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ABSTRACT

Data heterogeneity poses a major challenge in federated learning, leading to sig-
nificant degradation in global model performance. Prior studies have shown that
heterogeneity induces dimensional collapse and biased classifiers, which hinder
the learning of both feature extractors and classifiers. To tackle these issues, exist-
ing approaches apply feature decorrelation to mitigate dimensional collapse and
adopt a synthetic classifier with a projector to reduce classifier bias. However,
these decorrelation methods fail to prevent small singular values from collaps-
ing to zero, slowing the mitigation of dimensional collapse. Besides, the synergy
among the feature extractor, projector and synthetic classifier is overlooked, lead-
ing to divergent optimization across clients. To overcome these limitations, we
propose FedBlade, a federated learning framework with bidirectional alignment
and feature decorrelation. Our feature decorrelation method accelerates the miti-
gation of dimensional collapse by yielding exponential gradients, while the bidi-
rectional alignment method enhances synergy among model modules and en-
sures consistency across clients. Extensive experimental results demonstrate that
FedBlade outperforms relevant baselines and achieves faster convergence of the
global model.

1 INTRODUCTION

Federated learning (FL) (McMabhan et al.l 2017) is a decentralized paradigm that trains a global
model across multiple clients without sharing raw data. As privacy concerns grow, FL has attracted
significant attention. A major challenge in FL is data heterogeneity, which arises from discrepancies
in the local data distributions across clients. In particular, this work focuses on the label skew setting,
where the label distribution differs across clients.

Recent work has explored various approaches to address label skew, including regularization (L1
et al.| 2020} |Acar et al.l 2021)), optimization (Reddi et al., |2020), model aggregation (Hsu et al.,
2019; |Ye et al., |2023b), feature alignment (Li et al., [2021} [Tan et al., 2022; Ye et al., 2023a) and
classifier calibration (Luo et al.| 2021; Zhou et al., 2023). Beyond these directions, |Shi et al.| (2023))
reveal that both local and global models suffer from dimensional collapse under label skew, where
representations concentrate in a subspace rather than spanning the full representation space. This
collapse severely degrades model generalization. To address it, |Shi et al.[(2023) propose FedDecorr,
a regularization term that encourages representations to occupy the full ambient space. Specifically,
FedDecorr minimizes the Frobenius norm of the representation correlation matrix, thereby discour-
aging the tail singular values of the representation covariance matrix from collapsing to zero. How-
ever, the gradient of FedDecorr is linear, which limits its ability to penalize small singular values
and hinders the recovery of the ambient representation space.

Another problem induced by heterogeneous data is classifier bias. [Luo et al.|[(2021) find that clas-
sifier layers exhibit greater bias than representation layers, and Zhou et al.| (2023)) show that such
bias creates a vicious cycle between misaligned features and biased classifiers across clients. Recent
works (Li et al.| 2023} |Xiao et al., [2024) have investigated mitigating classifier bias by introducing
a fixed and synthetic equiangular tight frame (ETF) classifier shared across clients. The ETF clas-
sifier enforces feature prototypes to converge to an optimal structure with maximal pairwise angles
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(Papyan et al., 2020; Yang et al.| [2022). To encourage features to collapse into the ETF structure,
FedETF (Li et al., [2023)) employs a projector that maps raw features into a space where neural col-
lapse is more likely to emerge. Thus, FedETF consists of three key modules: a feature extractor,
a projector, and an ETF classifier. However, FedETF overlooks the synergy among these modules,
leading to mismatches between projected features and the ETF classifier.

These two issues arise from distinct modules, i.e., the fea-
ture extractor and projector. We highlight two key chal- === gy

lenges concerning these two modules: Pt
[ il fao
. . . i P
C1l: How can we amplify gradients with respect to small € _,’ |, Feature
singular values of representation covariance matrix? L5 | Decomelation
FedDecorr promotes decorrelation by penalizing the Low-Rank

Frobenius norm of the correlation matrix, but its uni- T Projector

form treatment of entries yields linear gradients that fail -ty
to strongly penalize small singular values, leaving di-

mensional collapse insufficiently mitigated. To address Projector
this issue, it is important to yield larger gradients for the Calibration
small singular values. Motivated by this intuition, we Biased Calibrated

Projection Space Projection Space
propose LDDecorr, a spectrum-aware feature decorrela- LIOBTON SRR patlal PRz,

tion method that maximizes the log-determinant of the
correlation matrix. As analyzed in Sec. .1} LDDecorr
yields exponential gradients that impose infinite penalty
on small singular values, thereby preventing dimensional
collapse more effectively than FedDecorr.

Figure 1: Problem illustration. Un-
der label skew, FL faces two key is-
sues: (1) dimensional collapse, where
features concentrate in a low-rank sub-
space; and (2) projector bias toward
C2: How can we ensure coherent alignment among the head classes, which misaligns projected
feature extractor, projector, and ETF classifier? features with the ETF classifier.

Although the ETF classifier is fixed and shared across clients, the bias of the projector is overlooked.
Inspired by feature alignment methods (Tan et al.,[2022;|Ye et al.,|2023a)), the global prototypes pro-
vide a uniform information, which can also be used to align the projector across clients. Besides, the
prototypes serve as the bridges among the feature extractor, projector and ETF classifier, enhanc-
ing the synergy among these modules. Building on this idea, we propose PBA, a prototype-guided
bidirectional alignment method. PBA uses global prototypes to align the feature extractor and pro-
jector simultaneously during local training, ensuring that the feature spaces are consistent across
clients and projected prototypes are close to corresponding ETF classifiers. As a result, the feature
extractor, projector, and ETF classifier become colinear under PBA.

LDDecorr and PBA address distinct yet interdependent aspects of label skew, and their integration
is essential for achieving strong performance. Specifically, without PBA, it is hard to achieve neural
collapse due to ambient representation space induced by feature decorrelation; without LDDecorr,
the feature space can be collapsed, misleading the generation of global prototypes that are crucial
for the bidirectional alignment. Therefore, we propose FedBlade, a federated learning framework
with bidirectional alignment and feature decorrelation. With the help of these two components, the
inter-class separation is increased and intra-class variance is reduced, enforcing the formation of
neural collapse. Our main contributions are summarized as follows.

* We revisit the feature decorrelation term in federated learning, and propose LDDecorr, a spectrum-
aware feature decorrelation method that enhances the mitigation of dimensional collapse. LD-
Decorr produces exponential gradients, imposing an infinite penalty on small singular values

(Sec.[d1).

* We propose PBA, a bidirectional alignment method that simultaneously calibrates the feature
extractor and projector. PBA enforces the synergy among the feature extractor, projector and ETF

classifier (Sec. [£.2).

* We propose FedBlade, a federated learning framework with bidirectional alignment and feature
decorrelation. Experimental results demonstrate that FedBlade outperforms relevant baselines.



Under review as a conference paper at ICLR 2026

2 RELATE WORK

2.1 LABEL SKEW IN FEDERATED LEARNING

Federated learning (McMahan et al [2017) is a decentralized machine learning paradigm enabling
training a global model without sharing raw training data. However, federated learning suffers from
unstable convergence caused by data heterogeneity. One major challenge of data heterogeneity is
label skew. To tackle this challenge, recent works have investigated a variety of solutions, such
as regularization (Li et al.} [2020; Karimireddy et al., 2020; |Acar et al., 2021), optimization (Reddi
et al.l 2020), model aggregation (Hsu et al.| 2019; Wang et al., [2020b} [Ye et al., |2023b), feature
alignment (Li et al.l [2021}; Tan et al, 20225 |Ye et al., |2023a; [Zhang et al., |2024), logits calibration
(Zhang et al.; 2022), and classifier calibration (Luo et al.} 2021;|Zhou et al., 2023). In particular, this
paper focuses on the classifier bias caused by label skew. [Luo et al.|(2021) find that classifier bias is
greater than in other layers, and propose a federated learning method calibrating the classifier with
virtual features after training. To further address classifier bias, |Li et al.| (2023) propose FedETF,
which employs a synthetic simplex ETF as a fixed classifier shared across all clients. This design
implicitly encourages clients to learn a unified representation space. However, the projector itself
may still be biased, leading to unstable model convergence.

2.2 DIMENSIONAL COLLAPSE

Dimensional collapse is a phenomenon primarily studied in self-supervised learning (SSL) (Er-
molov et al.,[2021; Hua et al., | 2021; Jing et al., 2022; |He et al., [2024)), where learned representations
concentrate in a low-rank subspace and lose per-dimension variance. From a spectral perspective,
dimensional collapse is characterized by a few dominant singular values while the remaining sin-
gular values shrink toward zero. Jing et al.| (2022) formalize this problem in SSL and analyze how
projection heads interact with the singular value spectrum of the embedding space. A line of works
Zbontar et al.| (2021)); Bardes et al.| (2021)) address dimensional collapse by explicitly spreading
variance and reducing redundancy across feature dimensions. |[He et al.| (2024) introduce orthogonal-
ity regularization, mitigating dimensional collapse in representations, hidden features, and weight
matrices. Beyond SSL, dimensional collapse has also been observed in federated learning, where
stronger client heterogeneity exacerbates this problem. To counter this, FedDecorr (Shi et al., 2023)
introduces decorrelation regularization, and |Seo et al.| (2024) propose a relaxed contrastive learning
loss to avoid collapsed representations when incorporating supervised contrastive learning in feder-
ated learning. However, FedDecorr only yields linear gradients, which is insufficient to prevent the
small singular values from collapsing to zero.

2.3 NEURAL COLLAPSE

Neural Collapse (NC) describes a terminal-phase geometry in supervised classification. Empirically,
within-class features concentrate at their means, those means arrange as a simplex equiangular tight
frame, and last-layer weights align with the means (Papyan et al. [2020). Subsequent analyses
under squared loss make neural collapse amenable to theory via the central path description of
gradient flow (Han et al., 2022)) and global-optimality results in the unconstrained features model
(Zhou et al., 2022). Tirer & Brunal (2022)) extend the unconstrained features model with depth and
regularization, and |Sukenik et al.[|(2023) establish neural collapse in multi-layer settings. Although
within-class concentration persists, ETF structure can deform and weight-mean alignment becomes
sample-size dependent, motivating approaches that enforce ETF-like classifiers (Yang et al., [2022;
Hong & Ling, 2024). Building on this idea, |L1 et al,| (2023) mitigate classifier bias and feature
misalignment in federated learning by introducing a fixed ETF classifier.

3 PRELIMINARIES

3.1 FEDERATED LEARNING

In this paper, we consider a federated learning setting with K clients and a central server. Consider-
ing a classification task with C classes, each client k owns a local training dataset Dy, = {x;, yl}zlz’c 1

where nj, = Zle ng, denotes the number of samples. Under data heterogeneity setting, the data
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distribution P(X,)) varies across clients, where X is the input space and ) is the label space.
In particular, this paper focuses on label skew, where the label marginal distribution P())) varies
across clients, i.e., P;()) # P;(Y) for two clients ¢ and j. The goal of federated learning is
to collaboratively train a global model without sharing raw training data. The local objective is
Fy = E(g,y)~p, [L(w; x,y)] and the global objective can be formulated as:

K
min, {F(w) = kZ:l r;ka(w)} , 1)

where n = Zszl ny and L is the loss function. We decompose the model into a feature extractor
fo and a classifier fg, which are parameterized by 6 and ¢, respectively. The feature extractor
fo : X — Z maps the input x into a feature vector z = fg(x) in the feature space Z € R<. Then,
the classifier f maps the feature vector z into the class space RC.

Our study follows the conventional federated learning mechanism FedAvg (McMahan et al., [2017).
In round ¢, the server selects a group of clients Z(*) and sends the global model w to them. After
local training, each selected client k € Z® sends its local model wy, to the server, and the global
model are aggregated as:

D P —— )

w
%k
keZ® ZieI(t) g

3.2 EQUIANGULAR TIGHT FRAME CLASSIFIER

Recent works (Li et al.L[2023; |X1ao0 et al.,[2024) address classifier bias by employing a fixed and syn-
thetic equiangular tight frame (ETF) classifier. The ETF design is inspired by neural collapse (NC)
(Papyan et al., 2020), a phenomenon in which deep classifiers exhibit a set of geometric regularities
at the end of training:

NC1: Within-class variability collapse. The features of samples from the same class converge
to a mean feature vector. For any sample from class c, fg( ) ~ p. and . — 0, where pu, =
nlc >i<y fo(@c,q) is the mean feature of class c and X = - Y71, (fo(®e,i) — pe) (fo(®ei) —pe) T
is the covariance. 4

NC2: Simplex-ETF structure of class means. Consider the global mean pug = % Zil . After
mean-centering and normalization, the class means become equal-norm and equiangular:

[t — nclly = e — pally, =0, Ve, €[C, 3)
C 1
~ca~c’ 7(scc/*7a ) 4 ) 4
(fics i) = G0 = g0 Ve €[C] )
where fi. = it —_:GH2 and J., . is the Kronecker delta symbol (i.e., d. . equals to 1 when ¢ = c

and O otherwise).

NC3: Self-duality between features and classifier. The classifier weights ¢ align with the class
means M = [fi1, fi2, ..., fc]:

— 0, &)

HII¢IIF 1Ml

NC4: Nearest-class-mean decision rule. Because within-class scatter collapses and between-class
means are symmetrically arranged, the linear classifier behaves as:

arg max((a., fo(@)) + be) = argmin|| fo () — prcll2 ©)
where a. and b, represent the weight and bias of the classifier for class c.

The NC observations motivate hard-wiring the last-layer classifier to the simplex-ETF geometry
and training the feature extractor to adapt to it. Concretely, an ETF classifier is a linear head whose
weight matrix V' = [vy,vs, . ..,vc] € RPXC is
c 1
V=yeiVlUe-5
where p is the input dimension of ETF classifier, U € RP*C allows any rotation and satisfies
U'U = I, I is the identity matrix, and 1 is an all-ones vector.

]-Clg)v (7)
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4 METHOD

In this section, we introduce FedBlade, a federated learning framework integrating bidirectional
alignment and feature decorrelation. We present the full algorithm in Appendix [B]

4.1 LDDECORR: ACCELERATE THE MITIGATION OF DIMENSIONAL COLLAPSE

Linear gradients of FedDecorr. To mitigate dimensional collapse caused by label skew, |Shi et al.
(2023) propose a regularization term named FedDecorr. This term regularizes the Frobenius norm
of the representation correlation matrix during local training:

1
EFedDecorr(w; X) = ? ||K||i‘ ’ (8)

where K is the representation correlation matrix. This regularization term forces the correlation
matrix to be full-rank, discouraging the tail singular values from collapsing to zero. However, Fed-
Decorr yields linear gradients and fails to guarantee the singular values A; > 0, since its penalty
remains linear: Vy, = 2\;.

To accelerate the mitigation of dimensional collapse, we revisit the regularization term. Given a
correlation matrix K, the dimensional collapse can be alleviated if K approaches the identity ma-
trix I. A key limitation of FedDecorr is that it treats all entries and implicitly all singular value
deviations uniformly. Intuitively, stronger gradients should be applied to smaller singular values to
more effectively prevent dimensional collapse. Motivated by this, we adopt the Log-Determinant
(LogDet) divergence as the regularization term. The LogDet divergence is definded as follows.

Definition 1 (LogDet Divergence). Let Si be the cone of d x d positive semi-definite (PSD)
matrices. For X, Y € S%, the LogDet divergence is defined as:

Dig(X,Y) =tr(XY ') —logdet(XY ') — d. )
To encourage K to approach the identity matrix I, we minimize their LogDet divergence:
Dig(K,I) = tr(K) — logdet(K) — d. (10)

Since tr(K) = d, the LogDet divergence reduces to minimizing — log det(K ). We therefore for-
mally define LDDecorr as a novel regularization term that minimizes the log-determinant of the
representation correlation matrix during local training:

Lippecorr = — log det(K) (11)

Exponential gradients of LDDecorr. With logdet(K) = . log A;, LDDecorr yields expo-
nential gradients: V, = —1/\;. Unlike the linear gradients of FedDecorr, LDDecorr imposes
an infinite penalty on small singular values, ensuring the correlation matrix remains full-rank and
accelerating the mitigation of dimensional collapse. Experimental results in Sec. [5.3] validate the
superiority of LDDecorr. Importantly, LDDecorr requires only determinant calculation, which is
more efficient than calculating singular values. For further efficiency, we compute K = LLT via
Cholesky factorization and evaluate logdet(K) = 23 . log L;;. Since K is PSD, we stabilize

Cholesky factorization by replacing K with K = K + eI, where ¢ = 10~ 4 serves as a small jitter.

To quantify dimensional collapse, we measure the effective rank (Roy & Vetterli, 2007) of the rep-
resentation covariance matrix, which reflects the effective dimensionality of the feature space. A
higher effective rank indicates a lower degree of collapse. The effective rank is defined as follows.

Definition 2 (Effective Rank). For a matrix A € R™*" with non-zero singular values {\;}_;,
define normalized weights p; = A;/ Z;:1 Aj, where r = min(m,n). The effective rank of A is

defined as eRank(A) = exp(H(p1,p2,---,pr)) = exp(— >_._, pilog p;), where H(-) denotes the
Shannon entropy.

By this definition, minimizing L1, ppecor- (equivalently, maximizing logdet(K)) naturally in-
creases the effective rank. Specifically, for the representation correlation matrix K, the log-
determinant 22:1 log \; is symmetric and concave, reaching its maximum when the spectrum is
isotropic. Likewise, the Shannon entropy H(p1,p2,...,pr) = — » i, p;logp; that defines the
effective rank is also symmetric and concave, with the same maximum (i.e., isotropy). Thus, max-
imizing log det K pushes singular values away from zero and toward uniformity, increasing the
effective rank and yielding eRank(K) = rat K = I.
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4.2 PBA: PROTYTYPE-GUIDED BIDIRECTIONAL ALIGNMENT

Another issue induced by label skew is classifier bias. To mitigate this, FedETF (Li et al.| [2023)
employs a fixed and synthetic ETF classifier shared across clients. We first introduce the supervised
loss in FedETF. Specifically, a simplex ETF classifier V = [v!,v? ... v%] € RP*® is randomly
initialized according to Eq.(7). Let z denote the feature vector and fg be the projector parameterized
by W. The projector maps z into the ETF input space and normalize it to obtain the projected vector
u = fo(2)/||fe(z)|l2. Given the ETF classifier with weight matrix V' = [v!,v?,... v®] €

RP*C | the supervised loss in FedETF is defined as:
nl exp(B - v) )
Peeicy M exp(B vl p)’

where nf, is the number of samples in class c and /3 is a learnable temperature. This loss is inspred
by Balanced Softmax (Ren et al., 2020).

Esup(07\:[lvv;w7y) = —IOg (12)

The bridge for module synergy. However, the synergy among the feature extractor, projector, and
ETF classifier is overlooked. In FedETF, the projector becomes the last trainable layer under a fixed
ETF classifier, which can be biased under label skew. Consequently, this layer may be misaligned
with the classifier. To address this issue, we first analyze the roles of the feature extractor and
projector. The feature extractor produces feature vectors for input samples, while the projector
should map them close to the corresponding ETF classifier weights. Class prototypes, as the mean
of feature vectors, provide natural bridges for aligning the projector with the ETF classifier, because
projected prototypes should coincide with the shared ETF weights. For client &, each local class
prototype p§ € R? is the mean feature vector within the same class:

1
pi=-—- > [fol(z), Vee[C), (13)

g, De
(z,y)€ k

where Df = {(x;,y;) € Di|y. = ¢} contains all samples assigned to class c. To provide a uniform
input across clients, we calibrate the projector using global prototypes, which are aggregated as:
_ ng
ke “~i€I® i

Projector alignment. Then, we introduce PBA, a prototype-guided bidirectional alignment
method that simultaneously aligns the feature extractor and projector via global prototypes. We
first describe projector alignment. For each sample (x,c), the projected vector g should be
close to the ETF classifier weight v.. As discussed above, each projected global prototype
o = fo(P°)/||fe(P°)|2 should also be close to corresponding ETF classifier weight. Motivated
by this, we introduce a loss term to measure the cosine distance between the projected global proto-
types and corresponding ETF classifiers:

1
‘CPA: Z i(l—ﬁc’vc)27 (15)
ce[C]

where 1€ and v° are [ normalized global prototypes and classifier weights, respectively. This loss
term calibrates the projector, enabling the synergy between the projector and ETF classifier.

Feature extractor alignment. Moreover, to enhance the consistency of the feature extractor, we
simultaneously align it with global prototypes. However, similar to CrossEntropy loss, conventional
contrastive alignment can be biased under label skew. Inspired by Balanced Softmax (Ren et al.,
2020), we incorporate class distributions to balance gradients. The balanced feature alignment loss
is defined as:
nj, exp(sim(fo (), p°)/7)

Ly i exp(sim(fo(), 5)/7)
where sim(a, b) denotes cosine similarity and 7 is a temperature parameter. By combining projec-

tor alignment Lp 4 and feature alignment Lz 4, our PBA enforces the synergy among the feature
extracor, projector and ETF classifier.

Lrpa=—log (16)
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Local objective of FedBlade. Finally, by integrating LDDecorr and PBA, the local objective of
FedBlade can be formulated as:

L= Esup + B - LLDDecorr + v (EPA + ‘CFA)v (17)

where [ controls the strength of feature decorrelation and -y is the weight of prototype-guided bidi-
rectional alignment. Each component addresses a distinct yet interdependent aspect of label skew,
and their integration is essential for achieving strong performance, as demonstrated by the ablation
results in Tab.[3

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Datasets. We consider three classical datasets, including CIFAR-10/CIFAR-100 (Krizhevsky
et al.| 2009) and Tiny-ImageNet (Le & Yang, |2015). Following prior works (Wang et al.l 2020a; [Li
et al., 2021} Shi et al., 2023)), we adopt a common label skew setting in federated learning, namely
Dirichlet distribution Dir(«). The argument « controls the level of label skew, where smaller «

means more severe skew. We conduct our experiments on three Dirichlet distributions: Dir(0.05),
Dir(0.1) and Dir(0.5).

Baselines. We compare FedBlade with several federated learning methods that address label skew,
falling under the following categories: (1) classical FL methods: FedAvg (McMahan et al., [2017)
and FedProx (Li et al.|, |2020); (2) Logits calibration: FedLC (Zhang et al., [2022); (3) Feature align-
ment: FedProto (Tan et al.,[2022)) and FedFM (Ye et al.,|2023a)); (4) Dimensional collapse mitigation:
FedDecorr (Shi et al.| [2023)) and FedRCL (Seo et al., 2024); and (5) Fixed ETF classifier: FedETF
(L1 et al., 2023).

Implementation details. For all three datasets, we evaluate under two FL settings: (1) partial
participation, where 20 clients are randomly sampled from 100 at each round and communication
round is 200; and (2) full participation, where all 20 clients participate at each round and communi-
cation round is 100. For all datasets, we use MobileNetV2 (Sandler et al.,|2018). Local training is
performed for 5 epochs using SGD optimizer with a learning rate of 0.01, a momentum of 0.9, and
a weight decay of 0.00001. The batch size is 64. 3 and ~y in Eq.(I7) are set to 0.005 and 1, respec-
tively. Each experiment is repeated three times with different random seeds {1024, 2025, 4096},
and we report the averaged accuracy over the last 10 rounds. Additional hyperparameter details are
provided in Appendix

5.2 MAIN RESULTS

Test accuracy. We first evaluate on three datasets under the partial participation setting. We report
the averaged accuracy over the last 10 rounds in Tab. [T} The results show that FedBlade consistently
outperforms existing methods. In particular, FedBlade provides modest improvements on CIFAR-
10 but achieves substantially larger gains on CIFAR-100 and Tiny-ImageNet. This is because that,
as the number of classes C' increases, maintaining accuracy requires larger effective margins. By
mitigating dimensional collapse and aligning the projector with the ETF classifier, FedBlade pro-
duces wider decision margins among confusable classes. We also conduct experiments under the
full participation setting, with results reported in Appendix [E.1]

Convergence speed. Tab.[2|reports the communication round at which each representative method
first reaches the specified accuracy. Benefiting from LDDecorr and module synergy, FedBlade
achieves substantially faster convergence. Additional results are provided in Appendix [E.2]

5.3 ALBATION STUDY

Key components. To assess the effectiveness of the two key components in FedBlade, we conduct
an ablation study on CIFAR-100 and Tiny-ImageNet under the partial participation setting. Tab. [3]
reports the results across different levels of label skew. Notably, removing both LDDecorr and PBA
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Table 1: Accuracy (%) comparisons under the partial partition. 20 clients are selected from 100
clients per round. All results are averaged over 3 runs (mean = std). The best and second results are
highlighted with bold and underline, respectively.

CIFAR-10 CIFAR-100 Tiny-TmageNet
Dir(0.05) Dir(0.1) Dir(0.5) Dir(0.05) Dir(0.1) Dir(0.5) Dir(0.05) Dir(0.1) Dir(0.5)

FedAvg 55.1943.81 69.26+2.56 86.12+0.32 50.704+0.46 55.52+0.41 60.40+0.21 33.724+0.52 37.684+0.33 41.59+0.28
FedProx  53.74£5.13 69.53+3.01 85.94+0.40 50.97£0.43 55.33+0.36 60.41+0.15 33.15+0.56 37.29£0.36 41.6440.26
FedLC 75.10+£0.90 80.71£0.22 86.71£0.12 51.1240.26 55.35+0.30 60.30£0.19 37.0940.26 40.1240.12 42.42+0.25
FedDecorr 57.774£3.51 70.85+2.95 85.78+0.27 50.86£0.26 54.2640.35 58.871+0.14 35.87+0.51 38.77+£0.38 41.8240.19
FedRCL  52.1443.71 71.15+1.57 86.91£0.23 50.56£0.24 56.714+0.35 61.324+0.16 31.94+0.54 36.81£0.40 41.9540.29
FedProto  55.05+4.11 69.35+2.86 85.96+0.30 50.95+£0.46 55.814£0.42 60.64+0.21 31.31+£0.49 36.47+£0.46 42.4540.28
FedFM 55.04+4.09 69.61+2.84 86.52+0.53 46.554+0.57 54.83+0.55 61.98+0.26 25.414+0.80 33.561+0.45 40.47+0.37
FedETF  75.8040.46 80.661+0.32 86.56+0.08 51.41£1.18 55.314+0.26 58.814+1.84 37.09+0.29 40.03£0.14 41.9640.29
FedBlade 75.83+0.70 81.671+0.30 87.90+0.14 54.31+£0.19 57.9240.15 62.07+0.17 39.43+0.17 41.88+0.15 43.631+0.25

Method

Table 2: Convergence speed under Dir(0.05). Left: CIFAR-100. Right: Tiny-ImageNet. 20
clients are selected from 100 clients per round. FedBlade significantly speeds up the convergence of
the global model.

Method 40% accuracy 50% accuracy Method 20% accuracy 30% accuracy
#Rounds Speedup #Rounds Speedup #Rounds Speedup #Rounds Speedup
FedAvg 85 ] (1.0x) 184 w— (1.0 ) FedAvg 70 (1.0x)  14] e— (1.0x)
FedBlade 48 == | (L7x) 105 === |  (1.9x) FedBlade 41=| (17x) 8] m— | (L7x)
FedDecorr 68 ==| (1.3x) 176 w— (].0x ) FedDecorr ~ 45=| (1.6x)  10] m—] (1.4x)
FedETF 74 w—| (1.1x) 15] m— (12x) FedETF 60 =| (1.2x) 116 m—| (1.2x)

degenerates FedBlade into FedETF (i.e., the first row of Tab. . We observe that both components
are essential. Removing either leads to performance degradation, in some cases even worse than
vanilla FedETF. Specifically, using only LDDecorr may prevent the projection space from collapsing
into the ETF structure, while using only PBA may exacerbate dimensional collapse. Combining
these two components, the inter-class separation is increased and intra-class variance is reduced,
enforcing the formation of neural collapse.

Table 3: Ablation study on key components. 20 clients are selected from 100 clients per round.
The first row is vanilla FedETF. Both components are essential for FedBLADE.

CIFAR-100 Tiny-ImageNet
Dir(0.05)  Dir(0.1) Dir(0.5)  Dir(0.05)  Dir(0.1) Dir(0.5)
51.41£1.18 55.31£0.26 58.81+1.84 37.09+£0.29 40.03+0.14 41.96£0.29

LDDecorr PBA

v 50.98+0.20 53.74+0.13 56.24+0.17 39.20+0.15 40.46+£0.20 37.43+0.27

v 52.661+0.50 56.42+0.16 61.604+0.19 36.05+0.48 39.554+0.21 41.82+0.46

N v 54.31+0.19 57.92+0.15 62.07+0.17 39.43+0.17 41.88+0.15 43.631+0.25
Feature decorrelation. We evaluate the ef- TinylmageNet (& = 0.05) TinyImageNet (& = 0.1)

—— LDDecorr —— LDDecorr
—— FedDecorr

fectiveness of LDDecorr through an ablation
study on feature decorrelation methods. Fig.
shows that LDDecorr more effectively prevents
tail singular values from collapsing to zero,
suggesting that LDDecorr imposes an infinite
penalty on small singular values (as discussed
in Sec. f.1). Fig. [3] further shows that Fed-
Blade with LDDecorr achieves faster conver- Figure 2: Effects of LDDecorr on mitigating di-
gence and higher test accuracy than FedBlade mensional collapse. We plot the singular values
with FedDecorr. Besides, FedBlade with either of the representation covariance matrix. The z-
feature decorrelation method consistently out- axis indicates the indices of the singular values
performs FedETF and FedAvg. To quantify the and the y-axis is the logarithm of singular val-
mitigation of dimensional collapse, we plot the ues. LDDecorr effectively prevents the tail sin-
effective rank of the representation correlation gular values from collapsing to zero.

—— FedDecorr

log singular values
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matrix over communication rounds in Fig.[d] As expected, feature decorrelation increases the effec-
tive rank. Furthermore, FedBlade with LDDecorr provides stronger mitigation, which is indicated
by higher effective rank. These observations verify that (1) mitigating dimensional collapse speeds
up global model convergence, and (2) LDDecorr further accelerates this mitigation by imposing
infinite penalty on small singular values.

CIFAR-100 (a = 0.05)
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Figure 3: Test accuracy (%) under various label skew settings on CIFAR-100 and Tiny-
ImageNet. FedBlade with LDDecorr achieves faster convergence speed.

CIFAR-100 (@ = 0.05) Tiny-ImageNet (@ = 0.1)
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Figure 4: Effective rank under various label skew settings on CIFAR-100 and Tiny-ImageNet.
FedBlade with LDDecorr achieves higher effective rank.

Bidirectional alignment. We conduct an ab-
lation study on the two alignment terms in PBA,
namely Lp4 and Lpa. As shown in Tab. 4]
both terms are essential to PBA. The perfor-
mance degrades under all label skew settings
when removing projector alignment (PA), since
projector becomes misaligned with the ETF
classifier. Excluding feature alignment (FA) re-

Table 4: Ablation study on two loss items
of PBA. The dataset is Tiny-ImageNet. “w/o
FA” means removing L 4 in Eq.(T7), “w/o DF”
means removing the distribution factor in Eq.(16),
and “w/o PA” means removing Lp 4 in Eq..

= 0.05 0.1 0.5
duces performance under Dir(0.5), where FA <
is more effective. Moreover, as discussed in w/o FA 39.36+0.18 41.19+0.11 42.11+0.22
Sec. [.2] incorporating class distributions bal- w/o DF  36.614+0.56 39.9540.33 43.40+0.23
ances the gradients; thus, removing distribution w/o PA  38.684+0.27 40.484+0.20 42.50+0.28
factor (DF) in Eq.(T6) causes significant perfor- "k ypj.4e 39.43+0.17 41.88-0.15 43.63-0.25

mance drops under severe skew.

6 CONCLUSION

In this paper, we take a further step toward label skew in federated learning. We have presented
FedBlade, a federated learning framework with bidirectional alignment and feature decorrelation.
Experimental results show that our feature decorrelation method prevents the small singular values
from collapsing to zero, further mitigating dimensional collapse. Besides, when fixing ETF classifier
across clients, our bidirectional alignment method promotes the synergy among the feature extrac-
tor, projector and ETF classifier. Although feature decorrelation effectively mitigates dimensional
collapse, this method is sensitive to the decorrelation strength. We will investigate other regulariza-
tion methods to address dimensional collapse in the future. We hope that FedBlade can inspire more
studies on the mitigation of dimensional collapse and FL methods with fixed ETF classifier.
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REPRODUCIBILITY STATEMENT

We present the details of our method in Sec. ] and Algorithm [I] We provide the details of experi-
mental setups in Sec. [5.1]and Appendix [D] The calculation of experimental metrics is described in
Sec. We will provide our code during the rebuttal phase upon request, and release it publicly
upon acceptance.
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A TABLE OF NOTATIONS

Please refer to Tab. [5] for the notations used throughout this paper.

Notation Description

X Input space

Z Feature space

Yy Label space

L Loss function

K Number of all clients

Dy, Training dataset of client k
C Number of all classes

nk Size of dataset Dy,

ng, Number of samples from class c in dataset Dy,
fo Feature extractor parameterized by 6
fo Projector parameterized by ¥

fo Classifier parameterized by ¢

T Input

z Feature vector generated by fg

Y Label

d Dimensionality of feature space

P Dimensionality of projection space
z® Selected clients at round ¢

w Global model

wy, Local model of client k

> Representation covariance matrix

K Representation correlation matrix

1% Weight matrix of ETF classifier

A i-th singular value

48 Client £’ local prototype of class ¢
p° Global prototype of class ¢

Table 5: Table of notations.
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B ALGORITHM

The procedure of FedBlade is formally presented in Algorithm [I]

Algorithm 1 FedBlade

1: Input: number of communication rounds 7', initial model w, local epochs F, learning rate 7,
feature decorrelation strength /3, and bidirectional alignment weight ~.
:fort=0,1,..., T —1do
: // Server executes:
Send global model w*) to each client

2
3
4
5: Send global prototypes {ﬁgt)}ce[c] to each client
6: /I Client executes:

7 for each client k € Z(*) in parallel do

8: Set w,(f) = w®

9: for epoche =1,2,..., F do

10: for each mini-batch 5 do

11: Compute supervised loss L., by Eq.

12: Compute feature decorrelation loss L1, ppecorr by Eq. @
13: Compute projector alignment loss £p 4 by Eq. (I3)
14: Compute feature alignment loss L4 by Eq. (16)
15: L= ﬁsup + 5 ' »CLDDecorr + - (»CPA + ﬁFA)
16: 'w,(f) — w,(f) - nVE(w,(;); B)

17: end for

18: end for

19: for c € [C] do

20: Generate local prototype p,(:)c by Eq.

21: end for

22: Send w,(:) and {pﬁl}ce[o] to server

23: end for

24: /I Server executes:

25: Update global model w**+1) by Eq.
26: for each class ¢ € [C] do

27: Update global prototype 159“) by Eq.
28: end for
29: end for

C DETAILS OF DATASETS

We first ourline the details of the datasets used in our experiments.

CIFAR-10 dataset contains 60,000 color samples with size of 32*32 pixels. This dataset is divided
into 10 distinct classes and split into 50,000 training and 10,000 test samples. Each class contains
6,000 samples.

CIFAR-100 dataset builds on CIFAR-10 by increasing the number of classes from 10 to 100, while
keeping the same image size of 32x32 pixels. It contains the same total number of samples, i.e.,
60,000 samples, but with only 600 samples per class. For each class, 500 samples are used for
training and 100 samples are used to testing.

Tiny-ImageNet dataset is a scaled-down version of the larger ImageNet dataset. This dataset is de-
signed to provide a middle ground between small datasets like CIFAR and the massive ImageNet
dataset. This dataset contains 200 classes, each with 500 training samples and 50 test samples.
The total size is 120,000. The image size is 64x64 pixels.

Then, we introduce the data augmentation used in our experiments. For all three datasets, we fol-
low the standard data augmentation and normalization process. Specifically, we first use Random-
Crop(32, padding=4) and RandomHorizontalFlip(). Then, for CIFAR-10 and CIFAR-100, each
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Figure 5: Sensitivity analysis of feature decor-  Figure 6: Sensitivity analysis of bidirectional
relation strength . alignment weight .

channels (r, g, b) are normalized by mean p = (0.4914, 0.4822, 0.4465) and standard deviation o =
(0.2023, 0.1994, 0.2010), respectively. For Tiny-ImageNet, each channels are normalized by mean
= (0.47889522, 0.47227842, 0.43047404) and standard deviation o = (0.24205776, 0.23828046,
0.25874835). For test dataset, we only perform the normalization process.

D DETAILS OF EXPERIMENTAL SETUPS

All experiments were conducted on a server equipped with two NVIDIA RTX 4090 GPUs, an AMD
Ryzen 9 9950X CPU, and 128 GB of RAM. All results were produced using Py- Torch 2.6.0, under
Ubuntu 22.04.

For all three datasets under partial participation and full participation, we use MobileNetV2 (Sandler
et al., 2018)) and adopt SGD as the optimizer. For all methods, the learning rate is set to 0.01, the
momentum is set to 0.9, the weight decay is set to 0.00001, the local epoch is set to 5, and the batch
size is set to 64. For partial participation setting, the communication round is set to 200; for full
participation setting, the communication round is set to 100.

For FedBlade, we turn the feature decorrelation strength 8 € {0.001,0.005,0.01,0.05}, and set it
to 0.005 according to the sensitivity analysis in Fig.[5] We turn the bidirectional alignment weight
~v € {0.1,1.0,2.0,5.0}, and set it to 1.0 according to the sensitivity analysis in Fig. @

Here, we list the hyperparameters for all baselines.

* FedProx (Li et al., 2020): regularization weight y is set to 0.01.

FedLC (Zhang et al.,[2022): constant 7 in the logits calibration is set to 10.

FedDecorr (Shi et al., 2023): feature decorrelation weight 3 is set to 10.

FedRCL (Seo et al.,[2024): regularization weight 3 is set to 0.7, and temperature 7 is set to 0.1.

FedProto (Tan et al.,[2022): alignment weight ) is set to 1.

FedFM (Ye et al.,2023a)): alignment weight X is set to 1, and temperature 7 is set to 0.1.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 TEST ACCURACY UNDER FULL PARTICIPATION
We evaluate on three datasets under the full participation setting. Tab. [f] reports the averaged test

accuracy over the last 10 rounds. We find that FedBLADE consistently achieves strong performance
and outperforms other baselines in most scenarios.

E.2 CONVERGENCE SPEED

As discussed in Sec. [4.1] feature decorrelation helps mitigate dimensional collapse during local
training, thereby accelerating the convergence of the global model. Besides, as stated in Sec.
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Table 6: Accuracy (%) comparisons under the full partition. All 20 clients are selected per round.
All results are averaged over 3 runs (mean = std). The best and second results are highlighted with
bold and underline, respectively.

CIFAR-10 CIFAR-100 Tiny-TmageNet
Dir(0.05) Dir(0.1) Dir(0.5) Dir(0.05) Dir(0.1) Dir(0.5) Dir(0.05) Dir(0.1) Dir(0.5)

FedAvg 67.44+1.02 81.88+0.45 89.86+£0.06 57.9440.26 61.80+0.19 66.82+0.11 43.024+0.44 46.35+0.31 51.24+0.31
FedProx  70.21+1.01 82.994+0.16 89.62+0.06 57.48+£0.20 61.8740.17 66.35+0.20 42.13+0.34 45.35+£0.30 50.014-0.28
FedLC 75.09+0.13 84.81+0.13 89.784+0.10 56.63+0.11 61.17+0.16 66.424+0.10 44.73+0.24 47.66+0.33 51.08+0.18
FedDecorr 73.554+0.48 84.074+0.11 89.35+0.11 56.56£0.11 60.5940.10 65.094+0.11 44.34+0.26 46.63£0.24 50.9640.25
FedRCL  61.254+0.35 76.67+0.28 89.85+0.12 53.07£0.20 60.3740.16 67.10+0.17 38.17+0.44 42.86+0.40 48.884+0.34
FedProto  70.67+£0.31 83.594+0.10 89.76+0.08 57.17£0.21 61.894£0.13 66.48+0.16 41.05+£0.36 45.16£0.32 51.184+0.37
FedFM 66.15+0.54 82.85+£1.11 90.20£0.08 52.3644.17 62.474+0.19 67.63+£0.16 37.724+0.50 42.85+0.51 48.65+0.37
FedETF  75.2240.23 84.661+0.15 89.66+0.12 57.49£0.30 61.77£0.26 66.65+0.14 45.50+£0.40 48.59+0.35 51.7140.35
FedBlade 76.254+0.20 84.201+0.12 90.44+0.06 58.33+£0.24 62.574+0.19 68.13+0.08 43.99+0.28 47.69+0.32 51.9940.30
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Figure 7: Test accuracy under various label skew settings on CIFAR-100 and Tiny-ImageNet.
FedBLADE achieves faster convergence speed compared with other baselines, especially under se-
vere label skew (e.g., Dir(0.05)).

the synergy among the feature extractor, projector and ETF classifier can further improve the per-
formance of the global model. To compare the performance of different FL. methods, we plot the
accuracy curve over communication rounds under partial participation setting. Fig.[/|shows the ex-
perimental results on CIFAR-100 and Tiny-ImageNet under various label skew settings, including
Dir(0.05), Dir(0.1) and Dir(0.5). The results illustrate that FedBlade achieves substantially faster
convergence under the above settings, indicating the effectiveness of our LDDecorr and PBA.
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To quantify the convergence speed, we report the communication round at which each method first
reaches the specified accuracy. For CIFAR-100, the specific accuracy values are 40% and 50%; for
Tiny-ImageNet, the specific accuracy values are 20% and 30%. 200+ means the specific accuracy
was not reached after 200 rounds. Benifitting from our LDDecorr and module synergy, FedBlade
achieves substantially faster convergence under various settings. In particular, we find that feature
alignment methods (e.g., FedFM) converge slowly under severe label skew. This is because that,
under severe label skew, dimensional collapse occurs and the prototypes used for feature alignment
can be biased, which misleads the feature alignment during local training.

Table 7: Convergence speed under CIFAR-100 (« = 0.05).

40% accuracy 50% accuracy

Number of rounds Speedup Number of rounds Speedup
FedAvg 85 mm—] (1.0x) 1 84— (1.0x)
FedBlade 4Q m— | (1.7x) 105 m— | (1.9%)
FedProx Q8 mm—) (1.0x) 1 8() m— (1.0x)
FedLC 68 m— | (1.3%x) 174 e— (1.1x)
FedDecorr 68— (1.3%) 176 e— (1.0x)
FedRCL 77— (1.1x) 18— (1.0x)
FedProto 85— (1.0x) 175 w— (1.1x)
FedFM 122 e—] (1.0x) 200+ —l ()0 )
FedETF 74 we— | (L.1x) 15] m— (1.2x)

Table 8: Convergence speed under CIFAR-100 (o = 0.1).

40% accuracy 50% accuracy

Number of rounds Speedup Number of rounds Speedup
FedAvg 6() mm—] (1.0x) 117 e— (1.0x)
FedBlade 4() | (1.5%) 7§ m— | (1.5%)
FedProx 6() m—] (1.0x) 17— (1.0x)
FedLC 56 mm—] (1.1x) 11() se— (L.1x)
FedDecorr 53— | (1.1x) 11— (1.1x)
FedRCL 53— (L.1x) 10] m— (1.2x)
FedProto 6() — (1.0x) 11— (1.1%)
FedFM 7| — (0.8x) 13— (0.9%)
FedETF 57— (1.1x) 11] se— (1.1x)
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Table 9: Convergence speed under CIFAR-100 (« = 0.5).

40% accuracy

50% accuracy

Number of rounds Speedup Number of rounds Speedup
FedAvg 473 ] (1.0x) 76— (1.0x)
FedBlade 34 | (1.3%x) 58 mm— | (1.3%x)
FedProx 473 ] (1.0x) 77 e (1.0x)
FedLC 4] ] (1.0x) 75— (1.0x)
FedDecorr 4() | (1.1x) 7 —] (1.0x)
FedRCL 4() | (1.1x) 7() e | (1.1x)
FedProto 4] e (1.0x) 7] e— (1.1x)
FedFM 4] ] (1.0x) 77() e | (1.1x)
FedETF 53 m—ia (0.8x) 83 mm— (0.9x)

Table 10: Convergence speed under Tiny-ImageNet (« = 0.05).
20% accuracy 30% accuracy

Number of rounds Speedup Number of rounds Speedup
FedAvg 7() ] (1.0x) 14] — (1.0x)
FedBlade 4] | (1.7x) 8] — I (1.7x)
FedProx 7() me— (1.0x) 15() m— (0.9x%)
FedLC 49 w— | (1.4x) 102 e— (1.4%)
FedDecorr 45 w— | (1.6x) 10] m— (1.4x)
FedRCL 88 mm—m (0.8%x) 166 m— (0.8x)
FedProto 82 m—ln (0.9x%) 170 e—— (0.9%)
FedFM 13() e (0.5%) 200+ m— ()7 )
FedETF 6() | (1.2x) 116 m— (1.2x)

Table 11: Convergence speed under Tiny-ImageNet (o = 0.1).
20% accuracy 30% accuracy

Number of rounds Speedup Number of rounds Speedup
FedAvg 46 (1.0x) 104 — (1.0x)
FedBlade 37 | (1.2x) 67 w— (1.5%x)
FedProx 5] — (0.9%) 104 — (1.0x)
FedLC 4() | (L.1x) Q] — (1.3%x)
FedDecorr 37 | (1.2x) 79 m— (1.3%x)
FedRCL 63—t (0.7x) 12] — (0.9x)
FedProto 57 —n (0.8%x) 114 e— (0.9%)
FedFM 74 e (0.6x) 157 e—— (0.7x)
FedETF 5() (0.9x) 02 m— | (0.9x)
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Table 12: Convergence speed under Tiny-ImageNet (o = 0.5).

20% accuracy 30% accuracy

Number of rounds Speedup Number of rounds Speedup
FedAvg 37 (1.0x) 75— (1.0x)
FedBlade 30 i (0.9%) 66— (1.1%)
FedProx 37 | (1.0x) 77 e—| (1.0x)
FedLC 35 ] (1.1%) 7| —] (1.1x)
FedDecorr 3() | (1.2x) 6() m— | (1.25x%)
FedRCL 46— (0.8%) Q2 mm— (0.9%)
FedProto 30 (0.9%) 76— (1.0x)
FedFM 43 (0.9x%) S (0.8%)
FedETF 46 m—n (0.8x) 79— (0.9%)

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs only for language polishing. All contents were line-by-line verified, including
contents generated by LLMs.
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