence structures, resulting in 3,423,004 sentences using155

descriptions of ConceptNet1. Additionally, we explore a significant web dataset, using Wikipedia156

as the search source for the "Relevant Information Only" experiment in this study. The Wikipedia157

embeddings index provided by txtai2 is employed. The e5-base model (Wang et al., 2022) is utilized158

to represent all text documents such as Wikipedia and verbalized ConceptNet triples, as well as159

questions and question concepts.160

Evaluation Metrics We evaluate performance using accuracy as the criterion. In experiments161

where the output format is incorrect in the prompt, multiple scenarios arise. Consequently, all162

experiments are conducted without an explicit output format. Regardless, when analyzing the results,163

if the correct answer is "B. exercise," valid responses may take the form of "B", "B.", "B,", "exercise"164

or "X. exercise". Incorrect responses can include options like "A. exercise", where the alphabet is165

incorrect but the answer is accurate, "B. exercise, C. muscle", when multiple selections are made, or166

instances where irrelevant statements are presented.167

3.2 Results168

Table 1 presents the result of RAG and KG-based random-walk reasoning methods. Our baseline169

is set as a plain question without additional information. For RAG, we retrieve the top-k, where170

k = {1, 2, 3} sentences from verbalized triples within the ConceptNet KG. In the proposed method,171

we extract sequential triples connecting to an anchor node determined by its similarity score with the172

question concept. In contrast, "Relevant Information Only" extracts triples exclusively based on text173

similarity scores with the combined question concept and the question itself. The findings underscore174

the effectiveness of KG-based reasoning, leveraging information from connected nodes, particularly175

in scenarios where the number of information sentences remains constant. In our random-walk176

approach, we prioritized nodes that were physically close to the starting point. For instance, in the177

"KGI" case when k = 3 (Table 1), nodes 1 through 5 were selected based on their distance of 1 from178

the start. This criterion was consistently applied across all experiments. Upon careful performance179

analysis, it becomes apparent that pertinent information situated at the outset or conclusion of the180

anchor node proves more advantageous than information located in the middle (Graph, k = 2 in Table181

1). Our best performance is attained by incorporating comprehensive context, achieved by combining182

top-1 information of RAG with data derived from KG-based random-walk reasoning.183

Table 1: Performance comparison of RAG and KG-based reasoning. For a clear explanation of
indicating node location, we assume node 1 is the most similar to the question concept and form
the graph sequence as 5 -> 4 -> 1 -> 2 -> 3 (k: the number of sentences combined with a question
to generate an answer). The highest performance is denoted in bold and the second best results are
underlined.

Type k Node Location Acc.
Baseline 0 - 0.5684

Relevant Information Only
1 top-1 triple 0.5864
2 top-2 triples 0.5782
3 top-3 triples 0.5790

Keyword Relevant Information + Graph Inference (KGI)

1 1 -> 2 0.5897
4 -> 1 0.5766

2
(1 -> 2, 2 -> 3) 0.5913
(5 -> 4, 4 -> 1) 0.5577
(4 -> 1, 1 -> 2) 0.5913

3 (5 -> 4, 4 -> 1, 1 -> 2) 0.5741
(4 -> 1, 1 -> 2, 2 -> 3) 0.5741

Query Relevant Information + Graph Inference (QGI) 1 + 2 top-1 + (4 -> 1, 1 -> 2) 0.5979

In Table 2, we investigate the setting in which the given information is less relevant to the question184

and its concept. It is crucial observation that even when opting for a less related anchor node and185

executing a random-walk to obtain k sentences, there is an observed enhancement in performance186

(Graph, k = 2 and 3 in Table 2). This suggests that reasoning abilities, such as connection of node187

1https://github.com/commonsense/conceptnet5/wiki/Relations
2https://huggingface.co/NeuML/txtai-wikipedia#wikipedia-txtai-embeddings-index
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Table 2: Performance in situations where the provided information has lower relevance to the question.
(R: relevance of information; if "Y," we remain node 1 as the most similar node and randomly select
triples from node 1; otherwise, we opt for an unrelated node randomly). The highest performance is
denoted in bold and the second best results are underlined.

Type k R Node Location Acc.
Baseline 0 - - 0.5684

Irrelevant Information Only
1 N 1 irrelevant triple 0.5356
2 N 2 irrelevant triples 0.5324
3 N 3 irrelevant triples 0.5397

Graph Inference Only

1

N 1 -> 2 0.5602
N 4 -> 1 0.5602
Y 1 -> 2 0.5479
Y 4 -> 1 0.5659

2
N (1 -> 2, 2 -> 3) 0.5717
N (5 -> 4, 4 -> 1) 0.5635
N (4 -> 1, 1 -> 2) 0.5561

3 N (5 -> 4, 4 -> 1, 1 -> 2) 0.5667
N (4 -> 1, 1 -> 2, 2 -> 3) 0.5758

relationships, contribute to problem-solving. Conversely, inputting less relevant information without188

a coherent flow or reasoning in "Irrelevant Information Only" proves to be ineffective in performance.189

We explore diverse prompt configurations and retrieval source datasets, detailed in Table 3, to assess190

the impact of incorporating extra information into the question. Our findings reveal that using a191

substantial web dataset, Wikipedia, as a source dataset does not enhance task performance. It is192

noteworthy that both Relevant Information and Graph scenarios experience decreased performance193

when incorporating more than three information sentences. The order of prompting is crucial,194

showing superior performance when retrieved documents precede the question rather than following195

it. Additionally, the direction of reasoning in the graph is essential, as evidenced by reduced196

performance when ignoring edge direction.197

Table 3: Evaluating performance variations across various prompt configurations (Prompt Engineer-
ing: order of prompt, direction of reasoning information).

Type k Prompt Engineering Acc.

Relevant Information Only with the ConceptNet Graph 1 documents -> question 0.5864
question -> documents 0.5455

4 documents -> question 0.5635

Relevant Information Only with Wikipedia
1 documents -> question 0.5455
2 documents -> question 0.5504
3 documents -> question 0.5463

Graph 2 irregular direction (1 -> 2, 4 -> 1) 0.5807
regular direction (4 -> 1, 1 -> 2) 0.5913

4 (5 -> 4, 4 -> 1, 1 -> 2, 2 -> 3) 0.5717

4 Conclusion198

Our experiments were designed to investigate the impact of information retrieval exemplified by Rel-199

evant Information, and the reasoning process represented by KG-based random-walk, on improving200

commonsense QA. Consequently, delivering outcomes inferred through the proposed method gener-201

ally led to better results than supplying relevant information in Relevant Information. Additionally,202

the experimental results matched our expectation that performance would be most improved when203

utilizing both information extracted by embedding matching and graph reasoning. However, we also204

obtained unexpected results where performance improved when providing irrelevant information205

through graph reasoning. We analyze that these results indicate providing a reasoning process can206

enhance the performance of commonsense QA.207

The main limitation of this paper is that it is restricted to the commonsense QA task. However, since208

this task requires both reasoning ability and information with specific information, our experiments209

have empirically proven which method is more effective. This suggests that focusing on enhancing210

reasoning capabilities could be beneficial for improving commonsense QA performance in the future.211
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