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ABSTRACT

Data heterogeneity poses a major challenge in federated learning, leading to sig-
nificant degradation in global model performance. Prior studies have shown that
heterogeneity induces dimensional collapse and biased classifiers, which hinder
the learning of both feature extractors and classifiers. To tackle these issues, exist-
ing approaches apply feature decorrelation to mitigate dimensional collapse and
adopt a synthetic classifier with a projector to reduce classifier bias. However,
these decorrelation methods fail to prevent small singular values from collaps-
ing to zero, slowing the mitigation of dimensional collapse. Besides, the synergy
among the feature extractor, projector and synthetic classifier is overlooked, lead-
ing to divergent optimization across clients. To overcome these limitations, we
propose FedBlade, a federated learning framework with bilateral alignment and
feature decorrelation. Our feature decorrelation method accelerates the mitiga-
tion of dimensional collapse by yielding exponential gradients, while the bilateral
alignment method enhances synergy among model modules and ensures consis-
tency across clients. Extensive experimental results demonstrate that FedBlade
outperforms relevant baselines and achieves faster convergence of the global
model.

1 INTRODUCTION

Federated learning (FL) (McMahan et al., 2017) is a decentralized paradigm that trains a global
model across multiple clients without sharing raw data. As privacy concerns grow, FL has attracted
significant attention. A major challenge in FL is data heterogeneity, which arises from discrepancies
in the local data distributions across clients. In particular, this work focuses on the label skew setting,
where the label distribution differs across clients.

Recent work has explored various approaches to address label skew, including regularization (Li
et al., 2020; Acar et al., 2021), optimization (Reddi et al., 2020), model aggregation (Hsu et al.,
2019; Ye et al., 2023b), feature alignment (Li et al., 2021; Tan et al., 2022; Ye et al., 2023a) and
classifier calibration (Luo et al., 2021; Zhou et al., 2023). Beyond these directions, Shi et al. (2023)
reveal that both local and global models suffer from dimensional collapse under label skew, where
representations concentrate in a subspace rather than spanning the full representation space. This
collapse severely degrades model generalization. To address it, Shi et al. (2023) propose FedDecorr,
a regularization term that encourages representations to occupy the full ambient space. Specifically,
FedDecorr minimizes the Frobenius norm of the representation correlation matrix, thereby discour-
aging the tail singular values of the representation covariance matrix from collapsing to zero. How-
ever, the gradient of FedDecorr is linear, which limits its ability to penalize small singular values
and hinders the recovery of the ambient representation space.

Another problem induced by heterogeneous data is classifier bias. Luo et al. (2021) find that classi-
fier layers exhibit greater bias than representation layers, and Zhou et al. (2023) show that such bias
creates a vicious cycle between misaligned features and biased classifiers across clients. FedUV
(Son et al., 2024) applies two regularizers on pairwise features and logits, aiming to enlarge predic-
tion variance and prevent classifier degeneration. Unlike methods that target dimensional collapse
in the representation space, FedUV focuses on the singular values of the classifier weight matrix.
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Recent works (Li et al., 2023; Xiao et al., 2024) have investigated mitigating classifier bias by in-
troducing a fixed and synthetic equiangular tight frame (ETF) classifier shared across clients. The
ETF classifier enforces feature prototypes to converge to an optimal structure with maximal pair-
wise angles (Papyan et al., 2020; Yang et al., 2022). To encourage features to collapse into the ETF
structure, FedETF (Li et al., 2023) employs a projector that maps raw features into a space where
neural collapse is more likely to emerge. Thus, FedETF consists of three key modules: a feature
extractor, a projector, and an ETF classifier. However, FedETF overlooks the synergy among these
modules, leading to mismatches between projected features and the ETF classifier.

Low-Rank
Feature Space

Biased
Projection Space

Projector

Full-Rank
Feature Space

Calibrated
Projection Space

Projector

Feature
Decorrelation

Projector
Calibration

Figure 1: Problem illustration. Un-
der label skew, FL faces two key is-
sues: (1) dimensional collapse, where
features concentrate in a low-rank sub-
space; and (2) projector bias toward
head classes, which misaligns projected
features with the ETF classifier.

These two issues arise from distinct modules, i.e., the fea-
ture extractor and projector. We highlight two key chal-
lenges concerning these two modules:

C1: How can we amplify gradients with respect to small
singular values of representation covariance matrix?

FedDecorr promotes decorrelation by penalizing the
Frobenius norm of the correlation matrix, but its uni-
form treatment of entries yields linear gradients that fail
to strongly penalize small singular values, leaving di-
mensional collapse insufficiently mitigated. To address
this issue, it is important to yield larger gradients for the
small singular values. Motivated by this intuition, we
propose LDDecorr, a spectrum-aware feature decorrela-
tion method that maximizes the log-determinant of the
correlation matrix. As analyzed in Sec. 4.1, LDDecorr
yields exponential gradients that impose infinite penalty
on small singular values, thereby preventing dimensional
collapse more effectively than FedDecorr.

C2: How can we ensure coherent alignment among the
feature extractor, projector, and ETF classifier?

Although the ETF classifier is fixed and shared across clients, the bias of the projector is overlooked.
Inspired by feature alignment methods (Tan et al., 2022; Ye et al., 2023a), the global prototypes pro-
vide a uniform information, which can also be used to align the projector across clients. Besides, the
prototypes serve as the bridges among the feature extractor, projector and ETF classifier, enhancing
the synergy among these modules. Building on this idea, we propose PBA, a prototype-guided bi-
lateral alignment method. PBA uses global prototypes to align the feature extractor and projector
simultaneously during local training, ensuring that the feature spaces are consistent across clients
and projected prototypes are close to corresponding ETF classifiers. As a result, the feature extractor,
projector, and ETF classifier become colinear under PBA.

LDDecorr and PBA address distinct yet interdependent challenges under label skew. LDDecorr pre-
vents dimensional collapse and preserves expressive capacity, which is crucial for generating infor-
mative prototypes in PBA. Conversely, PBA imposes structured ETF-like geometry that counteracts
potential side effects of strong decorrelation, ensuring that the rank-expansion benefits of LDDecorr
translate into improved class separation. Finally, we propose FedBlade, a federated learning frame-
work with bilateral alignment and feature decorrelation. With the help of these two components,
the inter-class separation is increased and intra-class variance is reduced, enforcing the formation of
neural collapse. Our main contributions are summarized as follows.

• We revisit the feature decorrelation term in federated learning, and propose LDDecorr, a spectrum-
aware feature decorrelation method that enhances the mitigation of dimensional collapse. LD-
Decorr produces exponential gradients, imposing an infinite penalty on small singular values
(Sec. 4.1).

• We propose PBA, a bilateral alignment method that simultaneously calibrates the feature extractor
and projector. PBA enforces the synergy among the feature extractor, projector and ETF classifier
(Sec. 4.2).
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• We propose FedBlade, a federated learning framework with bilateral alignment and feature decor-
relation. By pulling representations toward their corresponding ETF directions, PBA provides a
structured geometric anchor that counteracts the potential side effects of strong feature decorre-
lation, while preserving the intended rank-expansion benefits of LDDecorr. Experimental results
demonstrate that FedBlade outperforms relevant baselines.

2 RELATED WORK

2.1 LABEL SKEW IN FEDERATED LEARNING

Federated learning (McMahan et al., 2017) is a decentralized machine learning paradigm enabling
training a global model without sharing raw training data. However, federated learning suffers from
unstable convergence caused by data heterogeneity. One major challenge of data heterogeneity is
label skew. To tackle this challenge, recent works have investigated a variety of solutions, such
as regularization (Li et al., 2020; Karimireddy et al., 2020; Acar et al., 2021), optimization (Reddi
et al., 2020), model aggregation (Hsu et al., 2019; Wang et al., 2020b; Ye et al., 2023b), batch
normalization (Wang et al., 2023; Zhong et al., 2024; Zhang et al., 2024a), feature alignment (Li
et al., 2021; Tan et al., 2022; Ye et al., 2023a; Guo et al., 2023; Zhang et al., 2024b), logits calibration
(Zhang et al., 2022), and classifier calibration (Luo et al., 2021; Oh et al., 2022; Zhou et al., 2023;
Guo et al., 2023; Son et al., 2024). In particular, this paper focuses on the classifier bias caused by
label skew. Luo et al. (2021) find that classifier bias is greater than in other layers, and propose a
federated learning method calibrating the classifier with virtual features after training. To further
address classifier bias, Li et al. (2023) propose FedETF, which employs a synthetic simplex ETF as
a fixed classifier shared across all clients. This design implicitly encourages clients to learn a unified
representation space. However, the projector itself may still be biased, leading to unstable model
convergence.

2.2 DIMENSIONAL COLLAPSE

Dimensional collapse is a phenomenon primarily studied in self-supervised learning (SSL) (Er-
molov et al., 2021; Hua et al., 2021; Jing et al., 2022; He et al., 2024), where learned representations
concentrate in a low-rank subspace and lose per-dimension variance. From a spectral perspective,
dimensional collapse is characterized by a few dominant singular values while the remaining sin-
gular values shrink toward zero. Jing et al. (2022) formalize this problem in SSL and analyze how
projection heads interact with the singular value spectrum of the embedding space. A line of works
Zbontar et al. (2021); Bardes et al. (2021) address dimensional collapse by explicitly spreading
variance and reducing redundancy across feature dimensions. He et al. (2024) introduce orthogonal-
ity regularization, mitigating dimensional collapse in representations, hidden features, and weight
matrices. Beyond SSL, dimensional collapse has also been observed in federated learning, where
stronger client heterogeneity exacerbates this problem. To counter this, FedDecorr (Shi et al., 2023)
introduces decorrelation regularization, and Seo et al. (2024) propose a relaxed contrastive learning
loss to avoid collapsed representations when incorporating supervised contrastive learning in feder-
ated learning. However, FedDecorr only yields linear gradients, which is insufficient to prevent the
small singular values from collapsing to zero.

2.3 NEURAL COLLAPSE

Neural Collapse (NC) describes a terminal-phase geometry in supervised classification. Empirically,
within-class features concentrate at their means, those means arrange as a simplex equiangular tight
frame, and last-layer weights align with the means (Papyan et al., 2020). Subsequent analyses
under squared loss make neural collapse amenable to theory via the central path description of
gradient flow (Han et al., 2022) and global-optimality results in the unconstrained features model
(Zhou et al., 2022). Tirer & Bruna (2022) extend the unconstrained features model with depth and
regularization, and Súkenı́k et al. (2023) establish neural collapse in multi-layer settings. Although
within-class concentration persists, ETF structure can deform and weight–mean alignment becomes
sample-size dependent, motivating approaches that enforce ETF-like classifiers (Yang et al., 2022;
Hong & Ling, 2024). Building on this idea, Li et al. (2023) mitigate classifier bias and feature
misalignment in federated learning by introducing a fixed ETF classifier.
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3 PRELIMINARIES

3.1 FEDERATED LEARNING

In this paper, we consider a federated learning setting with K clients and a central server. Consider-
ing a classification task with C classes, each client k owns a local training dataset Dk = {xi, yi}nk

i=1,
where nk =

∑C
c=1 n

c
k denotes the number of samples. Under data heterogeneity setting, the data

distribution P (X ,Y) varies across clients, where X is the input space and Y is the label space.
In particular, this paper focuses on label skew, where the label marginal distribution P (Y) varies
across clients, i.e., Pi(Y) ̸= Pj(Y) for two clients i and j. The goal of federated learning is
to collaboratively train a global model without sharing raw training data. The local objective is
Fk := E(x,y)∼Dk

[L(w;x, y)] and the global objective can be formulated as:

min
w∈Rd

{
F (w) :=

K∑
k=1

nk

n
Fk(w)

}
, (1)

where n =
∑K

k=1 nk and L is the loss function. We decompose the model into a feature extractor
fθ and a classifier fϕ, which are parameterized by θ and ϕ, respectively. The feature extractor
fθ : X → Z maps the input x into a feature vector z = fθ(x) in the feature space Z ∈ Rd. Then,
the classifier fϕ maps the feature vector z into the class space RC .

Our study follows the conventional federated learning mechanism FedAvg (McMahan et al., 2017).
In round t, the server selects a group of clients I(t) and sends the global model w to them. After
local training, each selected client k ∈ I(t) sends its local model wk to the server, and the global
model are aggregated as:

w(t+1) =
∑

k∈I(t)

nk∑
i∈I(t) ni

w
(t)
k . (2)

3.2 EQUIANGULAR TIGHT FRAME CLASSIFIER

Recent works (Li et al., 2023; Xiao et al., 2024) address classifier bias by employing a fixed and syn-
thetic equiangular tight frame (ETF) classifier. The ETF design is inspired by neural collapse (NC)
(Papyan et al., 2020), a phenomenon in which deep classifiers exhibit a set of geometric regularities
at the end of training:

NC1: Within-class variability collapse. The features of samples from the same class converge
to a mean feature vector. For any sample from class c, fθ(x) ≈ µc and Σc → 0, where µc =
1
nc

∑nc

i=1 fθ(xc,i) is the mean feature of class c and Σc =
1
nc

∑nc

i=1(fθ(xc,i)−µc)(fθ(xc,i)−µc)
⊤

is the covariance.

NC2: Simplex-ETF structure of class means. Consider the global mean µG = 1
C

∑C
c=1 µc. After

mean-centering and normalization, the class means become equal-norm and equiangular:

∥µc − µG∥2 − ∥µc′ − µG∥2 → 0, ∀c, c′ ∈ [C], (3)

⟨µ̃c, µ̃c′⟩ →
C

C − 1
δc,c′ −

1

C − 1
, ∀c, c′ ∈ [C], (4)

where µ̃c = µc−µG

∥µc−µG∥2
and δc,c′ is the Kronecker delta symbol (i.e., δc,c′ equals to 1 when c = c′

and 0 otherwise).

NC3: Self-duality between features and classifier. The classifier weights ϕ align with the class
means M = [µ̃1, µ̃2, . . . , µ̃C ]: ∥∥∥∥ ϕ⊤

∥ϕ∥F
− M

∥M∥F

∥∥∥∥
F

→ 0, (5)

NC4: Nearest-class-mean decision rule. Because within-class scatter collapses and between-class
means are symmetrically arranged, the linear classifier behaves as:

argmax
c

(⟨ac, fθ(x)⟩+ bc)→ argmin
c
∥fθ(x)− µc∥2, (6)

4
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where ac and bc represent the weight and bias of the classifier for class c.

The NC observations motivate hard-wiring the last-layer classifier to the simplex-ETF geometry
and training the feature extractor to adapt to it. Concretely, an ETF classifier is a linear head whose
weight matrix V = [v1,v2, . . . ,vC ] ∈ Rp×C is:

V =

√
C

C − 1
U(IC −

1

C
1C1

⊤
C), (7)

where p is the input dimension of ETF classifier, U ∈ Rp×C allows any rotation and satisfies
U⊤U = IC , IC is the identity matrix, and 1C is an all-ones vector.

4 METHOD

In this section, we introduce FedBlade, a federated learning framework integrating bilateral align-
ment and feature decorrelation. We present the full algorithm in Appendix B.

4.1 LDDECORR: ACCELERATE THE MITIGATION OF DIMENSIONAL COLLAPSE

Linear gradients of FedDecorr. To mitigate dimensional collapse caused by label skew, Shi et al.
(2023) propose a regularization term named FedDecorr. This term regularizes the Frobenius norm
of the representation correlation matrix during local training:

LFedDecorr(w;X) =
1

d2
∥K∥2F , (8)

where K is the representation correlation matrix. This regularization term forces the correlation
matrix to be full-rank, discouraging the tail singular values from collapsing to zero. However, as
defined in Eq. (8), FedDecorr yields linear gradients and fails to guarantee the singular values λi >
0, since its penalty remains linear: ∇λi

= 2λi/d
2.

To accelerate the mitigation of dimensional collapse, we revisit the regularization term. Given a
correlation matrix K, the dimensional collapse can be alleviated if K approaches the identity ma-
trix I . A key limitation of FedDecorr is that it treats all entries and implicitly all singular value
deviations uniformly. Intuitively, stronger gradients should be applied to smaller singular values to
more effectively prevent dimensional collapse. Motivated by this, we adopt the Log-Determinant
(LogDet) divergence as the regularization term. The LogDet divergence is defined as follows.

Definition 1 (LogDet Divergence). Let Sd+ be the cone of d × d positive semi-definite (PSD)
matrices. For X,Y ∈ Sd+, the LogDet divergence is defined as:

Dld(X,Y ) = tr(XY −1)− log det(XY −1)− d. (9)

To encourage K to approach the identity matrix I , we minimize their LogDet divergence:

Dld(K, I) = tr(K)− log det(K)− d. (10)

Since tr(K) = d, the LogDet divergence in Eq. (10) reduces to minimizing − log det(K).
We therefore formally define LDDecorr as a novel regularization term that minimizes the log-
determinant of the representation correlation matrix during local training:

LLDDecorr = − log det(K). (11)

Exponential gradients of LDDecorr. With log det(K) =
∑

i log λi, LDDecorr yields expo-
nential gradients: ∇λi = −1/λi. Unlike the linear gradients of FedDecorr, LDDecorr imposes
an infinite penalty on small singular values, ensuring the correlation matrix remains full-rank and
accelerating the mitigation of dimensional collapse. Experimental results in Sec. 5.3 validate the
superiority of LDDecorr. Importantly, LDDecorr requires only determinant calculation, which is
more efficient than calculating singular values. For further efficiency, we compute K = LL⊤ via
Cholesky factorization and evaluate log det(K) = 2

∑
i logLii. Since K is PSD, we stabilize

Cholesky factorization by replacing K with K̃ = K + ϵI , where ϵ = 10−4 serves as a small
jitter. For a d × d symmetric positive definite matrix, calculating the determinant via Cholesky
decomposition requires 1

3d
3 FLOPs.
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To quantify dimensional collapse, we measure the effective rank (Roy & Vetterli, 2007) of the rep-
resentation covariance matrix, which reflects the effective dimensionality of the feature space. A
higher effective rank indicates a lower degree of collapse. The effective rank is defined as follows.

Definition 2 (Effective Rank). For a matrix A ∈ Rm×n with non-zero singular values {λi}ri=1,
define normalized weights pi = λi/

∑r
j=1 λj , where r = min(m,n). The effective rank of A is

defined as eRank(A) = exp(H(p1, p2, . . . , pr)) = exp(−
∑r

i=1 pi log pi), whereH(·) denotes the
Shannon entropy.

By this definition, minimizing LLDDecorr (equivalently, maximizing log det(K)) naturally in-
creases the effective rank. Specifically, for the representation correlation matrix K, the log-
determinant

∑r
i=1 log λi is symmetric and concave, reaching its maximum when the spectrum is

isotropic. Likewise, the Shannon entropy H(p1, p2, . . . , pr) = −
∑r

i=1 pi log pi that defines the
effective rank is also symmetric and concave, with the same maximum (i.e., isotropy). Thus, max-
imizing log detK pushes singular values away from zero and toward uniformity, increasing the
effective rank and yielding eRank(K) = r at K = I .

4.2 PBA: PROTYTYPE-GUIDED BILATERAL ALIGNMENT

Another issue induced by label skew is classifier bias. To mitigate this, FedETF (Li et al., 2023)
employs a fixed and synthetic ETF classifier shared across clients. We first introduce the supervised
loss in FedETF. Specifically, a simplex ETF classifier V = [v1,v2, . . . ,vC ] ∈ Rp×C is randomly
initialized according to Eq.(7). Let z denote the feature vector and fΨ be the projector parameterized
by Ψ. The projector maps z into the ETF input space and normalize it to obtain the projected vector
µ = fΨ(z)/∥fΨ(z)∥2. Given the ETF classifier with weight matrix V = [v1,v2, . . . ,vC ] ∈
Rp×C , the supervised loss in FedETF is defined as:

Lsup(θ,Ψ,V ;x, y) = − log
ny
k exp(β · v⊤

y µ)∑
c∈[C] n

c
k exp(β · v⊤

c µ)
, (12)

where nc
k is the number of samples in class c and β is a learnable temperature. This loss is inspred

by Balanced Softmax (Ren et al., 2020).

The bridge for module synergy. However, the synergy among the feature extractor, projector, and
ETF classifier is overlooked. In FedETF, the projector becomes the last trainable layer under a fixed
ETF classifier, which can be biased under label skew. Consequently, this layer may be misaligned
with the classifier. To address this issue, we first analyze the roles of the feature extractor and
projector. The feature extractor produces feature vectors for input samples, while the projector
should map them close to the corresponding ETF classifier weights. Class prototypes, as the mean
of feature vectors, provide natural bridges for aligning the projector with the ETF classifier, because
projected prototypes should coincide with the shared ETF weights. For client k, each local class
prototype pck ∈ Rd is the mean feature vector within the same class:

pc
k =

1

nc
k

∑
(x,y)∈Dc

k

fθk
(x), ∀c ∈ [C], (13)

where Dc
k = {(xi, yi) ∈ Dk|yc = c} contains all samples assigned to class c. To provide a uniform

input across clients, we calibrate the projector using global prototypes, which are aggregated as:

p̄c =
∑

k∈I(t)

nc
k∑

i∈I(t) nc
i

pc
k, ∀c ∈ [C]. (14)

Projector alignment. Then, we introduce PBA, a prototype-guided bilateral alignment method
that simultaneously aligns the feature extractor and projector via global prototypes. We first describe
projector alignment. For each sample (x, c), the projected vector µ should be close to the ETF
classifier weight vc. As discussed above, each projected global prototype µ̄c = fΨ(p̄c)/∥fΨ(p̄c)∥2
should also be close to corresponding ETF classifier weight. Motivated by this, we introduce a loss
term to measure the cosine distance between the projected global prototypes and corresponding ETF
classifiers:

LPA =
∑
c∈[C]

1

2

(
1− µ̄⊤

c v
c
)2

, (15)

6
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where µ̄c and vc are l2 normalized global prototypes and classifier weights, respectively. This loss
term calibrates the projector, enabling the synergy between the projector and ETF classifier.

Feature extractor alignment. Moreover, to enhance the consistency of the feature extractor, we
simultaneously align it with global prototypes. However, similar to CrossEntropy loss, conventional
contrastive alignment can be biased under label skew. Inspired by Balanced Softmax (Ren et al.,
2020), we incorporate class distributions to balance gradients. The balanced feature alignment loss
is defined as:

LFA = − log
nc
k exp(sim(fθ(x), p̄

c)/τ)∑C
i=1 n

i
k exp(sim(fθ(x), p̄i)/τ)

, (16)

where sim(a, b) denotes cosine similarity and τ is a temperature parameter. By combining projec-
tor alignment LPA and feature alignment LFA, our PBA enforces the synergy among the feature
extracor, projector and ETF classifier.

Local objective of FedBlade. Finally, by integrating LDDecorr and PBA, the local objective of
FedBlade can be formulated as:

L = Lsup + β · LLDDecorr + γ · (LPA + LFA), (17)

where β controls the strength of feature decorrelation and γ is the weight of prototype-guided bi-
lateral alignment. Two component address distinct yet interdependent challenges under label skew,
and their integration is essential for achieving strong performance, as demonstrated by the ablation
results in Tab. 3.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Datasets. We consider three classical datasets, including CIFAR-10/CIFAR-100 (Krizhevsky
et al., 2009) and Tiny-ImageNet (Le & Yang, 2015). Following prior works (Wang et al., 2020a; Li
et al., 2021; Shi et al., 2023), we adopt a common label skew setting in federated learning, namely
Dirichlet distribution Dir(α). The argument α controls the level of label skew, where smaller α
means more severe skew. We conduct our experiments on three Dirichlet distributions: Dir(0.05),
Dir(0.1) and Dir(0.5).

Baselines. We compare FedBlade with several federated learning methods that address label skew,
falling under the following categories: (1) classical FL methods: FedAvg (McMahan et al., 2017)
and FedProx (Li et al., 2020); (2) Logits calibration: FedLC (Zhang et al., 2022); (3) Feature align-
ment: FedProto (Tan et al., 2022) and FedFM (Ye et al., 2023a); (4) Dimensional collapse mitigation:
FedDecorr (Shi et al., 2023) and FedRCL (Seo et al., 2024); and (5) Fixed ETF classifier: FedETF
(Li et al., 2023).

Implementation details. For all three datasets, we evaluate under two FL settings: (1) partial
participation, where 20 clients are randomly sampled from 100 at each round and communication
round is 200; and (2) full participation, where all 20 clients participate at each round and communi-
cation round is 100. For all datasets, we use MobileNetV2 (Sandler et al., 2018). Local training is
performed for 5 epochs using SGD optimizer with a learning rate of 0.01, a momentum of 0.9, and
a weight decay of 0.00001. The batch size is 64. β and γ in Eq.(17) are set to 0.005 and 1, respec-
tively. Each experiment is repeated three times with different random seeds {1024, 2025, 4096},
and we report the averaged accuracy over the last 10 rounds. Additional hyperparameter details are
provided in Appendix D.

5.2 MAIN RESULTS

Test accuracy. We first evaluate on three datasets under the partial participation setting. We report
the averaged accuracy over the last 10 rounds in Tab. 1. The results show that FedBlade consistently
outperforms existing methods. In particular, FedBlade provides modest improvements on CIFAR-
10 but achieves substantially larger gains on CIFAR-100 and Tiny-ImageNet. This is because that
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decision boundaries become geometrically narrower as the number of classes C increases, making
classification more sensitive to feature bias. By mitigating dimensional collapse and aligning the
projector with the ETF classifier, FedBlade produces wider decision margins among confusable
classes. We also conduct experiments under the full participation setting, with results reported in
Appendix E.1.

Table 1: Accuracy (%) comparisons under the partial partition. 20 clients are selected from 100
clients per round. All results are averaged over 3 runs (mean ± std). The best and second results are
highlighted with bold and underline, respectively.

Method CIFAR-10 CIFAR-100 Tiny-ImageNet

Dir(0.05) Dir(0.1) Dir(0.5) Dir(0.05) Dir(0.1) Dir(0.5) Dir(0.05) Dir(0.1) Dir(0.5)

FedAvg 55.19±3.81 69.26±2.56 86.12±0.32 50.70±0.46 55.52±0.41 60.40±0.21 33.72±0.52 37.68±0.33 41.59±0.28
FedProx 53.74±5.13 69.53±3.01 85.94±0.40 50.97±0.43 55.33±0.36 60.41±0.15 33.15±0.56 37.29±0.36 41.64±0.26
FedLC 75.10±0.90 80.71±0.22 86.71±0.12 51.12±0.26 55.35±0.30 60.30±0.19 37.09±0.26 40.12±0.12 42.42±0.25
FedDecorr 57.77±3.51 70.85±2.95 85.78±0.27 50.86±0.26 54.26±0.35 58.87±0.14 35.87±0.51 38.77±0.38 41.82±0.19
FedRCL 52.14±3.71 71.15±1.57 86.91±0.23 50.56±0.24 56.71±0.35 61.32±0.16 31.94±0.54 36.81±0.40 41.95±0.29
FedProto 55.05±4.11 69.35±2.86 85.96±0.30 50.95±0.46 55.81±0.42 60.64±0.21 31.31±0.49 36.47±0.46 42.45±0.28
FedFM 55.04±4.09 69.61±2.84 86.52±0.53 46.55±0.57 54.83±0.55 61.98±0.26 25.41±0.80 33.56±0.45 40.47±0.37
FedETF 75.80±0.46 80.66±0.32 86.56±0.08 51.41±1.18 55.31±0.26 58.81±1.84 37.09±0.29 40.03±0.14 41.96±0.29
FedBlade 75.83±0.70 81.67±0.30 87.90±0.14 54.31±0.19 57.92±0.15 62.07±0.17 39.43±0.17 41.88±0.15 43.63±0.25

Table 2: Convergence speed under Dir(0.05). Left: CIFAR-100. Right: Tiny-ImageNet. 20
clients are selected from 100 clients per round. FedBlade significantly speeds up the convergence of
the global model.

Method
40% accuracy 50% accuracy

#Rounds Speedup #Rounds Speedup

FedAvg 85 ( 1.0× ) 184 ( 1.0× )
FedBlade 48 ( 1.7× ) 105 ( 1.9× )
FedDecorr 68 ( 1.3× ) 176 ( 1.0× )
FedETF 74 ( 1.1× ) 151 ( 1.2× )

Method
20% accuracy 30% accuracy

#Rounds Speedup #Rounds Speedup

FedAvg 70 ( 1.0× ) 141 ( 1.0× )
FedBlade 41 ( 1.7× ) 81 ( 1.7× )
FedDecorr 45 ( 1.6× ) 101 ( 1.4× )
FedETF 60 ( 1.2× ) 116 ( 1.2× )

Convergence speed. Tab. 2 reports the communication round at which each representative method
first reaches the specified accuracy. Benefiting from LDDecorr and module synergy, FedBlade
achieves substantially faster convergence. Additional results are provided in Appendix E.8.

5.3 ALBATION STUDY

Key components. To assess the effectiveness of the two key components in FedBlade, we conduct
an ablation study on CIFAR-100 and Tiny-ImageNet under the partial participation setting. Tab. 3
reports the results across different levels of label skew. Notably, removing both LDDecorr and PBA
degenerates FedBlade into FedETF (i.e., the first row of Tab. 3). We observe that both compo-
nents are essential. Removing either leads to performance degradation, in some cases even worse
than vanilla FedETF. The synergy emerges because each module provides what the other lacks.
LDDecorr ensures that the representation space retains enough dimensionality for PBA to gener-
ate meaningful prototypes, while PBA imposes structured geometry that counteracts the potential
instability caused by strong decorrelation.

Table 3: Ablation study on key components. 20 clients are selected from 100 clients per round.
The first row is vanilla FedETF. Both components are essential for FedBLADE.

LDDecorr PBA CIFAR-100 Tiny-ImageNet

Dir(0.05) Dir(0.1) Dir(0.5) Dir(0.05) Dir(0.1) Dir(0.5)

51.41±1.18 55.31±0.26 58.81±1.84 37.09±0.29 40.03±0.14 41.96±0.29
✓ 50.98±0.20 53.74±0.13 56.24±0.17 39.20±0.15 40.46±0.20 37.43±0.27

✓ 52.66±0.50 56.42±0.16 61.60±0.19 36.05±0.48 39.55±0.21 41.82±0.46
✓ ✓ 54.31±0.19 57.92±0.15 62.07±0.17 39.43±0.17 41.88±0.15 43.63±0.25

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 25 50 75 100
k

6

4

lo
g 

si
ng

ul
ar

 v
al

ue
s

TinyImageNet (  = 0.05)
LDDecorr
FedDecorr

0 25 50 75 100
k

6

4

lo
g 

si
ng

ul
ar

 v
al

ue
s

TinyImageNet (  = 0.1)
LDDecorr
FedDecorr

Figure 2: Effects of LDDecorr on mitigating di-
mensional collapse. We plot the singular values
of the representation covariance matrix. The x-
axis indicates the indices of the singular values
and the y-axis is the logarithm of singular val-
ues. LDDecorr effectively prevents the tail sin-
gular values from collapsing to zero.

Feature decorrelation. We evaluate the ef-
fectiveness of LDDecorr through an ablation
study on feature decorrelation methods. Fig. 2
shows that LDDecorr more effectively prevents
tail singular values from collapsing to zero,
suggesting that LDDecorr imposes an infinite
penalty on small singular values (as discussed
in Sec. 4.1). Fig. 3 further shows that Fed-
Blade with LDDecorr achieves faster conver-
gence and higher test accuracy than FedBlade
with FedDecorr. Besides, FedBlade with either
feature decorrelation method consistently out-
performs FedETF and FedAvg. To quantify the
mitigation of dimensional collapse, we plot the
effective rank of the representation correlation
matrix over communication rounds in Fig. 4. In particular, we evaluate the effective rank in the
output space of projector for FedETF and FedBlade. This can measure the final embedding space
used by the classifier. As expected, feature decorrelation increases the effective rank. Furthermore,
FedBlade with LDDecorr provides stronger mitigation, which is indicated by higher effective rank.
These observations verify that (1) mitigating dimensional collapse speeds up global model conver-
gence, and (2) LDDecorr further accelerates this mitigation by imposing infinite penalty on small
singular values.
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Figure 3: Test accuracy (%) under various label skew settings on CIFAR-100 and Tiny-
ImageNet. FedBlade with LDDecorr achieves faster convergence speed.
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Figure 4: Effective rank under various label skew settings on CIFAR-100 and Tiny-ImageNet.
The effective rank is computed in the output space of projector. FedBlade with LDDecorr achieves
higher effective rank.

To evaluate the effective rank of all methods, we compute this metric in the output space of feature
extractor that is shared across architectures. The results on CIFAR-100 (α = 0.05) and Tiny-
ImageNet (α = 0.05) are shown in Fig. 5, and more results are provided in Appendix E.4. These
results indicate that effective rank and accuracy are not strictly monotonic. Once feature diversity is
sufficient, excessive rank expansion can degrade class structure. This phenomenon can be supported
by the observations in CW-RGP (Weng et al., 2022), where over-whitened features can break the
potential manifold the examples in the same class belong to, making the learning more difficult.
Besides, appropriate effective rank can be also supported by neural collapse (Papyan et al., 2020),
where good generalization is associated with structured high-dimensional geometries (i.e., simplex
ETF), rather than arbitrarily increasing the dimensionality of representations. Combining LDDecorr
with PBA yields both higher effective rank and a more structured ETF-like geometry, explaining
why FedBlade achieves stronger performance.
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Figure 5: Effective rank on CIFAR-100 (α = 0.05) and Tiny-ImageNet (α = 0.05). The effective
rank is computed in the output space of feature extractor.

Bilateral alignment. We ablate the two align-
ment terms in PBA, namely LFA and LPA.
Tab. 4 shows that both terms are essential. Re-
moving projector alignment (PA) misaligns the
projector with the ETF classifier, leading to con-
sistent degradation across all label-skew levels.
Excluding feature alignment (FA) reduces per-
formance under Dir(0.5), where FA is more ef-
fective. Moreover, as discussed in Sec. 4.2, in-
corporating class distributions balances the gra-
dients; thus, removing distribution factor (DF) in
Eq.(16) causes significant performance drops un-
der severe skew.

Table 4: Ablation study on two loss terms
of PBA. “w/o FA” means removing LFA in
Eq.(17), “w/o DF” means removing the distribu-
tion factor in Eq.(16), and “w/o PA” means re-
moving LPA in Eq.(17).

α = 0.05 0.1 0.5

w/o FA 39.36±0.18 41.19±0.11 42.11±0.22
w/o DF 36.61±0.56 39.95±0.33 43.40±0.23

w/o PA 38.68±0.27 40.48±0.20 42.50±0.28

FedBlade 39.43±0.17 41.88±0.15 43.63±0.25

Quantitative analysis of PBA. To demon-
strate that PBA encourages neural collapse, we
quantify two standard metrics on CIFAR-100:
within-class variance (NC1) and deviation from
the simplex ETF structure (NC2), where lower
values indicate stronger neural-collapse behav-
ior. As shown in Tab. 5, adding PBA consis-
tently reduces both NC1 and NC2 across all het-
erogeneity settings, demonstrating that PBA pro-
motes tighter class clusters and more ETF-like
feature geometry. These results provide direct
quantitative evidence that PBA contributes to the
formation of neural collapse.

Table 5: The efficacy of PBA on enforcing neu-
ral collapse. ↓means that a lower value is better.

Dir(α) Method NC1 ↓ NC2 ↓

Dir(0.05)
w/o PBA 0.6425 22.3306
w/ PBA 0.5669 18.5304

Dir(0.1)
w/o PBA 0.6367 21.4161
w/ PBA 0.5268 17.0571

Dir(0.5)
w/o PBA 0.6260 20.8275
w/ PBA 0.4762 16.3720

6 CONCLUSION

In this paper, we take a further step toward label skew in federated learning. We have presented
FedBlade, a federated learning framework with bilateral alignment and feature decorrelation. Ex-
perimental results show that our feature decorrelation method prevents the small singular values
from collapsing to zero, further mitigating dimensional collapse. Besides, when fixing ETF classi-
fier across clients, our bilateral alignment method promotes the synergy among the feature extractor,
projector and ETF classifier. The two components address distinct yet interdependent challenges
under label skew. Although feature decorrelation effectively mitigates dimensional collapse, this
method is sensitive to the decorrelation strength. We will investigate other regularization methods
to address dimensional collapse in the future. We hope that FedBlade can inspire more studies on
the mitigation of dimensional collapse and FL methods with fixed ETF classifier.
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REPRODUCIBILITY STATEMENT

We present the details of our method in Sec. 4 and Algorithm 1. We provide the details of experi-
mental setups in Sec. 5.1 and Appendix D. The calculation of experimental metrics is described in
Sec. 5.1. We will provide our code during the rebuttal phase upon request, and release it publicly
upon acceptance.
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A TABLE OF NOTATIONS

Please refer to Tab. 6 for the notations used throughout this paper.

Notation Description

X Input space
Z Feature space
Y Label space
L Loss function
K Number of all clients
Dk Training dataset of client k
C Number of all classes
nk Size of dataset Dk

nc
k Number of samples from class c in dataset Dk

fθ Feature extractor parameterized by θ
fΨ Projector parameterized by Ψ
fϕ Classifier parameterized by ϕ
x Input
z Feature vector generated by fθ
y Label
d Dimensionality of feature space
p Dimensionality of projection space
I(t) Selected clients at round t
w Global model
wk Local model of client k∑

Representation covariance matrix
K Representation correlation matrix
V Weight matrix of ETF classifier
λi i-th singular value
pc
k Client k’ local prototype of class c

p̄c Global prototype of class c

Table 6: Table of notations.

B ALGORITHM

The procedure of FedBlade is formally presented in Algorithm 1.

C DETAILS OF DATASETS

We first ourline the details of the datasets used in our experiments.

• CIFAR-10 dataset contains 60,000 color samples with size of 32*32 pixels. This dataset is divided
into 10 distinct classes and split into 50,000 training and 10,000 test samples. Each class contains
6,000 samples.

• CIFAR-100 dataset builds on CIFAR-10 by increasing the number of classes from 10 to 100, while
keeping the same image size of 32×32 pixels. It contains the same total number of samples, i.e.,
60,000 samples, but with only 600 samples per class. For each class, 500 samples are used for
training and 100 samples are used to testing.

• Tiny-ImageNet dataset is a scaled-down version of the larger ImageNet dataset. This dataset is de-
signed to provide a middle ground between small datasets like CIFAR and the massive ImageNet
dataset. This dataset contains 200 classes, each with 500 training samples and 50 test samples.
The total size is 120,000. The image size is 64×64 pixels.
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Algorithm 1 FedBlade

1: Input: number of communication rounds T , initial model w, local epochs E, learning rate η,
feature decorrelation strength β, and bilateral alignment weight γ.

2: for t = 0, 1, . . . , T − 1 do
3: // Server executes:
4: Send global model w(t) to each client
5: Send global prototypes {p̄(t)

c }c∈[C] to each client
6: // Client executes:
7: for each client k ∈ I(t) in parallel do
8: Set w(t)

k = w(t)

9: for epoch e = 1, 2, . . . , E do
10: for each mini-batch B do
11: Compute supervised loss Lsup by Eq. (12)
12: Compute feature decorrelation loss LLDDecorr by Eq. (11)
13: Compute projector alignment loss LPA by Eq. (15)
14: Compute feature alignment loss LFA by Eq. (16)
15: L = Lsup + β · LLDDecorr + γ · (LPA + LFA)

16: w
(t)
k ← w

(t)
k − η∇L(w(t)

k ;B)
17: end for
18: end for
19: for c ∈ [C] do
20: Generate local prototype p

(t)
k,c by Eq. (13)

21: end for
22: Send w

(t)
k and {p(t)

k,c}c∈[C] to server
23: end for
24: // Server executes:
25: Update global model w(t+1) by Eq. (2)
26: for each class c ∈ [C] do
27: Update global prototype p̄

(t+1)
c by Eq. (14)

28: end for
29: end for

Then, we introduce the data augmentation used in our experiments. For all three datasets, we fol-
low the standard data augmentation and normalization process. Specifically, we first use Random-
Crop(32, padding=4) and RandomHorizontalFlip(). Then, for CIFAR-10 and CIFAR-100, each
channels (r, g, b) are normalized by mean µ = (0.4914, 0.4822, 0.4465) and standard deviation σ =
(0.2023, 0.1994, 0.2010), respectively. For Tiny-ImageNet, each channels are normalized by mean
µ = (0.47889522, 0.47227842, 0.43047404) and standard deviation σ = (0.24205776, 0.23828046,
0.25874835). For test dataset, we only perform the normalization process.

D DETAILS OF EXPERIMENTAL SETUPS

All experiments were conducted on a server equipped with two NVIDIA RTX 4090 GPUs, an AMD
Ryzen 9 9950X CPU, and 128 GB of RAM. All results were produced using PyTorch 2.6.0, under
Ubuntu 22.04.

For all three datasets under partial participation and full participation, we use MobileNetV2 (Sandler
et al., 2018) and adopt SGD as the optimizer. For all methods, the learning rate is set to 0.01, the
momentum is set to 0.9, the weight decay is set to 0.00001, the local epoch is set to 5, and the batch
size is set to 64. For partial participation setting, the communication round is set to 200; for full
participation setting, the communication round is set to 100.

For FedBlade, we turn the feature decorrelation strength β ∈ {0.001, 0.005, 0.01, 0.05}, and set
it to 0.005 according to the sensitivity analysis in Fig. 6. We turn the bilateral alignment weight
γ ∈ {0.1, 1.0, 2.0, 5.0}, and set it to 1.0 according to the sensitivity analysis in Fig. 7. We turn the
temperature τ ∈ {0.01, 0.05, 0.1, 0.5}, and set it to 0.1 according to the sensitivity analysis in Fig. 8.
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Here, we list the hyperparameters for all baselines.

• FedProx (Li et al., 2020): regularization weight µ is set to 0.01.

• FedLC (Zhang et al., 2022): constant τ in the logits calibration is set to 10.

• FedDecorr (Shi et al., 2023): feature decorrelation weight β is set to 0.1.

• FedRCL (Seo et al., 2024): regularization weight β is set to 0.7, and temperature τ is set to 0.1.

• FedProto (Tan et al., 2022): alignment weight λ is set to 1.

• FedFM (Ye et al., 2023a): alignment weight λ is set to 1, and temperature τ is set to 0.1.
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Figure 6: Sensitivity analysis of
feature decorrelation strength β.

0.1 1.0 2.0 5.045

50

55

60

65

A
cc

ur
ac

y 
(%

)

 = 0.05
 = 0.1
 = 0.5

Figure 7: Sensitivity analysis of
bilateral alignment weight γ.
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Figure 8: Sensitivity analysis of
temperature parameter τ .

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 TEST ACCURACY UNDER FULL PARTICIPATION

We evaluate on three datasets under the full participation setting. Tab. 7 reports the averaged test
accuracy over the last 10 rounds. Under full client participation, each client has access to more
local data and participates in every round, which reduces data heterogeneity and stabilizes prototype
generation. In this setting, the challenges that FedBlade is designed to address, i.e., dimensional
collapse and feature inconsistency under label skew, are less pronounced. However, we note that
FedBlade remains competitive and does not degrade performance in this setting.

Table 7: Accuracy (%) comparisons under the full partition. The model is MobileNetV2. All
20 clients are selected per round. All results are averaged over 3 runs (mean ± std). The best and
second results are highlighted with bold and underline, respectively.

Method CIFAR-10 CIFAR-100 Tiny-ImageNet

Dir(0.05) Dir(0.1) Dir(0.5) Dir(0.05) Dir(0.1) Dir(0.5) Dir(0.05) Dir(0.1) Dir(0.5)

FedAvg 67.44±1.02 81.88±0.45 89.86±0.06 57.94±0.26 61.80±0.19 66.82±0.11 43.02±0.44 46.35±0.31 51.24±0.31
FedProx 70.21±1.01 82.99±0.16 89.62±0.06 57.48±0.20 61.87±0.17 66.35±0.20 42.13±0.34 45.35±0.30 50.01±0.28
FedLC 75.09±0.13 84.81±0.13 89.78±0.10 56.63±0.11 61.17±0.16 66.42±0.10 44.73±0.24 47.66±0.33 51.08±0.18
FedDecorr 73.55±0.48 84.07±0.11 89.35±0.11 56.56±0.11 60.59±0.10 65.09±0.11 44.34±0.26 46.63±0.24 50.96±0.25
FedRCL 61.25±0.35 76.67±0.28 89.85±0.12 53.07±0.20 60.37±0.16 67.10±0.17 38.17±0.44 42.86±0.40 48.88±0.34
FedProto 70.67±0.31 83.59±0.10 89.76±0.08 57.17±0.21 61.89±0.13 66.48±0.16 41.05±0.36 45.16±0.32 51.18±0.37
FedFM 66.15±0.54 82.85±1.11 90.20±0.08 52.36±4.17 62.47±0.19 67.63±0.16 37.72±0.50 42.85±0.51 48.65±0.37
FedETF 75.22±0.23 84.66±0.15 89.66±0.12 57.49±0.30 61.77±0.26 66.65±0.14 45.50±0.40 48.59±0.35 51.71±0.35
FedBlade 76.25±0.20 84.20±0.12 90.44±0.06 58.33±0.24 62.57±0.19 68.13±0.08 43.99±0.28 47.69±0.32 51.99±0.30

E.2 TEST ACCURACY ON RESNET-18

To evaluate our method on different model architectures, we conduct experiments on ResNet-18.
The feature dimension of ResNet-18 is 512, which is smaller than that of MobileNetV2 with 1280
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Table 8: Accuracy (%) comparisons under the partial partition. The model is ResNet-18. 20
clients are selected from 100 clients per round. All results are averaged over 3 runs (mean ± std).
The best and second results are highlighted with bold and underline, respectively.

Method CIFAR-10 CIFAR-100 Tiny-ImageNet

Dir(0.05) Dir(0.1) Dir(0.5) Dir(0.05) Dir(0.1) Dir(0.5) Dir(0.05) Dir(0.1) Dir(0.5)

FedAvg 62.09±3.67 73.78±4.11 88.69±0.57 57.08±0.47 60.81±0.44 63.44±0.25 39.70±0.48 43.29±0.25 46.29±0.20
FedProx 62.76±3.97 74.68±3.51 88.65±0.55 56.97±0.33 60.79±0.38 63.19±0.25 39.84±0.40 43.45±0.68 46.38±0.32
FedLC 79.83±0.62 84.68±0.31 89.20±0.17 56.62±0.64 58.77±0.27 61.93±0.20 42.65±0.17 45.66±0.17 47.37±0.21
FedDecorr 67.05±3.33 76.53±3.91 88.74±0.41 54.72±0.38 57.40±0.35 58.14±0.32 40.17±0.46 42.92±0.27 44.83±0.19
FedRCL 63.83±3.02 71.07±1.81 86.84±0.34 52.42±0.31 58.70±0.38 63.49±0.26 37.00±0.33 41.61±0.40 45.53±0.33
FedProto 61.58±3.03 74.41±4.08 89.16±0.47 56.18±0.71 59.69±0.43 64.27±0.25 39.43±0.72 43.53±0.33 47.82±0.24
FedFM 63.79±2.83 75.48±4.73 88.88±0.85 55.43±0.56 61.42±0.68 67.40±0.24 34.12±1.25 41.54±0.71 48.08±0.29
FedETF 80.41±0.61 85.08±0.38 89.36±0.13 57.61±0.70 60.09±1.21 60.92±1.23 42.79±0.56 45.41±0.18 47.08±0.52
FedBlade 81.41±0.50 85.66±0.13 90.25±0.13 60.56±0.20 63.94±0.27 65.55±0.13 43.43±0.28 45.84±0.26 47.94±0.25

dimensions. Tab. 8 reports the averaged test accuracy over the last 10 rounds under partial partici-
pation setting. We find that FedBLADE can still achieve strong performance on ResNet-18.

E.3 CONVERGENCE CURVES
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Figure 9: Test accuracy under various label skew settings on CIFAR-100 and Tiny-ImageNet.
FedBLADE achieves faster convergence speed compared with other baselines, especially under se-
vere label skew (e.g., Dir(0.05)).

As discussed in Sec. 4.1, feature decorrelation helps mitigate dimensional collapse during local
training, thereby accelerating the convergence of the global model. Besides, as stated in Sec. 4.2
the synergy among the feature extractor, projector and ETF classifier can further improve the per-
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formance of the global model. To compare the performance of different FL methods, we plot the
accuracy curve over communication rounds under partial participation setting. Fig. 9 shows the ex-
perimental results on CIFAR-100 and Tiny-ImageNet under various label skew settings, including
Dir(0.05), Dir(0.1) and Dir(0.5). The results illustrate that FedBlade achieves substantially faster
convergence under the above settings, indicating the effectiveness of our LDDecorr and PBA.

E.4 ADDITIONAL EFFECTIVE RANK RESULTS

We visualize the effective rank for all methods in Fig. 10. In particular, the effective rank of all
methods in Fig. 10 is computed in the output space of feature extractor, which is shared across
architectures. As discussed in 5.3, FedBlade increases effective rank relative to some baselines,
but these results indicate that effective rank and accuracy are not strictly monotonic. By pulling
representations toward their corresponding ETF directions, PBA provides a structured geometric
anchor that counteracts the potential side effects of strong feature decorrelation, while preserving the
intended rank-expansion benefits of LDDecorr. Therefore, FedBlade achieves higher performance.
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Figure 10: Effective rank under various label skew settings. The effective rank is computed in the
output space of feature space.

E.5 ABLATION STUDY ON THE NUMBER OF LOCAL EPOCHS

We conduct an ablation study on the number of local epochs E. We turn the local epochs E ∈
{1, 5, 10} on CIFAR-10 with α being {0.05, 0.1, 0.5}. Tab. 9 shows that FedBlade benefits from
multiple local updates (performance increases substantially from E = 1 to E = 5). However, the
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gain from E = 5 to E = 10 is small relative to the additional computation cost. For this reason, we
set E = 5 in our main experiments.

Table 9: Ablation study on the number of local epochs.

E
CIFAR-10 CIFAR-100 Tiny-ImageNet

Dir(0.05) Dir(0.1) Dir(0.5) Dir(0.05) Dir(0.1) Dir(0.5) Dir(0.05) Dir(0.1) Dir(0.5)

1 58.33±1.45 64.64±1.51 71.33±0.48 31.90±0.68 31.73±0.53 33.04±0.27 19.03±0.32 18.73±0.56 18.25±0.41
5 75.83±0.70 81.67±0.30 87.90±0.14 54.31±0.19 57.92±0.15 62.07±0.17 39.43±0.17 41.88±0.15 43.63±0.25
10 77.90±0.82 82.63±0.41 88.65±0.22 54.54±0.22 58.30±0.20 61.54±0.28 40.98±0.18 43.22±0.32 44.40±0.31

E.6 COMPUTATION COST ANALYSIS

To quantify the efficiency for LDDecorr and PBA, we report the per-iteration computation cost
(ms) of each loss term. Tab. 10 shows that the computation cost of each loss component is small,
indicating that FedBlade is practical in real-world scenario. Besides, different datasets measure the
computation cost with different numbers of classes (i.e., {10, 100, 200}), and different architectures
measure the computation cost with different representation dimensions (i.e., 512 and 1280).

Table 10: The computation cost (ms/iteration) for each loss component, averaged over 1000
trials. The representation dimension of MobileNetV2 is 1280, while that of ResNet-18 is 512.

Dataset Model Lsup LFA LPA LLDDecorr

CIFAR-10 MobileNetV2 0.0886 0.1824 0.1294 1.1522
ResNet-18 0.0882 0.1551 0.1255 0.5297

CIFAR-100 MobileNetV2 0.0933 0.2566 0.1373 1.1600
ResNet-18 0.0912 0.1606 0.1299 0.5592

TinyImageNet MobileNetV2 0.0884 0.5700 0.1322 1.1460
ResNet-18 0.0899 0.1947 0.1282 0.5245

E.7 COMMUNICATION COST OF PROTOTYPES.

We compared the additional communication cost of prototypes across different datasets and archi-
tectures. For MobileNetV2, each class prototype is a 1280-dimensional float32 vector, which is only
5 KB per class; for ResNet-18, the prototype is a 512-dimensional float32 vector, requiring 2 KB per
class. We report the total communication cost of all prototypes in Tab. 11. While PBA introduces
an additional step for exchanging prototypes, the associated communication overhead is negligible
compared to transmitting model parameters.

Table 11: The communication cost of prototypes across different datasets and architectures.

Model CIFAR-10 CIFAR-100 Tiny-ImageNet

MobileNetV2 50KB 500KB 1000KB
ResNet-18 20KB 200KB 400KB

E.8 CONVERGENCE SPEED

To quantify the convergence speed, we report the communication round at which each method first
reaches the specified accuracy. For CIFAR-100, the specific accuracy values are 40% and 50%; for
Tiny-ImageNet, the specific accuracy values are 20% and 30%. 200+ means the specific accuracy
was not reached after 200 rounds. Benifitting from our LDDecorr and module synergy, FedBlade
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achieves substantially faster convergence under various settings. In particular, we find that feature
alignment methods (e.g., FedFM) converge slowly under severe label skew. This is because that,
under severe label skew, dimensional collapse occurs and the prototypes used for feature alignment
can be biased, which misleads the feature alignment during local training.

Table 12: Convergence speed under CIFAR-100 (α = 0.05).

40% accuracy 50% accuracy

Number of rounds Speedup Number of rounds Speedup

FedAvg 85 ( 1.0× ) 184 ( 1.0× )
FedBlade 48 ( 1.7× ) 105 ( 1.9× )
FedProx 88 ( 1.0× ) 180 ( 1.0× )
FedLC 68 ( 1.3× ) 174 ( 1.1× )
FedDecorr 68 ( 1.3× ) 176 ( 1.0× )
FedRCL 77 ( 1.1× ) 180 ( 1.0× )
FedProto 85 ( 1.0× ) 175 ( 1.1× )
FedFM 122 ( 1.0× ) 200+ (<0.9× )
FedETF 74 ( 1.1× ) 151 ( 1.2× )

Table 13: Convergence speed under CIFAR-100 (α = 0.1).

40% accuracy 50% accuracy

Number of rounds Speedup Number of rounds Speedup

FedAvg 60 ( 1.0× ) 117 ( 1.0× )
FedBlade 40 ( 1.5× ) 78 ( 1.5× )
FedProx 60 ( 1.0× ) 117 ( 1.0× )
FedLC 56 ( 1.1× ) 110 ( 1.1× )
FedDecorr 53 ( 1.1× ) 111 ( 1.1× )
FedRCL 53 ( 1.1× ) 101 ( 1.2× )
FedProto 60 ( 1.0× ) 111 ( 1.1× )
FedFM 71 ( 0.8× ) 131 ( 0.9× )
FedETF 57 ( 1.1× ) 111 ( 1.1× )
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Table 14: Convergence speed under CIFAR-100 (α = 0.5).

40% accuracy 50% accuracy

Number of rounds Speedup Number of rounds Speedup

FedAvg 43 ( 1.0× ) 76 ( 1.0× )
FedBlade 34 ( 1.3× ) 58 ( 1.3× )
FedProx 43 ( 1.0× ) 77 ( 1.0× )
FedLC 41 ( 1.0× ) 75 ( 1.0× )
FedDecorr 40 ( 1.1× ) 79 ( 1.0× )
FedRCL 40 ( 1.1× ) 70 ( 1.1× )
FedProto 41 ( 1.0× ) 71 ( 1.1× )
FedFM 41 ( 1.0× ) 70 ( 1.1× )
FedETF 53 ( 0.8× ) 83 ( 0.9× )

Table 15: Convergence speed under Tiny-ImageNet (α = 0.05).

20% accuracy 30% accuracy

Number of rounds Speedup Number of rounds Speedup

FedAvg 70 ( 1.0× ) 141 ( 1.0× )
FedBlade 41 ( 1.7× ) 81 ( 1.7× )
FedProx 70 ( 1.0× ) 150 ( 0.9× )
FedLC 49 ( 1.4× ) 102 ( 1.4× )
FedDecorr 45 ( 1.6× ) 101 ( 1.4× )
FedRCL 88 ( 0.8× ) 166 ( 0.8× )
FedProto 82 ( 0.9× ) 170 ( 0.9× )
FedFM 130 ( 0.5× ) 200+ (<0.7× )
FedETF 60 ( 1.2× ) 116 ( 1.2× )

Table 16: Convergence speed under Tiny-ImageNet (α = 0.1).

20% accuracy 30% accuracy

Number of rounds Speedup Number of rounds Speedup

FedAvg 46 ( 1.0× ) 104 ( 1.0× )
FedBlade 37 ( 1.2× ) 67 ( 1.5× )
FedProx 51 ( 0.9× ) 104 ( 1.0× )
FedLC 40 ( 1.1× ) 81 ( 1.3× )
FedDecorr 37 ( 1.2× ) 79 ( 1.3× )
FedRCL 63 ( 0.7× ) 121 ( 0.9× )
FedProto 57 ( 0.8× ) 114 ( 0.9× )
FedFM 74 ( 0.6× ) 157 ( 0.7× )
FedETF 50 ( 0.9× ) 92 ( 0.9× )
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Table 17: Convergence speed under Tiny-ImageNet (α = 0.5).

20% accuracy 30% accuracy

Number of rounds Speedup Number of rounds Speedup

FedAvg 37 ( 1.0× ) 75 ( 1.0× )
FedBlade 39 ( 0.9× ) 66 ( 1.1× )
FedProx 37 ( 1.0× ) 77 ( 1.0× )
FedLC 35 ( 1.1× ) 71 ( 1.1× )
FedDecorr 30 ( 1.2× ) 60 ( 1.25× )
FedRCL 46 ( 0.8× ) 82 ( 0.9× )
FedProto 39 ( 0.9× ) 76 ( 1.0× )
FedFM 43 ( 0.9× ) 89 ( 0.8× )
FedETF 46 ( 0.8× ) 79 ( 0.9× )
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F THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs only for language polishing. All contents were line-by-line verified, including
contents generated by LLMs.
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