STABILIZING HETEROGENEOUS FEDERATED LEARN-ING VIA FEATURE DECORRELATION AND BIDIREC-TIONAL ALIGNMENT

Anonymous authorsPaper under double-blind review

000

001

002

004

006

008 009 010

011

013

014

015

016

017

018

019

021

023

025

026

027

028

031

033

034

037

040

041

042

043

044

046

047

048

051

052

ABSTRACT

Data heterogeneity poses a major challenge in federated learning, leading to significant degradation in global model performance. Prior studies have shown that heterogeneity induces dimensional collapse and biased classifiers, which hinder the learning of both feature extractors and classifiers. To tackle these issues, existing approaches apply feature decorrelation to mitigate dimensional collapse and adopt a synthetic classifier with a projector to reduce classifier bias. However, these decorrelation methods fail to prevent small singular values from collapsing to zero, slowing the mitigation of dimensional collapse. Besides, the synergy among the feature extractor, projector and synthetic classifier is overlooked, leading to divergent optimization across clients. To overcome these limitations, we propose **FedBlade**, a **fed**erated learning framework with **b**idirectional **a**lignment and feature decorrelation. Our feature decorrelation method accelerates the mitigation of dimensional collapse by yielding exponential gradients, while the bidirectional alignment method enhances synergy among model modules and ensures consistency across clients. Extensive experimental results demonstrate that FedBlade outperforms relevant baselines and achieves faster convergence of the global model.

1 Introduction

Federated learning (FL) (McMahan et al., 2017) is a decentralized paradigm that trains a global model across multiple clients without sharing raw data. As privacy concerns grow, FL has attracted significant attention. A major challenge in FL is data heterogeneity, which arises from discrepancies in the local data distributions across clients. In particular, this work focuses on the label skew setting, where the label distribution differs across clients.

Recent work has explored various approaches to address label skew, including regularization (Li et al., 2020; Acar et al., 2021), optimization (Reddi et al., 2020), model aggregation (Hsu et al., 2019; Ye et al., 2023b), feature alignment (Li et al., 2021; Tan et al., 2022; Ye et al., 2023a) and classifier calibration (Luo et al., 2021; Zhou et al., 2023). Beyond these directions, Shi et al. (2023) reveal that both local and global models suffer from dimensional collapse under label skew, where representations concentrate in a subspace rather than spanning the full representation space. This collapse severely degrades model generalization. To address it, Shi et al. (2023) propose FedDecorr, a regularization term that encourages representations to occupy the full ambient space. Specifically, FedDecorr minimizes the Frobenius norm of the representation correlation matrix, thereby discouraging the tail singular values of the representation covariance matrix from collapsing to zero. However, the gradient of FedDecorr is linear, which limits its ability to penalize small singular values and hinders the recovery of the ambient representation space.

Another problem induced by heterogeneous data is classifier bias. Luo et al. (2021) find that classifier layers exhibit greater bias than representation layers, and Zhou et al. (2023) show that such bias creates a vicious cycle between misaligned features and biased classifiers across clients. Recent works (Li et al., 2023; Xiao et al., 2024) have investigated mitigating classifier bias by introducing a fixed and synthetic equiangular tight frame (ETF) classifier shared across clients. The ETF classifier enforces feature prototypes to converge to an optimal structure with maximal pairwise angles

 (Papyan et al., 2020; Yang et al., 2022). To encourage features to collapse into the ETF structure, FedETF (Li et al., 2023) employs a projector that maps raw features into a space where neural collapse is more likely to emerge. Thus, FedETF consists of three key modules: a feature extractor, a projector, and an ETF classifier. However, FedETF overlooks the synergy among these modules, leading to mismatches between projected features and the ETF classifier.

These two issues arise from distinct modules, i.e., the feature extractor and projector. We highlight two key challenges concerning these two modules:

C1: How can we amplify gradients with respect to small singular values of representation covariance matrix?

FedDecorr promotes decorrelation by penalizing the Frobenius norm of the correlation matrix, but its uniform treatment of entries yields linear gradients that fail to strongly penalize small singular values, leaving dimensional collapse insufficiently mitigated. To address this issue, it is important to yield larger gradients for the small singular values. Motivated by this intuition, we propose LDDecorr, a spectrum-aware feature decorrelation method that maximizes the log-determinant of the correlation matrix. As analyzed in Sec. 4.1, LDDecorr yields exponential gradients that impose infinite penalty on small singular values, thereby preventing dimensional collapse more effectively than FedDecorr.

C2: How can we ensure coherent alignment among the feature extractor, projector, and ETF classifier?

Figure 1: **Problem illustration.** Under label skew, FL faces two key issues: (1) dimensional collapse, where features concentrate in a low-rank subspace; and (2) projector bias toward head classes, which misaligns projected features with the ETF classifier.

Although the ETF classifier is fixed and shared across clients, the bias of the projector is overlooked. Inspired by feature alignment methods (Tan et al., 2022; Ye et al., 2023a), the global prototypes provide a uniform information, which can also be used to align the projector across clients. Besides, the prototypes serve as the bridges among the feature extractor, projector and ETF classifier, enhancing the synergy among these modules. Building on this idea, we propose PBA, a prototype-guided bidirectional alignment method. PBA uses global prototypes to align the feature extractor and projector simultaneously during local training, ensuring that the feature spaces are consistent across clients and projected prototypes are close to corresponding ETF classifiers. As a result, the feature extractor, projector, and ETF classifier become colinear under PBA.

LDDecorr and PBA address distinct yet interdependent aspects of label skew, and their integration is essential for achieving strong performance. Specifically, without PBA, it is hard to achieve neural collapse due to ambient representation space induced by feature decorrelation; without LDDecorr, the feature space can be collapsed, misleading the generation of global prototypes that are crucial for the bidirectional alignment. Therefore, we propose **FedBlade**, a **federated** learning framework with **b**idirectional **a**lignment and feature **de**correlation. With the help of these two components, the inter-class separation is increased and intra-class variance is reduced, enforcing the formation of neural collapse. Our main contributions are summarized as follows.

- We revisit the feature decorrelation term in federated learning, and propose LDDecorr, a spectrumaware feature decorrelation method that enhances the mitigation of dimensional collapse. LD-Decorr produces exponential gradients, imposing an infinite penalty on small singular values (Sec. 4.1).
- We propose PBA, a bidirectional alignment method that simultaneously calibrates the feature extractor and projector. PBA enforces the synergy among the feature extractor, projector and ETF classifier (Sec. 4.2).
- We propose FedBlade, a federated learning framework with bidirectional alignment and feature decorrelation. Experimental results demonstrate that FedBlade outperforms relevant baselines.

2 RELATE WORK

2.1 Label Skew in Federated Learning

Federated learning (McMahan et al., 2017) is a decentralized machine learning paradigm enabling training a global model without sharing raw training data. However, federated learning suffers from unstable convergence caused by data heterogeneity. One major challenge of data heterogeneity is label skew. To tackle this challenge, recent works have investigated a variety of solutions, such as regularization (Li et al., 2020; Karimireddy et al., 2020; Acar et al., 2021), optimization (Reddi et al., 2020), model aggregation (Hsu et al., 2019; Wang et al., 2020b; Ye et al., 2023b), feature alignment (Li et al., 2021; Tan et al., 2022; Ye et al., 2023a; Zhang et al., 2024), logits calibration (Zhang et al., 2022), and classifier calibration (Luo et al., 2021; Zhou et al., 2023). In particular, this paper focuses on the classifier bias caused by label skew. Luo et al. (2021) find that classifier bias is greater than in other layers, and propose a federated learning method calibrating the classifier with virtual features after training. To further address classifier bias, Li et al. (2023) propose FedETF, which employs a synthetic simplex ETF as a fixed classifier shared across all clients. This design implicitly encourages clients to learn a unified representation space. However, the projector itself may still be biased, leading to unstable model convergence.

2.2 DIMENSIONAL COLLAPSE

Dimensional collapse is a phenomenon primarily studied in self-supervised learning (SSL) (Ermolov et al., 2021; Hua et al., 2021; Jing et al., 2022; He et al., 2024), where learned representations concentrate in a low-rank subspace and lose per-dimension variance. From a spectral perspective, dimensional collapse is characterized by a few dominant singular values while the remaining singular values shrink toward zero. Jing et al. (2022) formalize this problem in SSL and analyze how projection heads interact with the singular value spectrum of the embedding space. A line of works Zbontar et al. (2021); Bardes et al. (2021) address dimensional collapse by explicitly spreading variance and reducing redundancy across feature dimensions. He et al. (2024) introduce orthogonality regularization, mitigating dimensional collapse in representations, hidden features, and weight matrices. Beyond SSL, dimensional collapse has also been observed in federated learning, where stronger client heterogeneity exacerbates this problem. To counter this, FedDecorr (Shi et al., 2023) introduces decorrelation regularization, and Seo et al. (2024) propose a relaxed contrastive learning loss to avoid collapsed representations when incorporating supervised contrastive learning in federated learning. However, FedDecorr only yields linear gradients, which is insufficient to prevent the small singular values from collapsing to zero.

2.3 NEURAL COLLAPSE

Neural Collapse (NC) describes a terminal-phase geometry in supervised classification. Empirically, within-class features concentrate at their means, those means arrange as a simplex equiangular tight frame, and last-layer weights align with the means (Papyan et al., 2020). Subsequent analyses under squared loss make neural collapse amenable to theory via the central path description of gradient flow (Han et al., 2022) and global-optimality results in the unconstrained features model (Zhou et al., 2022). Tirer & Bruna (2022) extend the unconstrained features model with depth and regularization, and Súkeník et al. (2023) establish neural collapse in multi-layer settings. Although within-class concentration persists, ETF structure can deform and weight—mean alignment becomes sample-size dependent, motivating approaches that enforce ETF-like classifiers (Yang et al., 2022; Hong & Ling, 2024). Building on this idea, Li et al. (2023) mitigate classifier bias and feature misalignment in federated learning by introducing a fixed ETF classifier.

3 PRELIMINARIES

3.1 FEDERATED LEARNING

In this paper, we consider a federated learning setting with K clients and a central server. Considering a classification task with C classes, each client k owns a local training dataset $D_k = \{x_i, y_i\}_{i=1}^{n_k}$, where $n_k = \sum_{c=1}^{C} n_k^c$ denotes the number of samples. Under data heterogeneity setting, the data

distribution $P(\mathcal{X}, \mathcal{Y})$ varies across clients, where \mathcal{X} is the input space and \mathcal{Y} is the label space. In particular, this paper focuses on label skew, where the label marginal distribution $P(\mathcal{Y})$ varies across clients, i.e., $P_i(\mathcal{Y}) \neq P_j(\mathcal{Y})$ for two clients i and j. The goal of federated learning is to collaboratively train a global model without sharing raw training data. The local objective is $F_k := \mathbb{E}_{(\boldsymbol{x},y) \sim D_k}[\mathcal{L}(\boldsymbol{w};\boldsymbol{x},y)]$ and the global objective can be formulated as:

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} \left\{ F(\boldsymbol{w}) := \sum_{k=1}^K \frac{n_k}{n} F_k(\boldsymbol{w}) \right\},\tag{1}$$

where $n = \sum_{k=1}^K n_k$ and \mathcal{L} is the loss function. We decompose the model into a feature extractor $f_{\boldsymbol{\theta}}$ and a classifier $f_{\boldsymbol{\phi}}$, which are parameterized by $\boldsymbol{\theta}$ and $\boldsymbol{\phi}$, respectively. The feature extractor $f_{\boldsymbol{\theta}}: \mathcal{X} \to \mathcal{Z}$ maps the input \boldsymbol{x} into a feature vector $\boldsymbol{z} = f_{\boldsymbol{\theta}}(\boldsymbol{x})$ in the feature space $\mathcal{Z} \in \mathbb{R}^d$. Then, the classifier $f_{\boldsymbol{\phi}}$ maps the feature vector \boldsymbol{z} into the class space \mathbb{R}^C .

Our study follows the conventional federated learning mechanism FedAvg (McMahan et al., 2017). In round t, the server selects a group of clients $\mathcal{I}^{(t)}$ and sends the global model \boldsymbol{w} to them. After local training, each selected client $k \in \mathcal{I}^{(t)}$ sends its local model \boldsymbol{w}_k to the server, and the global model are aggregated as:

$$\mathbf{w}^{(t+1)} = \sum_{k \in \mathcal{I}^{(t)}} \frac{n_k}{\sum_{i \in \mathcal{I}^{(t)}} n_i} \mathbf{w}_k^{(t)}.$$
 (2)

3.2 EQUIANGULAR TIGHT FRAME CLASSIFIER

Recent works (Li et al., 2023; Xiao et al., 2024) address classifier bias by employing a fixed and synthetic equiangular tight frame (ETF) classifier. The ETF design is inspired by neural collapse (NC) (Papyan et al., 2020), a phenomenon in which deep classifiers exhibit a set of geometric regularities at the end of training:

NC1: Within-class variability collapse. The features of samples from the same class converge to a mean feature vector. For any sample from class c, $f_{\theta}(x) \approx \mu_c$ and $\Sigma_c \to 0$, where $\mu_c = \frac{1}{n_c} \sum_{i=1}^{n_c} f_{\theta}(x_{c,i})$ is the mean feature of class c and $\Sigma_c = \frac{1}{n_c} \sum_{i=1}^{n_c} (f_{\theta}(x_{c,i}) - \mu_c) (f_{\theta}(x_{c,i}) - \mu_c)^{\top}$ is the covariance.

NC2: Simplex-ETF structure of class means. Consider the global mean $\mu_G = \frac{1}{C} \sum_{c=1}^C \mu_c$. After mean-centering and normalization, the class means become equal-norm and equiangular:

$$\|\boldsymbol{\mu}_{c} - \boldsymbol{\mu}_{G}\|_{2} - \|\boldsymbol{\mu}_{c'} - \boldsymbol{\mu}_{G}\|_{2} \to 0, \quad \forall c, c' \in [C],$$
 (3)

$$\langle \tilde{\boldsymbol{\mu}}_c, \tilde{\boldsymbol{\mu}}_{c'} \rangle \to \frac{C}{C-1} \delta_{c,c'} - \frac{1}{C-1}, \quad \forall c, c' \in [C],$$
 (4)

where $\tilde{\mu}_c = \frac{\mu_c - \mu_G}{\|\mu_c - \mu_G\|_2}$ and $\delta_{c,c'}$ is the Kronecker delta symbol (i.e., $\delta_{c,c'}$ equals to 1 when c = c' and 0 otherwise).

NC3: Self-duality between features and classifier. The classifier weights ϕ align with the class means $M = [\tilde{\mu}_1, \tilde{\mu}_2, \dots, \tilde{\mu}_C]$:

$$\left\| \frac{\boldsymbol{\phi}^{\top}}{\|\boldsymbol{\phi}\|_F} - \frac{\boldsymbol{M}}{\|\boldsymbol{M}\|_F} \right\|_F \to 0, \tag{5}$$

NC4: Nearest-class-mean decision rule. Because within-class scatter collapses and between-class means are symmetrically arranged, the linear classifier behaves as:

$$\arg\max_{c} (\langle \boldsymbol{a}_{c}, f_{\boldsymbol{\theta}}(\boldsymbol{x}) \rangle + b_{c}) \to \arg\min_{c} \|f_{\boldsymbol{\theta}}(\boldsymbol{x}) - \boldsymbol{\mu}_{c}\|_{2}, \tag{6}$$

where a_c and b_c represent the weight and bias of the classifier for class c.

The NC observations motivate hard-wiring the last-layer classifier to the simplex-ETF geometry and training the feature extractor to adapt to it. Concretely, an ETF classifier is a linear head whose weight matrix $V = [v_1, v_2, \dots, v_C] \in \mathbb{R}^{p \times C}$ is:

$$V = \sqrt{\frac{C}{C-1}} U (I_C - \frac{1}{C} \mathbf{1}_C \mathbf{1}_C^\top), \tag{7}$$

where p is the input dimension of ETF classifier, $U \in \mathbb{R}^{p \times C}$ allows any rotation and satisfies $U^{\top}U = I_C$, I_C is the identity matrix, and I_C is an all-ones vector.

4 METHOD

In this section, we introduce FedBlade, a federated learning framework integrating bidirectional alignment and feature decorrelation. We present the full algorithm in Appendix B.

4.1 LDDecorr: Accelerate the Mitigation of Dimensional Collapse

Linear gradients of FedDecorr. To mitigate dimensional collapse caused by label skew, Shi et al. (2023) propose a regularization term named FedDecorr. This term regularizes the Frobenius norm of the representation correlation matrix during local training:

$$\mathcal{L}_{FedDecorr}(\boldsymbol{w}; \boldsymbol{X}) = \frac{1}{d^2} \|\boldsymbol{K}\|_F^2, \qquad (8)$$

where K is the representation correlation matrix. This regularization term forces the correlation matrix to be full-rank, discouraging the tail singular values from collapsing to zero. However, Fed-Decorr yields linear gradients and fails to guarantee the singular values $\lambda_i > 0$, since its penalty remains linear: $\nabla_{\lambda_i} = 2\lambda_i$.

To accelerate the mitigation of dimensional collapse, we revisit the regularization term. Given a correlation matrix K, the dimensional collapse can be alleviated if K approaches the identity matrix I. A key limitation of FedDecorr is that it treats all entries and implicitly all singular value deviations uniformly. Intuitively, stronger gradients should be applied to smaller singular values to more effectively prevent dimensional collapse. Motivated by this, we adopt the Log-Determinant (LogDet) divergence as the regularization term. The LogDet divergence is definded as follows.

Definition 1 (LogDet Divergence). Let S^d_+ be the cone of $d \times d$ positive semi-definite (PSD) matrices. For $X, Y \in S^d_+$, the LogDet divergence is defined as:

$$D_{ld}(\boldsymbol{X}, \boldsymbol{Y}) = \operatorname{tr}(\boldsymbol{X}\boldsymbol{Y}^{-1}) - \log \det(\boldsymbol{X}\boldsymbol{Y}^{-1}) - d. \tag{9}$$

To encourage K to approach the identity matrix I, we minimize their LogDet divergence:

$$D_{ld}(\mathbf{K}, \mathbf{I}) = \operatorname{tr}(\mathbf{K}) - \log \det(\mathbf{K}) - d. \tag{10}$$

Since tr(K) = d, the LogDet divergence reduces to minimizing $-\log \det(K)$. We therefore formally define LDDecorr as a novel regularization term that minimizes the log-determinant of the representation correlation matrix during local training:

$$\mathcal{L}_{LDDecorr} = -\log \det(\mathbf{K}). \tag{11}$$

Exponential gradients of LDDecorr. With $\log \det(K) = \sum_i \log \lambda_i$, LDDecorr yields exponential gradients: $\nabla_{\lambda_i} = -1/\lambda_i$. Unlike the linear gradients of FedDecorr, LDDecorr imposes an infinite penalty on small singular values, ensuring the correlation matrix remains full-rank and accelerating the mitigation of dimensional collapse. Experimental results in Sec. 5.3 validate the superiority of LDDecorr. Importantly, LDDecorr requires only determinant calculation, which is more efficient than calculating singular values. For further efficiency, we compute $K = LL^{\top}$ via Cholesky factorization and evaluate $\log \det(K) = 2\sum_i \log L_{ii}$. Since K is PSD, we stabilize Cholesky factorization by replacing K with $\tilde{K} = K + \epsilon I$, where $\epsilon = 10^{-4}$ serves as a small jitter.

To quantify dimensional collapse, we measure the effective rank (Roy & Vetterli, 2007) of the representation covariance matrix, which reflects the effective dimensionality of the feature space. A higher effective rank indicates a lower degree of collapse. The effective rank is defined as follows.

Definition 2 (Effective Rank). For a matrix $A \in \mathbb{R}^{m \times n}$ with non-zero singular values $\{\lambda_i\}_{i=1}^r$, define normalized weights $p_i = \lambda_i / \sum_{j=1}^r \lambda_j$, where $r = \min(m,n)$. The effective rank of A is defined as $eRank(A) = \exp(\mathcal{H}(p_1, p_2, \dots, p_r)) = \exp(-\sum_{i=1}^r p_i \log p_i)$, where $\mathcal{H}(\cdot)$ denotes the Shannon entropy.

By this definition, minimizing $\mathcal{L}_{LDDecorr}$ (equivalently, maximizing $\log \det(K)$) naturally increases the effective rank. Specifically, for the representation correlation matrix K, the log-determinant $\sum_{i=1}^r \log \lambda_i$ is symmetric and concave, reaching its maximum when the spectrum is isotropic. Likewise, the Shannon entropy $\mathcal{H}(p_1, p_2, \ldots, p_r) = -\sum_{i=1}^r p_i \log p_i$ that defines the effective rank is also symmetric and concave, with the same maximum (i.e., isotropy). Thus, maximizing $\log \det K$ pushes singular values away from zero and toward uniformity, increasing the effective rank and yielding eRank(K) = r at K = I.

4.2 PBA: PROTYTYPE-GUIDED BIDIRECTIONAL ALIGNMENT

Another issue induced by label skew is classifier bias. To mitigate this, FedETF (Li et al., 2023) employs a fixed and synthetic ETF classifier shared across clients. We first introduce the supervised loss in FedETF. Specifically, a simplex ETF classifier $\boldsymbol{V} = [\boldsymbol{v}^1, \boldsymbol{v}^2, \dots, \boldsymbol{v}^C] \in \mathbb{R}^{p \times C}$ is randomly initialized according to Eq.(7). Let \boldsymbol{z} denote the feature vector and $f_{\boldsymbol{\Psi}}$ be the projector parameterized by $\boldsymbol{\Psi}$. The projector maps \boldsymbol{z} into the ETF input space and normalize it to obtain the projected vector $\boldsymbol{\mu} = f_{\boldsymbol{\Psi}}(\boldsymbol{z})/\|f_{\boldsymbol{\Psi}}(\boldsymbol{z})\|_2$. Given the ETF classifier with weight matrix $\boldsymbol{V} = [\boldsymbol{v}^1, \boldsymbol{v}^2, \dots, \boldsymbol{v}^C] \in \mathbb{R}^{p \times C}$, the supervised loss in FedETF is defined as:

$$\mathcal{L}_{sup}(\boldsymbol{\theta}, \boldsymbol{\Psi}, \boldsymbol{V}; \boldsymbol{x}, y) = -\log \frac{n_k^y \exp(\beta \cdot \boldsymbol{v}_y^{\top} \boldsymbol{\mu})}{\sum_{c \in [C]} n_k^c \exp(\beta \cdot \boldsymbol{v}_c^{\top} \boldsymbol{\mu})},$$
(12)

where n_k^c is the number of samples in class c and β is a learnable temperature. This loss is inspred by Balanced Softmax (Ren et al., 2020).

The bridge for module synergy. However, the synergy among the feature extractor, projector, and ETF classifier is overlooked. In FedETF, the projector becomes the last trainable layer under a fixed ETF classifier, which can be biased under label skew. Consequently, this layer may be misaligned with the classifier. To address this issue, we first analyze the roles of the feature extractor and projector. The feature extractor produces feature vectors for input samples, while the projector should map them close to the corresponding ETF classifier weights. Class prototypes, as the mean of feature vectors, provide natural bridges for aligning the projector with the ETF classifier, because projected prototypes should coincide with the shared ETF weights. For client k, each local class prototype $p_k^c \in \mathbb{R}^d$ is the mean feature vector within the same class:

$$\boldsymbol{p}_{k}^{c} = \frac{1}{n_{k}^{c}} \sum_{(\boldsymbol{x}, y) \in D_{k}^{c}} f_{\boldsymbol{\theta}_{k}}(\boldsymbol{x}), \quad \forall c \in [C],$$

$$(13)$$

where $D_k^c = \{(x_i, y_i) \in D_k | y_c = c\}$ contains all samples assigned to class c. To provide a uniform input across clients, we calibrate the projector using global prototypes, which are aggregated as:

$$\bar{\boldsymbol{p}}^{c} = \sum_{k \in \mathcal{I}(t)} \frac{n_{k}^{c}}{\sum_{i \in \mathcal{I}^{(t)}} n_{i}^{c}} \boldsymbol{p}_{k}^{c}, \quad \forall c \in [C].$$

$$(14)$$

Projector alignment. Then, we introduce PBA, a prototype-guided bidirectional alignment method that simultaneously aligns the feature extractor and projector via global prototypes. We first describe projector alignment. For each sample (x,c), the projected vector μ should be close to the ETF classifier weight v_c . As discussed above, each projected global prototype $\bar{\mu}^c = f_{\Psi}(\bar{p}^c)/\|f_{\Psi}(\bar{p}^c)\|_2$ should also be close to corresponding ETF classifier weight. Motivated by this, we introduce a loss term to measure the cosine distance between the projected global prototypes and corresponding ETF classifiers:

$$\mathcal{L}_{PA} = \sum_{c \in [C]} \frac{1}{2} \left(1 - \bar{\mu}^c v^c \right)^2, \tag{15}$$

where $\bar{\mu}^c$ and v^c are l_2 normalized global prototypes and classifier weights, respectively. This loss term calibrates the projector, enabling the synergy between the projector and ETF classifier.

Feature extractor alignment. Moreover, to enhance the consistency of the feature extractor, we simultaneously align it with global prototypes. However, similar to CrossEntropy loss, conventional contrastive alignment can be biased under label skew. Inspired by Balanced Softmax (Ren et al., 2020), we incorporate class distributions to balance gradients. The balanced feature alignment loss is defined as:

$$\mathcal{L}_{FA} = -\log \frac{n_k^c \exp(sim(f_{\theta}(\boldsymbol{x}), \bar{\boldsymbol{p}}^c)/\tau)}{\sum_{i=1}^C n_k^i \exp(sim(f_{\theta}(\boldsymbol{x}), \bar{\boldsymbol{p}}^i)/\tau)},$$
(16)

where sim(a, b) denotes cosine similarity and τ is a temperature parameter. By combining projector alignment \mathcal{L}_{PA} and feature alignment \mathcal{L}_{FA} , our PBA enforces the synergy among the feature extracor, projector and ETF classifier.

Local objective of FedBlade. Finally, by integrating LDDecorr and PBA, the local objective of FedBlade can be formulated as:

 $\mathcal{L} = \mathcal{L}_{sup} + \beta \cdot \mathcal{L}_{LDDecorr} + \gamma \cdot (\mathcal{L}_{PA} + \mathcal{L}_{FA}), \tag{17}$

where β controls the strength of feature decorrelation and γ is the weight of prototype-guided bidirectional alignment. Each component addresses a distinct yet interdependent aspect of label skew, and their integration is essential for achieving strong performance, as demonstrated by the ablation results in Tab. 3.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Datasets. We consider three classical datasets, including CIFAR-10/CIFAR-100 (Krizhevsky et al., 2009) and Tiny-ImageNet (Le & Yang, 2015). Following prior works (Wang et al., 2020a; Li et al., 2021; Shi et al., 2023), we adopt a common label skew setting in federated learning, namely Dirichlet distribution $Dir(\alpha)$. The argument α controls the level of label skew, where smaller α means more severe skew. We conduct our experiments on three Dirichlet distributions: Dir(0.05), Dir(0.1) and Dir(0.5).

Baselines. We compare FedBlade with several federated learning methods that address label skew, falling under the following categories: (1) classical FL methods: FedAvg (McMahan et al., 2017) and FedProx (Li et al., 2020); (2) Logits calibration: FedLC (Zhang et al., 2022); (3) Feature alignment: FedProto (Tan et al., 2022) and FedFM (Ye et al., 2023a); (4) Dimensional collapse mitigation: FedDecorr (Shi et al., 2023) and FedRCL (Seo et al., 2024); and (5) Fixed ETF classifier: FedETF (Li et al., 2023).

Implementation details. For all three datasets, we evaluate under two FL settings: (1) partial participation, where 20 clients are randomly sampled from 100 at each round and communication round is 200; and (2) full participation, where all 20 clients participate at each round and communication round is 100. For all datasets, we use MobileNetV2 (Sandler et al., 2018). Local training is performed for 5 epochs using SGD optimizer with a learning rate of 0.01, a momentum of 0.9, and a weight decay of 0.00001. The batch size is 64. β and γ in Eq.(17) are set to 0.005 and 1, respectively. Each experiment is repeated three times with different random seeds {1024, 2025, 4096}, and we report the averaged accuracy over the last 10 rounds. Additional hyperparameter details are provided in Appendix D.

5.2 MAIN RESULTS

Test accuracy. We first evaluate on three datasets under the partial participation setting. We report the averaged accuracy over the last 10 rounds in Tab. 1. The results show that FedBlade consistently outperforms existing methods. In particular, FedBlade provides modest improvements on CIFAR-10 but achieves substantially larger gains on CIFAR-100 and Tiny-ImageNet. This is because that, as the number of classes C increases, maintaining accuracy requires larger effective margins. By mitigating dimensional collapse and aligning the projector with the ETF classifier, FedBlade produces wider decision margins among confusable classes. We also conduct experiments under the full participation setting, with results reported in Appendix E.1.

Convergence speed. Tab. 2 reports the communication round at which each representative method first reaches the specified accuracy. Benefiting from LDDecorr and module synergy, FedBlade achieves substantially faster convergence. Additional results are provided in Appendix E.2.

5.3 ALBATION STUDY

Key components. To assess the effectiveness of the two key components in FedBlade, we conduct an ablation study on CIFAR-100 and Tiny-ImageNet under the partial participation setting. Tab. 3 reports the results across different levels of label skew. Notably, removing both LDDecorr and PBA

Table 1: Accuracy (%) comparisons under the partial partition. 20 clients are selected from 100 clients per round. All results are averaged over 3 runs (mean \pm std). The best and second results are highlighted with bold and underline, respectively.

Method	CIFAR-10			CIFAR-100			Tiny-ImageNet		
	Dir(0.05)	Dir(0.1)	Dir(0.5)	Dir(0.05)	Dir(0.1)	Dir(0.5)	Dir(0.05)	Dir(0.1)	Dir(0.5)
FedAvg	55.19±3.81	69.26±2.56	86.12±0.32	50.70±0.46	55.52±0.41	60.40±0.21	33.72±0.52	37.68±0.33	41.59±0.28
FedProx	53.74 ± 5.13	69.53 ± 3.01	85.94 ± 0.40	50.97 ± 0.43	55.33 ± 0.36	60.41 ± 0.15	33.15 ± 0.56	37.29 ± 0.36	41.64 ± 0.26
FedLC	75.10 ± 0.90	80.71 ± 0.22	86.71 ± 0.12	51.12 ± 0.26	55.35 ± 0.30	60.30 ± 0.19	37.09 ± 0.26	40.12 ± 0.12	42.42 ± 0.25
FedDecorr	57.77 ± 3.51	70.85 ± 2.95	85.78 ± 0.27	50.86 ± 0.26	54.26 ± 0.35	58.87 ± 0.14	35.87 ± 0.51	38.77 ± 0.38	41.82 ± 0.19
FedRCL	52.14 ± 3.71	71.15 ± 1.57	86.91 ± 0.23	50.56 ± 0.24	56.71 ± 0.35	61.32 ± 0.16	31.94 ± 0.54	36.81 ± 0.40	41.95 ± 0.29
FedProto	55.05 ± 4.11	69.35 ± 2.86	85.96 ± 0.30	50.95 ± 0.46	55.81 ± 0.42	60.64 ± 0.21	31.31 ± 0.49	36.47 ± 0.46	42.45 ± 0.28
FedFM	55.04 ± 4.09	69.61 ± 2.84	86.52 ± 0.53	46.55 ± 0.57	54.83 ± 0.55	61.98 ± 0.26	25.41 ± 0.80	33.56 ± 0.45	40.47 ± 0.37
FedETF	75.80 ± 0.46	80.66 ± 0.32	86.56 ± 0.08	51.41 ± 1.18	55.31 ± 0.26	58.81 ± 1.84	37.09 ± 0.29	40.03 ± 0.14	41.96 ± 0.29
FedBlade	75.83 ± 0.70	81.67 ± 0.30	87.90 ± 0.14	54.31 ± 0.19	57.92 ± 0.15	62.07 ± 0.17	39.43 ± 0.17	41.88 ± 0.15	43.63 ± 0.25

Table 2: Convergence speed under Dir(0.05). Left: CIFAR-100. Right: Tiny-ImageNet. 20 clients are selected from 100 clients per round. FedBlade significantly speeds up the convergence of the global model.

Method	40% acc	uracy	50% accuracy		
cuiou	#Rounds	Speedup	#Rounds	Speedup	
FedAvg	85	(1.0×)	184	(1.0×)	
FedBlade	48 —	(1.7×)	105	(1.9×)	
FedDecorr	68	$(1.3\times)$	176	$(1.0 \times)$	
FedETF	74	$(1.1 \times)$	151	(1.2×)	

Method	20% acc	uracy	30% accuracy		
	#Rounds	Speedup	#Rounds	Speedup	
FedAvg	70	(1.0×)	141	(1.0×)	
FedBlade	41 - 1	(1.7×)	81 —	(1.7×)	
FedDecorr	45	(1.6×)	101	$(1.4 \times)$	
FedETF	60	(1.2×)	116	(1.2×)	

degenerates FedBlade into FedETF (i.e., the first row of Tab. 3). We observe that both components are essential. Removing either leads to performance degradation, in some cases even worse than vanilla FedETF. Specifically, using only LDDecorr may prevent the projection space from collapsing into the ETF structure, while using only PBA may exacerbate dimensional collapse. Combining these two components, the inter-class separation is increased and intra-class variance is reduced, enforcing the formation of neural collapse.

Table 3: **Ablation study on key components.** 20 clients are selected from 100 clients per round. The first row is vanilla FedETF. Both components are essential for FedBLADE.

LDDecorr	PBA	CIFAR-100			Tiny-ImageNet		
		Dir(0.05)	Dir(0.1)	Dir(0.5)	Dir(0.05)	Dir(0.1)	Dir(0.5)
		51.41±1.18	55.31±0.26	58.81±1.84	37.09±0.29	40.03±0.14	41.96±0.29
✓		50.98 ± 0.20	53.74 ± 0.13	56.24 ± 0.17	39.20 ± 0.15	40.46 ± 0.20	37.43 ± 0.27
	\checkmark	52.66 ± 0.50	56.42 ± 0.16	61.60 ± 0.19	36.05 ± 0.48	39.55 ± 0.21	41.82 ± 0.46
\checkmark	\checkmark	54.31 ± 0.19	57.92 ± 0.15	62.07 ± 0.17	39.43 ± 0.17	41.88 ± 0.15	43.63 ± 0.25

Feature decorrelation. We evaluate the effectiveness of LDDecorr through an ablation study on feature decorrelation methods. Fig. 2 shows that LDDecorr more effectively prevents tail singular values from collapsing to zero, suggesting that LDDecorr imposes an infinite penalty on small singular values (as discussed in Sec. 4.1). Fig. 3 further shows that Fed-Blade with LDDecorr achieves faster convergence and higher test accuracy than FedBlade with FedDecorr. Besides, FedBlade with either feature decorrelation method consistently outperforms FedETF and FedAvg. To quantify the mitigation of dimensional collapse, we plot the effective rank of the representation correlation

Figure 2: Effects of LDDecorr on mitigating dimensional collapse. We plot the singular values of the representation covariance matrix. The x-axis indicates the indices of the singular values and the y-axis is the logarithm of singular values. LDDecorr effectively prevents the tail singular values from collapsing to zero.

matrix over communication rounds in Fig. 4. As expected, feature decorrelation increases the effective rank. Furthermore, FedBlade with LDDecorr provides stronger mitigation, which is indicated by higher effective rank. These observations verify that (1) mitigating dimensional collapse speeds up global model convergence, and (2) LDDecorr further accelerates this mitigation by imposing infinite penalty on small singular values.

Figure 3: Test accuracy (%) under various label skew settings on CIFAR-100 and Tiny-ImageNet. FedBlade with LDDecorr achieves faster convergence speed.

Figure 4: Effective rank under various label skew settings on CIFAR-100 and Tiny-ImageNet. FedBlade with LDDecorr achieves higher effective rank.

Bidirectional alignment. We conduct an ablation study on the two alignment terms in PBA, namely \mathcal{L}_{FA} and \mathcal{L}_{PA} . As shown in Tab. 4, both terms are essential to PBA. The performance degrades under all label skew settings when removing projector alignment (PA), since projector becomes misaligned with the ETF classifier. Excluding feature alignment (FA) reduces performance under Dir(0.5), where FA is more effective. Moreover, as discussed in Sec. 4.2, incorporating class distributions balances the gradients; thus, removing distribution factor (DF) in Eq.(16) causes significant performance drops under severe skew.

Table 4: **Ablation study on two loss items of PBA.** The dataset is Tiny-ImageNet. "w/o FA" means removing \mathcal{L}_{FA} in Eq.(17), "w/o DF" means removing the distribution factor in Eq.(16), and "w/o PA" means removing \mathcal{L}_{PA} in Eq.(17).

α =	0.05	0.1	0.5
w/o FA w/o DF		41.19±0.11 39.95±0.33	
w/o PA	38.68 ± 0.27	40.48 ± 0.20	42.50±0.28
FedBlade	39.43±0.17	41.88±0.15	43.63±0.25

6 CONCLUSION

In this paper, we take a further step toward label skew in federated learning. We have presented **FedBlade**, a **federated** learning framework with **b**idirectional **a**lignment and feature **de**correlation. Experimental results show that our feature decorrelation method prevents the small singular values from collapsing to zero, further mitigating dimensional collapse. Besides, when fixing ETF classifier across clients, our bidirectional alignment method promotes the synergy among the feature extractor, projector and ETF classifier. Although feature decorrelation effectively mitigates dimensional collapse, this method is sensitive to the decorrelation strength. We will investigate other regularization methods to address dimensional collapse in the future. We hope that FedBlade can inspire more studies on the mitigation of dimensional collapse and FL methods with fixed ETF classifier.

REPRODUCIBILITY STATEMENT

We present the details of our method in Sec. 4 and Algorithm 1. We provide the details of experimental setups in Sec. 5.1 and Appendix D. The calculation of experimental metrics is described in Sec. 5.1. We will provide our code during the rebuttal phase upon request, and release it publicly upon acceptance.

REFERENCES

- Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew Mattina, Paul Whatmough, and Venkatesh Saligrama. Federated learning based on dynamic regularization. In *International Conference on Learning Representations*, 2021.
- Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regularization for self-supervised learning. *arXiv preprint arXiv:2105.04906*, 2021.
- Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto, and Nicu Sebe. Whitening for self-supervised representation learning. In *International conference on machine learning*, pp. 3015–3024. PMLR, 2021.
- XY Han, Vardan Papyan, and David L Donoho. Neural collapse under mse loss: Proximity to and dynamics on the central path. In *International Conference on Learning Representations*, 2022.
- Junlin He, Jinxiao Du, and Wei Ma. Preventing dimensional collapse in self-supervised learning via orthogonality regularization. *Advances in Neural Information Processing Systems*, 37:95579–95606, 2024.
- Wanli Hong and Shuyang Ling. Neural collapse for unconstrained feature model under cross-entropy loss with imbalanced data. *Journal of Machine Learning Research*, 25(192):1–48, 2024.
- Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data distribution for federated visual classification. *arXiv* preprint arXiv:1909.06335, 2019.
- Tianyu Hua, Wenxiao Wang, Zihui Xue, Sucheng Ren, Yue Wang, and Hang Zhao. On feature decorrelation in self-supervised learning. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 9598–9608, 2021.
- Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional collapse in contrastive self-supervised learning. In *International Conference on Learning Representations*, 2022.
- Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In *International conference on machine learning*, pp. 5132–5143. PMLR, 2020.
- Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
- Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.
- Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10713–10722, 2021.
- Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated optimization in heterogeneous networks. *Proceedings of Machine learning and systems*, 2:429–450, 2020.
- Zexi Li, Xinyi Shang, Rui He, Tao Lin, and Chao Wu. No fear of classifier biases: Neural collapse inspired federated learning with synthetic and fixed classifier. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 5319–5329, 2023.
- Mi Luo, Fei Chen, Dapeng Hu, Yifan Zhang, Jian Liang, and Jiashi Feng. No fear of heterogeneity: Classifier calibration for federated learning with non-iid data. *Advances in Neural Information Processing Systems*, 34:5972–5984, 2021.

- Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence and statistics*, pp. 1273–1282. PMLR, 2017.
 - Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal phase of deep learning training. *Proceedings of the National Academy of Sciences*, 117(40): 24652–24663, 2020.
 - Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný, Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. *arXiv preprint arXiv:2003.00295*, 2020.
 - Jiawei Ren, Cunjun Yu, Xiao Ma, Haiyu Zhao, Shuai Yi, et al. Balanced meta-softmax for long-tailed visual recognition. *Advances in neural information processing systems*, 33:4175–4186, 2020.
 - Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality. In 2007 15th European signal processing conference, pp. 606–610. IEEE, 2007.
 - Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 4510–4520, 2018.
 - Seonguk Seo, Jinkyu Kim, Geeho Kim, and Bohyung Han. Relaxed contrastive learning for federated learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 12279–12288, 2024.
 - Yujun Shi, Jian Liang, Wenqing Zhang, Chuhui Xue, Vincent YF Tan, and Song Bai. Understanding and mitigating dimensional collapse in federated learning. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46(5):2936–2949, 2023.
 - Peter Súkeník, Marco Mondelli, and Christoph H Lampert. Deep neural collapse is provably optimal for the deep unconstrained features model. *Advances in Neural Information Processing Systems*, 36:52991–53024, 2023.
 - Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang, and Chengqi Zhang. Fed-proto: Federated prototype learning across heterogeneous clients. In *Proceedings of the AAAI conference on artificial intelligence*, volume 36, pp. 8432–8440, 2022.
 - Tom Tirer and Joan Bruna. Extended unconstrained features model for exploring deep neural collapse. In *International Conference on Machine Learning*, pp. 21478–21505. PMLR, 2022.
 - Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni. Federated learning with matched averaging. In *International Conference on Learning Representations*, 2020a.
 - Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective inconsistency problem in heterogeneous federated optimization. *Advances in neural information processing systems*, 33:7611–7623, 2020b.
 - Zikai Xiao, Zihan Chen, Liyinglan Liu, Yang Feng, Jian Wu, Wanlu Liu, Joey Tianyi Zhou, Howard Hao Yang, and Zuozhu Liu. Fedloge: Joint local and generic federated learning under long-tailed data. *arXiv preprint arXiv:2401.08977*, 2024.
 - Yibo Yang, Shixiang Chen, Xiangtai Li, Liang Xie, Zhouchen Lin, and Dacheng Tao. Inducing neural collapse in imbalanced learning: Do we really need a learnable classifier at the end of deep neural network? *Advances in neural information processing systems*, 35:37991–38002, 2022.
 - Rui Ye, Zhenyang Ni, Chenxin Xu, Jianyu Wang, Siheng Chen, and Yonina C Eldar. Fedfm: Anchorbased feature matching for data heterogeneity in federated learning. *IEEE Transactions on Signal Processing*, 71:4224–4239, 2023a.

 Rui Ye, Mingkai Xu, Jianyu Wang, Chenxin Xu, Siheng Chen, and Yanfeng Wang. Feddisco: Federated learning with discrepancy-aware collaboration. In *International Conference on Machine Learning*, pp. 39879–39902. PMLR, 2023b.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised learning via redundancy reduction. In *International conference on machine learning*, pp. 12310– 12320. PMLR, 2021.

Jianqing Zhang, Yang Liu, Yang Hua, and Jian Cao. Fedtgp: Trainable global prototypes with adaptive-margin-enhanced contrastive learning for data and model heterogeneity in federated learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 38, pp. 16768–16776, 2024.

Jie Zhang, Zhiqi Li, Bo Li, Jianghe Xu, Shuang Wu, Shouhong Ding, and Chao Wu. Federated learning with label distribution skew via logits calibration. In *International Conference on Machine Learning*, pp. 26311–26329. PMLR, 2022.

Jinxin Zhou, Xiao Li, Tianyu Ding, Chong You, Qing Qu, and Zhihui Zhu. On the optimization landscape of neural collapse under mse loss: Global optimality with unconstrained features. In *International Conference on Machine Learning*, pp. 27179–27202. PMLR, 2022.

Tailin Zhou, Jun Zhang, and Danny HK Tsang. Fedfa: Federated learning with feature anchors to align features and classifiers for heterogeneous data. *IEEE Transactions on Mobile Computing*, 23(6):6731–6742, 2023.

A TABLE OF NOTATIONS

Please refer to Tab. 5 for the notations used throughout this paper.

Notation	Description
$\overline{\mathcal{X}}$	Input space
${\mathcal Z}$	Feature space
\mathcal{Y}	Label space
${\cal L}$	Loss function
K	Number of all clients
D_k	Training dataset of client k
C	Number of all classes
n_k	Size of dataset D_k
n_k^c	Number of samples from class c in dataset D_k
$f_{m{ heta}}$	Feature extractor parameterized by θ
$f_{m \Psi}$	Projector parameterized by Ψ
$f_{oldsymbol{\phi}}$	Classifier parameterized by ϕ
$oldsymbol{x}$	Input
$oldsymbol{z}$	Feature vector generated by f_{θ}
y	Label
d	Dimensionality of feature space
p	Dimensionality of projection space
$\mathcal{I}^{(t)}$	Selected clients at round t
$oldsymbol{w}$	Global model
\boldsymbol{w}_k	Local model of client k
$egin{array}{c} \sum \ m{K} \end{array}$	Representation covariance matrix
$oldsymbol{K}$	Representation correlation matrix
V	Weight matrix of ETF classifier
λ_i	<i>i</i> -th singular value
\boldsymbol{p}_k^c	Client k ' local prototype of class c
$ar{oldsymbol{p}^c}$	Global prototype of class c

Table 5: Table of notations.

B ALGORITHM

648

649 650

651 652

683 684

685 686

687

688

689

690 691

692

693

694

696

697

698

699

700

701

The procedure of FedBlade is formally presented in Algorithm 1.

Algorithm 1 FedBlade

```
653
             1: Input: number of communication rounds T, initial model w, local epochs E, learning rate \eta,
654
                  feature decorrelation strength \beta, and bidirectional alignment weight \gamma.
655
             2: for t = 0, 1, \dots, T - 1 do
656
                       // Server executes:
             3:
                       Send global model w^{(t)} to each client
657
             4:
658
                       Send global prototypes \{\bar{p}_c^{(t)}\}_{c\in[C]} to each client
             5:
659
                       // Client executes:
             6:
                       for each client k \in \mathcal{I}^{(t)} in parallel do
660
             7:
                            Set \boldsymbol{w}_k^{(t)} = \boldsymbol{w}^{(t)}
661
             8:
662
                            for epoch e = 1, 2, \dots, E do
             9:
663
            10:
                                 for each mini-batch \mathcal{B} do
                                      Compute supervised loss \mathcal{L}_{sup} by Eq. (12)
664
            11:
                                      Compute feature decorrelation loss \mathcal{L}_{LDDecorr} by Eq. (11)
665
            12:
            13:
                                      Compute projector alignment loss \mathcal{L}_{PA} by Eq. (15)
666
                                      Compute feature alignment loss \mathcal{L}_{FA} by Eq. (16)
            14:
667
                                      \mathcal{L} = \mathcal{L}_{sup} + \beta \cdot \mathcal{L}_{LDDecorr} + \gamma \cdot (\mathcal{L}_{PA} + \mathcal{L}_{FA})\boldsymbol{w}_{k}^{(t)} \leftarrow \boldsymbol{w}_{k}^{(t)} - \eta \nabla \mathcal{L}(\boldsymbol{w}_{k}^{(t)}; \mathcal{B})
            15:
668
            16:
669
            17:
670
            18:
                            end for
671
            19:
                            for c \in [C] do
672
                                 Generate local prototype p_{k,c}^{(t)} by Eq. (13)
            20:
673
                            end for Send \boldsymbol{w}_k^{(t)} and \{\boldsymbol{p}_{k,c}^{(t)}\}_{c\in[C]} to server
            21:
674
            22:
675
                       end for
            23:
676
            24:
                       // Server executes:
677
                       Update global model w^{(t+1)} by Eq. (2)
            25:
678
            26:
                       for each class c \in [C] do
679
                            Update global prototype ar{m{p}}_c^{(t+1)} by Eq. (14)
            27:
680
                       end for
            28:
681
            29: end for
682
```

C DETAILS OF DATASETS

We first ourline the details of the datasets used in our experiments.

- CIFAR-10 dataset contains 60,000 color samples with size of 32*32 pixels. This dataset is divided
 into 10 distinct classes and split into 50,000 training and 10,000 test samples. Each class contains
 6,000 samples.
- CIFAR-100 dataset builds on CIFAR-10 by increasing the number of classes from 10 to 100, while keeping the same image size of 32×32 pixels. It contains the same total number of samples, i.e., 60,000 samples, but with only 600 samples per class. For each class, 500 samples are used for training and 100 samples are used to testing.
- Tiny-ImageNet dataset is a scaled-down version of the larger ImageNet dataset. This dataset is designed to provide a middle ground between small datasets like CIFAR and the massive ImageNet dataset. This dataset contains 200 classes, each with 500 training samples and 50 test samples. The total size is 120,000. The image size is 64×64 pixels.

Then, we introduce the data augmentation used in our experiments. For all three datasets, we follow the standard data augmentation and normalization process. Specifically, we first use Random-Crop(32, padding=4) and RandomHorizontalFlip(). Then, for CIFAR-10 and CIFAR-100, each

Figure 5: Sensitivity analysis of feature decorrelation strength β .

Figure 6: Sensitivity analysis of bidirectional alignment weight γ .

channels (r, g, b) are normalized by mean $\mu = (0.4914, 0.4822, 0.4465)$ and standard deviation $\sigma = (0.2023, 0.1994, 0.2010)$, respectively. For Tiny-ImageNet, each channels are normalized by mean $\mu = (0.47889522, 0.47227842, 0.43047404)$ and standard deviation $\sigma = (0.24205776, 0.23828046, 0.25874835)$. For test dataset, we only perform the normalization process.

D DETAILS OF EXPERIMENTAL SETUPS

All experiments were conducted on a server equipped with two NVIDIA RTX 4090 GPUs, an AMD Ryzen 9 9950X CPU, and 128 GB of RAM. All results were produced using Py- Torch 2.6.0, under Ubuntu 22.04.

For all three datasets under partial participation and full participation, we use MobileNetV2 (Sandler et al., 2018) and adopt SGD as the optimizer. For all methods, the learning rate is set to 0.01, the momentum is set to 0.9, the weight decay is set to 0.00001, the local epoch is set to 5, and the batch size is set to 64. For partial participation setting, the communication round is set to 200; for full participation setting, the communication round is set to 100.

For FedBlade, we turn the feature decorrelation strength $\beta \in \{0.001, 0.005, 0.01, 0.05\}$, and set it to 0.005 according to the sensitivity analysis in Fig. 5. We turn the bidirectional alignment weight $\gamma \in \{0.1, 1.0, 2.0, 5.0\}$, and set it to 1.0 according to the sensitivity analysis in Fig. 6.

Here, we list the hyperparameters for all baselines.

- FedProx (Li et al., 2020): regularization weight μ is set to 0.01.
- FedLC (Zhang et al., 2022): constant τ in the logits calibration is set to 10.
- FedDecorr (Shi et al., 2023): feature decorrelation weight β is set to 10.
- FedRCL (Seo et al., 2024): regularization weight β is set to 0.7, and temperature τ is set to 0.1.
- FedProto (Tan et al., 2022): alignment weight λ is set to 1.
- FedFM (Ye et al., 2023a): alignment weight λ is set to 1, and temperature τ is set to 0.1.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 TEST ACCURACY UNDER FULL PARTICIPATION

We evaluate on three datasets under the full participation setting. Tab. 6 reports the averaged test accuracy over the last 10 rounds. We find that FedBLADE consistently achieves strong performance and outperforms other baselines in most scenarios.

E.2 CONVERGENCE SPEED

As discussed in Sec. 4.1, feature decorrelation helps mitigate dimensional collapse during local training, thereby accelerating the convergence of the global model. Besides, as stated in Sec. 4.2

Table 6: Accuracy (%) comparisons under the full partition. All 20 clients are selected per round. All results are averaged over 3 runs (mean \pm std). The best and second results are highlighted with bold and underline, respectively.

Method	CIFAR-10			CIFAR-100			Tiny-ImageNet		
	$\overline{Dir(0.05)}$	Dir(0.1)	Dir(0.5)	$\overline{Dir(0.05)}$	Dir(0.1)	Dir(0.5)	$\overline{Dir(0.05)}$	Dir(0.1)	Dir(0.5)
FedAvg	67.44±1.02	81.88±0.45	89.86±0.06	57.94±0.26	61.80±0.19	66.82 ± 0.11	43.02±0.44	46.35±0.31	51.24±0.31
FedProx	70.21 ± 1.01	82.99 ± 0.16	89.62 ± 0.06	57.48 ± 0.20	61.87 ± 0.17	66.35 ± 0.20	42.13 ± 0.34	45.35 ± 0.30	50.01 ± 0.28
FedLC	75.09 ± 0.13	84.81 ± 0.13	89.78 ± 0.10	56.63 ± 0.11	61.17 ± 0.16	66.42 ± 0.10	44.73 ± 0.24	47.66 ± 0.33	51.08 ± 0.18
FedDecorr	73.55 ± 0.48	84.07 ± 0.11	89.35 ± 0.11	56.56 ± 0.11	60.59 ± 0.10	65.09 ± 0.11	$\overline{44.34\pm0.26}$	46.63 ± 0.24	50.96 ± 0.25
FedRCL	61.25 ± 0.35	76.67 ± 0.28	89.85 ± 0.12	53.07 ± 0.20	60.37 ± 0.16	67.10 ± 0.17	38.17 ± 0.44	42.86 ± 0.40	48.88 ± 0.34
FedProto	70.67 ± 0.31	83.59 ± 0.10	89.76 ± 0.08	57.17 ± 0.21	61.89 ± 0.13	66.48 ± 0.16	41.05 ± 0.36	45.16 ± 0.32	51.18 ± 0.37
FedFM	66.15 ± 0.54	82.85 ± 1.11	90.20 ± 0.08	52.36 ± 4.17	62.47 ± 0.19	67.63 ± 0.16	37.72 ± 0.50	42.85 ± 0.51	48.65 ± 0.37
FedETF	75.22 ± 0.23	84.66 ± 0.15	89.66 ± 0.12	57.49 ± 0.30	$\overline{61.77\pm0.26}$	$\overline{66.65\pm0.14}$	45.50 ± 0.40	48.59 ± 0.35	51.71 ± 0.35
FedBlade	76.25 ± 0.20	84.20 ± 0.12	90.44 ± 0.06	58.33 ± 0.24	$62.57 \!\pm\! 0.19$	$68.13 {\pm} 0.08$	43.99 ± 0.28	47.69 ± 0.32	51.99 ± 0.30

Figure 7: Test accuracy under various label skew settings on CIFAR-100 and Tiny-ImageNet. FedBLADE achieves faster convergence speed compared with other baselines, especially under severe label skew (e.g., Dir(0.05)).

the synergy among the feature extractor, projector and ETF classifier can further improve the performance of the global model. To compare the performance of different FL methods, we plot the accuracy curve over communication rounds under partial participation setting. Fig. 7 shows the experimental results on CIFAR-100 and Tiny-ImageNet under various label skew settings, including Dir(0.05), Dir(0.1) and Dir(0.5). The results illustrate that FedBlade achieves substantially faster convergence under the above settings, indicating the effectiveness of our LDDecorr and PBA.

To quantify the convergence speed, we report the communication round at which each method first reaches the specified accuracy. For CIFAR-100, the specific accuracy values are 40% and 50%; for Tiny-ImageNet, the specific accuracy values are 20% and 30%. 200+ means the specific accuracy was not reached after 200 rounds. Benifitting from our LDDecorr and module synergy, FedBlade achieves substantially faster convergence under various settings. In particular, we find that feature alignment methods (e.g., FedFM) converge slowly under severe label skew. This is because that, under severe label skew, dimensional collapse occurs and the prototypes used for feature alignment can be biased, which misleads the feature alignment during local training.

Table 7: Convergence speed under CIFAR-100 ($\alpha = 0.05$).

	40% accurac	y	50% accuracy		
	Number of rounds	Speedup	Number of rounds	Speedup	
FedAvg	85	(1.0×)	184	(1.0×)	
FedBlade	48 —	$(1.7\times)$	105	$(1.9\times)$	
FedProx	88	$(1.0\times)$	180	$(1.0\times)$	
FedLC	68	$(1.3\times)$	174	$(1.1\times)$	
FedDecorr	68	$(1.3\times)$	176	$(1.0\times)$	
FedRCL	77	$(1.1\times)$	180	$(1.0\times)$	
FedProto	85	$(1.0\times)$	175	$(1.1\times)$	
FedFM	122	$(1.0\times)$	200+	$(< 0.9 \times)$	
FedETF	74	$(1.1\times)$	151	$(1.2\times)$	

Table 8: Convergence speed under CIFAR-100 (α = 0.1).

	40% accurac	y	50% accuracy		
	Number of rounds	Speedup	Number of rounds	Speedup	
FedAvg	60	(1.0×)	117	(1.0×)	
FedBlade	40	$(1.5\times)$	78	$(1.5\times)$	
FedProx	60	$(1.0\times)$	117	$(1.0\times)$	
FedLC	56	$(1.1\times)$	110	$(1.1\times)$	
FedDecorr	53	$(1.1\times)$	111	$(1.1\times)$	
FedRCL	53	$(1.1\times)$	101	$(1.2\times)$	
FedProto	60	$(1.0\times)$	111	$(1.1\times)$	
FedFM	71	$(0.8 \times)$	131	$(0.9\times)$	
FedETF	57	$(1.1\times)$	111	$(1.1\times)$	

Table 9: Convergence speed under CIFAR-100 (α = 0.5).

	40% accurac	y	50% accuracy		
	Number of rounds	Speedup	Number of rounds	Speedup	
FedAvg	43	(1.0×)	76	(1.0×)	
FedBlade	34	$(1.3\times)$	58	$(1.3\times)$	
FedProx	43	$(1.0\times)$	77	$(1.0\times)$	
FedLC	41	$(1.0\times)$	75	$(1.0\times)$	
FedDecorr	40	$(1.1\times)$	79	$(1.0\times)$	
FedRCL	40	$(1.1\times)$	70	$(1.1\times)$	
FedProto	41	$(1.0\times)$	71	$(1.1\times)$	
FedFM	41	$(1.0\times)$	70	$(1.1\times)$	
FedETF	53	$(0.8\times)$	83	$(0.9\times)$	

Table 10: Convergence speed under Tiny-ImageNet (α = 0.05).

	20% accurac	у	30% accuracy		
	Number of rounds	Speedup	Number of rounds	Speedup	
FedAvg	70	(1.0×)	141	(1.0×)	
FedBlade	41 —	$(1.7\times)$	81	$(1.7\times)$	
FedProx	70	$(1.0\times)$	150	$(0.9\times)$	
FedLC	49	$(1.4\times)$	102	$(1.4\times)$	
FedDecorr	45	$(1.6\times)$	101	$(1.4\times)$	
FedRCL	88	$(0.8\times)$	166	$(0.8 \times)$	
FedProto	82	$(0.9\times)$	170	$(0.9\times)$	
FedFM	130	$(0.5\times)$	200+	$(<0.7\times)$	
FedETF	60	$(1.2\times)$	116	$(1.2\times)$	

Table 11: Convergence speed under Tiny-ImageNet (α = 0.1).

	20% accurac	у	30% accuracy		
	Number of rounds	Speedup	Number of rounds	Speedup	
FedAvg	46	(1.0×)	104	(1.0×)	
FedBlade	37	$(1.2\times)$	67	$(1.5\times)$	
FedProx	51	$(0.9\times)$	104	$(1.0\times)$	
FedLC	40	$(1.1\times)$	81	$(1.3\times)$	
FedDecorr	37	$(1.2\times)$	79	$(1.3\times)$	
FedRCL	63	$(0.7\times)$	121	$(0.9\times)$	
FedProto	57	$(0.8\times)$	114	$(0.9\times)$	
FedFM	74	$(0.6 \times)$	157	$(0.7\times)$	
FedETF	50	$(0.9 \times)$	92	$(0.9\times)$	

Table 12: Convergence speed under Tiny-ImageNet ($\alpha = 0.5$).

20% accuracy 30% accuracy Number of rounds Number of rounds Speedup Speedup FedAvg $(1.0\times)$ **-** $(1.0\times)$ FedBlade $(0.9 \times)$ $(1.1 \times)$ FedProx $(1.0\times)$ **—** $(1.0\times)$ FedLC $(1.1\times)$ $(1.1\times)$ FedDecorr $(1.2 \times)$ $(1.25 \times)$ FedRCL $(0.8 \times)$ 82 - $(0.9 \times)$ FedProto $(0.9 \times)$ $(1.0 \times)$ FedFM $(0.9 \times)$ $(0.8\times)$ **—** FedETF $(0.8 \times)$ $(0.9 \times)$

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs only for language polishing. All contents were line-by-line verified, including contents generated by LLMs.