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ABSTRACT

In the area of few-shot anomaly detection (FSAD), efficient visual feature plays
an essential role in the memory bank M-based methods. However, these meth-
ods do not account for the relationship between the visual feature and its rotated
visual feature, drastically limiting the anomaly detection performance. To push
the limits, we reveal that rotation-invariant feature property has a significant im-
pact on industrial-based FSAD. Specifically, we utilize graph representation in
FSAD and provide a novel visual isometric invariant feature (VIIF) as an anomaly
measurement feature. As a result, VIIF can robustly improve the anomaly dis-
criminating ability and can further reduce the size of redundant features stored
in M by a large amount. Besides, we provide a novel model GraphCore via
VIIFs that can fast implement unsupervised FSAD training and improve the per-
formance of anomaly detection. A comprehensive evaluation is provided for com-
paring GraphCore and other SOTA anomaly detection models under our proposed
few-shot anomaly detection setting, which shows GraphCore can increase aver-
age AUC by 5.8%, 4.1%, 3.4%, and 1.6% on MVTec AD and by 25.5%, 22.0%,
16.9%, and 14.1% on MPDD for 1, 2, 4, and 8-shot cases, respectively.

1 INTRODUCTION

With the rapid development of deep vision detection technology in artificial intelligence, detect-
ing anomalies/defects on the surface of industrial products has received unprecedented attention.
Changeover in manufacturing refers to converting a line or machine from processing one product to
another. Since the equipment has not been completely fine-tuned after the start of the production
line, changeover frequently results in unsatisfactory anomaly detection (AD) performance.

How to achieve rapid training of industrial product models in the changeover scenario while assuring
accurate anomaly detection is a critical issue in the actual production process. The current state of
AD in the industry is as follows: (1) In terms of detection accuracy, the performance of state-of-
the-art (SOTA) AD models degrades dramatically during the changeover. Current mainstream work
utilizes a considerable amount of training data as input to train the model, as shown in Fig. 1(a).
However, this will make data collecting challenging, even for unsupervised learning. As a result,
many approaches based on few-shot learning at the price of accuracy have been proposed. For
instance, Huang et al. (2022) employ meta-learning, as shown in Fig. 1(b). While due to complicated
settings, it is impossible to migrate to the new product during the changeover flexibly, and the
detection accuracy cannot be guaranteed. (2) In terms of training speed, when a large amount of
data is utilized for training, the training progress for new goods is slowed in the actual production
line. As is well-known, vanilla unsupervised AD requires to collect a large amount of information.
Even though meta-learning works in few-shot learning, as shown in Fig. 1(b), it is still necessary to
train a massive portion of previously collected data.

∗Contributed Equally, †Corresponding Authors.
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Figure 1: Different from (a) vanilla unsupervised AD and (b) few-shot unsupervised AD in meta
learning. As input training samples, our setting (c) only utilizes a small number of normal samples.
For our setting (c), there is no requirement to aggregate training categories in advance. The proposed
model, vision isometric invariant GNN, can fast obtain the invariant feature within a few normal
samples, and its accuracy outperforms models trained in a meta-learning context.

We state that AD of industrial products requires just a small quantity of data to achieve performance
comparable to a large amount of data, i.e., a small quantity of image data can contain sufficient
information to represent a large number of data. Due to the fact that industrial products are manu-
factured with high stability (no evident distortion of shape and color cast), the taken images lack the
diversity of natural images, and there is a problem with the shooting angle or rotation. Therefore,
it is essential to extract rotation-invariant structural features. As graph neural networks (GNNs)
are capable of robustly extracting non-serialized structural features (Han et al. (2022), Bruna et al.
(2013), Hamilton et al. (2017), Xu et al. (2018)), and they integrate global information better and
faster Wang et al. (2020); Li et al. (2020). They are more suited than convolution neural networks
(CNNs) to handle the problem of extracting rotation-invariant features. For this reason, the core
idea of the proposed GraphCore method in this paper is to use the visual isometric invariant features
(VIIFs) as the anomaly measurement features. In the method using memory bank (M) as the AD
paradigm, PatchCore (Roth et al. (2022)) uses ResNet (He et al. (2016)) as the feature extractor.
However, since their features obtained by CNNs do not have rotation invariance (Dieleman et al.
(2016)), a large number of redundant features are stored in M. Note that these redundant features
maybe come from multiple rotation features of the same patch structure. It will hence require a huge
quantity of training data to ensure the high accuracy of the test set. To avoid these redundant fea-
tures, we propose VIIFs, which not only produce more robust visual features but also dramatically
lower the size of M and accelerate detection.

Based on the previous considerations, the goal of our work is to handle the cold start of the produc-
tion line during the changeover. As shown in Fig. 1(c), a new FSAD method, called GraphCore, is
developed that employs a small number of normal samples to accomplish fast training and compet-
itive AD accuracy performance of the new product. On the one hand, by utilizing a small amount
of data, we would rapidly train and accelerate the speed of anomaly inference. On the other hand,
because we directly train new product samples, adaptation and migration of anomalies from the old
product to the new product do not occur.

Contributions. In summary, the main contributions of this work are as follows:

• We present a feature-augmented method for FSAD in order to investigate the property of
visual features generated by CNNs.

• We propose a novel anomaly detection model, GraphCore, to add a new VIIF into the
memory bank-based AD paradigm, which can drastically reduce the quantity of redundant
visual features.
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• The experimental results show that the proposed VIIFs are effective and can significantly
enhance the FSAD performance on MVTec AD and MPDD.

Related Work. Few-shot anomaly detection (FSAD) is an attractive research topic. However, there
are only a few papers devoted to the industrial image FSAD. Some works (Liznerski et al. (2020);
Pang et al. (2021); Ding et al. (2022)) experiment with few-shot abnormal images in the test set,
which contradicts our assumptions that no abnormal images existed. While others (Wu et al. (2021);
Huang et al. (2022)) conduct experiments in a meta-learning setting. This configuration has the
disadvantage of requiring a high number of base class images and being incapable of addressing
the shortage of data under cold-start conditions in industrial applications. PatchCore (Roth et al.
(2022)), SPADE (Cohen & Hoshen (2020)), and PaDiM (Defard et al. (2021)) investigated AD
performance on MVTec AD in a few-shot setting. However, these approaches are not intended
for changeover-based few-shot settings. Thus their performance cannot satisfy the requirements of
manufacturing changeover. In this research, we propose a feature augmentation method for FSAD
that can rapidly finish the training of anomaly detection models with a small quantity of data and
meet manufacturing changeover requirements.

2 APPROACH

Problem Setting. Fig. 1(c) outlines the formal definition of the problem setting for the proposed
FSAD. Given a training set of only n normal samples during training, where n ≤ 8, from a specific
category. At test time, given a normal or abnormal sample from a target category, the anomaly
detection model should predict whether or not the image is anomalous and localize the anomaly
region if the prediction result is anomalous.

Challenges. For the FSAD proposed in Fig. 1(c), we attempt to detect anomalies in the test sample
using only a small number of normal images as the training dataset. The key challenges consist of:
(1) Each category’s training dataset contains only normal samples, i.e., no annotations at the image
or pixel level. (2) There are few normal samples of the training set available. In our proposed setting,
there are fewer than 8 training samples.

Motivation. In the realistic industrial image dataset (Bergmann et al. (2019); Jezek et al. (2021)),
the images under certain categories are extremely similar. Most of them can be converted to one
another with simple data augmentation, such as the meta nut (Fig. 2) and the screw (Fig. 6). For
instance, rotation augmentation can effectively provide a new screw dataset. Consequently, when
faced with the challenges stated in Section 2, our natural inclination is to acquire additional data
through data augmentation. Then, the feature memory bank (Fig. 4) can store more useful features.
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Figure 2: Augmentation+PatchCore Architecture.

2.1 AUGMENTATION+PATCHCORE

To validate our insight, we have adapted PatchCore (Roth et al. (2022)) to our model. We denote
augmentation (rotation) with PatchCore as Aug.(R). The architecture is depicted in detail in Fig. 2.
Before extracting features from the ImageNet pre-trained model, we augment the data (e.g., by
rotating the data).
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Algorithm 1: Aug.(R) memory bank
Input : ImageNet pre-trained ϕ, all normal samples XN , data augmentation operator α, patch feature

extractor P , memory size target l, random linear projection ψ.
Output: Patch-level augmented memory bankM.

1 M← {};
2 for xi ∈ XN do
3 xgi ← α(xi);
4 M← P(ϕ(xi));
5 M← P(ϕ(xgi ));
6 end for
7 MC ← {} //Apply coreset sampling for memory bank
8 for i ∈ [0, · · · , l − 1] do
9 mi ← argmax

m∈M−MC

min
n∈MC

∥ψ(m)− ψ(n)∥2;

10 MC ←MC ∪ {mi};
11 end for
12 M←MC .

In the training phase, the aim of the training phase is to build up a memory bank, which stores the
neighborhood-aware features from all normal samples. At test time, the test image is predicted as
anomalies if at least one patch is anomalous, and pixel-level anomaly segmentation is computed via
the score of each patch feature. The feature memory construction method is shown in Algorithm 1.
We default set ResNet18 (He et al. (2016)) as the feature extraction model. Conceptually, coreset
sampling (Sener & Savarese (2018)) for memory bank aims to balance the size of the memory bank
with the performance of anomaly detection. And the size of the memory bank has a considerable
impact on the inference speed. In Section 3.3, we discuss the effect of the sampling rate in detail.

In testing phase, with the normal patches feature bank M, the image-level anomaly score s for
the test image xtest is computed by the maximum score s∗ between the test image’s patch feature
P(xtest) and its respective nearest neighbour m∗ in M.

From Table 2 and Table 3, we can easily observe that the performance of Aug.(R) greatly outper-
forms the SOTA models under the proposed few-shot setting.

2.2 VISION ISOMETRIC INVARIANT FEATURE

In Section 2.1, we heuristically demonstrate that Augmentation+PatchCore outperforms SOTA
models in the few-shot anomaly detection context proposed. Essentially, the data augmentation
method immediately incorporates the features of normal samples into the memory bank. In other
words, Augmentation+PatchCore improves the probability of locating a subset feature, allowing the
anomaly score of the test image to be calculated with greater precision. Therefore, we question
whether it is possible to extract the invariant representational features from a small number of nor-
mal samples and add them to the feature memory bank. As demonstrated in Fig. 3, we propose
a new model for feature extraction: vision isometric invariant graph neural network (VIIG). The
proposed model is motivated by Section 2 and tries to extract the visual isometric invariant feature
(VIIF) from each patch of the normal sample. As previously stated, the majority of industrial vi-
sual anomaly detection datasets are transformable via rotation, translation, and flipping. Thus, the
isomorphism of GNN suited industrial visual anomaly detection excellently.
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Invariant GNN

Invariant Feature

Feature

Figure 3: Convolution feature VS vision isometric invariant feature.
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Figure 4: Vision isometric invariant GNN pipeline.

2.3 GRAPH REPRESENTATION OF IMAGE

Fig. 4 shows the feature extraction process of GraphCore. Specifically, for a normal sample image
with a size of H×W×3, we evenly separate it as an N patch. In addition, each patch is transformed
into a feature vector fi ∈ RD. So we have the features F = [f1, f2, · · · , fN ], where D is the feature
dimension and i = 1, 2, · · · , N . We view these features as unordered nodes V = {v1, v2, · · · , vN}.
For certain each node vi, we denote the K nearest neighbours N (vi) and add an edge eij directed
from vj to vi for all vj ∈ N (vi). Hence, each patch of normal samples can be denoted as a graph
G = (V, E). E refers all the edges of Graph G.

2.4 GRAPH FEATURE PROCESSING

Fig. 4 shows the architecture of the proposed vision isometric invariant GNN. To be specific, we
set the feature extraction as GCN (Kipf & Welling (2017)). We aggregate features for each node
by exchanging information with its neighbour nodes. In specific, the feature extraction operates as
follows:

G
′
= F (G,W) = Update(Aggregate(G,Waggregate),Wupdate), (1)

where Waggregate and Wupdate denote the weights of the aggregation and update operations. Both
of them can be optimized in an end-to-end manner. Specifically, the aggregation operation for each
node is calculated by aggregating neighbouring nodes’ features:

f
′

i = h(fi, g(fi,N (fi),Waggregate),Wupdate), (2)

where h is the node feature update function and g is the node feature aggregate feature function.
N (f l

i ) denotes the set of neighbor nodes of f l
i at the l-th layer. Specifically, we employ max-relative

graph convolution (Li et al. (2019)) as our operator. So g and h are defined as:

g(·) = f
′′

i = max({fi − fj |j ∈ N (xi)}), (3)

h(·) = f
′

i = f
′′

i Wupdate. (4)

In Equations 3 and 4, g(·) is a max-pooling vertex feature aggregator that aggregates the difference
in features between node vi and all of its neighbours. h(·) is an MLP layer with batch normalization
and ReLU activation.
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Figure 5: Vision isometric invariant GNN for FSAD.
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Figure 6: Vision GNN architecture. (a) vanilla AD and (b) our proposed FSAD.

2.5 GRAPHCORE ARCHITECTURE

Fig. 5 shows the whole architecture of GraphCore. In the training phase, the most significant dif-
ference between GraphCore and Augmentation+PatchCore is the feature memory bank construction
algorithm. The feature construction algorithm is the same as Aug.(R) memory bank in Algorithm 1.
Note that we use vision isometric invariant GNN as feature extractor P without data augmentation.
In the testing phase, the computation of anomaly score s∗ for GraphCore is highly similar to the one
in Augmentation+PatchCore. The only difference is the feature extraction method for each normal
patch sample. The architecture details of the GraphCore are shown in the reference Table 21.

2.6 A UNIFIED VIEW OF AUGMENTATION+PATCHCORE AND GRAPHCORE

Fig. 6 depicts a unified view of both Augmentation+PatchCore and GraphCore. Augmenta-
tion+PatchCore prompts GraphCore to obtain the isometric invariant feature. Therefore, GraphCore
can improve the probability of locating a feature subset, allowing the anomaly score of a test im-
age to be calculated most precisely and rapidly. Table 1 shows the difference between PatchCore,
Augmentation+PatchCore and GraphCore in terms of architectural details.

Table 1: Unified view for three methods.
Augmentation Network Model
No ImageNet Pre-trained Model PatchCore
Rotation ImageNet Pre-trained Model Aug.(R)
No GNN GraphCore

3 EXPERIMENT

3.1 EXPERIMENT SETTING

Datasets. To demonstrate the generalization of our proposed method, we conduct experiments
on three datasets, namely MVTec AD (Bergmann et al. (2019)), MPDD (Jezek et al. (2021)) and
MVTec LOCO AD (Bergmann et al. (2022)).

Competing Methods. RegAD (Huang et al. (2022)) is the SOTA FSAD method. It works under a
meta-learning setting: aggregated training on multiple categories and adapting to unseen categories,
using few-shot unseen images as a support set. However, our proposed few-shot setting utilizes only
a few images as a training set and not several categories. Taking into account the fairness of the ex-
periments, we reimplement the classical and SOTA approaches in the field of unsupervised anomaly
detection, such as SPADE (Cohen & Hoshen (2020)), STPM (Wang et al. (2021a)), RD4AD (Deng
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Figure 7: GraphCore VS Augmentation+PatchCore VS RegAD on various numbers of shot (K).

& Li (2022)), CFA (Lee et al. (2022)), and PatchCore (Roth et al. (2022)), using the official source
code for comparison under our few-shot setting. PatchCore-1 is the result of our reimplementation
with a 1% sampling rate, PatchCore-10 and PatchCore-25 are the results at 10% and 25% sampling
rates, respectively, and RegAD-L is the RegAD experiment with our few-shot setting.

3.2 COMPARISON WITH THE SOTA METHODS

The comparative findings between MVTec and MPDD are shown in Table 2. Especially the per-
formance of RegAD under the meta-learning setting is also listed in the table. In comparison to
SOTA models, GraphCore improves average AUC by 5.8%, 4.1%, 3.4%, and 1.6% on MVTec and
by 25.5%, 22.0%, 16.9%, and 14.1% on MPDD for 1, 2, 4, and 8-shot cases, respectively. From
Fig. 7, it can be easily observed that GraphCore significantly outperforms the SOTA approach at the
image and pixel level from 1-shot to 8-shot. As can be seen, the performance of GraphCore and
Augmentation+PatchCore surpasses the other methods when using only a few samples for training.

Table 2: FSAD average results for all categories on MVTec AD and MPDD. The sampling ratio
is 0.01, x|y represents image AUROC and pixel AUROC. The results for PaDiM, PatchCore-10
and PatchCore-25 are reported from Roth et al. (2022). The results for RegAD-L and RegAD are
reported from Huang et al. (2022). The best-performing method is in bold.

Dateset K Aug.(R) GraphCore CFA SPADE PaDiM STPM RD4AD PatchCore-1 PatchCore-10 PatchCore-25 RegAD-L RegAD

MVTec
AD

1 87.4|94.5 89.9|95.6 78.8|90.7 69.8|79.1 76.1|88.2 69.7|58.2 74.4|69.0 78.5|90.1 83.4|92.0 84.1|92.4 - 82.4|-
2 90.4|96.3 91.9|96.9 81.1|91.0 70.7|79.9 78.9|90.5 74.2|59.8 75.5|71.8 87.8|94.8 86.4|93.1 87.2|93.3 81.5|- 85.7|94.6
4 92.2|96.0 92.9|97.4 85.0|91.3 - 71.6|80.2 74.8|60.8 76.9|72.2 89.5|95.0 - - 84.9|- 88.2|95.8
8 95.4|96.4 95.9|97.8 90.9|91.6 - 75.3|80.5 77.6|61.6 78.5|73.0 94.3|95.6 - - 87.4|- 91.2|96.7

MPDD

1 83.9|94.7 84.7|95.2 58.8|77.7 - 57.5|73.9 59.2|75.1 58.5|73.2 59.2|78.5 - - - 57.8|-
2 84.6|94.9 85.4|95.4 58.6|78.2 - 58.0|75.4 62.4|75.8 61.8|74.5 59.6|79.2 - - 50.8|- 63.4|93.2
4 84.9|95.2 85.7|95.7 59.3|78.7 - 58.3|75.9 62.6|76.2 62.1|75.5 59.8|79.8 - - 54.2|- 68.8|93.9
8 85.1|95.5 86.0|95.9 60.9|79.0 - 58.5|76.2 63.1|76.6 62.4|75.7 60.0|80.3 - - 61.1|- 71.9|95.1

Considering that RegAD only shows detailed results of various categories above 2-shot, we only
show the detailed results of 2-shot in the main text, and the results of 1-shot, 4-shot, and 8-shot
are in the appendix. As shown in Table 3, GraphCore outperforms all other baseline methods in
12 out of the 15 categories at the image level and outperforms all other baselines in 11 out of the
15 categories at the pixel level on MVTec AD. Moreover, results in Table 4 show that GraphCore
outperforms all other baselines in 5 out of the 6 categories at the image level and outperforms all
other baselines in all categories at the pixel level on MPDD.

3.3 ABLATION STUDIES

Sampling Rate. When demonstrated in Fig. 8, our technique significantly improves as the sample
rate increases from 0.0001 to 0.001, after which the increase in sampling rate has a flattening effect
on the performance gain. In other words, as the sampling rate steadily increases, the performance of
GraphCore is insensitive to the sampling rate.

Nearest Neighbour. In Fig. 8, the green colour represents the performance of GraphCore’s 9 nearest
neighbour search, and the blue colour represents the performance of GraphCore’s 3 nearest neigh-
bour search. As can be seen, increasing the number of neighbours from 3 to 9 greatly increases
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Table 3: FSAD results on MVTec AD. The number of shots K is 2, and the sampling ratio is 0.01, x|y
represents image AUROC and pixel AUROC. The results for PaDiM, PatchCore-10 and PatchCore-
25 are reported from Roth et al. (2022). The results for RegAD are reported from Huang et al.
(2022). The best-performing method is in bold.

Category Aug.(R) GraphCore CFA SPADE PaDiM STPM RD4AD PatchCore-1 PatchCore-10 PatchCore-25 RegAD
Bottle 99.7|98.6 99.8|99.8 93.7|93.5 95.7|86.8 - 93.8|84.6 91.2|81.7 99.7|98.5 - - 99.4|98.0
Cable 94.7|96.2 95.2|96.3 89.3|88.9 60.4|78.6 - 60.2|51.6 65.3|65.4 94.9|97.8 - - 65.1|91.7

Capsule 66.5|97.7 73.2|97.8 53.4|85.9 48.7|79.8 - 45.2|59.2 50.5|78.2 67.2|97.7 - - 67.5|97.3
Carpet 99.4|99.1 99.4|99.6 97.6|97.9 92.1|95.6 - 90.8|60.5 92.8|74.2 99.1|99.0 - - 96.5|98.9
Grid 75.7|79.8 81.5|80.6 80.4|81.4 75.8|75.9 - 72.6|61.2 75.2|76.3 61.7|67.5 - - 84.0|77.4

Hazelnut 99.7|97.9 99.5|98.2 99.4|98.2 95.2|88.9 - 90.3|74.5 93.4|64.8 93.5|96.4 - - 96.0|98.1
Leather 100|99.3 100|99.4 100|99.3 97.9|89.2 - 95.8|75.2 96.7|86.5 100|99.3 - - 99.4|98.0

Meta Nut 95.0|96.8 96.3|98.1 68.6|89.7 61.3|59.5 - 59.4|51.1 63.4|68.9 92.0|97.1 - - 91.4|96.9
Pill 87.8|93.9 88.6|94.1 67.4|91.5 60.2|57.2 - 58.7|49.9 62.8|70.2 87.4|96.8 - - 81.3|93.6

Screw 63.6|96.0 65.7|96.5 58.2|96.7 51.3|70.2 - 51.9|51.8 54.3|60.8 48.3|90.8 - - 52.5|94.4
Tile 100|99.3 100|96.8 99.8|81.8 90.2|82.3 - 91.4|58.2 88.9|59.2 100|96.0 - - 94.3|94.3

Toothbrush 83.6|98.2 87.3|98.6 86.9|93.9 80.2|76.8 - 76.5|66.3 77.1|78.3 83.9|98.2 - - 86.6|98.2
Transistor 96.3|94.1 97.1|99.2 72.5|80.3 51.6|73.6 - 82.4|47.5 78.1|67.8 96.9|95.0 - - 86.0|93.4

Wood 97.1|98.4 97.5|99.5 98.2|92.4 50.3|89.7 - 95.8|48.4 93.7|93.8 97.2|93.0 - - 99.2|93.5
Zipper 96.9|99.0 97.5|99.3 50.5|94.1 49.4|93.7 - 47.6|56.3 49.5|51.2 95.3|98.2 - - 86.3|95.1

Average 90.4|96.3 91.9|96.9 81.1|91.0 70.7|79.9 78.9|90.5 74.2|59.8 75.5|71.8 87.8|94.8 86.4|93.1 87.2|93.3 85.7|94.6

Table 4: FSAD results on MPDD. The number of shots K is 2, and the sampling ratio is 0.01, x|y
represents image AUROC and pixel AUROC. The results for PaDiM, PatchCore-10 and PatchCore-
25 are reported from Roth et al. (2022). The results for RegAD are reported from Huang et al.
(2022). The best-performing method is in bold.

Category Aug.(R) GraphCore CFA SPADE STPM RD4AD PatchCore RegAD
Bracket Black 66.8|92.1 67.0|92.5 54.3|75.8 62.4|72.8 94.5|75.1 91.7|75.4 58.6|78.9 63.3|-
Bracket Brown 76.1|91.9 77.2|92.6 66.8|77.5 59.5|71.9 62.3|73.2 58.8|73.4 70.7|76.9 59.4|-
Bracket White 87.2|97.1 89.4|97.5 68.7|70.8 67.2|72.4 53.8|64.2 55.6|62.4 70.4|68.1 55.6|-

Connector 98.6|97.2 98.9|97.7 58.5|88.2 59.2|82.8 51.6|83.4 53.7|82.3 59.2|85.2 73.0|-
Metal Plate 99.9|98.4 99.9|99.1 62.7|84.3 64.2|75.9 62.4|83.2 65.2|76.5 64.1|86.3 61.7|-

Tubes 79.2|92.6 79.8|93.1 40.7|72.8 35.6|76.8 49.6|75.6 45.9|77.1 34.3|79.5 67.1|-
Average 84.6|94.9 85.4|95.4 58.6|78.2 58.0|75.4 62.4|75.8 61.8|74.5 59.6|79.2 63.4|93.2

performance at the pixel level when the sampling rate is low, but does not enhance performance
at the image level. As the sampling rate increases, the gain of the number of pixels’ neighbours
approaches zero.

Augmentation Methods. Fig. 9 demonstrates that the performance of PatchCore on MVTec AD
and MPDD is relatively weak, but Aug.(R) demonstrates higher performance. It demonstrates
heuristically that our enhancement to feature rotation is significantly effective. Moreover, Graph-
Core outperforms Aug.(R) by a large margin, confirming our assumption that GraphCore can extract
the isometric invariant feature from industrial-based anomaly detection images.
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Figure 8: Ablation results on sampling rates and the number of N nearest neighbors.
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Figure 9: GraphCore vs Augmentation+PatchCore vs PatchCore on various number of shot (K).

MVTec AD MPDD

One Shot Training Sample

Figure 10: Visualization results of the proposed method on MVTec AD and MPDD. The first row
denotes the training example in the 1-shot setting. The second row is test samples (abnormal). The
third row is the heatmap on test samples. The fourth row is the anomaly mask (ground truth).

3.4 VISUALIZATION

Fig. 10 shows the visualization results obtained by our method on MVTec AD and MPDD with
sampling rates of 0.01 and 1 shot, respectively. Each column represents a different item type, and
the four rows, from top to bottom, are the detection image, anomaly score map, anomaly map on
detection image, and ground truth. According to the results, our method can produce a satisfactory
impact of anomaly localization on various objects, indicating that it has a strong generalized ability
even in the 1-shot case.

4 CONCLUSION

In this study, we introduce a new approach, GraphCore, for industrial-based few-shot visual anomaly
detection. Initially, by investigating the CNN-generated feature space, we present a simple pipeline
- Augmentation+PatchCore - for obtaining rotation-invariant features. It turns out that this simple
baseline can significantly improve anomaly detection performance. We further propose GraphCore
to capture the isometric invariant features of normal industrial samples. It outperforms the SOTA
models by a large margin using only a few normal samples (≤ 8) for training. The majority of
industrial datasets for anomaly detection possess isomorphism, which is a property ideally suited to
GraphCore. We will continue to push the limits of industrial-based few-shot anomaly detection in
the future.
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6 APPENDIX

6.1 DATASET

MVTec AD is the most popular dataset for industrial image anomaly detection (Bergmann et al.
(2019)), which consists of 15 categories of items, including a total of 3629 normal images as a
training set, and a collection of 1725 normal images and abnormal images as a test set. All images
have a resolution between 700×700 and 1024×1024 pixels.

MPDD is a more challenging AD dataset containing 6 classes of metal parts (Jezek et al. (2021)).
The images are taken in different spatial directions and distances and under the condition of non-
uniform background, so it is more challenging. The training set contains 888 normal images, and
the test set contains 176 normal images and 282 abnormal images. The resolution of all images is
1024×1024 pixels.

MVTEC LOCO AD adds logical abnormal images outside the structural class abnormal image
(Bergmann et al. (2022)). The dataset contains 1,772 normal images as a training set, and 304
normal images are used as a validation set. The test set contains 575 normal images, 432 structural
abnormal images, and 561 logic abnormal images. Due to the different calculation methods of
logic abnormal detection metric, we abandon the logical abnormal image of the test concentration,
retaining the remaining 575 normal images and 432 structural abnormal images as a test set for
experiments. Each image is 850 to 1600 pixels in height and 800 to 1700 pixels wide.

6.2 EXPERIMENT RESULTS
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Table 5: Results of anomaly detection. Setting: New Few-shot Setting, K (number of shot)=1,
Dataset: MVTec, Sampling Ratio: 0.01, Metrics: Image AUROC. The number of shot for RegAD
is 2. The data for PaDiM and PatchCore-10, PatchCore-25 are from Roth et al. (2022).

Category Aug.(R) GraphCore CFA SPADE PaDiM STPM RD4AD PatchCore-1 PatchCore-10 PatchCore-25 RegAD
Bottle 99.7 99.8 96.7 95.2 - 93.2 91.2 96.5 - - -
Cable 90.1 91.1 65.4 60.1 - 59.8 58.3 65.5 - - -
Capsule 64.7 72.1 50.2 45.6 - 43.2 44.7 49.8 - - -
Carpet 99.3 99.3 97.1 93.2 - 90.5 92.5 97.2 - - -
Grid 70.8 80.9 79.2 75.1 - 71.2 74.3 78.9 - - -
Hazelnut 97.4 98.5 98.1 95.0 - 90.3 93.2 98.0 - - -
Leather 100 100 100 97.2 - 95.1 96.5 100 - - -
Meta Nut 77.0 92.5 66.1 60.2 - 58.2 63.4 65.6 - - -
Pill 81.0 81.2 66.3 59.7 - 57.3 62.4 65.1 - - -
Screw 57.4 57.9 55.9 49.6 - 51.2 53.5 54.8 - - -
Tile 99.9 99.2 99.8 89.5 - 90.2 88.7 99.5 - - -
Toothbrush 84.4 85.2 86.7 78.5 - 75.2 77.8 85.8 - - -
Transistor 94.5 96.2 71.5 50.5 - 83.2 77.5 70.5 - - -
Wood 97.0 97.3 98.1 49.5 - 95.4 93.5 98.9 - - -
Zipper 97.4 97.5 50.3 48.5 - 45.2 48.6 51.2 - - -
Average 87.4 89.9 78.75 69.83 76.1 69.70 74.4 78.5 83.40 84.10 82.4

Table 6: Setting: Ours Few-shot Setting, K (number of shot)=1, Dataset: MVTec, Sampling Ra-
tio: 0.01, Metrics: Pixel AUROC. The number of shot for RegAD is 2. The data for PaDiM and
PatchCore-10, PatchCore-25 are from Roth et al. (2022).

Category Aug.(R) GraphCore CFA SPADE PaDiM STPM RD4AD PatchCore-1 PatchCore-10 PatchCore-25 RegAD
Bottle 98.5 99.8 93.2 85.2 - 84.3 81.7 93.0 - - -
Cable 95.1 96.2 88.2 78.2 - 50.9 64.8 87.0 - - -
Capsule 97.7 98.1 85.6 79.2 - 49.2 77.9 87.7 - - -
Carpet 99.1 99.3 97.5 95.2 - 60.5 72.5 98.8 - - -
Grid 70.5 76.9 81.3 75.6 - 61.2 74.3 84.1 - - -
Hazelnut 97.1 98.5 98.1 88.2 - 73.3 63.2 97.5 - - -
Leather 99.3 99.5 99.2 88.3 - 75.1 86.5 99.2 - - -
Meta Nut 93.2 92.5 89.5 58.5 - 51.1 68.7 90.1 - - -
Pill 95.7 96.2 91.2 54.2 - 49.3 65.6 90.4 - - -
Screw 92.0 93.4 96.5 69.6 - 51.2 59.7 95.8 - - -
Tile 95.8 96.8 81.5 81.5 - 57.2 88.7 82.7 - - -
Toothbrush 97.9 98.5 93.8 75.5 - 65.2 77.8 93.0 - - -
Transistor 93.6 96.2 79.5 73.5 - 43.2 77.5 78.8 - - -
Wood 93.1 94.3 91.8 89.5 - 45.4 93.5 90.7 - - -
Zipper 98.5 97.5 93.2 93.5 - 55.2 48.6 94.0 - - -
Average 94.47 95.60 90.67 79.07 88.20 58.15 69.03 90.85 92.00 92.40 -

Table 7: Setting: Ours Few-shot Setting, K (number of shot)=2, Dataset: MVTec, Sampling Ratio:
0.01, Metrics: Image AUROC. The data for PaDiM and PatchCore-10, PatchCore-25 are from Roth
et al. (2022).

Category Aug.(R) GraphCore CFA SPADE PaDiM STPM RD4AD PatchCore-1 PatchCore-10 PatchCore-25 RegAD
Bottle 99.7 99.8 93.7 95.7 - 93.8 91.2 99.7 - - 99.4
Cable 94.7 95.2 89.3 60.4 - 60.2 65.3 94.9 - - 65.1
Capsule 66.5 73.2 53.4 48.7 - 45.2 50.5 67.2 - - 67.5
Carpet 99.4 99.4 97.6 92.1 - 90.8 92.8 99.1 - - 96.5
Grid 75.7 81.5 80.4 75.8 - 72.6 75.2 61.7 - - 84.0
Hazelnut 99.7 99.5 99.4 95.2 - 90.3 93.4 93.5 - - 96.0
Leather 100 100 100 97.9 - 95.8 96.7 100 - - 99.4
Meta Nut 95.0 96.3 68.6 61.3 - 59.4 63.4 92.0 - - 91.4
Pill 87.8 88.6 67.4 60.2 - 58.7 62.8 87.4 - - 81.3
Screw 63.6 65.7 58.2 51.3 - 51.9 54.3 48.3 - - 52.5
Tile 100 100 99.8 90.2 - 91.4 88.9 100 - - 94.3
Toothbrush 83.6 87.3 86.9 80.2 - 76.5 77.1 83.9 - - 86.6
Transistor 96.3 97.1 72.5 51.6 - 82.4 78.1 96.9 - - 86.0
Wood 97.1 97.5 98.2 50.3 - 95.8 93.7 97.2 - - 99.2
Zipper 96.9 97.5 50.5 49.4 - 47.6 49.5 95.3 - - 86.3
Average 90.40 91.91 81.06 70.69 78.90 74.16 75.53 87.81 86.40 87.20 85.70
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Table 8: Setting: Ours Few-shot Setting, K (number of shot)=2, Dataset: MVTec, Sampling Ratio:
0.01, Metrics: Pixel AUROC. The data for PaDiM and PatchCore-10, PatchCore-25 are from Roth
et al. (2022).

Category Aug.(R) GraphCore CFA SPADE PaDiM STPM RD4AD PatchCore-1 PatchCore-10 PatchCore-25 RegAD
Bottle 98.6 99.8 93.5 86.8 - 84.6 81.7 98.5 - - 98.0
Cable 96.2 96.3 88.9 78.6 - 51.6 65.4 97.8 - - 91.7
Capsule 97.7 97.8 85.9 79.8 - 59.2 78.2 97.7 - - 97.3
Carpet 99.1 99.6 97.9 95.6 - 60.5 74.2 99.0 - - 98.9
Grid 79.8 80.6 81.4 75.9 - 61.2 76.3 67.5 - - 77.4
Hazelnut 97.9 98.2 98.2 88.9 - 74.5 64.8 96.4 - - 98.1
Leather 99.3 99.4 99.3 89.2 - 75.2 86.5 99.3 - - 98.0
Meta Nut 96.8 98.1 89.7 59.5 - 51.1 68.9 97.1 - - 96.9
Pill 93.9 94.1 91.5 57.2 - 49.9 70.2 96.8 - - 93.6
Screw 96.0 96.5 96.7 70.2 - 51.8 60.8 90.8 - - 94.4
Tile 99.3 96.8 81.8 82.3 - 58.2 59.2 96.0 - - 94.3
Toothbrush 98.2 98.6 93.9 76.8 - 66.3 78.3 98.2 - - 98.2
Transistor 94.1 99.2 80.3 73.6 - 47.5 67.8 95.0 - - 93.4
Wood 98.4 99.5 92.4 89.7 - 48.4 93.8 93.0 - - 93.5
Zipper 99.0 99.3 94.1 93.7 - 56.3 51.2 98.2 - - 95.1
Average 96.29 96.92 91.03 79.85 90.50 59.75 71.82 94.75 93.10 93.30 94.59

Table 9: Setting: New Few-shot Setting, K (number of shot)=4, Dataset: MVTec, Sampling Ratio:
0.01, Metrics: Image AUROC

Category Aug.(R) GraphCore CFA SPADE STPM RD4AD PatchCore RegAD
Bottle 99.7 99.8 94.2 95.8 93.9 92.1 99.6 99.4
Cable 94.1 95.2 91.2 61.3 61.3 68.4 97.4 76.1
Capsule 66.2 74.5 56.2 48.7 47.4 51.7 66.3 72.4
Carpet 99.6 99.4 97.6 92.5 91.5 93.2 99.0 97.9
Grid 77.9 81.6 81.5 76.2 75.3 76.4 63.0 91.2
Hazelnut 99.9 99.5 99.4 95.6 91.4 93.8 92.8 95.8
Leather 100 100 100 98.2 96.9 96.8 100 100
Meta Nut 95.9 96.2 91.3 62.5 60.8 65.3 94.7 94.6
Pill 89.3 88.2 85.6 61.8 61.3 62.8 89.0 80.8
Screw 63.9 68.9 49.2 52.9 52.8 55.7 54.1 56.6
Tile 100 100 99.8 91.3 90.4 90.8 100 95.5
Toothbrush 94.4 95.2 87.2 81.7 80.4 76.7 95.2 90.9
Transistor 98.5 99.2 95.8 52.5 82.4 79.3 98.4 85.2
Wood 97.4 97.9 98.6 51.4 95.8 94.2 97.4 98.6
Zipper 96.9 98.2 94.3 52.2 47.6 56.7 95.5 88.5
Average 92.22 92.92 84.97 71.64 74.77 76.93 89.49 88.23
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Table 10: Setting: New Few-shot Setting, K (number of shot)=4, Dataset: MVTec, Sampling Ratio:
0.01, Metrics: Pixel AUROC

Category Aug.(R) GraphCore CFA SPADE STPM RD4AD PatchCore RegAD
Bottle 98.6 99.8 93.6 86.9 84.9 81.8 98.6 98.4
Cable 96.6 96.9 89.1 78.7 52.2 66.2 97.9 92.7
Capsule 97.7 97.9 86.2 80.1 59.3 78.4 97.7 97.6
Carpet 99.1 99.6 98.2 95.0 60.6 74.8 99.0 98.9
Grid 81.9 82.3 82.5 76.1 61.8 76.9 70.6 85.7
Hazelnut 98.3 99.1 98.5 89.1 74.9 65.2 97.0 98.0
Leather 99.3 99.6 99.3 89.3 75.3 86.7 96.9 99.1
Meta Nut 96.8 98.1 89.9 60.2 51.8 69.2 97.0 97.8
Pill 97.0 97.5 91.6 58.2 50.6 70.4 96.9 97.4
Screw 93.8 96.5 96.8 71.3 51.9 60.9 92.1 95.0
Tile 95.7 96.7 82.3 82.4 58.5 59.5 96.0 94.9
Toothbrush 98.8 98.9 94.2 76.9 66.9 78.9 98.8 98.5
Transistor 94.1 99.3 80.5 74.2 57.5 67.9 95.0 93.8
Wood 93.2 99.5 92.6 90.4 48.9 94.2 93.1 94.7
Zipper 98.4 99.3 94.8 93.8 56.4 52.3 98.3 94.0
Average 95.95 97.40 91.34 80.17 60.77 72.22 94.99 95.77

Table 11: Setting: New Few-shot Setting, K (number of shot)=8, Dataset: MVTec, Sampling Ratio:
0.01, Metrics: Image AUROC

Category Aug.(R) GraphCore CFA SPADE STPM RD4AD PatchCore RegAD
Bottle 100 99.8 95.1 95.9 94.1 92.8 99.6 99.8
Cable 94.1 95.2 91.8 63.5 62.6 69.2 97.4 80.6
Capsule 89.7 90.5 69.5 58.9 57.8 58.5 85.3 76.3
Carpet 98.5 99.5 97.6 92.7 91.6 93.8 99.0 98.5
Grid 92.7 92.3 85.6 77.3 76.9 77.9 83.1 91.5
Hazelnut 100 100 99.4 96.5 91.8 94.2 99.8 96.5
Leather 100 100 100 98.7 97.2 97.2 100 100
Meta Nut 96.8 97.9 92.3 68.9 61.3 65.6 95.1 98.3
Pill 90.1 91.1 88.9 63.9 64.2 63.6 89.6 80.6
Screw 79.4 80.1 65.4 56.4 55.9 59.3 74.1 63.4
Tile 99.3 100 99.8 91.8 91.2 91.2 100 97.4
Toothbrush 94.6 95.1 88.9 82.9 82.3 77.9 96.8 98.5
Transistor 98.2 99.2 96.2 58.9 84.6 81.2 98.9 93.4
Wood 98.7 98.9 98.9 61.3 95.8 95.6 97.5 99.4
Zipper 99.0 99.2 94.5 62.5 57.2 58.9 98.4 94.0
Average 95.41 95.92 90.93 75.34 77.63 78.46 94.31 91.21
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Table 12: Setting: New Few-shot Setting, K (number of shot)=8, Dataset: MVTec, Sampling Ratio:
0.01, Metrics: Pixel AUROC

Category Aug.(R) GraphCore CFA SPADE STPM RD4AD PatchCore RegAD
Bottle 98.6 99.8 93.6 87.1 85.2 82.1 98.7 97.5
Cable 97.0 97.2 89.2 78.9 53.3 68.2 98.3 94.9
Capsule 98.3 98.5 86.5 80.2 59.3 78.5 98.4 98.2
Carpet 99.1 99.7 98.4 95.1 60.7 79.2 99.2 98.9
Grid 82.5 83.7 82.8 77.2 61.8 76.9 71.5 88.7
Hazelnut 98.4 99.2 98.6 89.5 74.9 65.5 97.2 98.5
Leather 99.4 99.6 99.4 90.2 75.3 86.9 99.4 98.9
Meta Nut 97.3 98.9 89.9 60.5 54.6 69.5 97.5 96.9
Pill 98.1 98.4 91.7 58.2 55.7 70.5 98.1 97.8
Screw 94.2 96.6 96.9 71.4 52.3 61.9 92.5 97.1
Tile 96.8 97.4 83.4 82.5 58.9 60.8 96.3 95.2
Toothbrush 99.2 99.2 94.5 77.2 66.9 79.1 99.2 98.7
Transistor 95.2 99.4 81.5 74.5 58.2 67.9 95.7 96.8
Wood 93.8 99.7 92.7 90.4 49.2 94.5 93.4 94.6
Zipper 98.6 99.7 94.9 94.2 57.8 52.8 98.6 97.4
Average 96.43 97.80 91.60 80.47 61.61 72.95 95.60 96.67

Table 13: Setting: New Few-shot Setting, K (number of shot)=1, Dataset: MPDD, Sampling Ratio:
0.01, Metrics: Image AUROC

Category Aug.(R) GraphCore CFA SPADE STPM RD4AD PatchCore RegAD
Bracket Black 64.8 65.9 64.1 62.1 93.2 91.2 58.2 -
Bracket Brown 75.0 76.8 65.4 59.2 59.8 58.3 70.6 -
Bracket White 88.6 89.2 68.2 68.2 43.2 44.7 69.3 -
Connector 98.3 98.7 58.5 58.5 90.5 92.5 59.0 -
Metal Plate 99.9 99.9 62.1 63.2 71.2 74.3 64.1 -
Tubes 76.6 77.8 34.2 33.8 65.1 44.2 34.1 -
Average 83.87 84.72 58.75 57.50 59.20 67.53 59.22 57.8

Table 14: Setting: New Few-shot Setting, K (number of shot)=1, Dataset: MPDD, Sampling Ratio:
0.01, Metrics: Pixel AUROC

Category Aug.(R) GraphCore CFA SPADE STPM RD4AD PatchCore RegAD
Bracket Black 91.7 92.3 75.2 72.4 74.5 72.5 78.8 -
Bracket Brown 91.8 92.2 77.2 71.8 72.9 72.3 76.8 -
Bracket White 97.0 97.3 69.8 65.4 63.1 61.3 67.8 -
Connector 97.0 97.5 88.9 82.4 82.1 81.7 85.0 -
Metal Plate 98.1 98.9 83.1 75.2 83.2 75.4 84.1 -
Tubes 92.4 92.8 71.7 76.2 74.5 76.1 78.2 -
Average 94.67 95.17 77.65 73.90 75.05 73.22 78.45 -

Table 15: Setting: New Few-shot Setting, K (number of shot)=2, Dataset: MPDD, Sampling Ratio:
0.01, Metrics: Image AUROC

Category Aug.(R) GraphCore CFA SPADE STPM RD4AD PatchCore RegAD
Bracket Black 66.8 67.0 54.3 62.4 94.5 91.7 58.6 63.3
Bracket Brown 76.1 77.2 66.8 59.5 62.3 58.8 70.7 59.4
Bracket White 87.2 89.4 68.7 67.2 53.8 55.6 70.4 55.6
Connector 98.6 98.9 58.5 59.2 51.6 53.7 59.2 73.0
Metal Plate 99.9 99.9 62.7 64.2 62.4 65.2 64.1 61.7
Tubes 79.2 79.8 40.7 35.6 49.6 45.9 34.3 67.1
Average 84.63 85.37 58.62 58.02 62.37 61.82 59.55 63.35
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Table 16: Setting: New Few-shot Setting, K (number of shot)=2, Dataset: MPDD, Sampling Ratio:
0.01, Metrics: Pixel AUROC

Category Aug.(R) GraphCore CFA SPADE STPM RD4AD PatchCore RegAD
Bracket Black 92.1 92.5 75.8 72.8 75.1 75.4 78.9 -
Bracket Brown 91.9 92.6 77.5 71.9 73.2 73.4 76.9 -
Bracket White 97.1 97.5 70.8 72.4 64.2 62.4 68.1 -
Connector 97.2 97.7 88.2 82.8 83.4 82.3 85.2 -
Metal Plate 98.4 99.1 84.3 75.9 83.2 76.5 86.3 -
Tubes 92.6 93.1 72.8 76.8 75.6 77.1 79.5 -
Average 94.88 95.42 78.23 75.43 75.78 74.52 79.15 93.2

Table 17: Setting: New Few-shot Setting, K (number of shot)=4, Dataset: MPDD, Sampling Ratio:
0.01, Metrics: Image AUROC

Category Aug.(R) GraphCore CFA SPADE STPM RD4AD PatchCore RegAD
Bracket Black 66.9 67.8 54.9 62.4 94.5 91.9 58.9 63.8
Bracket Brown 76.5 77.8 66.8 59.5 62.4 59.0 70.8 66.1
Bracket White 87.5 89.6 71.1 67.5 54.2 55.7 70.7 59.3
Connector 98.9 98.9 58.7 59.5 52.1 54.4 59.4 77.2
Metal Plate 99.9 99.9 62.9 64.9 62.4 65.5 64.4 78.6
Tubes 79.6 80.0 41.1 35.9 50.2 46.2 34.5 67.5
Average 84.88 85.67 59.25 58.28 62.62 62.12 59.78 68.75

Table 18: Setting: New Few-shot Setting, K (number of shot)=4, Dataset: MPDD, Sampling Ratio:
0.01, Metrics: Pixel AUROC

Category Aug.(R) GraphCore CFA SPADE STPM RD4AD PatchCore RegAD
Bracket Black 92.7 92.7 75.9 72.9 75.3 75.9 79.1 -
Bracket Brown 92.1 92.9 77.9 72.3 73.5 74.8 77.3 -
Bracket White 97.5 97.8 71.2 72.9 64.7 64.5 69.3 -
Connector 97.5 98.1 88.8 82.9 84.2 82.4 86.4 -
Metal Plate 98.5 99.2 84.8 76.9 83.5 77.2 86.7 -
Tubes 92.7 93.5 73.5 77.2 75.8 78.1 80.1 -
Average 95.17 95.70 78.68 75.85 76.17 75.48 79.82 93.9

Table 19: Setting: New Few-shot Setting, K (number of shot)=8, Dataset: MPDD, Sampling Ratio:
0.01, Metrics: Image AUROC

Category Aug.(R) GraphCore CFA SPADE STPM RD4AD PatchCore RegAD
Bracket Black 67.1 68.2 55.2 62.4 94.6 92.2 59.2 67.3
Bracket Brown 76.8 78.5 66.9 59.8 62.7 59.2 70.9 69.5
Bracket White 87.9 89.9 79.4 67.6 54.7 55.9 70.5 61.4
Connector 98.9 99.1 58.9 59.9 52.7 54.6 59.6 84.9
Metal Plate 99.9 99.9 63.1 65.2 63.2 65.8 64.7 80.2
Tubes 79.8 80.3 41.7 36.2 50.8 46.7 34.8 67.9
Average 85.07 85.98 60.87 58.52 63.12 62.40 59.95 71.87

Table 20: Setting: New Few-shot Setting, K (number of shot)=8, Dataset: MPDD, Sampling Ratio:
0.01, Metrics: Pixel AUROC

Category Aug.(R) GraphCore CFA SPADE STPM RD4AD PatchCore RegAD
Bracket Black 92.9 92.9 76.2 73.1 76.3 76.2 79.6 -
Bracket Brown 92.3 93.1 77.9 72.6 74.2 75.1 77.5 -
Bracket White 97.9 98.2 71.8 73.1 64.9 64.6 70.2 -
Connector 98.1 98.3 89.1 83.1 84.5 82.6 87,1 -
Metal Plate 98.7 99.3 85.2 77.2 83.7 77.5 86.9 -
Tubes 92.9 93.4 73.9 78.1 76.1 78.3 80.5 -
Average 95.47 95.87 79.02 76.20 76.62 75.72 80.30 95.10
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6.3 ARCHITECTURE DETAILS

Table 21: The architecture details of GraphCore
Stage Output Size GraphCore
Stem H

4 × W
4 Conv ×3

Stage 1 H
4 × W

4

[
D = 48

K = 9

]
× 2

Downsample H
8 × W

8 Conv

Stage 2 H
8 × W

8

[
D = 96

K = 9

]
× 2

Downsample H
16 × W

16 Conv

Stage 3 H
16 × W

16

[
D = 240

K = 9

]
× 2

Downsample H
32 × W

32 Conv

Stage 4 H
32 × W

32

[
D = 384

K = 9

]
× 2

Head 1× 1 Pooling and MLP

In Table 21, D represents the feature dimension, whereas K represents the number of neighbors in
GraphCore. H × W represents the size of the input image. We adapt GCN into the the pyramid
architecture Wang et al. (2021b). The training epochs is 300. The optimizer is AdamW Loshchilov
& Hutter. The batch size is 128. The initial learning rate is 0.005. The learning rate schedule is
Cosine. The warmup epochs is 50. The weight decay is 0.05. The loss function is the cross entropy
loss function.

6.4 ABLATION STADIES

Table 22: Ablation study for memory bank size and inference speed with respect to 1 shot
Method Memory Bank Size (Average) Inference speed (Average)
PatchCore 1.6M 0.0316s
Aug.(R) + PatchCore 1.8M 0.0325s
GraphCore 1.2M 0.0299s

Table 23: Ablation study for memory bank size and inference speed with respect to 2 shot
Method Memory Bank Size (Average) Inference speed (Average)
PatchCore 3.2M 0.0327s
Aug.(R) + PatchCore 3.2M 0.0327s
GraphCore 1.8M 0.0287s

The statical result of Table 22 and Table 23 clearly demonstrate the effectiveness of GraphCore,
especially for memory bank size and its inference speed.

The statistical results presented in Tables 24 and 25 demonstrate that the rotation method outper-
forms the other augmentation techniques. We believe this indicates that the majority of industrial
anomaly image datasets can be augmented by rotation. In the future, we believe that there will a
more complex and realistic industrial anomaly image dataset that cannot be overcome by rotation.
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Table 24: Ablation study with respect to Dataset: MVTec 2D, sampling rate: 0.01, Metrics: image-
level AUROC, number of shot is 1.

Augmentation Type Aug + PatchCore
Flipping 81.4
Translation 83.6
Scaling 82.3
Rotation 87.4

Table 25: Ablation study with respect to Dataset: MVTec 2D, sampling rate: 0.01, Metrics: image-
level AUROC, number of shot is 2.

Augmentation Type Aug + PatchCore
Flipping 83.7
Translation 85.6
Scaling 90.2
Rotation 90.5
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