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Abstract
The proliferation of generative models, combined
with pretraining on web-scale data, raises a timely
question: what happens when these models are
trained on their own generated outputs? Recent
investigations into model-data feedback loops
proposed that such loops would lead to a phe-
nomenon termed model collapse, under which
performance progressively degrades with each
model-data feedback iteration until fitted models
become useless. However, those studies largely
assumed that new data replace old data over time,
where an arguably more realistic assumption is
that data accumulate over time. In this paper, we
ask: what effect does accumulating data have on
model collapse? We empirically study this ques-
tion by pretraining sequences of language models
on text corpora. We confirm that replacing the
original real data by each generation’s synthetic
data does indeed tend towards model collapse,
then demonstrate that accumulating the succes-
sive generations of synthetic data alongside the
original real data avoids model collapse; these
results hold across a range of model sizes, archi-
tectures, and hyperparameters. We obtain similar
results for deep generative models on other types
of real data: diffusion models for molecule confor-
mation generation and variational autoencoders
for image generation. To understand why accu-
mulating data can avoid model collapse, we use
an analytically tractable framework introduced by
prior work in which a sequence of linear models
are fit to the previous models’ outputs. Previous
work used this framework to show that if data are
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replaced, the test error increases with the number
of model-fitting iterations; we extend this argu-
ment to prove that if data instead accumulate, the
test error has a finite upper bound independent of
the number of iterations, meaning model collapse
no longer occurs. Our work provides consistent
empirical and theoretical evidence that data accu-
mulation avoids model collapse.

1. Introduction
The advent of large-scale generative models such as GPT-4
(Achiam et al., 2023), DALL-E (Ramesh et al., 2022) and
Stable Diffusion (Rombach et al., 2022) has revolutionized
the field of artificial intelligence. These models, trained on
vast web-scale datasets, exhibit remarkable capabilities in
generating text, images, and other media (Brown et al., 2020;
Saharia et al., 2022). However, as these models become
more widely used, an increasing amount of generated data
populates the web. This raises a critical question: what are
the consequences of training generative models on datasets
containing their own outputs?

Recent studies have investigated this question, revealing
that training generative models on their own outputs can
cause the performance of such models to progressively de-
grade with each model-fitting iteration, eventually rendering
newer models useless (Hataya et al., 2023; Martı́nez et al.,
2023a; Shumailov et al., 2023; Alemohammad et al., 2023;
Martı́nez et al., 2023b; Bertrand et al., 2023; Briesch et al.,
2023; Dohmatob et al., 2024a;b) (see Appendix A for re-
view and discussion of prior work). This phenomenon was
consequently labeled model collapse. Model collapse warns
that democratizing access to generative models runs the risk
of polluting the very data necessary to train future iterations
of generative models.

To better understand this phenomenon many prior works
have considered a setup that assumes each model’s gener-
ated data replaces previous data. In theory, this leads to very
natural comparisons across generations as the total number
of training points for each model remains fixed. In practice,
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Figure 1. Two Settings to Study Model Collapse. Model collapse is a phenomenon where sequences of generative models trained on
their own outputs progressively degrade until the latest model becomes useless. Left: Many prior works studied model collapse where
data are replaced with each model-fitting iteration. Right: We study model collapse where data accumulate with each iteration and
demonstrate accumulating data avoids model collapse.

subsequent generations of LLMs are often trained with in-
creasing data over time – e.g., 1.4 trillion tokens for Llama
1 (Touvron et al., 2023a), 2 trillion for Llama 2 (Touvron
et al., 2023b), 15 trillion for Llama 3 – in which presumably
both human-generated and machine-generated data are accu-
mulating in training sets collected from the internet. It was
noted in some of those works (Hataya et al., 2023; Martı́nez
et al., 2023a; Alemohammad et al., 2023; Bertrand et al.,
2023; Dohmatob et al., 2024b) that model collapse can be
either slowed down or negated by mixing in clean data with
the generated data.

To that end, in this work we study the effect of accumulat-
ing data on model collapse, rather than replacing data. Our
data-accumulating setting is, in some sense, maximally pes-
simistic: it considers a hypothetical future where synthetic
data are uncontrollably dumped on the internet to be vacu-
umed up for training the next iteration of generative models.
Nevertheless, we find that model collapse is avoided when
accumulating data.

We begin by studying model collapse experimentally with
deep generative models trained on realistic data: transform-
ers on causal language modeling, diffusion models on molec-
ular conformation and variational autoencoders on images
(Sec 2). After confirming that replacing data at every itera-
tion indeed causes test error to increase with the number of
iterations, we empirically find that accumulating synthetic

data with real data avoids model collapse for all models and
for all data modalities we test. To understand why replacing
data and accumulating data have different consequences for
model collapse, we turn to an analytically tractable frame-
work of a sequence of linear models, each trained on syn-
thetic outputs generated from the previous-iteration’s fitted
linear model (Mobahi et al., 2020; Dohmatob et al., 2024a).
Within this framework, Dohmatob et al. (2024a) demon-
strated that if data are replaced with each model-fitting it-
eration, the test error increases linearly with the number of
iterations n. We extend Dohmatob et al. (2024a)’s analy-
sis to prove that if data instead accumulate, then the test
error has a finite and (to us, surprisingly) well-controlled
upper bound independent of the number of model-fitting
iterations.

Altogether, our work suggests that data accumulation may
be robust to model collapse and emphasizes the importance
of considering accumulating data and other real-world data
dynamics in the analysis of model collapse in generative
models trained on web-scale data.
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Figure 2. Data Accumulation Avoids Model Collapse in Language Modeling. Sequences of causal transformer-based language models
are pretrained on TinyStories (Eldan & Li, 2023). Cross-entropy validation loss increases when repeatedly replacing data (left), but not
when accumulating data (right). Synthetic data was sampled with temperature = 1.0.
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Figure 3. Data Accumulation Avoids Model Collapse in Geometric Diffusion Modeling. GeoDiff, a diffusion-based molecular
conformation generation model, is trained on a subset of Drugs data containing molecular structures found in drugs. Test loss degrades
when replacing data (left) but not when accumulating data (right).
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Figure 4. Data Accumulation Avoids Model Collapse in Variational Autoencoders for Image Generation. Sequences of variational
autoencoders (VAEs) are trained on CelebA, a large-scale dataset of human faces. Test loss degrades when replacing data (left) but not
when accumulating data (right).
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2. Accumulating Data Avoids Model Collapse
in Deep
Generative Models

We first investigate model collapse experimentally in several
classes of generative models. Here, and for the remainder
of this manuscript, the term model collapse refers to notably
worsening error over increasing iterations of the model-
data loop, while avoiding model collapse refers instead to
bounded error over such iterations. To test the effect of accu-
mulating data on model collapse, we compare accumulating
data against replacing data. We use three diverse experi-
mental setups of causal transformers, diffusion models, and
variational autoencoders trained on real text, molecular con-
formation, and image datasets, respectively. We find that
replacing data yields model collapse for all models and all
datasets, whereas accumulating data avoids model collapse.
Figures 2-4 show loss curves on all three domains, and
Appendix B discusses these experiments in detail.

3. Accumulating Data Avoids Model Collapse
in Linear Models

To gain mathematical understanding and intuition, we em-
ploy an analytical framework introduced in prior work
(Mobahi et al., 2020; Dohmatob et al., 2024a) to under-
stand the difference between data accumulation and data
replacement. The framework considers a sequence of lin-
ear models that are fit to the synthetic data sampled from
the linear generative model model based on the previously
fit linear models. Within this framework, Dohmatob et al.
(2024a) showed that if data are replaced across model-fitting
iterations, then the test squared error increases linearly with
the number of iterations n:

EReplace
test (ŵn) =

σ2d

T − d− 1
× n (1)

Here, ŵn refers to the learned model at iteration n, d is the
dimensionality of the input data, T is the number of samples,
and σ2 the standard deviation of i.i.d. noise for each label.

We extend Dohmatob et al. (2024a)’s argument to show that
if data instead accumulate across model-fitting iterations,
then the test squared error is upper bounded by a relatively
small constant, meaning model collapse is avoided1:

1In this theoretical section, we identify the term model collapse
with the situation where test error diverges to infinity (at any rate)
as iterations progress. Other authors may employ similar terminol-
ogy while identifying it with different properties of test error. For
example, (Alemohammad et al., 2023) use the term MAD to refer
to the situation where the distance between the distribution of the
original data and that of the subsequent generative models grow
farther apart, without necessarily diverging.

EAccum
test (ŵn) ≤

σ2d

T − d− 1
× π2

6

We discuss this in more detail in Appendix E but offer
intuition here: in the data accumulation setting, because
iteration i contributes fraction 1/i to the training dataset, the
additional noise from the ith iteration of synthetic data has
its effect on the model MSE shrunken proportional to 1/i2

(due to squared error). The summability of 1/i2 prevents
the test error from growing indefinitely. This suggests that
accumulating generated data with real data can indeed avoid
model collapse.

4. Discussion
This work explored the phenomenon of model collapse, an
important concern as AI-generated content permeates the
internet and finds its way into future training datasets. Prior
work has shown that training on model outputs can lead to
degraded performance (Martı́nez et al., 2023a;b; Shumailov
et al., 2023; Alemohammad et al., 2023; Hataya et al., 2023;
Bertrand et al., 2023; Briesch et al., 2023; Dohmatob et al.,
2024a;b), implying that future model training faces a dif-
ficult challenge of ensuring strict training dataset hygiene.
For a significantly more thorough discussion of related
work, please see Appendix A.

Our findings extend these prior works to show that if data
accumulates and models train on a mixture of “real” and
synthetic data, model collapse no longer occurs. We show
this both experimentally on causal transformers for language
modeling, diffusion models for molecule generation, and
variational auto-encoders on image data as well as theoreti-
cally for linear regression. Together, these results strongly
suggest that the “curse of recursion” may not be as dire
as had been portrayed – provided we accumulate syn-
thetic data alongside real data, rather than replacing
real data by synthetic data only.

Looking to the future, many questions worth investigating
remain. For instance, in future work we would like to ex-
plore different data generation and accumulation regimes,
such as (1) additional “real” data being introduced in each
model-fitting iteration and (2) different schedules of how
much synthetic data is generated at each iteration and (3)
human-filtering of generated data, e.g., as done in RLHF.
Additionally, we note that in all our experiments, the syn-
thetic dataset is generated by sampling from the previous
model, i.e., with some stochasticity; in future work, we
would like to explore also what happens if data is gener-
ated deterministically, e.g. with temperature 0 in a typical
language model.

Lastly, it is worth noting that “model collapse” – as a term of
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art – has been used in various ways by various researchers;
so care is required in comparing claims across articles. In
reviewing the literature, we identified at least four related
phenomena: (0) unbounded test error blowup (as here); (1)
modal collapse — collapse to one (or a few) modes; (2)
collapse to uniformity; and (3) amplification of artifacts
introduced by models fit to previous synthetic data. Future
work should map out what factors cause which to occur and
what preventative strategies are effective at addressing each.
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A. Summarization and Discussion of Prior and Related Work
Prior Empirical Work A growing body of recent work has investigated the phenomenon of iteratively training models on
data generated by previous models, e.g., Hataya et al. (2023); Martı́nez et al. (2023a); Shumailov et al. (2023); Alemohammad
et al. (2023); Martı́nez et al. (2023b); Bertrand et al. (2023); Briesch et al. (2023); Dohmatob et al. (2024a;b) and (in a
different context) Taori & Hashimoto (2023). Hataya et al. (2023) and Martı́nez et al. (2023b) conducted experiments
replacing real training data with generated data at each iteration, assuming that the dataset size remains fixed over time.
They found that this iterative retraining procedure can lead to model degradation if the proportion of synthetic data becomes
too high. Similarly, Shumailov et al. (2023) ran experiments with Gaussian mixture models, VAEs, and language models in
which the total number of samples per iteration was held constant, and the samples always originated with the previous
model rather than aggregating over time. Building on this work, Alemohammad et al. (2023) considered three treatments of
data: fully replacing real data with synthetic data, augmenting a fixed real dataset with additional synthetic data, and mixing
new real data with synthetic data at each iteration. In almost all of their experiments, they drew a fixed size dataset from the
most recent model at each iteration, without accumulating data. Bertrand et al. (2023) also assumed that dataset size and
mixing proportions are constant over time in their theoretical stability analysis and empirical validation.

Prior Theoretical Work Over the last few years, there has been significant research effort contributing to our theoretical
understanding of model behavior when synthetic data are integrated into training. The most closely related works to ours are
Dohmatob et al. (2024a) and Dohmatob et al. (2024b); of course, the inspiration for the linear regression model studied in
this paper directly comes from Dohmatob et al. (2024a). Dohmatob et al. (2024a) performs an in-depth analysis of high
dimensional linear and ridge regression when the training data used per iteration are generated from the previous iteration’s
fitted model. They are able to conclude that the test error grows linearly with the iteration count in their setup, as well as
derive more interesting and more nuanced results using random matrix theory. They also discuss how to mitigate model
collapse through optimal regularization both when the training data are noise-free and noisy versions of the previous model’s
synthetic outputs. A related noise-free setup was studied by Mobahi et al. (2020) in the case of self-distillation. Although
(Mobahi et al., 2020) considers a more general setup with ridge regression as a special case, they use noiseless predictions
from the previous model as the training data for the next model, and show that eventually, the predictions shrink to zero.
Through this, they highlight that self-distillation induces regularization in the function space, which initially is beneficial
for reducing over-fitting, but eventually over-regularization causes underfitting and hence performance decay. (Dohmatob
et al., 2024b) go beyond the linear model to study model collapse – they study the tails of LLM outputs vs. real data and
provide scaling laws that clearly identify regimes of model degradation when synthetic data misses tails present in real data.
They identify an interesting phase transition in the test error scaling law depending on the size of the real dataset size in
comparison to (a functional of) the chopped-off tail, and conclude that enough real data is able to mitigate model collapse.
All these works consider the scenario where the amount of training data available per iteration is fixed (and does not grow
with the iteration count), and it is certainly possible that with larger amount of synthetic data (from prediction by the previous
model), several of these scalings would improve significantly. For example, in Equation (12) of (Dohmatob et al., 2024b),
one obtains the linear scaling (with iteration count) of test error simply because the amount of synthetic data generated per
iteration is the same. If one generated synthetic data with size proportional to the iteration count, then at iteration n, the
scaling would, instead of n, be like n1−c/(1− c) for c < 1. When one does not increase the dataset size, (Dohmatob et al.,
2024b) points out that increasing the proportion of real data would help one to avoid model collapse altogether. However,
even if one did increase the amount of synthetic data with iteration count, Theorem 3.2 coupled with Corollary 3.3 in
(Dohmatob et al., 2024b) would tell us that the amount of real data was all that mattered – if the amount of real data is large,
we overcome model collapse. If one only had synthetic data (and no real data), no matter how large, it would be impossible
to regain the original real-data scaling laws. The scenario we study is highly inspired by these pioneering works, but still, in
our view, different. We consider the case when we keep augmenting synthetic data (generated by the previous model trained
on all the previous data so far) as iterations progress, much akin to how – in our view – the internet evolves. We observe that
we can avoid model collapse in this setting. The analysis of previous models in our case is more involved, since the data
used for training at iteration n is not homogeneous – different models from the past impart different statistical aspects to
different parts of the training data. We also note a related augmentation model studied by (Jain et al., 2024) – they perform
risk minimization augmenting real data with synthetic data available from a potentially different independent source. One
of their messages is that augmentation of (even) pure noise can be looked upon as adding a ridge penalty and hence, in
certain cases, can improve test error. Their setup, however, is different from ours, since the synthetic data in their setup is not
obtained by a learning algorithm employed on the real data, and the process is not iterative. However, morally, each iteration
of ours involves risk minimization on data statistically composed of an equal mixture of data generated from the previous
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models, and hence each iteration of ours can be mapped to the general framework developed in (Jain et al., 2024), although
the dependencies among the various models trained in our setup introduce theoretical complications that do not seem to be
too easily addressed by the theory developed in (Jain et al., 2024). Shortly after v1 of our manuscript was uploaded to ArXiv,
two other manuscripts appeared, dealing with the theoretical aspects in a setting similar to ours. Theorem 1 of (Marchi et al.,
2024) obtains the same square summability scaling of the variance as us. (Seddik et al., 2024) studies collapse in language
models in both purely synthetic and partly synthetic regimes and obtains deviation bounds as model iterations progress.

Considering Accumulating Data The two papers we found that partially considered accumulating data are (Martı́nez
et al., 2023a) and (Alemohammad et al., 2023). (Alemohammad et al., 2023) did so in one-half of one experiment:
StyleGAN2 trained on FliqrFaces 128×128 (App. Fig. 5). The authors concluded that accumulating data does not avoid
model collapse, but merely slows it down. However, we believe that a closer examination of their results (App. Fig. 5) reveals
that accumulating data causes the test error to plateau to a relatively low error with increasing numbers of model-fitting
iterations. This result would support our conclusion that accumulating data avoids model collapse and does not merely delay
it. The results from Martı́nez et al. (2023a) are harder to evaluate; model collapse only seems to occur when the amount of
synthetic data added per model-fitting iteration is 2× the total amount of accumulated data, and the subsequent work by the
authors switched from accumulating data to replacing data (Martı́nez et al., 2023b). We think understanding what conditions
and why these discrepancies exist is an interesting future direction.

Avoiding Model Collapse Several papers present methods for avoiding or slowing model collapse. Bertrand et al. (2023)
shows in the replacing data setting that model collapse will not occur if the initial generative models approximate the data
distribution well enough and the proportion of real data is sufficiently large with respect to the synthetic data. Dohmatob
et al. (2024b) similarly demonstrates that in the replacing data setting, carefully selecting real data to mix with synthetic
data can avoid model collapse. Other solutions may also be possible in various models and under various assumptions. To
our knowledge, no paper has claimed an “optimal” strategy to avoid model collapse, and neither has ours.

B. Experimental details
We detail here our experiments.

B.1. Transformer-Based Causal Language Modeling

Experiments We first train causal transformers (Vaswani et al., 2017) on text data. Specifically, we pretrain 9M parameter
GPT-2 (Radford et al., 2019) and 12M, 42M and 125M parameter Llama2 (Touvron et al., 2023b) language models for a
single epoch on TinyStories (Eldan & Li, 2023), a 470M token GPT-3.5/4-generated dataset of short stories at a kindergarten

Figure 5. Clarification of Data Accumulation in Alemohammad et al. (2023). Figure 7 from Alemohammad et al. (2023) (above)
shows that linearly accumulating data (“Synthetic augmentation loop”) causes poor behavior to plateau with the number of model-fitting
iterations. Alemohammad et al. (2023) write, “Our experiments [...] support our main conclusion [that] fixed real training data only delays
the inevitable degradation of the quality or diversity of the generative models over generations.” We believe is that our evidence and their
evidence is more consistent with the conclusion that accumulating data avoids model collapse and does not merely delay it.
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Figure 6. Data Accumulation Avoids Model Collapse in Language Modeling. Sequences of causal transformer-based language models
are pretrained on TinyStories (Eldan & Li, 2023). Cross-entropy validation loss increases when repeatedly replacing data (left), but not
when accumulating data (right). Synthetic data was sampled with temperature = 1.0.

reading level. For each model-fitting iteration n ≥ 2, we sample a new dataset of the same size as TinyStories from the
previous iteration’s language model and then either replace or concatenate the previous dataset with the newly generated
dataset. In each model-fitting iteration, we then pretrain a newly initialized model on the replaced or concatenated dataset
from the previous iteration. We experiment with sampling the new datasets using temperatures 0.3 or 1.0. We chose this
combination of architectures, scales, dataset, and sampling because the setup necessitates pretraining multiple iterations
of language models – a computationally costly endeavor – but we also wish to study realistic conditions where generative
models are high-performing and generative diverse outputs. Because small language models (below 10M parameters)
pretrained on TinyStories were shown to be able to generate coherent-albeit-simple English sentences (Eldan & Li, 2023),
this choice of architectures, scales, dataset and temperature hopefully strikes a good balance between being representative,
being diverse and being computationally feasible.

Model Iteration Sample Generation
Llama2 (125M) 3 (A) In the end, the crab found a smooth shell. He took it to a safe place under a tree. The crab put the shell

where he found it. Tim and his mom were tired, but they were happy. They had a fun day at the beach.
And they lived happily ever after. The end.

3 (R) Henry asked his Mom why the golf sounded so special. His Mom explained that the line of lumber had
something special that would help. She said that if you’re not sure, the lumber is special.

8 (R) Friend Stan and Millie laughed together and prepared to spend the morning together. Mamaing
Grandma’s possibilitant, twice would measure how much she lovedk. Everyone started to get ready
when they started arguing until their mum upset.

GPT2 (9M) 5 (A) Jack was so happy that he took care of the honey. He thought, ”I care about the beautiful garden,
because it is nice and clean.” He started to feed the flower every day. The flower grew bigger and taller,
and Jack became very happy.

5 (R) After playing, Lily got tired and quickly ran back to playing with her dolls. She opened her eyes and
played with her dolls all day long. Her grandma was so happy that she screamed as she watched her
look back at her original clothes and laughed.

10 (R) When she finished eating it, she tasted it all up. She said goodbye to her mom and said goodbye.
Mommy smiled, feeling very proud of her. It was other. She knew that sharing is always easy to share
her meal with her mom.

Table 1. Data Accumulation Avoids Model Collapse in Language Modeling. Both 125M-parameter Llama2 as well as 9M GPT-2
models show decreasing quality when replacing data (R), but maintain high-quality text generations when accumulating data (A).

Results We found that for all architectures, parameter counts, and sampling temperatures, as the number of model-fitting
iterations increased, replacing data led to an increase in test cross entropy (Fig. 6 top). We also found that for all architectures,
parameter counts, and sampling temperatures, as the number of model-fitting iterations increased, accumulating data led
to equal-or-lower test cross entropy (Fig. 6 bottom). Lower temperature (0.3) led to a faster increase in test error than
higher temperature (1.0) (Appendix Fig. 15), but the trend was consistent for both temperatures. Table 1 shows samples of
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Figure 7. Data Accumulation Avoids Model Collapse in Language Modeling. Learning curves for individual model-fitting iterations
when repeatedly replacing data (top), and when accumulating data (bottom). Note: Epochs correspond to more gradient steps for
accumulate than replace because the number of training data grows for accumulate.

generated texts for GPT2 (9M) and Llama2 (125M) models at model-fitting iterations 3-5 when both accumulating and
replacing data, as well as iterations 8-10 (replacing only).

Ablations We ablate for several additional potential confounds beyond generation temperature. First, when accumulating
data, subsequent model iterations are trained on larger datasets than when replacing data. To control for this, we also
perform experiments in which data is replaced, but the size of the (fully synthetic) dataset is grown to match the training set
size in the accumulation regime. We find that model performance still degrades (albeit at a lower rate). This is shown in
Appendix C, Table 2, right-most column. Second, a possible concern could be that degrading performance when replacing
data could be due to low model performance in iteration 1 (and thus the quality of the first synthetic dataset). We control for
this by varying the amount of training performed in iteration 1 only and find that this has no significant impact. Lastly, we
find that our results are also consistent across varying dataset sizes and training epochs. These ablations are discussed in
Appendix H.

B.2. Diffusion Models on Molecular Conformation Data

Experiments We next train sequences of diffusion models on molecular conformation data. Specifically, we train GeoDiff
(Xu et al., 2022), a geometric diffusion model for molecular conformation generation, on the GEOM-Drugs (Axelrod &
Gomez-Bombarelli, 2022) dataset. We down-sample the training split of GEOM-Drugs to 40, 000 molecular conformations,
which we use as our initial training set, and perform 50 diffusion steps for each prediction. For the loss, we use the standard
loss used by GeoDiff: a weighted variational lower bound to the conditional likelihood; for more details, see Xu et al. (2022).

Results Over 8 model-fitting iterations, we find test loss increases when replacing data, matching our language model
experiments, and test loss remains relatively constant when accumulating data (Fig. 8). Unlike with language models, we
found that when replacing data, performance worsens significantly in the first model-fitting iteration trained on synthetic
data and does not degrade further substantially in subsequent iterations.

B.3. Variational Autoencoders on Image Data

Experiments We lastly train sequences of variational autoencoders (VAEs) (Kingma & Welling, 2013; Rezende et al.,
2014) on CelebA (Liu et al., 2015), a dataset of 200k images of human faces split between train and test sets, chosen as a
balance between being a realistic dataset with many samples, color images and resolution, and computational feasibility
of training multiple iterations of models on accumulating data. The loss is the standard VAE loss: reconstruction error
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Figure 8. Data Accumulation Avoids Model Collapse in Geometric Diffusion Modeling. GeoDiff, a diffusion-based molecular
conformation generation model, is trained on a subset of Drugs data containing molecular structures found in drugs. Test loss degrades
when replacing data (left) but not when accumulating data (right).

plus the KL divergence between the encoder’s output Gaussian and the isotropic Gaussian prior. See Appendix D for more
experimental details.

Results We find that replacing data at each iteration again exhibits model collapse: the test error rises swiftly with each
additional iteration, and each iteration yields lower quality and less diverse generated faces until all model generations
represent a single mode as shown in the left panel of Figure 10. In contrast, accumulating data at each iteration significantly
slows model collapse: the test error increases significantly slower with each additional iteration. While the diversity of
generations does go down as compared in the middle and right panel of Fig. 10, it still represents major axes of variation in
the dataset, such as gender, but no longer seems to generate other details, along more minor axis of the data manifold, such
as glasses and accessories. We discuss further analysis of VAE reconstructions in Appendix D.

Interestingly, unlike language modeling, the test error of accumulating data does increase with the number of iterations
(albeit much more slowly than with replacing data). We also note that (Martı́nez et al., 2023a) found slightly contradictory
evidence, specifically that a different architecture on a much smaller dataset exhibits fast performance deterioration even
with accumulating data. Understanding under what conditions and why these discrepancies exist is an interesting direction
we leave for future research.
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Figure 9. Data Accumulation Avoids Model Collapse in Variational Autoencoders for Image Generation. Sequences of variational
autoencoders (VAEs) are trained on CelebA, a large-scale dataset of human faces. Test loss degrades when replacing data (left) but not
when accumulating data (right).

Figure 10. Sampled Images from Left: Replacing data with data generated by the previous iteration’s newly trained VAE yields lower
quality and eventually leads to complete mode collapse. Middle: Accumulating data with data generated by the previous iteration’s newly
trained VAE preserves the quality and diversity of generated data across iterations. Right: Baseline samples after 100 training epochs on
the dataset.
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C. Additional Details and Ablations on Language Model Experiments
Implementation Details

Model training was implemented using Huggingface Transformers (Wolf et al., 2019). Dataset generation was implemented
using vllm (Kwon et al., 2023).

Additional Plots

In addition to Figure 7 in the main text, Figures 11-14 show learning curves in larger print, with x-axes showing either
epochs or gradient steps, and with axes shown in linear-linear or log-log scale, respectively.

Ablations

In addition to the experiments shown in the main paper, we conducted several ablation studies.

Controlling for dataset size. One possible concern is that when accumulating data, the train dataset size will grow at
each model-fitting iteration, meaning subsequent models will be trained on more aggregate data than their counterparts in
the replacement regime. To control for this, we run experiments controlling for this. In this “replace-multiple” regime, we
create a fully synthetic dataset at the end of each model-fitting iteration, but grow the size of this dataset to match that of
the accumulated data in the accumulation regime. Table 2 rightmost column shows that in this regime, evaluation loss still
increases over model-fitting iterations.

Generation temperature. Most of our language model experiments were run with sampling temperature 1.0 during
generation of new datasets. To ensure that this choice is not critical, we also run one experiment with temperature 0.3, and
see that this shows similar results (with even larger increases in validation loss in the replacement regime than temperature
1.0), as shown in Table 2, row 2, and Figure 15.

Dataset size and training epochs. We similarly vary the size of the initial (and subsequent) training datasets and number
of training epochs, and see that this has no qualitative effect on the results (Table 2, rows 3 & 4 show training on 1/5th of the
TinyStories dataset for 1 & 3 epochs, respectively).

Model quality after first model-fitting iteration. Finally, we control specifically for model (and thus synthetic dataset)
quality after the first iteration, to rule out an undue influence of a “bad” first synthetic dataset on subsequent training.
Figure 16 shows performance in subsequent iterations for different amounts of training in the first iteration, showing no
qualitative differences.

Model t=1 t=4 (acc) t=4 (repl) t=10 (repl) t=4 (*)
GPT-2 (9M) 1.82 1.74 (-0.07) 2.39 (+0.58) 2.91 (+1.09) 2.18 (+0.36)

GPT-2 (9M) (temp=0.3) 1.82 1.75 (-0.06) 5.82 (+4.00) 9.85 (+8.04) n/a
GPT-2 (9M) (small dataset) 2.56 2.28 (-0.28) 3.21 (+0.65) 3.72 (+1.16) 2.91 (+0.35)

ibid (+ 3 epochs) 1.99 1.87 (-0.12) 2.62 (+0.63) n/a n/a
Llama-2 (12M) 2.06 1.94 (-0.12) 2.72 (+0.66) n/a n/a
Llama-2 (42M) 1.90 1.76 (-0.14) 2.52 (+0.62) n/a n/a

Llama-2 (126M) 1.71 1.59 (-0.12) 2.23 (+0.53) n/a n/a

Table 2. Evaluation cross-entropy loss for different models at model-fitting iterations 1, 4 and 10 for replacement and accumulation
regimes. (*) indicates a replacement regime with growing dataset size to ablate for total train set size.
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Figure 11. Data Accumulation Avoids Model Collapse in Language Modeling. Learning curves for individual model-fitting iterations
when repeatedly replacing data (left), and when accumulating data (right). Note: Epochs correspond to more gradient steps for accumulate
than replace because the number of training data grows for accumulate.
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Figure 13. Data Accumulation Avoids Model Collapse in Language Modeling. Learning curves for individual model-fitting iterations
when repeatedly replacing data (left), and when accumulating data (right).
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Figure 15. Accumulating data shows stable behavior across different generation temperatures for a GPT-2 (9M) model, while replacing
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show differing training amount (as measure by epochs) in first iteration.
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D. Additional Details on VAE Experiments
Experiment Details. As pre-processing, we crop and down-sample the images to 64x64 pixels. We use a standard
convolutional architecture for the VAE model consisting of 5 convolutional layers with 32, 64, 128, 256, and 512 channels,
respectively, and a similar convolutional decoder structure. The latent space is 128-dimensional isotropic Gaussian,
represented by 2 MLP layers. Each data iteration consists of 100 training epochs, after which we generate 163K new training
images by sampling latents from the Gaussian prior and the passing them through the generator model.

Analysis of Reconstructions. Figure 17 shows reconstructions after replacing (left) and accumulating (center) data,
compared to baseline (right). Analyzing the reconstruction of test set images also reveals interesting findings - the model
trained only on data from the prior iteration has indeed collapsed and cannot represent any other classes besides the
single mode it generates. Interestingly, the model trained on aggregated data still maintains it’s capabilities and generates
accurate reconstructions, including smaller details such as glasses and hats. We hypothesize that this model maintains it’s
generative capabilities, but these details become a more minor sub-manifold in the latent space, which is realigned with the
newly-generated data, hence why they appear less often in the generated images, which use samples from the prior.

Figure 17. Data Accumulation Maintains Model Capabilities. Image reconstructions from the test set. Left: Training on prior iterations
collapses the model’s capability, and subsequently, it can only represent a single mode. Middle: training on aggregated data preserves
model capabilities and leads to little to no degradation in the reconstructed images. Right: Baseline reconstructions after 100 training
epochs on the dataset.

E. Additional Details on Linear Models
To gain mathematical understanding and intuition, we employ an analytical framework introduced in prior work (Mobahi
et al., 2020; Dohmatob et al., 2024a) to understand the difference between data accumulation and data replacement. We will
show that it predicts the same types of test error behaviors for these two data-use strategies that were measured empirically.
The framework considers a sequence of linear models that are fit to the synthetic data sampled from the linear generative
model model based on the previously fit linear models. Within this framework, Dohmatob et al. (2024a) showed that if data
are replaced across model-fitting iterations, then the test squared error increases linearly2 with the number of iterations n.
Here, we extend Dohmatob et al. (2024a)’s argument to show that if data instead accumulate across model-fitting iterations,
then the test squared error is upper bounded by a relatively small constant, meaning model collapse is avoided3.

2To echo an earlier footnote, an approach ‘halfway’ between the ‘replace’ and ‘accumulate’ approaches would replace the previous
dataset with a pure synthetic dataset of size iT at the i-th iteration. Analyzing this goes mostly in parallel, except the 1/i2 mentioned in
running text now becomes 1/i for the ‘halfway’ approach. Consequently, the MSE scaling becomes MSE ≍ O(log(n)); the ‘halfway’
approach with pure synthetic data but more of it, again has test error growing unboundedly with iterations. Thanks to Elvis Dohmatob,
Yunzhen Feng and Julia Kempe for communicating this observation. See Appendix G for an extended discussion.

3In this theoretical section, we identify the term model collapse with the situation where test error diverges to infinity (at any rate) as
iterations progress. Other authors may employ similar terminology while identifying it with different properties of test error. For example,
(Alemohammad et al., 2023) use the term MAD to refer to the situation where the distance between the distribution of the original data
and that of the subsequent generative models grow farther apart, without necessarily diverging.
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The content in this section relies heavily on the framework and pioneering contributions of Dohmatob et al. (2024a). Our
contribution is to study a different way to use synthetic data in training, namely accumulate, which seems to better align with
certain real-world considerations. We show that our empirical results could have been anticipated on theoretical grounds, by
applying the same analysis framework as in Dohmatob et al. (2024a), but instead to this specific training dataset pattern.
We use the same framework to analyze some other ways that synthetic data might have be used, such as replace, again the
theory aligns with many empirical results.

E.1. Notation and Preliminaries

Original Data Distribution. We adapt notations from (Dohmatob et al., 2024a). Define the distribution PΣ,w,σ2 on
Rd × R given by (x, y) ∼ PΣ,w,σ2 iff :

(Input) x ∼ N (0,Σ),

(Noise) ϵ ∼ N (0, σ2), independent of x,
(Label) y = x · w∗ + ϵ.

The positive integer d is the input-dimension, the matrix Σ ∈ Rd×d is the true covariance structure of the input x, the vector
w∗ is the true linear relationship used to generate the original data and the scalar σ is the level of label noise. We start at
iteration n = 1 with T initial independent data points (xi, yi) each following PΣ,w∗,σ2 , that is, yi = xi · w∗ + ϵi for each
i = 1, 2, · · · , T . We form the design matrix X ∈ RT×d with x⊤

1 , · · · , x⊤
T as rows. We also form the vectors Y and E with

i-th coordinate yi and ϵi respectively. In whatever follows, we will assume that X has full column rank, i.e., T ≥ d, X⊤X
is invertible and the model is underparameterized.

Synthetic Data Generation Process. We generate synthetic data from the following sequence of distributions

PΣ,w∗,σ2 → PΣ,ŵ1,σ2 → . . . → PΣ,ŵn,σ2 ,

where n ∈ N is the number of iterations. The scheme is outlined as follows.

• For n = 1:

– Accumulating Covariates/Features: X̃1
def
= X

– Accumulating Targets: Ỹ1
def
= Ŷ1

def
= Xw∗ + E1, where E1

def
= E ∼ N (0, σ2IT )

– Fit linear model: ŵ1 = X̃†
1 Ỹ1

– Sample synthetic data for the next iteration: Ŷ2
def
= Xŵ1 + E2, where E2 ∼ N (0, σ2IT )

• For n ≥ 2:

– Accumulating Covariates/Features: X̃⊤
n = [X̃⊤

n−1;X
⊤] ∈ Rd×nT

– Accumulating Targets: Ỹ ⊤
n = [Ỹ ⊤

n−1; Ŷ
⊤
n ] ∈ R1×nT

– Fit linear model: ŵn
def
= X̃†

nỸn

– Sample synthetic data for the next iteration: Ŷn+1
def
= Xŵn + En+1, where En+1 ∼ N (0, σ2IT )

Here, for a matrix A with full column rank, A† = (A⊤A)−1A⊤ is the Moore-Penrose pseudo-inverse of A. The noise terms
E1, E2, . . . , En are independent of each other and of the covariates/features. Since X has full column rank, so does X̃n for
every n ≥ 1.

Test Error. We are interested in the dynamics of the test error Etest(ŵn) of this sequence of linear model ŵ1, ŵ2, .... Note
that evaluation of the model is done on the true distribution PΣ,w∗,σ2 , even though the model is trained on the accumulated
synthetic data. For any linear estimator ŵ computed from the training data, we measure test error in the standard way:

Etest(w)
def
= E

[
(xT

testw − ytest)
2
]
− σ2 = E[∥w − w∗∥2Σ] (2)

where the expectation is taken over the training data and (xtest, ytest) ∼ PΣ,w∗,σ2 independent of the training data.
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Figure 18. Accumulating Data Avoids Model Collapse in Linear Regression. We consider sequences of linear models recurrently fit to
generated targets by previous iterations of models. Top: If each linear model is fit to the generated targets of only the preceding linear
model, i.e., data are replaced, then the test error grows linearly with the number of iterations n. Bottom: If each linear model is instead fit
to the generate targets of all the preceding linear models, i.e., data accumulate, then the test error has a finite upper bound independent of
the number of iterations. This suggests that data accumulation might be a robust solution for mitigating model collapse. For log test error
and higher iterations, see Appendix Fig. 19.

A Note on Extensions to Ridge Regression and Kernel Methods. To reiterate a comment made previously by Dohmatob
et al. (2024a), although we present our results in the context of ordinary linear regression in Rd, our analysis can be readily
extended to ridge regression and the kernel setting (Caponnetto & De Vito, 2007; Simon et al., 2021; Cui et al., 2021; Wei
et al., 2022). We focus here on a simple useful model for studying model collapse.

E.2. Precise Test Error Characterization Under Accumulating Data

Our goal is to establish an analytic formula for the test error of the nth model in the data accumulation setting. We begin by
characterizing the relationship between the fitted linear parameters ŵn and the true parameters w∗. We remind the reader
that we assume that X has full column rank, i.e., X⊤X is invertible. Proofs are deferred to App. F.

Theorem E.1. In the data accumulation setting, ∀n ≥ 1, the fitted linear parameters ŵn can be expressed as:

ŵn = w∗ + (X⊤X)−1X⊤

(
n∑

i=1

Ei

i

)
(3)

where, recall, w∗ is the true parameter, X is the original design matrix, and Ei is the extra noise added at the i’th iteration.

Theorem E.2. For an n-fold synthetic data generation process with T ≥ d+ 2 samples per iteration and isotropic features

(Σ
def
= Id), the test error for the ridgeless linear predictor ŵn learned on the accumulated data up to iteration n is given by:

EAccum
test (ŵn) =

σ2d

T − d− 1

(
n∑

i=1

1

i2

)
≤ σ2d

T − d− 1
× π2

6
(4)

where, recall, σ2 is the noise variance of the fake data generation process, d is the input dimension, and T is the number of
samples (i.e., data points) added per iteration.
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How does test error with accumulating data compare against test error with replacing data? Under otherwise identical
assumptions, Dohmatob et al. (2024a) proved in the data-replacing setting that the test error is given by4:

EReplace
test (ŵn) =

σ2d

T − d− 1
× n (5)

When data are replaced, the test error grows linearly with the number of iterations n (Fig 18 top), with the rate of growth
determined by a noise-to-signal ratio: the amount of noise per dimension σ2 times the number of dimensions d, adjusted by
the (per-iteration) sample size T . In contrast, when data accumulate, Theorem E.2 shows the test error is upper bounded
regardless of the number of iterations n:

EAccum
test (ŵn) ≤

σ2d

T − d− 1
× π2

6

This striking difference can be intuitively explained by the differences in the way data are handled across iterations. In
the data replacement setting, because previous data were discarded, the model is more strongly affected by the new noise
that each iteration of generated data introduces, and adds that to the effects experienced in earlier iterations. But in the
data accumulation setting, because iteration i contributes fraction 1/i to the training dataset, the additional noise from the
ith iteration of synthetic data has its effect on the model MSE shrunken proportional to 1/i2 (due to squared error). The
summability of 1/i2 prevents the test error from growing indefinitely. This suggests that accumulating generated data with
real data can indeed avoid model collapse.

E.3. Numerical Confirmation of Analytical Results

To confirm the analytical results, we numerically simulate the setup. The numerics almost perfectly matched the analytics
(Fig. 18): when data are replaced, the test error grows with the number of iterations n, with the prefactor set by the
noise-to-signal ratio σ2d/(T − d− 1), but when data accumulate, the test error rapidly plateaus with the prefactor similarly
set. For log test error and higher model-fitting iterations, see Appendix Fig. 19.

4For notational simplicity, we assume that Dohmatob et al. (2024a)’s T0
def
= T and σ0

def
= σ.
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F. Proofs of Mathematical Results
We point out a lemma useful to prove Theorem E.2.

Lemma F.1. Let T and d be positive integers with T ≥ d+ 2, and let X ∈ RT×d be a random matrix with i.i.d. rows from
N (0,Σ) with Σ positive definite. Then, X has full rank a.s. Moreover, it holds that:

EX [(X⊤X)−1] =
1

T − d− 1
Σ−1. (6)

Proof. See Dohmatob et al. (2024a).

Assuming Lemma F.1 and Theorem E.1, we present the proof of Theorem E.2.

Proof of Theorem E.2. From Theorem E.1, we have:

ŵn = w∗ + (X⊤X)−1X⊤

(
n∑

i=1

Ei

i

)
(7)

where w∗ is the true parameter, X is the original data matrix, and Ei are the noise terms at each iteration, with Ei ∼
N (0, σ2IT ). The test error is given by:

Etest(ŵn) = E[||ŵn − w∗||2Σ] (8)

where the expectation is taken over all random quantities involved.

Substituting ŵn into the test error expression and using the fact that Σ def
= Id, we get:

Etest(ŵn) = E

( n∑
i=1

Ei

i

)⊤

X(X⊤X)−2X⊤

(
n∑

i=1

Ei

i

)
= E

[
n∑

i=1

σ2

i2
tr(X(X⊤X)−2X⊤)

]

=

n∑
i=1

σ2

i2
E
[
tr((X⊤X)−1)

]
Using Lemma F.1, we have:

EX

[
tr((X⊤X)−1)

]
=

d

T − d− 1
(9)

Therefore, the test error for ridgeless regression with isotropic features in the data accumulation setting is:

Etest(ŵn) =

n∑
i=1

σ2

i2
· d

T − d− 1
<

σ2d

T − d− 1

(
π2

6

)
as
∑n

i=1 i
−2 <

∑∞
i=1 i

−2 = π2/6.

Finally, we prove Theorem E.1.

Proof of Theorem E.1. We prove this theorem by induction.

Base case: For n = 1, we have:

ŵ1 = X̃†
1 Ỹ1 = (X⊤X)−1X⊤(Xw∗ + E1) = w∗ + (X⊤X)−1X⊤E1
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which satisfies the lemma.

Inductive step: Assume that for some n ≥ 1, we have:

ŵn = w∗ + (X⊤X)−1X⊤

(
n∑

i=1

Ei

i

)

Now, consider ŵn+1:

ŵn+1 = X̃†
n+1Ỹn+1

= (X̃⊤
n+1X̃n+1)

−1X̃⊤
n+1Ỹn+1

=
1

n+ 1
(X⊤X)−1

n+1∑
i=1

X⊤Ŷi

Recalling that Ŷi:

Ŷi =

{
Xw∗ + E1, i = 1

Xŵi−1 + Ei, 2 ≤ i ≤ n+ 1

Substituting this back into the expression for ŵn+1:

ŵn+1 =
1

n+ 1
(X⊤X)−1

(
X⊤(Xw∗ + E1) +

n+1∑
i=2

X⊤(Xŵi−1 + Ei)

)

=
1

n+ 1
(X⊤X)−1

(
X⊤Xw∗ +X⊤E1 +

n+1∑
i=2

(X⊤Xŵi−1 +X⊤Ei)

)

=
1

n+ 1
(X⊤X)−1

(
X⊤Xw∗ +X⊤E1 +

n∑
i=1

(X⊤Xŵi +X⊤Ei+1)

)

=
1

n+ 1
(X⊤X)−1

(
X⊤Xw∗ +

n∑
i=1

X⊤Xŵi +

n+1∑
i=1

X⊤Ei

)

Now, using the induction hypothesis:

ŵn+1 =
1

n+ 1
(X⊤X)−1

X⊤Xw∗ +

n∑
i=1

X⊤X

w∗ + (X⊤X)−1X⊤
i∑

j=1

Ej

j

+

n+1∑
i=1

X⊤Ei


=

1

n+ 1
(X⊤X)−1

(n+ 1)X⊤Xw∗ +

n∑
i=1

X⊤X(X⊤X)−1X⊤
i∑

j=1

Ej

j
+

n+1∑
i=1

X⊤Ei


= w∗ +

1

n+ 1
(X⊤X)−1

 n∑
i=1

X⊤
i∑

j=1

Ej

j
+

n+1∑
i=1

X⊤Ei


= w∗ +

1

n+ 1
(X⊤X)−1X⊤

 n∑
i=1

i∑
j=1

Ej

j
+

n+1∑
i=1

Ei


Now, we need to simplify the term

∑n
i=1

∑i
j=1

Ej

j +
∑n+1

i=1 Ei. We can do this by counting the number of times each Ei

appears in the double sum: E1 appears n times in the double sum and once in the single sum, so its coefficient is n+1
1 . E2
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appears n− 1 times in the double sum and once in the single sum, so its coefficient is n
2 . This continues along till we reach

En, which appears once in the double sum and once in the single sum, so its coefficient is 2
n . En+1 appears only once in the

single sum, so its coefficient is 1
n+1 . Therefore,

n∑
i=1

i∑
j=1

Ej

j
+

n+1∑
i=1

Ei =

n+1∑
i=1

n+ 2− i

i
Ei = (n+ 1)

n+1∑
i=1

Ei

i

Substituting this back into the expression for ŵn+1:

ŵn+1 = w∗ +
1

n+ 1
(X⊤X)−1X⊤

(
(n+ 1)

n+1∑
i=1

Ei

i

)

= w∗ + (X⊤X)−1X⊤
n+1∑
i=1

Ei

i

Therefore, by mathematical induction, the lemma holds for all n ≥ 1.
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G. Linear Regression: Replacing Data with Increasing Sample Size
In the framework of Mobahi et al. (2020) and Dohmatob et al. (2024a), we consider sequences of linear models fit to the
previous model’s synthetic outputs. Within this framework, Dohmatob et al. (2024a) proved that if data are replaced with
each model fitting iteration and the training data cardinality remains constant, then the test squared error scales linearly with
the number of model fitting iterations n:

EReplace
test (ŵn) =

σ2d

T − d− 1
× n (10)

In this work, we lightly adapt the argument of Dohmatob et al. (2024a) to study the effects if data accumulate with each
model fitting iteration. We specifically considered the case where the training data cardinality increases by a constant T with
each model-fitting iteration i.e. the ith model is fit using T × i data, where T data are “real” and then each subsequently fit
model contributes its own T synthetic data to the accumulating data. In this setting, the test squared error is upper bounded
independent of the number of iterations.

EAccumulate
test (ŵn) =

σ2d

T − d− 1
×

n∑
k=1

1

k2
≤ σ2d

T − d− 1
× π2

6
(11)

In the main text, we focus on the replace and accumulate data settings because prior work focused on replacing data and we
wished to study how accumulating data affects model collapse. However, a much richer landscape of outcomes is possible.
For instance, and as pointed out in personal correspondence with Dohmatob et al. (2024a), one can consider what we term
the “Replace-Multiple” setting, in which one fits the i-th linear model using T × i data sampled from the (i− 1)-th linear
model. Replace-Multiple is a useful baseline for Accumulate because it matches the amount of training data at each model
fitting iteration. Under Replace-Multiple, the test squared error grows logarithmically:

EReplace-Multiple
test (ŵn) =

σ2d

T − d− 1
×

n∑
k=1

1

k
≈ σ2d

T − d− 1
× log(n) (12)

Replace-Multiple has the drawback of not matching the total amount of compute of Accumulate since each iteration of
Replace-Multiple draws T × i samples from the most recent model, whereas Accumulate draws T samples from the most
recent model. Other baselines are also possible, but we leave these to future work. We focus on accumulating data as we
feel real and synthetic data are likely to accumulate in the real world as time progresses.
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H. Additional Linear Regression Numerical Results
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Figure 19. Accumulating data across iterations avoids model collapse in linear regression. We consider sequences of linear models
recurrently fit to generated targets by previous iterations of models. Replace (Top): If each linear model is fit to the generated targets of
only the preceding linear model i.e. data are replaced, then the test squared error grows linearly with the number of model-fitting iterations
iterations n. Replace-Multiple (Middle): If each linear model is fit to T × i samples from the (i− 1)-th model (i.e. the same amount
of data as Accumulate), then the test squared error grows logarithmically with the number of model-fitting iterations; see Appendix G
for more details. Accumulate (Bottom): If each linear model is instead fit to the generate targets of all the preceding linear models i.e.
data accumulate, then the test squared error has a finite upper bound, independent of the number of iterations. This suggests that data
accumulation might be a robust solution for mitigating model collapse. This figure is similar to Figure 18 but displaying log test squared
error and more model-fitting iterations for additional clarity.
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