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ABSTRACT

Bayesian neural networks (BNN) take the best from two worlds: the one of flexible
and scalable neural networks and the one of probabilistic graphical models, the
latter allowing for probabilistic interpretation of inference results. We make one
extra step towards unification of these two domains and render BNN as an elemen-
tary unit of abstraction in the framework of probabilistic modeling, which allows
us to promote well-known distributions to distribution fields. We use transforma-
tions to obtain field versions of several popular distributions and demonstrate the
utility of our approach on the problem of signal/background separation. Starting
from prior knowledge that a certain region of space contains predominantly one of
the components, in an unsupervised and non-parametric manner, we recover the
representation of both previously unseen components as well as their proportions.

1 INTRODUCTION

Neural networks as predictive models have been wildly successful across a variety of domains, be
it image recognition or language modeling. And while they may be used to make predictions on
previously unseen samples, one of fundamental weaknesses of traditional neural networks is the
inability to quantify the prediction uncertainty. Evaluation of prediction uncertainty is important in
basic research (identification of fundamental laws), reinforcement learning (identification of value
functions), anomaly detection, etc.

Uncertainty quantification in neural networks has been addressed both from frequentist (see, for
instance, Pearce et al. (2018)) and Bayesian ( Kendall and Gal (2017)) sides. In the Bayesian setting
it was naturally proposed to promote the weights of neural layers to normally distributed random
variables (MacKay (1992)). Later it was shown that the learnt uncertainty in the weights improves
generalization in non-linear regression problems, and it can be applied to drive the exploration-
exploitation trade-off in reinforcement learning ( Blundell et al. (2015)). Depeweg et al. (2017)
designed a method of separation of uncertainty into epistemic and aleatoric. Epistemic uncertainty
expresses uncertainties inherent to the model and can not be reduced with additional observations,
whereas aleatoric uncertainty captures the amount of noise due to training on a specific sample. In
physics the former and latter are referred to as the systematic and statistical uncertainties, respectively.

In treating both types of uncertainty within the same framework authors essentially bridged the gap
towards graphical models. Graphical models, unlike traditional neural networks, are probabilistic
in nature and allow for incorporation of prior beliefs with respect to models. They are flexible in
representing various processes and allow for introduction of latent degrees of freedom. Initially
graphical models used various point distribution as building blocks, while mostly normal distribution
has been promoted to a random in the notable example of Gaussian random fields.

In this work we propose using Bayesian Neural Networks (BNN) as building blocks in graphical
models and demonstrate the power of synthesis of Probabilistic Graphical Models (PGM) and
BNNs on a synthetic example of signal/background separation. As a demonstration of our approach
we propose the additive mixture model: a superposition of signal and background spectra whose
proportion varies in space. During inference we are able to learn the proportion of signal and
background and their spectral shapes that match ground truth values to adequate precision. The
paper is organized as follows. In Section 2 we recapitulate the feed-forward (vanilla) BNN and the
variational inference approach. In Section 3 we present the transformations of a vanilla BNN that
allow to emulate various distribution fields. To illustrate the power of composition of transformed
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BNNs in Section 4 we introduce a model of additive BNN mixture. In Section 5 we describe our
experiments and in Section 6 we discuss the results and evaluate model performance. In Section 7
we conclude by a discussion of limitations as well as prospective domains of applications of our
framework.

2 BACKGROUND: VANILLA BAYESIAN NEURAL NETWORK

We consider feed-forward deep neural architectures that are composed of dense layers. A dense layer
k is an affine transformation Lk with weightWk and bias Bk that is followed by an element-wise
non-linear transformation σ: hk = Lk ◦ hk−1 = σ(hk−1Wk + Bk), also known as the activation
function. In our experiments we set σ to be ReLU , defined as ReLU(x) = max(0, x). In what
follows we work with a simple linear deep architecture which is defined as a consecutive application
(composition) of dense layers: y = LK ◦ · · ·L1 ◦ x .

In order to enable probabilistic interpretation of inference using neural networks, the weights and the
biases of each layer are promoted to random variables and are sampled from a Normal distribution
with corresponding parameters: Wk ∼ N(µW ,ΣW), Bk ∼ N(µB,ΣB). In Fig. 1, right panel we
depict an elementary Bayesian Neural Network, composed of k layers and that takes as input x,
consisting of N samples, and rendering y as output, using plate notation.

We consider a simple BNN in the spirit of (Blundell et al. (2015)), where authors use stochastic
variational inference (SVI) (Hoffman et al. (2013); Wingate and Weber (2013)) for Gaussian posterior
distributions from prior distributions of weights, biases and observations. Under these conditions it
is natural to use Evidence Lower Bound (ELBO) (Mehta et al. (2019)) as the loss function. ELBO
loss consists of two terms: log evidence of the observable variable x with learnable parameters θ,
log pθ(x), and the Kullback-Leibler (KL) divergence between the approximation of the posterior
distribution qφ(z), parametrized by φ, and the true posterior pθ(z|x):

ELBO = log pθ(x)− KL (qφ(z)||pθ(z|x)) . (1)

Taking steps in φ to increase ELBO, increases log evidence and decreases the distance between the
prior and the posterior. We further illustrate this in Fig. 1, left. Inference results depend on the choice
of the optimizer, the learning rate and the number of iterations.

3 TRANSFORMED BNNS

Non-trivial examples of probabilistic models combine distributions of various types. Consider a
K-component Gaussian Mixture model: each component of the mixture is normally distributed,
where the mean parameterized by real-valued parameters and the scale - by a positive parameter,
while the overall proportions are sampled from a Dirichlet distribution Xk ∼ Dir(α), which, in turn,
is parameterized by a positive vector α1, . . . αK > 0, and Xk belong to a K − 1 simplex:

∑
Xk = 1.

We are therefore motivated to introduce a family of transformed BNNs with various ranges. In
this manuscript we consider exponential transformation (transforms unconstrained vector of K
dimensions to a positive vector of K dimensions) and a stick breaking transformation (unconstrained
vector of K − 1 dimensions into a simplex vector of K dimensions).

We propose to apply transformations after the last layer of BNN, in such a way that the range of the
output is constrained to be strictly positive for the exponential transform and a k-dimensional vector
summing to unity (k-simplex) for the stick breaking transformation.

In what follows we denote vector y sampled from a Bayesian neural network as y ∼
BNN(x, (W,B)). We denote BNN outputs transformed by exponential and stick-breaking trans-
forms BNNe and BNNs, respectively.

Another type of BNN transformation we consider is prompted by probability distributions: in certain
applications it is particularly useful to work not just with positive random fields but with normalized
positive random fields. Practically such a transformation consists of an approximate normalization of
the BNN output given the data.
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Figure 1: Left panel: Graphical model representation of variational inference. Observed random
variable is denoted as x, latent variables that generate x via P (x|z) are z. Prior distribution of z is
parametrized by θ: P (z|θ), the true distribution of z is approximated by a posterior P (z|φ). The
functional form P (z|φ) may be different from P (z|θ) (it is important that P (z|φ) is differentiable
with respect to φ). Sampling z from P (z|φ) and P (z|θ) allows to evaluate KL divergence term,
quantifying distance between them. Meanwhile z sampled from P (z|φ) is used to evaluate data
evidence. In the context of probabilistic programming language Pyro P (z|θ) is part of the “model”
and is denoted pθ(z), P (z|φ) is part of the “guide” and is denoted qφ(z). Right panel: Graphical
model representation of an elementary BNN. Shaded circles represent observable variables (input x
and output y), empty circles - latent variables (W , B and h), standalone letters - hyper-parameters
(µW , σW , µB and ΣB). Directed arrows represent dependence between the starting and terminal
vertices, black squares with N represent sampling from a normal distribution. Internal plate of
dimension K represents K BNN layers and plate of dimension N represents the size of the data
sample.
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Figure 2: Left panel: graphical model representation of additive mixture model. Shaded circles
represent observable variables (input (x, p), outputs y and relative entropy r), empty circles - latent
variables associated with BNNs β and g, standalone letters - hyper-parameters of BNNs (φβ , φg).
Directed arrows represent dependence between the starting and terminal vertices, black square s
represents the convolution given by Eq. 2. Internal plate of dimension N represents conditional
independence of the data sample. Plates Lβ and Lg represent conditional independence of parameter
sampling of β and g BNNs. Right panel: a sample of 5000 datapoints representing the mixture
f(x, p) . For negative values of x the total signal is dominated by the background component g1(p),
while at positive values of x the signal and the background are in superposition.

4 ADDITIVE MIXTURE

Having introduced architectures with a single dense unit BNN, we turn to a non-trivial test of our
framework: a generative additive mixture model. In this model we consider two types of coordinates:
we refer to x as the spatial coordinate and p as the spectral coordinate.
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We consider two positive spectral functions g1(p) and g2(p) that are mixed in a spatially dependent
manner by a simplex-valued β(x), and suppose that only their sum f(x, p) is observed:

f(x, p) = β(x)g1(p) + (1− β(x))g2(p). (2)

This model is motivated by the problem of identification of spectrum of signal g2(p) in the presence of
non-trivial noise g1(p). We assume that gl(p) are normalized:

∫
dpgl(p) = 1. It follows immediately

that f(x) =
∫
dp f(x, p) is equal to 1 for each x. Spectral functions gl(p) are positive-valued and

we model them by an exponentially transformed BNNe. We model β(x) as a Dirichlet random
field β(x) ∼ Dir(αl(x)), where αl(x) = Nγl(x) and γ ∼ BNNs(x) (stick-breaking transformed
BNN). In order to deal with degeneracy due to the permutation symmetry: g1 ↔ g2 and β ↔ 1− β
we set the initial value of γl to correspond to an asymmetric proportion. e.g (0.99, 0.01), where the
first component represents the background, while the other - the signal. To further discourage the
inference engine from splitting the observed signal between components uniformly we introduce
another observable, the relative entropy between spectral components g1(p) and g2(p) :

DKL(g2(p) ‖ g1(p)) =

∫
g2(p) ln(g2(p)/g1(p))

and set it to a large number, e.g ., 100.

The first observed term forces the combination of gl(p) and β(x) to approximate yi. The term
containing relative entropy forces to learn maximally different g1(p) and g2(p), since DKL(g2(p) ‖
g1(p)) is a proxy to distance in function space.

The objective of the inference is to identify optimal model parameters φβ and φg and thus to obtain
the full spatial and spectral description of the mixture, i .e., the shapes of gl(p) and the mixing
proportion β(x). In the current formulation the additive mixture model does not include Bayesian
treatment aleatoric uncertainty, observations are sampled using a small fixed variance (0.002).

5 EXPERIMENTS

BNN abstractions and experiments were implemented1 in Pyro (version 1.5.2) (Bingham et al.
(2019)), a probabilistic programming language (PPL) written in Python and based on pytorch, which
enables Bayesian probabilistic modeling thanks to Monte Carlo and variational inference engines. In
our experiments we use unit BNNs containing 3 hidden layers of dimensions 32× 128× 32.

Inference. We use Pyro’s stochastic variational inference (SVI) abstraction which computes ELBO
loss and take steps in the space of “guide” parameters φ along the gradients of loss function. As
a whole the procedure is a Bayesian update: it identifies variational parameters φ of the true
posterior approximation qφ(z). In what follows we use Clipped Adaptive Moment Estimation
(ADAM) (Kingma and Ba (2014)) as the optimization method and, unless mentioned otherwise, set
the learning rate to 10−2, the clipping norm to 10, and default values for the coefficients used for
computing running averages of gradient and its square: (0.9, 0.999).

The value of the ELBO loss is computed for each epoch. The relative values of the loss with respect
to the previous iterations is computed too. For a chosen window, the former are compared with two
conditions.

We improve the inference procedure in an empiric manner by restarting it with a decreasing value
of learning rate (factor of 0.5 in our case), while keeping current “guide” parameters. The restart
happens if (i) the last Sp steps resulted in an increased loss or (ii) the last Sr steps resulted in a
relative loss below a certain threshold. Both Sp and Sr are chosen to be 3 in the current project.
Condition (i) means that the inference engine is diverging from optimal region of the parameter space
(likely due to the stochastic nature of sampling), which manifests in the divergence of loss function.
This procedure is repeated until a fixed number of steps are performed.

Training of unit BNNs. Unit vanilla and transformed BNNs introduced in Section 3 may be used to
approximate functions or as latent constituents of more complex models. When using them as latent
parts of more complex models it is often advantageous to impose certain priors on their functional

1Implementation available at https://github.com/repo_url.
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form, e.g ., we might want to represent the prior knowledge of mixture composition, which is not
directly observed.

In other words latent components of a complex model can be pre-trained so that their priors condition
the output to have the desired shape. If the prior and the “guide” have the same functional form, this
procedure can be viewed as a Bayesian update. Using learned during pre-training “guide” parameters
to initialize the “guide” when a given unit BNN is used as a constituent may improve convergence.

In short we go through the following steps: (i) generate a data sample emulating desired shape, (ii)
fit a unit BNN to the generated data sample using non-informative priors, thus obtaining “guide”
parameters, and (iii) use inferred guide parameters as prior parameters and (optionally) as the initial
“guide” parameters as part of a more complex model. The second step involves sampling BNN output
to match observations. Since we are not interested in aleatoric component at this stage, we represent
it as a constant and use normal, log-normal and Dirichlet for sampling.

We illustrate the process of inference of a unit BNN on the example of approximating g?(p) ∼
e

1
1+p2 − 1, shifted by b = −2.5 (and normalized to 1). To fit this positive function we use an

exponentially transformed BNNe, which is sampled using log-normal distribution after the last layer
by convention. The inferred posterior distribution of the inference on a unit BNN is shown in the
left panel, the loss - in the second-to-left, the location parameters µ of weightsW of the last hidden
layer of given BNN a function of epoch - in the second-to-right and the evolution of scale parameters
Σ - in the right panel of Fig. 3. The inferred posterior distribution matches well the true values within
the 68% containment bands of the model.
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Figure 3: Left panel: true versus predicted values from a unit BNNe. Mean value is shown as solid
line and the 68% containment bands as the shaded area. Solid circle represent sampled true values.
Second-to-left panel: ELBO loss function as a function of training epoch for a unit BNN . Second-
to-right panel: posterior location hyperparameters of the weight distributionW for 32 neurons of the
last hidden layer of a unit BNN as a function of training epoch n. The location parameters ofW are
initialized to zeros in the beginning of SB inference. Right panel: posterior scale hyperparameters of
the weight distributionW for 32 neurons of the last hidden layer of a unit BNN as a function of
training epoch n. Scales are initialized to 0.1 in the beginning of SB inference.

Synthetic Additive Mixture. By considering the additive mixture model we answer the following
fundamental question: if a superposition of two spectral (i .e. positive) functions is observed as a
function of spatial coordinates, can we learn their shapes and proportions, given a minimum amount
of information? To test our method for the additive mixture model we create a synthetic dataset
containing triples D = {(xi, pi, fi)}Ni=1, xi ∈ R, pi ∈ R, where xi and pi are sampled uniformly
on [−5, 5] and refer to this particular implementation as the Signal/Background (SB) model. The
values of f(xi, pi) are derived using the generative model of Sec. 4 with deterministic gl(p) and
deterministic β(x). In what follows we refer to g1(p) and g2(p) as the background and the signal,
respectively. We consider (i) case A where non-informative priors are used, and (ii) case B where only
g1(p) is conditioned. For both of them we use a previously introduced template g∗(p) (normalized to
1), which we shifted by b = 2.5 in two directions: g1(p) = g∗(p− b) and g2(p) = g∗(p+ b).

First we demonstrate that the inference works for a specific choice of β: we choose β(x) to be a
logistic function with values at −∞ equal to 0.99 and +∞ equal to 0.5. Afterwards we test the limit
of our approach by considering synthetic datasets with decreasingly small proportion of “signal”.

β(x) and gl(p) are represented by a stick-breaking and an exponentially transformed BNNs (see Sec.
4), hereafter referred as to BNNβ and BNNg, respectively. Both of them have output dimensions
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equal to 2. The prior distributions for (W , B) of all hidden layers of BNNβ and BNNg are taken to
be ∼ N(0, 0.1).

It is instructive to representBNNβ(x,W,B) graphically as a function of x, whereW,B are sampled
from prior distributions: in Fig. 5 the mean values are plotted as dashed lines together with the 68%
containment bands as shaded areas for case A and case B in the top and bottom panel, respectively.
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Figure 4: Left panel: posterior location hyperparameters of the weight distributionW for 32 neurons
of the last hidden layer ofBNNβ as a function of training epoch n. The location parameters ofW are
initialized to zeros in the beginning of SB inference. Middle panel: Posterior scale hyperparameters
of the weight distribution W for 32 neurons of the last hidden layer of BNNβ as a function of
training epoch. Scales are initialized to 0.1 in the beginning of SB inference. Right panel: ELBO
loss function as a function of training epoch. For left, center and right panels top figures are given for
the case non-informative prior (top panels) and the case of the prior, pre-trained on the background
spectral shape g1(p) (bottom panels).

Location parameters of theW for the last hidden layer of BNNβ as a function of epoch are shown
in the left panel of Fig. 4. The scale parameters are shown in the middle panel of the same figure.
The right panel shows the ELBO loss as a function of epoch. The top panels show the results for case
A and the bottom panels for case A. For the case of non-informative prior the variation of the means
is negligible after 700 epochs. In the case where the g1 is conditioned, locations hyperparameters
converge to their terminal values after 500 epochs.

6 RESULTS

In what follows, we set β(x) to vary continuously from βT |x=−5 = 0.99 in the background-
dominated spatial region to βT |x=5 = 0.7 in the mixture region.

The inferred posterior distribution of 1-β(x) and gl(p) are shown in Fig. 5 for proportion in the
mixture region of βT |x=5 = 0.7 for cases A and B in the upper and lower, left and second-to-left
panels, respectively. The inferred posterior distribution for 1-β(x) matches well the true values within
the 68% containment bands of the model for cases A and B.

For case B, the relative error between the true signal proportion at x = 5, i.e. 1-βT |x=5, and the
mean proportion recovered by the model is lower than 8% and the prediction of g2 is in agreement
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Figure 5: Predictions compared to true values of signal proportion 1− β (left) and spectral shapes gl
for background and signal obtained from the SB inference, in blue and red respectively. True values
of βT |x=5 = 0.7 are assumed. Left panels: comparison between predictions and true values for the
mixing signal proportion 1− β(x). The mean is shown as solid line and the 68% containment bands
as the shaded area. Solid circle represent sampled true values. Predictions from prior distributions
are represented by their means (dashed line) and 68% containment bands (light shaded area). Second-
to-left panels: comparison between predictions and true values for the spectral shapes gl(p). Second-
to-right panels: model signal proportion 1− βM vs the true proportion 1− βT together with 68%
model uncertainty extracted from the left panels. Right panels: model spectral shapes gMl vs true
spectral shapes gTl together with their 68% uncertainty extracted from the second-to-left panels. Top
and bottom panels show results for case A with non-informative priors and case B with conditioned
g1(p), respectively.

with true values within 95% confidence level. For case A, the relative error between the true signal
proportion and the mean proportion recovered by the model is lower than 9% but the ground truth
values of g2 are not contained in the 95% confidence band.
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Figure 6: RMSD for the comparison
of the predictions after the SB infer-
ence and the true values of 1-β and
gl vs the noise-to-signal ratio ρ.

The second-to-right and right panels of Fig. 5 show the so-
called y-y plot of predicted versus the ground truth values for
the signal proportion 1-β and the spectral shapes gl for the
cases A and B in the top and bottom panels, respectively. The
uncertainties are given as 68% containment bands (shaded
areas). The true values of the proportion are recovered by
the model at 68% containment level, in both cases. In case
B, biases from 1% to 5% are obtained for the model signal
proportion. For the spectral shape g2, a bias up to 16% is
obtained for gT2 values larger than 0.1. In case A, biases from
1% to 10% are obtained for the signal proportion. For the
spectral shape g2, a bias up to 39% is obtained for gT2 values
larger than 0.1.

We also run a series of experiments by changing ρ =
βT (x=5)

(1−βT (x=5))
in the ground truth data, or, in other words, the

ground truth background fraction value at the right boundary,
which may be interpreted as the noise-to-signal ratio. Each
experiment is repeated several times with random seeds to help
us mapping the distribution. In Fig. 6, we plot the root mean

squared deviation (RMSD) between the prediction of the corresponding constituent BNN after the SB
inference and the true value of 1-β and gl, respectively, as a function of ρ. We note that the variation
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of RMSD for g1 over the whole range of ρ is small. We also note that the error in identification of g2
and 1-β increases with increase of ρ, potentially due to the fact that the inference procedure is no
longer able to distinguish a small signal from the fixed aleatoric noise.

7 DISCUSSION

In this work we introduced a framework that merges the powers of Bayesian neural networks and
graphical models and demonstrated its validity on a proof of concept model of signal/background
separation. This framework allows to compose BNNs, representing random fields, in the same way
point distributions are composed in graphical models.

Our proof of concept model is motivated by the astrophysical problem of learning of an unknown
signal in the presence of a potentially unknown background, which manifests at various wavelengths.
We lift this traditionally treated by parametric statistical methods and more recently using Bayesian
statistics (see, for instance, Abdallah et al. (2016; 2018; 2020); Abdalla et al. (2021)) problem,
thanks to the power of neural networks, to a new level of non-parametric inference. Our approach
is non-parametric with respect to proportions and spectral shapes and also Bayesian; it allows for
Bayesian updates: to incorporate available extra information and to aggregate spectral descriptions
by class (study sources that we believe belong to the same class).

We outline several possible improvements and generalizations that will be addressed in future work.

• At the heart of our framework of representing random fields by BNNs is a non-linear
transformation of a neural network layer, that renders the output positive. According to
Jensen inequality increasing the scales parametrizing a BNN will lead to a greater expectation
value of the output (as well as hidden layers). This might lead to a potential problem during
inference using ELBO loss, where matching expected values (of potentially latent random
variables) might be achieved by increasing the scale parameter, instead of increasing the
location parameter, at the same time rendering log probabilities for the sampled distribution
irrelevant (as in any data fits equally well a very wide Gaussian).

• From the point of view of physical modeling of signal/background separation, our model
is built upon several simplifications: it does not include an explicit model of the mea-
surement, nor does it contain a microscopic emission model. It also posits space-energy
factorization, that energy-spectra are spatially independent, which is not the case if the
target (gas, radiation) density fields are strongly spatially-dependent. The gamma-ray signal
expected from cosmic ray interaction in the interstellar medium would therefore exhibit a
spatially-dependent spectral behavior. All the above points maybe address within the current
framework.

• In SB model we considered the separation of total signal into two components in one
spatial dimension. In astrophysics and cosmology raw observations are made in two spatial
coordinates and time. Our framework allows very easily to extend the number of spatial
dimensions. Increasing the number of components on the hand should be done with caution
as it decreases the stability of inference due to appearance of extra permutation symmetries.

• The additive mixture example was focused on identification of epistemic uncertainties.
Aleatoric uncertainty may be represented as a parameter or another unit BNN.

• SB model was demonstrated to apply in a limited signal-to-noise ratio region. While this
might be due to our choice of fixed aleatoric scale, it is possible that inference using ELBO
loss becomes less stable, when smaller scales are chosen.

SB model may be directly applied in gamma-ray, cosmic-microwave-background and gravitational
astrophysics. The framework, however, is far more general and could be used, in the context of Non
Intrusive Load Monitoring (NILM), where the total household consumption signal is disaggregated
into multiple house appliances and over-fitting problem is of particular importance (Jones et al.
(2020)). Other applications include Bayesian modeling of value function in reinforcement learning
(Eriksson et al. (2020)) and audio source separation (Schulze-Forster et al. (2022)).
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