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Abstract

Recently, artificial intelligence for drug discovery has raised increasing interest in
both machine learning and chemistry domains. The fundamental building block
for drug discovery is molecule geometry and thus, the molecule’s geometrical
representation is the main bottleneck to better utilize machine learning techniques
for drug discovery. In this work, we propose a pretraining method for molecule joint
auto-encoding (MoleculeJAE). MoleculeJAE can learn both the 2D bond (topology)
and 3D conformation (geometry) information, and a diffusion process model is
applied to mimic the augmented trajectories of such two modalities, based on which,
MoleculeJAE will learn the inherent chemical structure in a self-supervised manner.
Thus, the pretrained geometrical representation in MoleculeJAE is expected to
benefit downstream geometry-related tasks. Empirically, MoleculeJAE proves its
effectiveness by reaching state-of-the-art performance on 15 out of 20 tasks by
comparing it with 12 competitive baselines. The code is available on this website.

1 Introduction

The remarkable progress in self-supervised learning has revolutionized the fields of molecule property
prediction and molecule generation through the learning of expressive representations from large-
scale unlabeled datasets [1–9]. Unsupervised representation learning can generally be categorized
into two types [7, 10–13]: generative-based methods, encouraging the model to encode information
for recovering the data distribution; and contrastive-based methods, encouraging the model to learn
invariant features from multiple views of the same data. However, despite the success of large
language models like GPT-3 [14, 15] trained using an autoregressive generation approach , learning
robust representations from molecular data remains a significant challenge due to their complex graph
structures. Compared to natural language and computer vision data [16, 17], molecular representations
exhibit more complex graph structures and symmetries [18]. As molecular dynamics follows the
principle of non-equilibrium statistical mechanics [19], diffusion models, as a generative method
inspired by non-equilibrium statistical mechanics [20, 21], are a natural fit for 3D conformation
generation. Previous researches have demonstrated the effectiveness of diffusion models, specifically
2D molecular graphs [22, 23] or 3D molecular conformers [24–27], for molecular structure generation
tasks. However, a crucial question remains: Can diffusion models be effectively utilized for jointly
learning 2D and 3D latent molecular representations?
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Figure 1: Pipeline of MoleculeJAE. For each individual molecule, MoleculeJAE utilizes the reconstructive task
to perform denoising. For pairwise molecules, it conducts a contrastive learning paradigm to fit the trajectory.

Answering this question is challenging, given that diffusion models are the first generative models
based on trajectory fitting. Specifically, diffusion models generate a family of forward random
trajectories by either solving stochastic differential equations [28, 29] or discrete Markov chains
[23, 30, 31], and the generative model is obtained by learning to reverse the random trajectories
[32, 33]. It remains unclear how the informative representation manifests itself in diffusion models,
as compared to other generative models that explicitly contain a semantically meaningful latent
representation, such as GAN [34] and VAE [35]. In addition to the generative power of diffusion
models, we aim to demonstrate the deep relationship between the forward process of diffusion models
and data augmentation [36, 37], a crucial factor in contrastive learning. As a result, we ask whether a
trajectory-based self-supervised learning paradigm that leverages both the generative and contrastive
benefits of diffusion models can be used to obtain a powerful molecular representation.

Our approach. This work presents MoleculeJAE (Molecule Joint Auto-Encoding), a novel trajectory
learning framework for molecular representation that captures both 2D (chemical bond structure)
and 3D (conformer structure) information of molecules. Our proposed method is designed to respect
the SE(3) symmetry of molecule data and is trained by fitting the joint distribution of the data’s
augmented trajectories extracted from the forward process of the diffusion model. By training the
representation in this manner, our framework not only captures the information of real data distribution
but also accounts for the corelation between the real data and its noised counterparts. Under
certain approximations, this trajectory distribution modeling decomposes into a marginal distribution
estimation and a trajectory contrastive regularization task. This multi-task approach yields an effective
and flexible framework that can simultaneously handle various types of molecular data, ranging
from SE(3)-equivariant 3D conformers to discrete 2D bond connections. Furthermore, in contrast
to diffusion models used for generation tasks that only accept noise as input, most downstream tasks
have access to ground-truth molecular structures. To leverage this advantage better, we incorporate an
equivariant graph neural network (GNN) block into the architecture, inspired by [38, 39], to efficiently
encode crucial information from the ground-truth data. Analogous to conditional diffusion models
[38, 40], the encoder’s output serves as a meaningful guidence to help the diffused data accurately
fitting the trajectory. In summary, our self-supervised learning framework unifies both contrastive
and generative learning approaches from a trajectory perspective, providing a versatile and powerful
molecular representation that can be applied to various downstream applications.

Regarding experiments, we evaluate MoleculeJAE on 20 well-established tasks drawn from the
geometric pretraining literature [6, 7], including the energy prediction at stable conformation and
force prediction along the molecule dynamics. Our empirical results support that MoleculeJAE can
outperform 12 competitive baselines on 15 tasks. We further conduct ablation studies to verify the
effectiveness of key modules in MoleculeJAE.

2 Background

In this section, we introduce the diffusion mechanism and relevant notations as a powerful data
augmentation framework and elaborate on its instantiation in the context of molecular graph data.
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2.1 Diffusion Mechanism as a trajectory augmentation

The concept of diffusion is widely used in various fields such as physics, mathematics, and computer
science. In this paper, we take a broad view of diffusion by defining it as a Markov process with a
discrete or continuous time index t, starting from a given data point x0 and producing a series of
random transformations that lead to xt. If t ∈ {0, 1, 2, . . . }, then xt is a discrete Markov chain where
the probability distribution p(xt) only depends on the distribution of xt−1. We further refer to the
conditional probability p(xt|xt−1) as the transition probability of the Markov chain. This definition
enables us to model the evolution of data over time, allowing us to generate a sequence of augmented
data points that span different temporal regimes.

In fact, we can adapt classical data augmentations, such as spatial rotation, color distortion, and
Gaussian blurring [41, 42], as sources for defining p(xt|xt−1). For instance, Gaussian blurring
generates a specific transition probability by setting p(xt|xt−1) = N (xt−1, ϵ), where the scaling
factor ϵ may depend on time t.This transition probability rule perturbatively transforms the data
for each step, and connecting all steps of transformed data produces a trajectory. In a similar vein,
random masking can be seen as a discrete Markov chain, while continuous rotation can be viewed as
a deterministic Markov process. By employing this approach, we can effectively expand the scope of
one-step data augmentation operations to encompass trajectory-based scenarios.

In this paper, we build upon the concepts of generalized diffusion processes proposed in [33] to estab-
lish a unified framework for the trajectory augmentation examples mentioned earlier. Following the
general approach in [33], each (cold) diffusion model is associated with a degradation Markov process
D(·, t) indexed by a time variable t ∈ [0, T ], which introduces perturbations to the initial data x0:

x0
D(·,t)−−−−→ xt. (1)

Given that x0 ∼ pdata, the transformed variable xt := D(x0, t), is also a random variable. To
represent the marginal distribution of D(·, t) at time t, we use the notation pt(·). When the context
is clear, we will use the shorthand notation Dt to refer to D(·, t). According to Equation (1), we
define the pair (x0, xt) as a multi-view of the sample x0 at a specific time t. It is important to note
that, under certain conditions, a Markov process converges to a stationary distribution that effectively
erases any memory of the initial data x0. Nevertheless, for small values of t, there is a high probability
that xt remains within a ball centered around x0.

In the context of the standard diffusion-based generative model [28, 32], the presence of a reverse
process Rt is necessary to undo the effects of the degradation Dt. In [28], the degradation D(·, t) is
identified as the solution of a stochastic differential equation (SDE), and it has been demonstrated that
a family of SDEs, including the probability flow ordinary differential equation (ODE) proposed in
[28, 43], can reverse the degradation process D(·, t). Specifically, the inversion property implies that
RT−t shares the same marginal distribution as pt: RT−t ∼ pt. Therefore, as t varies from 0 to T ,
the reverse process Rt gradually restores the data distribution. On the other hand, for cold diffusions,
although the model is also trained by reconstructing the data from Dt, it does not explicitly assume
the existence of a reverse process as rigorously as in the continuous diffusion-based generative model.

Example of heat diffusion We use the term ’heat’ to describe a diffusion process that involves
injecting Gaussian noise. Under this definition, the continuous limit of heat diffusion can be expressed
by the solution of stochastic differential equations (SDEs):

dxt = µ(xt, t)dt+ σ(t)dwt, t ∈ [0, T ] (2)

Here, wt represents the standard Brownian motion. It is worth noting that while the solution xt of
a general SDE may not follow the Gaussian distribution, for the commonly used SDEs such as the
Variance Exploding SDE (VE) and Variance Preserving SDE (VP), the solution can be explicitly
expressed as:

xt = α(t)x0 + β(t)z, (3)
where z is sampled from N (0, I), and both α(t) and β(t) are positive scalar functions. Using the
forward SDE (2), we approach the task of data synthesis by gradually denoising the noisy observations
xt to recover x0, which is also accomplished through solving a reverse SDE. For the general formula
and further details, readers can refer to [28, 32]. One fact we will use later is that the reverse
SDE fundamentally relies on the score function ∇x log pt(x), which serves as the parameterization
objective in the score matching framework [28, 44].
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Example of discrete (cold) diffusion In contrast to the continuous heat diffusion framework, we
now introduce a family of discrete Markov Chains as an instance of discrete (cold) diffusion. This
example is particularly suitable for modeling categorical data. In the unconditional setting, the
transition probability of the discrete diffusion at time step t is defined as:

q(xt|xt−1) = Multinomial(xt, p = xt−1Qt), (4)

where Qt represents a Markov transition matrix. An illustrative example is the absorbing diffusion,
as introduced by [30], where

Qt = (1− βt)I + βte
T
m,

and em is a one-hot vector with a value of 1 at the absorbing state m and zeros elsewhere. Typically,
the state m is chosen as the ’masked’ token. Hence, absorbing diffusion can be regarded as a masking
process with a dynamical masking ratio βt. Similarly to the heat diffusion, the corresponding
reverse process can also be formulated as a discrete diffusion. However, the training objective
shifts from fitting the score function (which only exists in the continuous case) to directly fitting the
’reconstruction probability’ p(x0|xt).

2.2 Graph-based molecular representation

In this paper, our primary focus is on the graph representation of molecules. Let G = (V,E, P,H)
denote the integrated molecular graph, consisting of n := |V | atoms and |E| bonds. The matrix
P ∈ Rn×3 is utilized to represent the 3D conformer of the molecule, containing the positions of each
node. Moreover, within the graph G, the edge collection E represents the graphical connections and
chemical bond types between atoms. Additionally, we have the node-wise feature matrix H ∈ Rn×h,
where, for the purposes of this article, we consider the formal charges and atom types as the
components of H . In the method section, we will demonstrate how to build trajectories based on G.

3 Method
Now we illustrate the process of obtaining molecule augmented trajectories, based on which,
MoleculeJAE is proposed to estimate the trajectory distribution. In Section 3.1, we will outline the
construction of equivariant molecular trajectories. Subsequently, in Section 3.2, we will introduce
our theoretical self-supervised learning framework for these trajectories. Our hypothesis is that a
good representation should encode the information from the distribution of augmented trajectories.
This hypothesis forms the practical basis of our core reconstructive and contrastive loss, which
will be discussed in Section 3.3. Finally, in Section 3.4, we will present the key architectures. A
comprehensive discussion of the related works is in Appendix B.

3.1 Equivariant Molecule Trajectory Construction

In the field of molecular representation learning, our objective is to jointly estimate the distribution
of a molecule’s 2D topology (including atom types and chemical bonds) and its 3D geometries
(conformers). Building upon the notations in Section 2.2, our goal is to construct augmented
trajectories xt := (H(t), E(t), P (t)) from G. The challenging aspect lies in preserving the SE(3)
symmetry of the position matrix P , which we will describe in detail below.

Given two 3D point clouds (molecular conformers) P1 and P2, we say they are SE(3)-isometric
if there exists an R ∈ SE(3) such that P1 = RP2. In probabilistic terms, let p3D(x3D) be the
probability density of all 3D conformers denoted by C. Isometric conformers necessarily have the
same density, i.e.,

p3D(x3D) = p3D(Rx3D), ∀ R ∈ SE(3), x3D ∈ C. (5)
Utilizing the symmetry inductive bias has been shown [24, 45] to greatly reduce the complexity of
data augmentation. Additionally, in order to respect the SE(3) symmetry, the augmented trajectory
P (0) → P (t) should also be SE(3)-equivariant, satisfying

RP (x3D) = P (Rx3D), ∀ R ∈ SE(3).

This condition imposes a rigorous restriction on the form of the forward SDE (2) when it is applied
to generate the augmented trajectory of conformers. However, if we constrain the form of xt to Eq. 3,
the SE(3) equivariance is automatically satisfied due to the SE(3) equivariance of both the Gaussian
random variable z and the original data x0. We leave the formal proof in Appendix A.
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Regarding the 2D component, let x2D(t) := (H(t), E(t)), where x2D consists of invariant scalars
that remain unchanged under SE(3) transformations. Although x2D is categorical in nature, we
can treat them as continuous scalars that can be perturbed by Gaussian noise. During inference
(generation), these continuous scalars are quantized back into categorical integers (see [22] for
details). This allows both x2D(t) and P (t) to undergo heat diffusion. By combining the 2D and 3D
parts, we introduce the system of SDEs for xt:

dP (t) = −P (t)dt+ σ1(t)dw
1
t ,

dH(t) = µ2(H(t), t)dt+ σ2(t)dw
2
t ,

dE(t) = µ3(E(t), t)dt+ σ3(t)dw
3
t .

(6)

It is worth mentioning that although the components of Eq. 6 are disentangled, the corresponding
reverse diffusion process and its score function are entangled. A common choice of µ(x, t) is
µ(x, t) := −x, then will utilize the explicit solution of equations (6) to generate the molecular
augmentation trajectory. Additionally, it is also possible to perform equivariant diffusion of the 2D
and 3D joint representation through equivariant cold diffusion, following the approach described in
(4). The detailed framework for this approach is provided in the Appendix A.

3.2 Equivariant Molecule Trajectory Learning with Density Auto-Encoding

To provide a formal foundation for self-supervised learning from augmented trajectories, we revisit the
concept of denoising from a trajectory perspective. According to the Kolmogorov extension theorem
[46], every stochastic process defines a probabilistic measure on the trajectory space, uniquely
determined by a set of finite-dimensional joint distributions that satisfy consistency conditions.
Therefore, estimating the probability of the infinite-dimensional trajectory space is equivalent to
estimating the joint probabilities p(xt1 , . . . , xtk) for each finite time sequence t1, . . . , tk ∈ [0, T ].
From the standpoint of data augmentation, our specific focus is on learning the joint distribution
of trajectory augmentation pairs: p(x0, xt) (solution of Eq. 6), which determines how the noisy xt

corresponds to the original (denoised) x0.

To differentiate our notion of "Auto-Encoding" from the "denoising" method utilized in DDPM [32]
(denoising diffusion probabilistic models), it is important to highlight that traditional diffusion-based
generative models are based on marginal distribution modeling. In this framework, joint distributions
induce marginal distributions, but not vice versa. This distinction becomes more apparent in the
continuous SDE formalism of diffusion models [28], where multiple denoising processes from xt to
x0 can be derived while still sharing the same marginal distributions. However, the joint distributions
of a probabilistic ODE flow significantly differ from those of the reverse SDE (as shown in Eq. 11)
due to the deterministic nature of state transitions in an ODE between timesteps. In the following,
we formally demonstrate this observation from the perspective of maximizing the trajectories’ joint
probabilistic log-likelihood.

For a given time t ∈ [0, T ], let us assume that the probability of the random pair (x0, xt) defined in
Eq. 1 is determined by a joint density function p(x0, xt). Our objective is to approximate p(x0, xt)
within a variational class pθ(x0, xt). Maximizing the likelihood of this joint distribution leads to the
following optimization problem:

argmaxθ

n∏
i=1

pθ(x
i
0, x

i
t), (7)

where {(xi
0, x

i
t)}ni=1 represents the collection of n augmented samples from the training dataset.

Following the tradition of Bayesian inference [47], we parameterize pθ by defining a joint energy func-
tion Eθ(x0, xt) such that: pθ(x0, xt) =

1
Zθ

e−Eθ(x0,xt), where Zθ(t) is the intractable normalization
constant depending on t. Therefore, the maximal likelihood framework reduces to solving

argminθEp(x0,xt) [Eθ(x0, xt)] .

However, directly optimize pθ(x0, xt) by taking the gradient with respect to θ is challenging because
∂ log pθ(x0,xt)

∂θ contains an intractable term: ∂Zθ(t)
∂θ . To circumvent this issue, we borrow ideas from

[48, 49] by treating the transformed xt as an infinitely dimensional "label" of x0. More precisely, we
consider the parameterized marginal density qθ(x0) as:

qθ(x0) :=

∫
pθ(x0, xt)dxt, (8)
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which involves integrating out xt. We define the marginalized energy function with respect to x0

as: Ēθ(·) := − log
∫
exp(−Eθ(·, xt))dxt. Now, let fθ(x0, xt) denote the normalized conditional

density function pθ(xt|x0), we have ∂ log fθ(xt|x0)
∂θ = −∂Eθ(x0,xt)

∂θ + ∂Ēθ(x0)
∂θ . By taking the empirical

expectation with respect to the finitely sampled pair (x0, xt) ∼ p(x0, xt), we can decompose the
gradient of the maximum likelihood as follows (see Appendix A for the full derivation):

Ẽp(x0,xt)

[
∂ log pθ(x0, xt)

∂θ

]
= Ẽp(x0)

[
∂ log qθ(x0)

∂θ

]
+ Ẽp(x0,xt)

[
∂ log fθ(x0, xt)

∂θ

]
, (9)

here we use Ẽ to denote the expectation with respect to the empirical expectation. Note that this
decomposition holds for (xs, xt) for any two different time steps (0 ≤ s, t ≤ T ) of the trajectories.
In the next section, we decompose Equation (16) into two sub-tasks, leading to our goal of optimizing
these two parts simultaneously, as discussed below.

3.3 Reconstructive and Contrastive Tasks

In what follows, we denote the latent representation of data x by hθ(x) (the equivariant model for
building hθ will be discussed in the next section). Based on Eq. 16, we introduce two tasks for
training hθ(x) that stem from this decomposition.

Reconstructive task. The first term Ẽp(x0)

[
∂ log qθ(x0)

∂θ

]
in Eq. 16 aims to reconstruct the distribution

of data samples. Therefore, we refer this term as the reconstruction task, which involves modeling
the marginal distribution pdata(x0) using qθ(x0).

Although it is possible to directly train the likelihood reconstruction term in the auto-regressive case,
such as using the noise conditional maximum likelihood loss Et∼[0,T ]Ext∼pt

log qθ(xt) proposed in
[50], we instead adopt trajectory score matching [28], which is applicable for non-autoregressive
graph data. The score matching loss is defined as follows:

Lsc := Et∼[0,T ]Ep(x0)p(xt|x0)[∥∇ log p(xt|x0)− sθ(xt, t)∥2]. (10)

We choose this approach for two reasons: First, training the score function enables the model to
generate new samples by solving the reverse process, thus facilitating generative downstream tasks.
Second, when t = 0, the score function for 3D structures can be interpreted as a "pseudo" force
field for the molecular system [6], containing essential information about the molecular dynamics.
Furthermore, [44] provided a rigorous proof demonstrating that score matching formula 10 serves
as a variational lower bound for the marginal log-likelihood log qθ(x0). This theoretical guarantee
solidifies the effectiveness of score matching as a training objective.

For molecule trajectories, the score function encompasses both the 2D and 3D components. Moreover,
the SE(3)-invariant density p3D defined by Eq. 5 implies that the corresponding 3D score function
∇xp3D(x) (represented as score(Pt) in Fig. 2) is equivariant under SE(3):

∇xp3D(Rx) = R∇xp3D(x), ∀ R ∈ SE(3), x ∈ C.
In conclusion, the symmetry principle mandates that the score neural network takes an equivariant
vector field (representing the positions of all atoms) and invariant atom features as input. It then
produces two score functions that adhere to different transformation rules: 1. ∇xp3D(x): SE(3)-
equivariant; 2. ∇yp2D(y): SE(3)-invariant.

Contrastive task. We have demonstrated that optimizing the score matching task allows us to
capture information about the marginal distributions of the trajectories. However, the joint distribution
contains additional valuable information. As an example, consider the following parameterized
random processes, all of which share the same marginal distributions but exhibit varying joint
distributions (as proven in [44]):

dyt = [f(yt, t)−
1 + λ2

2
g2(t)sθ(yt, t)]dt+ λg(t)dBt, (11)

for λ > 0. Hence, it is theoretically necessary to optimize the second term Ẽp(x0,xt)

[
∂ log fθ(x0,xt)

∂θ

]
of Eq. 16. By employing the conditional probability formula, we have:

fθ(x0, xt) =
pθ(x0, xt)∫
pθ(x0, y)dy

. (12)
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Figure 2: Architecture of MoleculeJAE. The inputs are ground-truth molecules with both 2D and 3D structures.
MoleculeJAE also adopts the noised inputs denoising, so as to model the trajectory distribution. The outputs are
three score functions for conformer and bond representations, which flow into the general pipeline in Figure 1.

It is important to note that the troublesome normalizing constant Zθ(t) is cancelled out in Eq. 12.
In practice, the integral

∫
pθ(x0, y)dy is empirically approximated using Monte Carlo sampling.

To make a connection with contrastive learning (CL), recall that in CL, a common approach is to
align the augmented views ((x, x+)) of the same data and simultaneously contrast the augmented
views of different data (x−). By treating the joint distribution as a similarity measure, Eq. 12 can be
seen as implicitly imposing two regularization conditions on fθ(x0, xt): ensuring a high probability
for p(x0, xt) and a low probability for p(x0, y). This notion of similarity motivates us to refer to
maximizing the second term of Eq. 16 as a contrastive task.

Contrastive surrogate However, estimating pθ(x0, xt) is challenging due to the intractability
of closed-form joint distributions. To overcome this difficulty, we propose a black-box surrogate
φ that represents the mapping from the latent representation hθ(xt) to pθ(x0, xt) (following the
notation in figure 2). Specifically, let (hθ(x0), hθ(xt)) denote the representation pair obtained from
the input molecule data (x0, xt). Then, the surrogate of pθ(x0, xt) is defined by pθ(x0, xt) =
1

Z(t) exp{−
∥φ(hθ(x0))−φ(hθ(xt))∥2

τ2(t) + C(x0)}. Here, τ(t) is a monotone annealing function with
respect to t. By using Eq. 12, the unknown normalization constant Z(t) and C(x0) cancel out,
resulting in the following approximation:

fθ(x0, xt) ≈
exp{−∥φ(hθ(x0))− φ(hθ(xt))∥2}∫
exp{−∥φ(hθ(x0))− φ(hθ(y))∥2}dy

. (13)

Our surrogate is reasonable because our modeling target p(x0, xt) is derived from the joint distribu-
tions of a (continuous) Markov process. When xt lies along the augmented trajectory of a specific
data sample x0 and approaches x0 as t → 0, the log-likelihood log pθ(x0, xt) is also achieves a local
maximum. Therefore, based on the Taylor expansion, the leading non-constant term takes the form
of a quadratic expression.

Final Objective By combining the reconstruction and contrastive regularization tasks, we define
the final multi-task training objective of MoleculeJAE as a weighted sum of the two tasks:

λ1Lsc + λ2Lco, (14)

where λ1, λ2 are weighting coefficients, and Lco := Et∼[0,T ]E(x0,xt)∼p(x0,xt)fθ(xo, xt). In Fig. 2,
the noised input xt undergoes an encoding process to obtain the latent representation hθ(xt), which
is then split into two branches:

1. The first branch passes through a score neural network ϕ for reconstruction: sθ(xt) =
ϕ(hθ(xt));

2. The second branch incorporates the original data representation hθ(x0) and further projects
the pair (hθ(x0), hθ(xt)) through a non-linear projection head φ for contrastive learning.

Note that the black-box projection function g (although not used in downstream tasks) also participates
in the pretraining optimization, following the conventional contrastive learning frameworks [51, 52].
See Fig. 1 for a graphical illustration of MoleculeJAE’s pipeline.
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Table 1: Results on 12 quantum mechanics prediction tasks from QM9. We take 110K for training, 10K for
validation, and 11K for testing. The evaluation is mean absolute error, and the best and the second best results
are marked in bold and bold, respectively.

Pretraining α ↓ ∇E ↓ EHOMO ↓ ELUMO ↓ µ ↓ Cv ↓ G ↓ H ↓ R2 ↓ U ↓ U0 ↓ ZPVE ↓
– (random init) 0.060 44.13 27.64 22.55 0.028 0.031 14.19 14.05 0.133 13.93 13.27 1.749
Type Prediction 0.073 45.38 28.76 24.83 0.036 0.032 16.66 16.28 0.275 15.56 14.66 2.094
Distance Prediction 0.065 45.87 27.61 23.34 0.031 0.033 14.83 15.81 0.248 15.07 15.01 1.837
Angle Prediction 0.066 48.45 29.02 24.40 0.034 0.031 14.13 13.77 0.214 13.50 13.47 1.861
3D InfoGraph 0.062 45.96 29.29 24.60 0.028 0.030 13.93 13.97 0.133 13.55 13.47 1.644
GeoSSL-RR 0.060 43.71 27.71 22.84 0.028 0.031 14.54 13.70 0.122 13.81 13.75 1.694
GeoSSL-InfoNCE 0.061 44.38 27.67 22.85 0.027 0.030 13.38 13.36 0.116 13.05 13.00 1.643
GeoSSL-EBM-NCE 0.057 43.75 27.05 22.75 0.028 0.030 12.87 12.65 0.123 13.44 12.64 1.652
3D InfoMax 0.057 42.09 25.90 21.60 0.028 0.030 13.73 13.62 0.141 13.81 13.30 1.670
GraphMVP 0.056 41.99 25.75 21.58 0.027 0.029 13.43 13.31 0.136 13.03 13.07 1.609
GeoSSL-DDM-1L 0.058 42.64 26.32 21.87 0.028 0.030 12.61 12.81 0.173 12.45 12.12 1.696
GeoSSL-DDM 0.056 42.29 25.61 21.88 0.027 0.029 11.54 11.14 0.168 11.06 10.96 1.660

MoleculeJAE 0.056 42.73 25.95 21.55 0.027 0.029 11.22 10.70 0.141 10.81 10.70 1.559

Table 2: Results on eight force prediction tasks from MD17. We take 1K for training, 1K for validation, and
48K to 991K molecules for the test concerning different tasks. The evaluation is mean absolute error, and the
best results are marked in bold and bold, respectively.

Pretraining Aspirin ↓ Benzene ↓ Ethanol ↓ Malonaldehyde ↓ Naphthalene ↓ Salicylic ↓ Toluene ↓ Uracil ↓
– (random init) 1.203 0.380 0.386 0.794 0.587 0.826 0.568 0.773
Type Prediction 1.383 0.402 0.450 0.879 0.622 1.028 0.662 0.840
Distance Prediction 1.427 0.396 0.434 0.818 0.793 0.952 0.509 1.567
Angle Prediction 1.542 0.447 0.669 1.022 0.680 1.032 0.623 0.768
3D InfoGraph 1.610 0.415 0.560 0.900 0.788 1.278 0.768 1.110
GeoSSL-RR 1.215 0.393 0.514 1.092 0.596 0.847 0.570 0.711
GeoSSL-InfoNCE 1.132 0.395 0.466 0.888 0.542 0.831 0.554 0.664
GeoSSL-EBM-NCE 1.251 0.373 0.457 0.829 0.512 0.990 0.560 0.742
3D InfoMax 1.142 0.388 0.469 0.731 0.785 0.798 0.516 0.640
GraphMVP 1.126 0.377 0.430 0.726 0.498 0.740 0.508 0.620
GeoSSL-DDM-1L 1.364 0.391 0.432 0.830 0.599 0.817 0.628 0.607
GeoSSL-DDM 1.107 0.360 0.357 0.737 0.568 0.902 0.484 0.502
MoleculeJAE 1.289 0.345 0.365 0.613 0.498 0.712 0.480 0.463

3.4 Model Architecture of MoleculeJAE

In pursuit of a meaningful latent molecular representation, we design our joint auto-encoder model
as a conditional diffusion based model, inspired by [38, 39, 53]. In our model, the condition does
not come from labels, but rather an encoding of the ground-truth molecule. Specifically, to obtain
the latent representation hθ shown in Fig. 2, we implement two equivariant encoders that satisfy
the SE(3) symmetry proposed in Section 3.1. One encoder takes the original molecule as input,
and its output is used as a condition to help the other encoder that encodes the noisy molecule for
reconstruction. The only requirement for the architecture of the two encoders is that the output should
be invariant. Therefore, any SE(3) equivariant GNN [54] that outputs invariant scalars will suffice.

Equivariant decoder. With our representation hθ which depends on (x0, xt, t), the decoder part of
MoleculeJAE is divided into two heads. One head is paired with node-wise SE(3) frames to match the
SE(3) equivariant score function, while the other head generates an SE(3) invariant representation
that is used for contrastive learning (see Fig. 2 for a complete illustration). Further details on the
model design are left in Appendix A.

4 Experiment

4.1 MoleculeJAE Pretraining

Dataset. For pretraining, we use PCQM4Mv2 [55]. It extracts 3.4 million molecules from Pub-
ChemQC [56] with both 2D topology and 3D geometry.

Backbone models. We want to highlight that MoleculeJAE is agnostic to backbone geometric GNNs.
In this work, we follow previous works in using SchNet model [57] for 3D conformation. For the
2D GNN representation, we take a simple version by mainly modeling the bond information (details
in Appendix D). For the SDE models [28] for generating the joint trajectories, we consider both VE
and VP, as in Eq. 6.

Baselines for 3D conformation pretraining. Recently, few works have started to explore 3D
conformation pretraining. For instance, GeoSSL [5] provides comprehensive baselines. The initial
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Table 3: Ablation studies of contrastive loss term in MoleculeJAE. The ablation results are on QM9.

Pretraining α ↓ ∇E ↓ EHOMO ↓ ELUMO ↓ µ ↓ Cv ↓ G ↓ H ↓ R2 ↓ U ↓ U0 ↓ ZPVE ↓
λ2 = 0 0.057 43.15 26.05 21.42 0.027 0.030 12.23 11.95 0.162 12.20 11.42 1.594
λ2 = 0.01 0.056 42.73 25.95 21.55 0.027 0.029 11.22 10.70 0.141 10.81 10.70 1.559
λ2 = 1 0.066 45.45 28.23 23.67 0.028 0.030 14.67 14.42 0.204 13.30 13.25 1.797

Table 4: Ablation studies of contrastive loss term in MoleculeJAE. The ablation results are on MD17.
Pretraining Aspirin ↓ Benzene ↓ Ethanol ↓ Malonaldehyde ↓ Naphthalene ↓ Salicylic ↓ Toluene ↓ Uracil ↓
λ2 = 0 1.380 0.359 0.363 0.744 0.482 0.902 0.548 0.590
λ2 = 0.01 1.289 0.345 0.365 0.613 0.498 0.712 0.480 0.463
λ2 = 1 1.561 0.547 0.781 0.735 0.918 1.160 1.052 0.809

three baselines involve type prediction, distance prediction, and angle prediction, respectively aiming
to predict the masked atom type, pairwise distance, and triplet angle. The next baseline is 3D
InfoGraph. It is a contrastive SSL method and predicts whether the node- and graph-level 3D
representation are for the same molecule. Last but not least, GeoSSL proposes a new SSL family on
geometry: GeoSSL-RR, GeoSSL-InfoNCE, and GeoSSL-EBM-NCE are to maximize the MI between
the conformation and augmented conformation using different objective functions, respectively.
GeoSSL-DDM optimizes the same objective function using denoising distance matching. GeoSSL-
DDM-1L [6] is a special case of GeoSSL-DDM with one layer of denoising.

Baselines for 2D and 3D multi-modal pretraining. Additionally, several works have utilized both
2D topology and 3D geometry modalities for molecule pretraining. Vanilla GraphMVP [7] utilizes
both the contrastive and generative SSL, and 3D InfoMax [58] only uses the contrastive learning part.

In the following, we provide the downstream tasks for applying our pre-trained MoleculeJAE. The
experiment on joint generation of the 2D and 3D structures of molecules are provided in Appendix F.

4.2 Quantum Property Prediction

QM9 [59] is a dataset of 134K molecules, consisting of nine heavy atoms. It contains 12 tasks, which
are related to the quantum properties. Among 12 tasks, the tasks related to the energies are very
important, e.g., U and U0 are the internal energies at 0K and 298.15K, respectively. The other two
energies, H and G can be obtained from U accordingly. The main results are in Table 1. We can
observe that MoleculeJAE can outperform 12 baselines on 9 out of 12 tasks. We want to highlight that
these baselines are very competitive, and certain works (e.g., GeoSSL) also model the 3D trajectory.
Noticeably, MoleculeJAE can reach the best performance on four energy-related tasks.

4.3 Molecular Dynamics Prediction

MD17 [46] is a dataset on molecular dynamics simulation. It contains eight tasks corresponding
to eight organic molecules, and the goal is to predict the forces at different 3D positions. The size
of each task ranges from 48K to 991K, and please check Appendix C for details. The main results
are in Table 2, and MoleculeJAE can outperform 12 baselines on 6 out of 8 tasks and reach the
second-best for one of the remaining tasks.

4.4 Ablation Study on the Effectiveness of Contrastive Loss

As discussed in Equation (14), there is one important hyperparameter λ2 controlling the contrastive
loss in MoleculeJAE. We want to conduct an ablation study on the effect of this contrastive term.
As shown in Tables 3 and 4, we consider three value for λ2: 0, 0.01, and 1. λ2 = 0 simply means
that we only consider the reconstructive task, and its performance is very close to λ2 = 0.01, i.e.,
the optimal results reported in Tables 1 and 2. However, as we increase the λ2 = 1, the performance
degrades by a large margin. Thus, we would like to claim that the contrastive term in MoleculeJAE is
comparatively sensitive, and we need to tune this hyperparameter carefully to obtain optimal results.

5 Conclusion
In this work, we introduce a novel joint self-supervised learning framework called MoleculeJAE,
which is based on augmented trajectory modeling. The term “joint” in our framework has two
implications: Firstly, it signifies that our method is designed to model the joint distribution of
trajectories rather than solely focusing on the marginal distribution. Secondly, it indicates that the
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augmented molecule trajectory incorporates both 2D and 3D information, providing insights into
different aspects of molecule representation. While our proposed method has demonstrated the best
empirical results on 15 out of 20 geometry-related property prediction tasks, there are still areas left
for improvement, such as architecture design. Please refer to Appendix E for an in-depth discussion.
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A Methodology Detail

A.1 Details for Section 3.3

Following Eq. 8, we consider the ’marginal’ distribution

qθ(x0) :=

∫
pθ(x0, xt)dxt

by marginalizing out xt. We define the corresponding energy function with respect to x0 as

Ēθ(x0) = − log

∫
exp(−Eθ(x0, xt))dxt.

From the definition of Ēθ(x0), the distribution qθ(x0) shares the same normalization constant with
qθ(x0, xt). Therefore we have

∂ log fθ(x0, xt)

∂θ
= −∂Ēθ(x0, xt)

∂θ
+

∂Ēθ(x0)

∂θ
,

where fθ(x0, xt) denotes the normalized conditional probability qθ(xt|x0). By the conditional
probability formula, it is obvious that: it’s obvious that

∂ log qθ(x0, xt)

∂θ
=

∂ log fθ(x0, xt)

∂θ
+

∂ log qθ(x0)

∂θ
. (15)

By taking the empirical expectation with respect to the sampled pair (x0, xt) ∼ p(x0, xt), we find
that the gradient of the Maximum Likelihood allows the following decomposition:

Ẽp(x0,xt)

[
∂ log pθ(x0, xt)

∂θ

]
= Ẽp(x0)

[
∂ log qθ(x0)

∂θ

]
︸ ︷︷ ︸
Gradient of reconstruction

+ Ẽp(x0,xt)

[
∂ log fθ(x0, xt)

∂θ

]
︸ ︷︷ ︸

Gradient of contrastive learning

. (16)

Here, we use Ẽ to denote the expectation with respect to the empirical expectation. In this way, we
find that maximizing the likelihood pθ(x0, xt) is equivalent to solving:

argmaxθ

{
Ẽp(x0)

[
∂ log qθ(x0)

∂θ

]
+ Ẽp(x0,xt)

[
∂ log fθ(x0, xt)

∂θ

]}
.

A.2 Details for Section 3.4

In this section, we provide the details for the model design described in Section 3.4. Specifically, we
illustrate how to obtain the latent representation hθ from x0 = (P0, H0, E0) and xt = (Pt, Ht, Et)
(the solution of Eq. 6 at time t). It is important to note that in standard diffusion generative models
[28, 32], only xt is fed into the score neural network.

The 3D part (H0, E0) and (Ht, Et)are transformed by two equivariant 3D GNNs, and we denote the
invariant node-wise output representation by f0 and ft. Additionally, we embed the time t (which is
essential for trajectory learning) using Fourier embedding, following [28]:

Emd(t) := Fourier(t).

We obtain the 3D node-wise representation by concatenating the Fourier embedding, f0, and ft:

Node3D = MLP [Emd(t) ∥ f0 ∥ ft].

Up to this point, we haven’t utilized the 2D information (E0, Et). Unlike the node-wise 3D represen-
tation, we encode (E0, Et) as a weighted adjacency matrix W :

W = MLP [Emd(t) ∥ E0 ∥ Et].

Combing Node3D and the adjacency matrix W , we implement a dense graph convolution neural
network (GCN) to obtain the final (node-wise) latent representation hθ, following [22]:

hθ = GCN (Node3D,W ).
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Figure 3: Modular Design of MoleculeJAE.

3D output Score(Pt). To obtain the SE(3) equivariant and reflection anti-equivariant vector field
[60] Score(Pt) from hθ, we implement the node-wise equivariant frame and perform tensorization,
following [24, 54]. Consider node i with 3D position xi, let x̄i :=

1
N

∑
xj∈N (xi) xj be the center

of mass around xi’s neighborhood. Then the orthonormal equivariant frame Fi := (ei1, ei2, ei3) with
respect to xi is defined as:

(
xi − x̄i
∥xi − x̄i∥

,
x̄i × xi
∥x̄i × xi∥

,
xi − x̄i

∥xi − x̄i∥
× x̄i × xi

∥x̄i × xi∥
), (17)

where × denotes the cross product, which is SE(3) equivariant and reflection anti-equivariant. Then,
we transform hθ ∈ RN×L to h3D ∈ RN×3:

h3D = (h1, h2, h3) := MLP (hθ).

Finally, for node i,
Scorei(Pt) = h1 · ei1 + h2 · ei2 + h3 · ei3.

2D output Score(Et). Score(Et) represents the probability gradient with respect to the molecule
bonds. Therefore, Score(Et) has the same shape as the dense adjacency matrix and is SE(3) invariant.
To obtain Score(Et), we leverage graph multi-head attention [61] to obtain a dense attention matrix
At (see [61] for the explicit formula):

At = Att (hθ).

Then, we apply an MLP to the edge-wise At to obtain the final 2D score function:

Score(Et) = MLP (At).

See Figure 3 for a graphical representation.
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A.3 A Cold Alternative for Section 3.1

Unlike continuous data that can take values ranging from (−∞,∞), categorical data only takes a
finite number of values. For example, in this paper, the atom type takes its value from the periodic
table of elements, while the bond type takes its value from the set {0, 1, 2, 3, 4}. For these finite
state spaces, we can replace our continuous diffusion framework with a discrete (cold) diffusion
framework.

To define a discrete diffusion, we need to specify the transition matrix Qt for each time t, as stated
in Eq. (4). Following [23, 29, 62], to effectively estimate the likelihood of the diffusion model, we
further require that the noised state q(zt|x), defined as:

q(zt|x) := xQ1 . . . Qt

to be equivariant under permutation. This requirement can be satisfied if we diffuse separately
on each node and edge feature. Additionally, we require that the limiting distribution as t → ∞
should not depend on the original data x, so that we can use it as a prior distribution for inference. A
common choice is a uniform transition over the classes, where the corresponding Qt is defined as:

Qt := αtI + (1− αt)1d1Td /d

with αt transitioning from 1 to 0. By letting Qt act on each node and each edge, we have defined the
discrete diffusion for H(t) and E(t):

q(Ht|Ht−1) = Ht−1 ·Qt, and q(Et|Et−1) = Et−1 ·Qt.

On the other hand, although the 3D structure is represented as a continuous point cloud, the molecule’s
conformer structures at the stationary states are discrete [5] and labeled by the energy levels of
molecules. Through classical force field simulation, [63] provides a discrete set of rough 3D
conformers (with their corresponding energies) for each molecule. Let {Pi}ci=1 be the collection
of these rough 3D conformers, and denote uniform sampling on set {Pi}ci=1 as Uniform({Pi}ci=1).
Then, we can construct a discrete diffusion for the 3D structure as follows, similar to Eq. 3:

P (t) = α(t)F−1
0 · P (0) + β(t)Uniform({F−1

i · Pi}ci=1), (18)

where F is a global equivariant frame obtained by averaging the node-wise equivariant frames Fi

defined by Eq. 17. It can be verified that by projecting the original 3D structure with the inverse of its
global frame F−1, the above equation is SE(3) invariant.

Different from Eq. (3), where the randomness comes from Gaussian noise, the randomness in Eq.
(18) arises from finite uniform sampling. In conclusion, we have constructed an SE(3) invariant
discrete 3D diffusion based on the ground truth and rough 3D conformers.

B Related Works

The primary objective of self-supervised learning (SSL) is to acquire meaningful and compressed
representations from unlabeled data, often measured by their ability to estimate a specific data
distribution pdata. This leads to the hypothesis that a well-trained pretrained representation can
enhance the robustness and generalization of downstream tasks. However, a challenging gap exists
between the ground-truth distribution pdata (if available) and our finite set of natural data samples.
To address this gap, self-supervised learning techniques such as contrastive learning and manifold
learning [64] often require additional data beyond the natural samples. Contrastive learning, for
example, employs data augmentation to introduce positive and negative samples, while adversarial
training [65] introduces adversarial samples through data perturbation for improving the robustness
of downstream classification tasks.

Adversarial and contrastive samples In this work, we propose a diffusion framework for trajectory
data augmentation based on the forward process of diffusion. A related concept that emphasizes the
trajectory viewpoint is consistency, introduced in [66], which requires that the points on the backward
path map to the same endpoint, corresponding to the condition of the trajectories’ joint distribution.
Additionally, the learned reverse (generative) process of a pretrained diffusion model has been
employed to generate synchronized augmentation samples [42]. Adversarial samples [67], compared
to data augmentation, are more subtle as they involve perturbations along specific directions of the
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natural data that can be identified using the information provided by the score function ∇ log pdata(x)
and ∇ log pdata(x|y) conditioned on labels y.

Once the augmented trajectories are established, our learning objective is to fit the joint distribution
of the random trajectories. From a practical standpoint, our framework lies at the intersection of
two unsupervised learning paradigms: contrastive learning and generative learning. In fact, [68]
proposes an intriguing contrastive lower bound (positive sample part) for the reconstruction loss of a
masked auto-encoder (AE). The authors further demonstrate that explicitly incorporating the negative
sample part into the masked AE enhances the performance of the learned representation. Similarly,
we observe a similar phenomenon within a more general unsupervised framework, as illustrated in
Eq. 4, where the masking process is realized through cold diffusion.

Molecular representation pretraining The labels for molecules are scarce due to the laborious
and expensive cost, and self-supervised pretraining has been widely adopted to alleviate this issue.
For the molecular topology pretraining, existing unsupervised pretraining methods utilize either the
reconstructing the masked subgraphs in molecules (AttrMask [1], GPT-GNN [3]) or detecting the pos-
itive and negative pairs in a contrastive manner (ContextPred [1], MolCLR [69]). Meanwhile, several
works have studied the molecular geometry pretraining. GeoSSL [70] presents a comprehensive
benchmark, including distance prediction, angle prediction, and an MI-based coordinate denoising
framework specifically designed for conformations. Recent progress has started to combine these two
research directions, i.e., molecule topology and geometry joint pretraining. GraphMVP [7] first
proposes to maximize the MI between these two modalities in a contrastive and generative manner,
and 3D InfoMax [58] is a special case of GraphMVP by only considering the contrastive part. On the
other hand, Unimol [71] introduced a novel 3D transformer for molecular pretraining, where their
pretraining tasks involve reconstructing masked topological and geometric subgraphs in combination.
The proposed MoleculeJAE in this work follows this research line.

Alternative training objectives of diffusion models In addition to the score matching training
objective tailored for continuous probability distributions, an alternative training objective suitable
for categorical probability distributions is the restoration loss proposed in [33]:[33]:

min
θ

EtEx0∼pdata∥Rθ(D(x0, t)− x0∥. (19)

It is worth noting that compared to the score matching loss, Equation 19 is closer to the classical auto-
decoder reconstruction loss if we disregard the time variable t. Furthermore, [31] has demonstrated
that for discrete DDPM models, predicting x0 and the score function are equivalent up to scaling
constants, as the distribution of xt−1 can be obtained in closed form through the forward process of
DDPM using x0 and the one-step noise.

Moreover, [72] proposed a reparameterization of the score matching loss, where the backbone neural
network models the residual: rt = xt−x0. Under the notation of Formula 3, the Soft Score Matching
(SSM) in [72] is defined as:

Lssm := Et∼[0,T ]Ep(x0)p(xt|x0)[∥α(t)(sθ(xt, t)− rt)∥2].

Note that this reparameterization only works for the case when the closed form solution of the forward
process has the form of Eq. 3.

C Dataset Specification

Table 5: Some basic statistics on MD17.

Pretraining Aspirin ↓ Benzene ↓ Ethanol ↓ Malonaldehyde ↓ Naphthalene ↓ Salicylic ↓ Toluene ↓ Uracil ↓
Train 1K 1K 1K 1K 1K 1K 1K 1K
Validation 1K 1K 1K 1K 1K 1K 1K 1K
Test 209,762 47,863 553,092 991,237 324,250 318,231 440,790 131,770

D Implementation and Hyperparameter

In this section, we provide the detailed hyperparameters for implementing the experiments.
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Table 6: Hyperparameter specifications for MoleculeJAE of property prediction.

Hyperparameter Value

epochs {50, 100}
learning rate {5e-4, 1e-4}
β {[0.1, 10]}
number of steps {1000}
λ1 {1}
λ2 {0, 0.01, 1}

Table 7: Hyperparameter specifications for MoleculeJAE of molecule generation.

Hyperparameter Value

epochs {3000, 10000}
learning rate {2e-4, 3e-4}
number of layers 12
number of diffusion steps {500}
diffusion noise schedule cosine
mlp hidden dimensions {X: 256, E: 128, y: 128, pos: 64}
λtrain {X: 0.4, E: 2, y: 0, pos: 3, charges: 1}

E Limitations

From an algorithmic standpoint, as briefly mentioned in Section 3.3, the parameterization of the score
function for the reconstructive task can be obtained from the contrastive surrogate by numerically
marginalizing the joint distribution pθ(x0, xt) and subsequently applying automatic differentiation
with respect to the data variable x0. This methodology simplifies our two-head decoder framework
described in Section 3.4 to a single head. Despite the additional computational cost associated with
this approach, it holds value in terms of its theoretical significance and is therefore worth exploring in
the future.

Another limitation is the treatment of the forward (noising) process of diffusion models as a form of
trajectory augmentation in our current framework remains unparameterized. As the next step, it is
important to parameterize the trajectory augmentation process similar to automatic data augmentation
techniques [73, 74]. For instance, the flexible diffusion framework proposed in [29] could be adapted
to the molecule graph setting, allowing for the joint optimization of molecule (forward + backward)
trajectories. By incorporating such a parameterization, we can enhance the flexibility and effectiveness
of our approach in modeling realistic molecule dynamics. This extension would allow for a more
fine-grained control over the trajectory augmentation process and enable the optimization of molecule
dynamics in a principled manner. Exploring these possibilities represents an exciting direction for
future research.

F More Results
Table 8: Results on GEOM.

Model Mol stable ↑ Atom stable ↑ Validity ↑ Unique ↑ AtomTV ↓ BondTV ↓ ValW1 ↓ Bond Lengths W1 ↓ Bond Angles W1 ↓
EDM (3000 epoch) 5.5 92.9 34.8 100.0 0.212 0.049 0.112 0.002 6.23
MiDi (2D+3D, 3000 epoch) 69.2 99.0 67.4 100.0 0.059 0.024 0.036 0.012 5.47
MoleculeJAE (Pretrained on PCQM4Mv2, 569 epoch) 84.5 99.6 79.7 100.0 0.059 0.021 0.008 0.003 2.16

Table 9: Results on QM9.

Model Mol stable ↑ Atom stable ↑ Validity ↑ Unique ↑ AtomTV ↓ BondTV ↓ ValW1 ↓ Bond Lengths W1 ↓ Bond Angles W1 ↓
EDM 90.7 99.2 91.2 98.5 0.021 0.002 0.011 0.001 0.44
MiDi (2D+3D, epoch 10000) 94.83 99.66 95.38 97.4 0.023 0.006 0.008 0.007 1.407
MoleculeJAE (2D+3D, Pretrained on PCQM4Mv2, epoch 3995) 97.42 99.80 97.65 97.35 0.006 0.001 0.002 0.004 0.561

2D + 3D molecule structure generation We evaluate MoleculeJAE’s performance on unconditional
molecule generation tasks. We generate both the graph structure and the conformer simultaneously,
which is the joint distribution of the molecule’s 2D and 3D structures. This task also gives us a chance
to test if our MoleculeJAE pretraining framework is compatible with the (discrete) cold diffusion
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framework3.1. The pretraining method still follows Figure 1 and 3, with the backbone 3D GNN
of (P (t), H(t) substituted by the MiDi transformer in [75]. The discrete diffusion formulas are the
same as [75].

Dataset We still apply the PCQM4Mv2 dataset as the pretraining dataset. For the unconditional
molecule generation downstream dataset, we fine-tune our model on the QM9 dataset and the GEOM-
DRUGS dataset [76]. GEOM comprises 430,000 drug-sized molecules with an average of 44 atoms
181 atoms. We follow [75] to split the dataset.

Evaluation We test the generation performance by calculating the probability distance of 2D and
3D structures between our generated samples with the test set. The precise definition of these metrics
are provided in section 5.1 of [75]. Besides the MiDi model in [75], we also use EDM [27] as our
baseline. For our pretrained model, we finetune MoleculeJAE without the contrastive loss for 600
epoch in GEOM, and 4000 epoch in QM9.

Results The experimental results are provided in Table 8 and 9, with our hyperparameters setting
given in Table 7. We achieve state-of-art performance for both datasets.
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