

000 STABILIZING HETEROGENEOUS FEDERATED LEARN- 001 ING VIA FEATURE DECORRELATION AND **BILATERAL** 002 **ALIGNMENT** 003

004 **Anonymous authors**
 005
 006

007 Paper under double-blind review
 008
 009

010 ABSTRACT 011

012 Data heterogeneity poses a major challenge in federated learning, leading to significant degradation in global model performance. Prior studies have shown that heterogeneity induces dimensional collapse and biased classifiers, which hinder the learning of both feature extractors and classifiers. To tackle these issues, existing approaches apply feature decorrelation to mitigate dimensional collapse and adopt a synthetic classifier with a projector to reduce classifier bias. However, these decorrelation methods fail to prevent small singular values from collapsing to zero, slowing the mitigation of dimensional collapse. Besides, the synergy among the feature extractor, projector and synthetic classifier is overlooked, leading to divergent optimization across clients. To overcome these limitations, we propose **FedBlade**, a federated learning framework with **bilateral** alignment and feature **decorrelation**. Our feature decorrelation method accelerates the mitigation of dimensional collapse by yielding exponential gradients, while the **bilateral** alignment method enhances synergy among model modules and ensures consistency across clients. Extensive experimental results demonstrate that FedBlade outperforms relevant baselines and achieves faster convergence of the global model.
 013
 014
 015
 016
 017
 018
 019
 020
 021
 022
 023
 024
 025
 026
 027
 028
 029
 030

031 1 INTRODUCTION 032

033 Federated learning (FL) (McMahan et al., 2017) is a decentralized paradigm that trains a global
 034 model across multiple clients without sharing raw data. As privacy concerns grow, FL has attracted
 035 significant attention. A major challenge in FL is data heterogeneity, which arises from discrepancies
 036 in the local data distributions across clients. In particular, this work focuses on the label skew setting,
 037 where the label distribution differs across clients.

038 Recent work has explored various approaches to address label skew, including regularization (Li
 039 et al., 2020; Acar et al., 2021), optimization (Reddi et al., 2020), model aggregation (Hsu et al.,
 040 2019; Ye et al., 2023b), feature alignment (Li et al., 2021; Tan et al., 2022; Ye et al., 2023a) and
 041 classifier calibration (Luo et al., 2021; Zhou et al., 2023). Beyond these directions, Shi et al. (2023)
 042 reveal that both local and global models suffer from dimensional collapse under label skew, where
 043 representations concentrate in a subspace rather than spanning the full representation space. This
 044 collapse severely degrades model generalization. To address it, Shi et al. (2023) propose FedDecorr,
 045 a regularization term that encourages representations to occupy the full ambient space. Specifically,
 046 FedDecorr minimizes the Frobenius norm of the representation correlation matrix, thereby discour-
 047 aging the tail singular values of the representation covariance matrix from collapsing to zero. How-
 048 ever, the gradient of FedDecorr is linear, which limits its ability to penalize small singular values
 049 and hinders the recovery of the ambient representation space.

050 Another problem induced by heterogeneous data is classifier bias. Luo et al. (2021) find that classi-
 051 fier layers exhibit greater bias than representation layers, and Zhou et al. (2023) show that such bias
 052 creates a vicious cycle between misaligned features and biased classifiers across clients. **FedUV**
 053 ([Son et al., 2024](#)) applies two regularizers on pairwise features and logits, aiming to enlarge prediction
 variance and prevent classifier degeneration. Unlike methods that target dimensional collapse
 in the representation space, FedUV focuses on the singular values of the classifier weight matrix.

Recent works (Li et al., 2023; Xiao et al., 2024) have investigated mitigating classifier bias by introducing a fixed and synthetic equiangular tight frame (ETF) classifier shared across clients. The ETF classifier enforces feature prototypes to converge to an optimal structure with maximal pairwise angles (Papyan et al., 2020; Yang et al., 2022). To encourage features to collapse into the ETF structure, FedETF (Li et al., 2023) employs a projector that maps raw features into a space where neural collapse is more likely to emerge. Thus, FedETF consists of three key modules: a feature extractor, a projector, and an ETF classifier. However, FedETF overlooks the synergy among these modules, leading to mismatches between projected features and the ETF classifier.

These two issues arise from distinct modules, i.e., the feature extractor and projector. We highlight two key challenges concerning these two modules:

C1 : How can we amplify gradients with respect to small singular values of representation covariance matrix?

FedDecorr promotes decorrelation by penalizing the Frobenius norm of the correlation matrix, but its uniform treatment of entries yields linear gradients that fail to strongly penalize small singular values, leaving dimensional collapse insufficiently mitigated. To address this issue, it is important to yield larger gradients for the small singular values. Motivated by this intuition, we propose LDDecorr, a spectrum-aware feature decorrelation method that maximizes the log-determinant of the correlation matrix. As analyzed in Sec. 4.1, LDDecorr yields exponential gradients that impose infinite penalty on small singular values, thereby preventing dimensional collapse more effectively than FedDecorr.

C2 : How can we ensure coherent alignment among the feature extractor, projector, and ETF classifier?

Although the ETF classifier is fixed and shared across clients, the bias of the projector is overlooked. Inspired by feature alignment methods (Tan et al., 2022; Ye et al., 2023a), the global prototypes provide a uniform information, which can also be used to align the projector across clients. Besides, the prototypes serve as the bridges among the feature extractor, projector and ETF classifier, enhancing the synergy among these modules. Building on this idea, we propose PBA, a prototype-guided **bilateral** alignment method. PBA uses global prototypes to align the feature extractor and projector simultaneously during local training, ensuring that the feature spaces are consistent across clients and projected prototypes are close to corresponding ETF classifiers. As a result, the feature extractor, projector, and ETF classifier become colinear under PBA.

LDDecorr and PBA address distinct yet interdependent challenges under label skew. LDDecorr prevents dimensional collapse and preserves expressive capacity, which is crucial for generating informative prototypes in PBA. Conversely, PBA imposes structured ETF-like geometry that counteracts potential side effects of strong decorrelation, ensuring that the rank-expansion benefits of LDDecorr translate into improved class separation. Finally, we propose **FedBlade**, a federated learning framework with **bilateral alignment** and **feature decorrelation**. With the help of these two components, the inter-class separation is increased and intra-class variance is reduced, enforcing the formation of neural collapse. Our main contributions are summarized as follows.

- We revisit the feature decorrelation term in federated learning, and propose LDDecorr, a spectrum-aware feature decorrelation method that enhances the mitigation of dimensional collapse. LDDecorr produces exponential gradients, imposing an infinite penalty on small singular values (Sec. 4.1).
- We propose PBA, a **bilateral** alignment method that simultaneously calibrates the feature extractor and projector. PBA enforces the synergy among the feature extractor, projector and ETF classifier (Sec. 4.2).

Figure 1: Problem illustration. Under label skew, FL faces two key issues: (1) dimensional collapse, where features concentrate in a low-rank subspace; and (2) projector bias toward head classes, which misaligns projected features with the ETF classifier.

108 • We propose FedBlade, a federated learning framework with bilateral alignment and feature decorrelation. By pulling representations toward their corresponding ETF directions, PBA provides a
 109 structured geometric anchor that counteracts the potential side effects of strong feature decorrelation, while preserving the intended rank-expansion benefits of LDDecor. Experimental results
 110 demonstrate that FedBlade outperforms relevant baselines.

111

112 **2 RELATED WORK**

113 **2.1 LABEL SKEW IN FEDERATED LEARNING**

114 Federated learning (McMahan et al., 2017) is a decentralized machine learning paradigm enabling
 115 training a global model without sharing raw training data. However, federated learning suffers from
 116 unstable convergence caused by data heterogeneity. One major challenge of data heterogeneity is
 117 label skew. To tackle this challenge, recent works have investigated a variety of solutions, such
 118 as regularization (Li et al., 2020; Karimireddy et al., 2020; Acar et al., 2021), optimization (Reddi
 119 et al., 2020), model aggregation (Hsu et al., 2019; Wang et al., 2020b; Ye et al., 2023b), **batch**
 120 **normalization** (Wang et al., 2023; Zhong et al., 2024; Zhang et al., 2024a), feature alignment (Li
 121 et al., 2021; Tan et al., 2022; Ye et al., 2023a; Guo et al., 2023; Zhang et al., 2024b), logits calibration
 122 (Zhang et al., 2022), and classifier calibration (Luo et al., 2021; Oh et al., 2022; Zhou et al., 2023;
 123 Guo et al., 2023; Son et al., 2024). In particular, this paper focuses on the classifier bias caused by
 124 label skew. Luo et al. (2021) find that classifier bias is greater than in other layers, and propose a
 125 federated learning method calibrating the classifier with virtual features after training. To further
 126 address classifier bias, Li et al. (2023) propose FedETF, which employs a synthetic simplex ETF as
 127 a fixed classifier shared across all clients. This design implicitly encourages clients to learn a unified
 128 representation space. However, the projector itself may still be biased, leading to unstable model
 129 convergence.

130 **2.2 DIMENSIONAL COLLAPSE**

131 Dimensional collapse is a phenomenon primarily studied in self-supervised learning (SSL) (Er-
 132 molov et al., 2021; Hua et al., 2021; Jing et al., 2022; He et al., 2024), where learned representations
 133 concentrate in a low-rank subspace and lose per-dimension variance. From a spectral perspective,
 134 dimensional collapse is characterized by a few dominant singular values while the remaining sin-
 135 gular values shrink toward zero. Jing et al. (2022) formalize this problem in SSL and analyze how
 136 projection heads interact with the singular value spectrum of the embedding space. A line of works
 137 Zbontar et al. (2021); Bardes et al. (2021) address dimensional collapse by explicitly spreading
 138 variance and reducing redundancy across feature dimensions. He et al. (2024) introduce orthogonal-
 139 ity regularization, mitigating dimensional collapse in representations, hidden features, and weight
 140 matrices. Beyond SSL, dimensional collapse has also been observed in federated learning, where
 141 stronger client heterogeneity exacerbates this problem. To counter this, FedDecor (Shi et al., 2023)
 142 introduces decorrelation regularization, and Seo et al. (2024) propose a relaxed contrastive learning
 143 loss to avoid collapsed representations when incorporating supervised contrastive learning in feder-
 144 ated learning. However, FedDecor only yields linear gradients, which is insufficient to prevent the
 145 small singular values from collapsing to zero.

146 **2.3 NEURAL COLLAPSE**

147 Neural Collapse (NC) describes a terminal-phase geometry in supervised classification. Empirically,
 148 within-class features concentrate at their means, those means arrange as a simplex equiangular tight
 149 frame, and last-layer weights align with the means (Papyan et al., 2020). Subsequent analyses
 150 under squared loss make neural collapse amenable to theory via the central path description of
 151 gradient flow (Han et al., 2022) and global-optimality results in the unconstrained features model
 152 (Zhou et al., 2022). Tirer & Bruna (2022) extend the unconstrained features model with depth and
 153 regularization, and Súkeník et al. (2023) establish neural collapse in multi-layer settings. Although
 154 within-class concentration persists, ETF structure can deform and weight-mean alignment becomes
 155 sample-size dependent, motivating approaches that enforce ETF-like classifiers (Yang et al., 2022;
 156 Hong & Ling, 2024). Building on this idea, Li et al. (2023) mitigate classifier bias and feature
 157 misalignment in federated learning by introducing a fixed ETF classifier.

162 **3 PRELIMINARIES**

164 **3.1 FEDERATED LEARNING**

166 In this paper, we consider a federated learning setting with K clients and a central server. Considering
 167 a classification task with C classes, each client k owns a local training dataset $D_k = \{\mathbf{x}_i, y_i\}_{i=1}^{n_k}$,
 168 where $n_k = \sum_{c=1}^C n_k^c$ denotes the number of samples. Under data heterogeneity setting, the data
 169 distribution $P(\mathcal{X}, \mathcal{Y})$ varies across clients, where \mathcal{X} is the input space and \mathcal{Y} is the label space.
 170 In particular, this paper focuses on label skew, where the label marginal distribution $P(\mathcal{Y})$ varies
 171 across clients, i.e., $P_i(\mathcal{Y}) \neq P_j(\mathcal{Y})$ for two clients i and j . The goal of federated learning is
 172 to collaboratively train a global model without sharing raw training data. The local objective is
 173 $F_k := \mathbb{E}_{(\mathbf{x}, y) \sim D_k} [\mathcal{L}(\mathbf{w}; \mathbf{x}, y)]$ and the global objective can be formulated as:

$$\min_{\mathbf{w} \in \mathbb{R}^d} \left\{ F(\mathbf{w}) := \sum_{k=1}^K \frac{n_k}{n} F_k(\mathbf{w}) \right\}, \quad (1)$$

177 where $n = \sum_{k=1}^K n_k$ and \mathcal{L} is the loss function. We decompose the model into a feature extractor
 178 f_{θ} and a classifier f_{ϕ} , which are parameterized by θ and ϕ , respectively. The feature extractor
 179 $f_{\theta} : \mathcal{X} \rightarrow \mathcal{Z}$ maps the input \mathbf{x} into a feature vector $\mathbf{z} = f_{\theta}(\mathbf{x})$ in the feature space $\mathcal{Z} \in \mathbb{R}^d$. Then,
 180 the classifier f_{ϕ} maps the feature vector \mathbf{z} into the class space \mathbb{R}^C .
 181

182 Our study follows the conventional federated learning mechanism FedAvg (McMahan et al., 2017).
 183 In round t , the server selects a group of clients $\mathcal{I}^{(t)}$ and sends the global model \mathbf{w} to them. After
 184 local training, each selected client $k \in \mathcal{I}^{(t)}$ sends its local model \mathbf{w}_k to the server, and the global
 185 model are aggregated as:

$$\mathbf{w}^{(t+1)} = \sum_{k \in \mathcal{I}^{(t)}} \frac{n_k}{\sum_{i \in \mathcal{I}^{(t)}} n_i} \mathbf{w}_k^{(t)}. \quad (2)$$

189 **3.2 EQUIANGULAR TIGHT FRAME CLASSIFIER**

191 Recent works (Li et al., 2023; Xiao et al., 2024) address classifier bias by employing a fixed and syn-
 192 synthetic equiangular tight frame (ETF) classifier. The ETF design is inspired by neural collapse (NC)
 193 (Papyan et al., 2020), a phenomenon in which deep classifiers exhibit a set of geometric regularities
 194 at the end of training:

195 **NC1: Within-class variability collapse.** The features of samples from the same class converge
 196 to a mean feature vector. For any sample from class c , $f_{\theta}(\mathbf{x}) \approx \mu_c$ and $\Sigma_c \rightarrow \mathbf{0}$, where $\mu_c =$
 197 $\frac{1}{n_c} \sum_{i=1}^{n_c} f_{\theta}(\mathbf{x}_{c,i})$ is the mean feature of class c and $\Sigma_c = \frac{1}{n_c} \sum_{i=1}^{n_c} (f_{\theta}(\mathbf{x}_{c,i}) - \mu_c)(f_{\theta}(\mathbf{x}_{c,i}) - \mu_c)^{\top}$
 198 is the covariance.

199 **NC2: Simplex-ETF structure of class means.** Consider the global mean $\mu_G = \frac{1}{C} \sum_{c=1}^C \mu_c$. After
 200 mean-centering and normalization, the class means become equal-norm and equiangular:

$$\|\mu_c - \mu_G\|_2 - \|\mu_{c'} - \mu_G\|_2 \rightarrow 0, \quad \forall c, c' \in [C], \quad (3)$$

$$\langle \tilde{\mu}_c, \tilde{\mu}_{c'} \rangle \rightarrow \frac{C}{C-1} \delta_{c,c'} - \frac{1}{C-1}, \quad \forall c, c' \in [C], \quad (4)$$

205 where $\tilde{\mu}_c = \frac{\mu_c - \mu_G}{\|\mu_c - \mu_G\|_2}$ and $\delta_{c,c'}$ is the Kronecker delta symbol (i.e., $\delta_{c,c'}$ equals to 1 when $c = c'$
 206 and 0 otherwise).

207 **NC3: Self-duality between features and classifier.** The classifier weights ϕ align with the class
 208 means $M = [\tilde{\mu}_1, \tilde{\mu}_2, \dots, \tilde{\mu}_C]$:

$$\left\| \frac{\phi^{\top}}{\|\phi\|_F} - \frac{M}{\|M\|_F} \right\|_F \rightarrow 0, \quad (5)$$

213 **NC4: Nearest-class-mean decision rule.** Because within-class scatter collapses and between-class
 214 means are symmetrically arranged, the linear classifier behaves as:

$$\arg \max_c (\langle \mathbf{a}_c, f_{\theta}(\mathbf{x}) \rangle + b_c) \rightarrow \arg \min_c \|f_{\theta}(\mathbf{x}) - \mu_c\|_2, \quad (6)$$

216 where a_c and b_c represent the weight and bias of the classifier for class c .
 217

218 The NC observations motivate hard-wiring the last-layer classifier to the simplex-ETF geometry
 219 and training the feature extractor to adapt to it. Concretely, an ETF classifier is a linear head whose
 220 weight matrix $\mathbf{V} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_C] \in \mathbb{R}^{p \times C}$ is:

$$221 \quad \mathbf{V} = \sqrt{\frac{C}{C-1}} \mathbf{U} (\mathbf{I}_C - \frac{1}{C} \mathbf{1}_C \mathbf{1}_C^\top), \quad (7)$$

222 where p is the input dimension of ETF classifier, $\mathbf{U} \in \mathbb{R}^{p \times C}$ allows any rotation and satisfies
 223 $\mathbf{U}^\top \mathbf{U} = \mathbf{I}_C$, \mathbf{I}_C is the identity matrix, and $\mathbf{1}_C$ is an all-ones vector.
 224

225 4 METHOD

226 In this section, we introduce FedBlade, a federated learning framework integrating [bilateral](#) align-
 227 ment and feature decorrelation. We present the full algorithm in Appendix B.
 228

229 4.1 LDDECORR: ACCELERATE THE MITIGATION OF DIMENSIONAL COLLAPSE

230 **Linear gradients of FedDecorr.** To mitigate dimensional collapse caused by label skew, Shi et al.
 231 (2023) propose a regularization term named FedDecorr. This term regularizes the Frobenius norm
 232 of the representation correlation matrix during local training:
 233

$$234 \quad \mathcal{L}_{\text{FedDecorr}}(\mathbf{w}; \mathbf{X}) = \frac{1}{d^2} \|\mathbf{K}\|_F^2, \quad (8)$$

235 where \mathbf{K} is the representation correlation matrix. This regularization term forces the correlation
 236 matrix to be full-rank, discouraging the tail singular values from collapsing to zero. However, as
 237 defined in Eq. (8), FedDecorr yields linear gradients and fails to guarantee the singular values $\lambda_i >$
 238 0, since its penalty remains linear: $\nabla_{\lambda_i} = 2\lambda_i/d^2$.
 239

240 To accelerate the mitigation of dimensional collapse, we revisit the regularization term. Given a
 241 correlation matrix \mathbf{K} , the dimensional collapse can be alleviated if \mathbf{K} approaches the identity ma-
 242 trix \mathbf{I} . A key limitation of FedDecorr is that it treats all entries and implicitly all singular value
 243 deviations uniformly. Intuitively, stronger gradients should be applied to smaller singular values to
 244 more effectively prevent dimensional collapse. Motivated by this, we adopt the Log-Determinant
 245 (LogDet) divergence as the regularization term. The LogDet divergence is [defined](#) as follows.
 246

247 **Definition 1 (LogDet Divergence).** Let \mathcal{S}_+^d be the cone of $d \times d$ positive semi-definite (PSD)
 248 matrices. For $\mathbf{X}, \mathbf{Y} \in \mathcal{S}_+^d$, the LogDet divergence is defined as:
 249

$$250 \quad D_{\text{ld}}(\mathbf{X}, \mathbf{Y}) = \text{tr}(\mathbf{XY}^{-1}) - \log \det(\mathbf{XY}^{-1}) - d. \quad (9)$$

251 To encourage \mathbf{K} to approach the identity matrix \mathbf{I} , we minimize their LogDet divergence:
 252

$$253 \quad D_{\text{ld}}(\mathbf{K}, \mathbf{I}) = \text{tr}(\mathbf{K}) - \log \det(\mathbf{K}) - d. \quad (10)$$

254 Since $\text{tr}(\mathbf{K}) = d$, the LogDet divergence in Eq. (10) reduces to minimizing $-\log \det(\mathbf{K})$.
 255 We therefore formally define LDDecorr as a novel regularization term that minimizes the log-
 256 determinant of the representation correlation matrix during local training:
 257

$$258 \quad \mathcal{L}_{\text{LDDecorr}} = -\log \det(\mathbf{K}). \quad (11)$$

259 **Exponential gradients of LDDecorr.** With $\log \det(\mathbf{K}) = \sum_i \log \lambda_i$, LDDecorr yields ex-
 260ponential gradients: $\nabla_{\lambda_i} = -1/\lambda_i$. Unlike the linear gradients of FedDecorr, LDDecorr imposes
 261 an infinite penalty on small singular values, ensuring the correlation matrix remains full-rank and
 262 accelerating the mitigation of dimensional collapse. Experimental results in Sec. 5.3 validate the
 263 superiority of LDDecorr. Importantly, LDDecorr requires only determinant calculation, which is
 264 more efficient than calculating singular values. For further efficiency, we compute $\mathbf{K} = \mathbf{L}\mathbf{L}^\top$ via
 265 Cholesky factorization and evaluate $\log \det(\mathbf{K}) = 2 \sum_i \log \mathbf{L}_{ii}$. Since \mathbf{K} is PSD, we stabilize
 266 Cholesky factorization by replacing \mathbf{K} with $\tilde{\mathbf{K}} = \mathbf{K} + \epsilon \mathbf{I}$, where $\epsilon = 10^{-4}$ serves as a small
 267 jitter. [For a \$d \times d\$ symmetric positive definite matrix, calculating the determinant via Cholesky](#)
 268 [decomposition requires \$\frac{1}{3}d^3\$ FLOPs.](#)
 269

To quantify dimensional collapse, we measure the effective rank (Roy & Vetterli, 2007) of the representation covariance matrix, which reflects the effective dimensionality of the feature space. A higher effective rank indicates a lower degree of collapse. The effective rank is defined as follows.

Definition 2 (Effective Rank). For a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ with non-zero singular values $\{\lambda_i\}_{i=1}^r$, define normalized weights $p_i = \lambda_i / \sum_{j=1}^r \lambda_j$, where $r = \min(m, n)$. The effective rank of \mathbf{A} is defined as $eRank(\mathbf{A}) = \exp(\mathcal{H}(p_1, p_2, \dots, p_r)) = \exp(-\sum_{i=1}^r p_i \log p_i)$, where $\mathcal{H}(\cdot)$ denotes the Shannon entropy.

By this definition, minimizing $\mathcal{L}_{LDDecorr}$ (equivalently, maximizing $\log \det(\mathbf{K})$) naturally increases the effective rank. Specifically, for the representation correlation matrix \mathbf{K} , the log-determinant $\sum_{i=1}^r \log \lambda_i$ is symmetric and concave, reaching its maximum when the spectrum is isotropic. Likewise, the Shannon entropy $\mathcal{H}(p_1, p_2, \dots, p_r) = -\sum_{i=1}^r p_i \log p_i$ that defines the effective rank is also symmetric and concave, with the same maximum (i.e., isotropy). Thus, maximizing $\log \det \mathbf{K}$ pushes singular values away from zero and toward uniformity, increasing the effective rank and yielding $eRank(\mathbf{K}) = r$ at $\mathbf{K} = \mathbf{I}$.

4.2 PBA: PROTOTYPE-GUIDED BILATERAL ALIGNMENT

Another issue induced by label skew is classifier bias. To mitigate this, FedETF (Li et al., 2023) employs a fixed and synthetic ETF classifier shared across clients. We first introduce the supervised loss in FedETF. Specifically, a simplex ETF classifier $\mathbf{V} = [\mathbf{v}^1, \mathbf{v}^2, \dots, \mathbf{v}^C] \in \mathbb{R}^{p \times C}$ is randomly initialized according to Eq.(7). Let \mathbf{z} denote the feature vector and f_{Ψ} be the projector parameterized by Ψ . The projector maps \mathbf{z} into the ETF input space and normalize it to obtain the projected vector $\boldsymbol{\mu} = f_{\Psi}(\mathbf{z}) / \|f_{\Psi}(\mathbf{z})\|_2$. Given the ETF classifier with weight matrix $\mathbf{V} = [\mathbf{v}^1, \mathbf{v}^2, \dots, \mathbf{v}^C] \in \mathbb{R}^{p \times C}$, the supervised loss in FedETF is defined as:

$$\mathcal{L}_{sup}(\boldsymbol{\theta}, \Psi, \mathbf{V}; \mathbf{x}, y) = -\log \frac{n_k^y \exp(\beta \cdot \mathbf{v}_y^\top \boldsymbol{\mu})}{\sum_{c \in [C]} n_k^c \exp(\beta \cdot \mathbf{v}_c^\top \boldsymbol{\mu})}, \quad (12)$$

where n_k^c is the number of samples in class c and β is a learnable temperature. This loss is inspired by Balanced Softmax (Ren et al., 2020).

The bridge for module synergy. However, the synergy among the feature extractor, projector, and ETF classifier is overlooked. In FedETF, the projector becomes the last trainable layer under a fixed ETF classifier, which can be biased under label skew. Consequently, this layer may be misaligned with the classifier. To address this issue, we first analyze the roles of the feature extractor and projector. The feature extractor produces feature vectors for input samples, while the projector should map them close to the corresponding ETF classifier weights. Class prototypes, as the mean of feature vectors, provide natural bridges for aligning the projector with the ETF classifier, because projected prototypes should coincide with the shared ETF weights. For client k , each local class prototype $\mathbf{p}_k^c \in \mathbb{R}^d$ is the mean feature vector within the same class:

$$\mathbf{p}_k^c = \frac{1}{n_k^c} \sum_{(\mathbf{x}, y) \in D_k^c} f_{\theta_k}(\mathbf{x}), \quad \forall c \in [C], \quad (13)$$

where $D_k^c = \{(\mathbf{x}_i, y_i) \in D_k | y_i = c\}$ contains all samples assigned to class c . To provide a uniform input across clients, we calibrate the projector using global prototypes, which are aggregated as:

$$\bar{\mathbf{p}}^c = \sum_{k \in \mathcal{I}^{(t)}} \frac{n_k^c}{\sum_{i \in \mathcal{I}^{(t)}} n_i^c} \mathbf{p}_k^c, \quad \forall c \in [C]. \quad (14)$$

Projector alignment. Then, we introduce PBA, a prototype-guided bilateral alignment method that simultaneously aligns the feature extractor and projector via global prototypes. We first describe projector alignment. For each sample (\mathbf{x}, c) , the projected vector $\boldsymbol{\mu}$ should be close to the ETF classifier weight \mathbf{v}^c . As discussed above, each projected global prototype $\bar{\boldsymbol{\mu}}^c = f_{\Psi}(\bar{\mathbf{p}}^c) / \|f_{\Psi}(\bar{\mathbf{p}}^c)\|_2$ should also be close to corresponding ETF classifier weight. Motivated by this, we introduce a loss term to measure the cosine distance between the projected global prototypes and corresponding ETF classifiers:

$$\mathcal{L}_{PA} = \sum_{c \in [C]} \frac{1}{2} (1 - \bar{\boldsymbol{\mu}}_c^\top \mathbf{v}^c)^2, \quad (15)$$

324 where $\bar{\mu}^c$ and \bar{v}^c are l_2 normalized global prototypes and classifier weights, respectively. This loss
 325 term calibrates the projector, enabling the synergy between the projector and ETF classifier.
 326

327 **Feature extractor alignment.** Moreover, to enhance the consistency of the feature extractor, we
 328 simultaneously align it with global prototypes. However, similar to CrossEntropy loss, conventional
 329 contrastive alignment can be biased under label skew. Inspired by Balanced Softmax (Ren et al.,
 330 2020), we incorporate class distributions to balance gradients. The balanced feature alignment loss
 331 is defined as:

$$332 \quad \mathcal{L}_{FA} = -\log \frac{n_k^c \exp(sim(f_{\theta}(\mathbf{x}), \bar{p}^c)/\tau)}{\sum_{i=1}^C n_k^i \exp(sim(f_{\theta}(\mathbf{x}), \bar{p}^i)/\tau)}, \quad (16)$$

334 where $sim(\mathbf{a}, \mathbf{b})$ denotes cosine similarity and τ is a temperature parameter. By combining projector
 335 alignment \mathcal{L}_{PA} and feature alignment \mathcal{L}_{FA} , our PBA enforces the synergy among the feature
 336 extracor, projector and ETF classifier.

337 **Local objective of FedBlade.** Finally, by integrating LDDecor and PBA, the local objective of
 339 FedBlade can be formulated as:

$$340 \quad \mathcal{L} = \mathcal{L}_{sup} + \beta \cdot \mathcal{L}_{LDDecor} + \gamma \cdot (\mathcal{L}_{PA} + \mathcal{L}_{FA}), \quad (17)$$

342 where β controls the strength of feature decorrelation and γ is the weight of prototype-guided bi-
 343 lateral alignment. Two component address distinct yet interdependent challenges under label skew,
 344 and their integration is essential for achieving strong performance, as demonstrated by the ablation
 345 results in Tab. 3.

346 5 EXPERIMENTS

349 5.1 EXPERIMENTAL SETUPS

351 **Datasets.** We consider three classical datasets, including CIFAR-10/CIFAR-100 (Krizhevsky
 352 et al., 2009) and Tiny-ImageNet (Le & Yang, 2015). Following prior works (Wang et al., 2020a; Li
 353 et al., 2021; Shi et al., 2023), we adopt a common label skew setting in federated learning, namely
 354 Dirichlet distribution $Dir(\alpha)$. The argument α controls the level of label skew, where smaller α
 355 means more severe skew. We conduct our experiments on three Dirichlet distributions: $Dir(0.05)$,
 356 $Dir(0.1)$ and $Dir(0.5)$.

357 **Baselines.** We compare FedBlade with several federated learning methods that address label skew,
 358 falling under the following categories: (1) classical FL methods: FedAvg (McMahan et al., 2017)
 359 and FedProx (Li et al., 2020); (2) Logits calibration: FedLC (Zhang et al., 2022); (3) Feature align-
 360 ment: FedProto (Tan et al., 2022) and FedFM (Ye et al., 2023a); (4) Dimensional collapse mitigation:
 361 FedDecorr (Shi et al., 2023) and FedRCL (Seo et al., 2024); and (5) Fixed ETF classifier: FedETF
 362 (Li et al., 2023).

364 **Implementation details.** For all three datasets, we evaluate under two FL settings: (1) partial
 365 participation, where 20 clients are randomly sampled from 100 at each round and communication
 366 round is 200; and (2) full participation, where all 20 clients participate at each round and communica-
 367 tion round is 100. For all datasets, we use MobileNetV2 (Sandler et al., 2018). Local training is
 368 performed for 5 epochs using SGD optimizer with a learning rate of 0.01, a momentum of 0.9, and
 369 a weight decay of 0.00001. The batch size is 64. β and γ in Eq.(17) are set to 0.005 and 1, respec-
 370 tively. Each experiment is repeated three times with different random seeds {1024, 2025, 4096},
 371 and we report the averaged accuracy over the last 10 rounds. Additional hyperparameter details are
 372 provided in Appendix D.

373 5.2 MAIN RESULTS

375 **Test accuracy.** We first evaluate on three datasets under the partial participation setting. We report
 376 the averaged accuracy over the last 10 rounds in Tab. 1. The results show that FedBlade consistently
 377 outperforms existing methods. In particular, FedBlade provides modest improvements on CIFAR-
 10 but achieves substantially larger gains on CIFAR-100 and Tiny-ImageNet. This is because that

378 decision boundaries become geometrically narrower as the number of classes C increases, making
 379 classification more sensitive to feature bias. By mitigating dimensional collapse and aligning the
 380 projector with the ETF classifier, FedBlade produces wider decision margins among confusable
 381 classes. We also conduct experiments under the full participation setting, with results reported in
 382 Appendix E.1.

383
 384 **Table 1: Accuracy (%) comparisons under the partial partition.** 20 clients are selected from 100
 385 clients per round. All results are averaged over 3 runs (mean \pm std). The best and second results are
 386 highlighted with bold and underline, respectively.

Method	CIFAR-10			CIFAR-100			Tiny-ImageNet		
	<i>Dir</i> (0.05)	<i>Dir</i> (0.1)	<i>Dir</i> (0.5)	<i>Dir</i> (0.05)	<i>Dir</i> (0.1)	<i>Dir</i> (0.5)	<i>Dir</i> (0.05)	<i>Dir</i> (0.1)	<i>Dir</i> (0.5)
FedAvg	55.19 \pm 3.81	69.26 \pm 2.56	86.12 \pm 0.32	50.70 \pm 0.46	55.52 \pm 0.41	60.40 \pm 0.21	33.72 \pm 0.52	37.68 \pm 0.33	41.59 \pm 0.28
FedProx	53.74 \pm 5.13	69.53 \pm 3.01	85.94 \pm 0.40	50.97 \pm 0.43	55.33 \pm 0.36	60.41 \pm 0.15	33.15 \pm 0.56	37.29 \pm 0.36	41.64 \pm 0.26
FedLC	75.10 \pm 0.90	80.71 \pm 0.22	86.71 \pm 0.12	51.12 \pm 0.26	55.35 \pm 0.30	60.30 \pm 0.19	37.09 \pm 0.26	40.12 \pm 0.12	42.42 \pm 0.25
FedDecorr	57.77 \pm 3.51	<u>70.85\pm2.95</u>	85.78 \pm 0.27	50.86 \pm 0.26	54.26 \pm 0.35	58.87 \pm 0.14	<u>35.87\pm0.51</u>	38.77 \pm 0.38	41.82 \pm 0.19
FedRCL	52.14 \pm 3.71	71.15 \pm 1.57	86.91 \pm 0.23	50.56 \pm 0.24	56.71 \pm 0.35	61.32 \pm 0.16	31.94 \pm 0.54	36.81 \pm 0.40	41.95 \pm 0.29
FedProto	55.05 \pm 4.11	69.35 \pm 2.86	85.96 \pm 0.30	50.95 \pm 0.46	55.81 \pm 0.42	60.64 \pm 0.21	31.31 \pm 0.49	36.47 \pm 0.46	42.45 \pm 0.28
FedFM	55.04 \pm 4.09	69.61 \pm 2.84	86.52 \pm 0.53	46.55 \pm 0.57	54.83 \pm 0.55	61.98 \pm 0.26	25.41 \pm 0.80	33.56 \pm 0.45	40.47 \pm 0.37
FedETF	75.80 \pm 0.46	80.66 \pm 0.32	86.56 \pm 0.08	51.41 \pm 1.18	55.31 \pm 0.26	<u>58.81\pm1.84</u>	37.09 \pm 0.29	40.03 \pm 0.14	41.96 \pm 0.29
FedBlade	75.83\pm0.70	81.67\pm0.30	87.90\pm0.14	54.31\pm0.19	57.92\pm0.15	62.07\pm0.17	39.43\pm0.17	41.88\pm0.15	43.63\pm0.25

397
 398 **Table 2: Convergence speed under *Dir*(0.05).** **Left:** CIFAR-100. **Right:** Tiny-ImageNet. 20
 399 clients are selected from 100 clients per round. FedBlade significantly speeds up the convergence of
 400 the global model.

Method	40% accuracy		50% accuracy		Method	20% accuracy		30% accuracy		
	#Rounds	Speedup	#Rounds	Speedup		#Rounds	Speedup	#Rounds	Speedup	
FedAvg	85		(1.0 \times)	184		(1.0 \times)	FedAvg	70		(1.0 \times)
FedBlade	48		(1.7\times)	105		(1.9\times)	FedBlade	41		(1.7\times)
FedDecorr	68		(1.3 \times)	176		(1.0 \times)	FedDecorr	45		(1.6 \times)
FedETF	74		(1.1 \times)	151		(1.2 \times)	FedETF	60		(1.2 \times)

401
 402 **Convergence speed.** Tab. 2 reports the communication round at which each representative method
 403 first reaches the specified accuracy. Benefiting from LDDecorr and module synergy, FedBlade
 404 achieves substantially faster convergence. Additional results are provided in Appendix E.8.

411 5.3 ALBATION STUDY

412
 413 **Key components.** To assess the effectiveness of the two key components in FedBlade, we conduct
 414 an ablation study on CIFAR-100 and Tiny-ImageNet under the partial participation setting. Tab. 3
 415 reports the results across different levels of label skew. Notably, removing both LDDecorr and PBA
 416 degenerates FedBlade into FedETF (i.e., the first row of Tab. 3). We observe that both compo-
 417 nents are essential. Removing either leads to performance degradation, in some cases even worse
 418 than vanilla FedETF. **The synergy emerges because each module provides what the other lacks.**
 419 **LDDecorr ensures that the representation space retains enough dimensionality for PBA to gen-
 420 erate meaningful prototypes, while PBA imposes structured geometry that counteracts the potential
 421 instability caused by strong decorrelation.**

422
 423 **Table 3: Ablation study on key components.** 20 clients are selected from 100 clients per round.
 424 The first row is vanilla FedETF. Both components are essential for FedBLADE.

LDDecorr	PBA	CIFAR-100			Tiny-ImageNet		
		<i>Dir</i> (0.05)	<i>Dir</i> (0.1)	<i>Dir</i> (0.5)	<i>Dir</i> (0.05)	<i>Dir</i> (0.1)	<i>Dir</i> (0.5)
✓		51.41 \pm 1.18	55.31 \pm 0.26	58.81 \pm 1.84	37.09 \pm 0.29	40.03 \pm 0.14	41.96 \pm 0.29
	✓	50.98 \pm 0.20	53.74 \pm 0.13	56.24 \pm 0.17	39.20 \pm 0.15	40.46 \pm 0.20	37.43 \pm 0.27
	✓	52.66 \pm 0.50	56.42 \pm 0.16	61.60 \pm 0.19	36.05 \pm 0.48	39.55 \pm 0.21	41.82 \pm 0.46
✓	✓	54.31\pm0.19	57.92\pm0.15	62.07\pm0.17	39.43\pm0.17	41.88\pm0.15	43.63\pm0.25

432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
Feature decorrelation. We evaluate the effectiveness of LDDecorr through an ablation study on feature decorrelation methods. Fig. 2 shows that LDDecorr more effectively prevents tail singular values from collapsing to zero, suggesting that LDDecorr imposes an infinite penalty on small singular values (as discussed in Sec. 4.1). Fig. 3 further shows that Fed-Blade with LDDecorr achieves faster convergence and higher test accuracy than FedBlade with FedDecor. Besides, FedBlade with either feature decorrelation method consistently outperforms FedETF and FedAvg. To quantify the mitigation of dimensional collapse, we plot the effective rank of the representation correlation matrix over communication rounds in Fig. 4. In particular, we evaluate the effective rank in the output space of projector for FedETF and FedBlade. This can measure the final embedding space used by the classifier. As expected, feature decorrelation increases the effective rank. Furthermore, FedBlade with LDDecorr provides stronger mitigation, which is indicated by higher effective rank. These observations verify that (1) mitigating dimensional collapse speeds up global model convergence, and (2) LDDecorr further accelerates this mitigation by imposing infinite penalty on small singular values.

453
 454
 455
 456
 457
 458
 459
Figure 3: Test accuracy (%) under various label skew settings on CIFAR-100 and Tiny-ImageNet. FedBlade with LDDecorr achieves faster convergence speed.

460
 461
 462
Figure 4: Effective rank under various label skew settings on CIFAR-100 and Tiny-ImageNet. The effective rank is computed in the output space of projector. FedBlade with LDDecorr achieves higher effective rank.

463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 To evaluate the effective rank of all methods, we compute this metric in the output space of feature extractor that is shared across architectures. The results on CIFAR-100 ($\alpha = 0.05$) and Tiny-ImageNet ($\alpha = 0.05$) are shown in Fig. 5, and more results are provided in Appendix E.4. These results indicate that *effective rank and accuracy are not strictly monotonic*. Once feature diversity is sufficient, excessive rank expansion can degrade class structure. This phenomenon can be supported by the observations in CW-RGP (Weng et al., 2022), where over-whitened features can break the potential manifold the examples in the same class belong to, making the learning more difficult. Besides, appropriate effective rank can be also supported by neural collapse (Papyan et al., 2020), where good generalization is associated with structured high-dimensional geometries (i.e., simplex ETF), rather than arbitrarily increasing the dimensionality of representations. Combining LDDecorr with PBA yields both higher effective rank and a more structured ETF-like geometry, explaining why FedBlade achieves stronger performance.

476
 477
 478
 479
 480
Figure 2: Effects of LDDecorr on mitigating dimensional collapse. We plot the singular values of the representation covariance matrix. The x -axis indicates the indices of the singular values and the y -axis is the logarithm of singular values. LDDecorr effectively prevents the tail singular values from collapsing to zero.

481
 482
 483
 484
 485
 In particular, we evaluate the effective rank in the output space of projector for FedETF and FedBlade. This can measure the final embedding space used by the classifier. As expected, feature decorrelation increases the effective rank. Furthermore, FedBlade with LDDecorr provides stronger mitigation, which is indicated by higher effective rank. These observations verify that (1) mitigating dimensional collapse speeds up global model convergence, and (2) LDDecorr further accelerates this mitigation by imposing infinite penalty on small singular values.

Figure 5: Effective rank on CIFAR-100 ($\alpha = 0.05$) and Tiny-ImageNet ($\alpha = 0.05$). The effective rank is computed in the output space of feature extractor.

Bilateral alignment. We ablate the two alignment terms in PBA, namely \mathcal{L}_{FA} and \mathcal{L}_{PA} . Tab. 4 shows that both terms are essential. Removing projector alignment (PA) misaligns the projector with the ETF classifier, leading to consistent degradation across all label-skew levels. Excluding feature alignment (FA) reduces performance under $Dir(0.5)$, where FA is more effective. Moreover, as discussed in Sec. 4.2, incorporating class distributions balances the gradients; thus, removing distribution factor (DF) in Eq.(16) causes significant performance drops under severe skew.

Quantitative analysis of PBA. To demonstrate that PBA encourages neural collapse, we quantify two standard metrics on CIFAR-100: within-class variance (**NC1**) and deviation from the simplex ETF structure (**NC2**), where lower values indicate stronger neural-collapse behavior. As shown in Tab. 5, adding PBA consistently reduces both **NC1** and **NC2** across all heterogeneity settings, demonstrating that PBA promotes tighter class clusters and more ETF-like feature geometry. These results provide direct quantitative evidence that PBA contributes to the formation of neural collapse.

6 CONCLUSION

In this paper, we take a further step toward label skew in federated learning. We have presented **FedBlade**, a federated learning framework with **bilateral alignment** and feature **decorrelation**. Experimental results show that our feature decorrelation method prevents the small singular values from collapsing to zero, further mitigating dimensional collapse. Besides, when fixing ETF classifier across clients, our **bilateral alignment** method promotes the synergy among the feature extractor, projector and ETF classifier. **The two components address distinct yet interdependent challenges under label skew.** Although feature decorrelation effectively mitigates dimensional collapse, this method is sensitive to the decorrelation strength. We will investigate other regularization methods to address dimensional collapse in the future. We hope that FedBlade can inspire more studies on the mitigation of dimensional collapse and FL methods with fixed ETF classifier.

Table 4: **Ablation study on two loss terms of PBA.** “w/o FA” means removing \mathcal{L}_{FA} in Eq.(17), “w/o DF” means removing the distribution factor in Eq.(16), and “w/o PA” means removing \mathcal{L}_{PA} in Eq.(17).

$\alpha =$	0.05	0.1	0.5
w/o FA	39.36 ± 0.18	41.19 ± 0.11	42.11 ± 0.22
w/o DF	36.61 ± 0.56	39.95 ± 0.33	43.40 ± 0.23
w/o PA	38.68 ± 0.27	40.48 ± 0.20	42.50 ± 0.28
FedBlade	39.43 ± 0.17	41.88 ± 0.15	43.63 ± 0.25

Table 5: **The efficacy of PBA on enforcing neural collapse.** ↓ means that a lower value is better.

$Dir(\alpha)$	Method	NC1 ↓	NC2 ↓
$Dir(0.05)$	w/o PBA	0.6425	22.3306
	w/ PBA	0.5669	18.5304
$Dir(0.1)$	w/o PBA	0.6367	21.4161
	w/ PBA	0.5268	17.0571
$Dir(0.5)$	w/o PBA	0.6260	20.8275
	w/ PBA	0.4762	16.3720

540 REPRODUCIBILITY STATEMENT
541

542 We present the details of our method in Sec. 4 and Algorithm 1. We provide the details of exper-
543 imental setups in Sec. 5.1 and Appendix D. The calculation of experimental metrics is described in
544 Sec. 5.1. We will provide our code during the rebuttal phase upon request, and release it publicly
545 upon acceptance.

546
547 REFERENCES
548

549 Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew Mattina, Paul Whatmough, and
550 Venkatesh Saligrama. Federated learning based on dynamic regularization. In *International Con-
551 ference on Learning Representations*, 2021.

552 Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regulariza-
553 tion for self-supervised learning. *arXiv preprint arXiv:2105.04906*, 2021.

554 Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto, and Nicu Sebe. Whitening for self-
555 supervised representation learning. In *International conference on machine learning*, pp. 3015–
556 3024. PMLR, 2021.

557 Yongxin Guo, Xiaoying Tang, and Tao Lin. Fedbr: Improving federated learning on heterogeneous
558 data via local learning bias reduction. In *International conference on machine learning*, pp.
559 12034–12054. PMLR, 2023.

560 XY Han, Vardan Papyan, and David L Donoho. Neural collapse under mse loss: Proximity to and
561 dynamics on the central path. In *International Conference on Learning Representations*, 2022.

562 Junlin He, Jinxiao Du, and Wei Ma. Preventing dimensional collapse in self-supervised learning
563 via orthogonality regularization. *Advances in Neural Information Processing Systems*, 37:95579–
564 95606, 2024.

565 Wanli Hong and Shuyang Ling. Neural collapse for unconstrained feature model under cross-
566 entropy loss with imbalanced data. *Journal of Machine Learning Research*, 25(192):1–48, 2024.

567 Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
568 distribution for federated visual classification. *arXiv preprint arXiv:1909.06335*, 2019.

569 Tianyu Hua, Wenxiao Wang, Zihui Xue, Sucheng Ren, Yue Wang, and Hang Zhao. On feature
570 decorrelation in self-supervised learning. In *Proceedings of the IEEE/CVF international confer-
571 ence on computer vision*, pp. 9598–9608, 2021.

572 Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional collapse in
573 contrastive self-supervised learning. In *International Conference on Learning Representations*,
574 2022.

575 Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
576 Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
577 *International conference on machine learning*, pp. 5132–5143. PMLR, 2020.

578 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
579 2009.

580 Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. *CS 231N*, 7(7):3, 2015.

581 Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In *Proceedings of
582 the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10713–10722, 2021.

583 Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
584 Federated optimization in heterogeneous networks. *Proceedings of Machine learning and sys-
585 tems*, 2:429–450, 2020.

586 Zexi Li, Xinyi Shang, Rui He, Tao Lin, and Chao Wu. No fear of classifier biases: Neural collapse
587 inspired federated learning with synthetic and fixed classifier. In *Proceedings of the IEEE/CVF
588 international conference on computer vision*, pp. 5319–5329, 2023.

594 Mi Luo, Fei Chen, Dapeng Hu, Yifan Zhang, Jian Liang, and Jiashi Feng. No fear of heterogeneity:
 595 Classifier calibration for federated learning with non-iid data. *Advances in Neural Information
 596 Processing Systems*, 34:5972–5984, 2021.

597 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 598 Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence
 599 and statistics*, pp. 1273–1282. PMLR, 2017.

600 Jaehoon Oh, SangMook Kim, and Se-Young Yun. Fedbabu: Toward enhanced representation for
 601 federated image classification. In *International Conference on Learning Representations*, 2022.

602 Vardan Petyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal
 603 phase of deep learning training. *Proceedings of the National Academy of Sciences*, 117(40):
 604 24652–24663, 2020.

605 Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný,
 606 Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. *arXiv preprint
 607 arXiv:2003.00295*, 2020.

608 Jiawei Ren, Cunjun Yu, Xiao Ma, Haiyu Zhao, Shuai Yi, et al. Balanced meta-softmax for long-
 609 tailed visual recognition. *Advances in neural information processing systems*, 33:4175–4186,
 610 2020.

611 Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality. In *2007
 612 15th European signal processing conference*, pp. 606–610. IEEE, 2007.

613 Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
 614 bilenetv2: Inverted residuals and linear bottlenecks. In *Proceedings of the IEEE conference on
 615 computer vision and pattern recognition*, pp. 4510–4520, 2018.

616 Seonguk Seo, Jinkyu Kim, Geeho Kim, and Bohyung Han. Relaxed contrastive learning for fed-
 617 erated learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 618 Recognition*, pp. 12279–12288, 2024.

619 Yujun Shi, Jian Liang, Wenqing Zhang, Chuhui Xue, Vincent YF Tan, and Song Bai. Understanding
 620 and mitigating dimensional collapse in federated learning. *IEEE Transactions on Pattern Analysis
 621 and Machine Intelligence*, 46(5):2936–2949, 2023.

622 Ha Min Son, Moon-Hyun Kim, Tai-Myoung Chung, Chao Huang, and Xin Liu. Feduv: uniformity
 623 and variance for heterogeneous federated learning. In *Proceedings of the IEEE/CVF conference
 624 on computer vision and pattern recognition*, pp. 5863–5872, 2024.

625 Peter Súkeník, Marco Mondelli, and Christoph H Lampert. Deep neural collapse is provably optimal
 626 for the deep unconstrained features model. *Advances in Neural Information Processing Systems*,
 627 36:52991–53024, 2023.

628 Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang, and Chengqi Zhang. Fed-
 629 proto: Federated prototype learning across heterogeneous clients. In *Proceedings of the AAAI
 630 conference on artificial intelligence*, volume 36, pp. 8432–8440, 2022.

631 Tom Tirer and Joan Bruna. Extended unconstrained features model for exploring deep neural col-
 632 lapse. In *International Conference on Machine Learning*, pp. 21478–21505. PMLR, 2022.

633 Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni.
 634 Federated learning with matched averaging. In *International Conference on Learning Represen-
 635 tations*, 2020a.

636 Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
 637 inconsistency problem in heterogeneous federated optimization. *Advances in neural information
 638 processing systems*, 33:7611–7623, 2020b.

639 Yanmeng Wang, Qingjiang Shi, and Tsung-Hui Chang. Why batch normalization damage federated
 640 learning on non-iid data? *IEEE Transactions on Neural Networks and Learning Systems*, pp.
 641 1–15, 2023.

648 Xi Weng, Lei Huang, Lei Zhao, Rao Anwer, Salman H Khan, and Fahad Shahbaz Khan. An in-
 649 vestigation into whitening loss for self-supervised learning. *Advances in Neural Information*
 650 *Processing Systems*, 35:29748–29760, 2022.

651

652 Zikai Xiao, Zihan Chen, Liyinglan Liu, Yang Feng, Jian Wu, Wanlu Liu, Joey Tianyi Zhou,
 653 Howard Hao Yang, and Zuozhu Liu. Fedloge: Joint local and generic federated learning under
 654 long-tailed data. *arXiv preprint arXiv:2401.08977*, 2024.

655

656 Yibo Yang, Shixiang Chen, Xiangtai Li, Liang Xie, Zhouchen Lin, and Dacheng Tao. Inducing
 657 neural collapse in imbalanced learning: Do we really need a learnable classifier at the end of deep
 658 neural network? *Advances in neural information processing systems*, 35:37991–38002, 2022.

659

660 Rui Ye, Zhenyang Ni, Chenxin Xu, Jianyu Wang, Siheng Chen, and Yonina C Eldar. Fedfm: Anchor-
 661 based feature matching for data heterogeneity in federated learning. *IEEE Transactions on Signal*

662 Rui Ye, Mingkai Xu, Jianyu Wang, Chenxin Xu, Siheng Chen, and Yanfeng Wang. Feddisco: Fed-
 663 erated learning with discrepancy-aware collaboration. In *International Conference on Machine*

664 *Learning*, pp. 39879–39902. PMLR, 2023b.

665

666 Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
 667 learning via redundancy reduction. In *International conference on machine learning*, pp. 12310–
 668 12320. PMLR, 2021.

669

670 Guojun Zhang, Mahdi Beitollahi, Alex Bie, and Xi Chen. Understanding the role of layer normal-
 671 ization in label-skewed federated learning. *Transactions on Machine Learning Research*, 2024a.

672

673 Jianqing Zhang, Yang Liu, Yang Hua, and Jian Cao. Fedtgp: Trainable global prototypes with
 674 adaptive-margin-enhanced contrastive learning for data and model heterogeneity in federated
 675 learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 38, pp. 16768–
 676 16776, 2024b.

677

678 Jie Zhang, Zhiqi Li, Bo Li, Jianghe Xu, Shuang Wu, Shouhong Ding, and Chao Wu. Federated learn-
 679 ing with label distribution skew via logits calibration. In *International Conference on Machine*

680 *Learning*, pp. 26311–26329. PMLR, 2022.

681

682 Jike Zhong, Hong-You Chen, and Wei-Lun Chao. Making batch normalization great in federated
 683 deep learning. *arXiv preprint arXiv:2303.06530*, 2024.

684

685 Jinxin Zhou, Xiao Li, Tianyu Ding, Chong You, Qing Qu, and Zhihui Zhu. On the optimization
 686 landscape of neural collapse under mse loss: Global optimality with unconstrained features. In

687 *International Conference on Machine Learning*, pp. 27179–27202. PMLR, 2022.

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702
703 A TABLE OF NOTATIONS704
705 Please refer to Tab. 6 for the notations used throughout this paper.

706 707 Notation	708 Description
\mathcal{X}	709 Input space
\mathcal{Z}	710 Feature space
\mathcal{Y}	711 Label space
\mathcal{L}	712 Loss function
K	713 Number of all clients
D_k	714 Training dataset of client k
C	715 Number of all classes
n_k	716 Size of dataset D_k
n_k^c	717 Number of samples from class c in dataset D_k
f_θ	718 Feature extractor parameterized by θ
f_Ψ	719 Projector parameterized by Ψ
f_ϕ	720 Classifier parameterized by ϕ
\mathbf{x}	721 Input
\mathbf{z}	722 Feature vector generated by f_θ
y	723 Label
d	724 Dimensionality of feature space
p	725 Dimensionality of projection space
$\mathcal{I}^{(t)}$	726 Selected clients at round t
\mathbf{w}	727 Global model
w_k	728 Local model of client k
\sum	729 Representation covariance matrix
\mathbf{K}	730 Representation correlation matrix
\mathbf{V}	731 Weight matrix of ETF classifier
λ_i	732 i -th singular value
\mathbf{p}_k^c	733 Client k ' local prototype of class c
$\bar{\mathbf{p}}^c$	734 Global prototype of class c

735
736 Table 6: Table of notations.

737 B ALGORITHM

738
739 The procedure of FedBlade is formally presented in Algorithm 1.

740 C DETAILS OF DATASETS

741
742 We first ourline the details of the datasets used in our experiments.

743
744

- 745 CIFAR-10 dataset contains 60,000 color samples with size of 32*32 pixels. This dataset is divided
746 into 10 distinct classes and split into 50,000 training and 10,000 test samples. Each class contains
747 6,000 samples.
- 748 CIFAR-100 dataset builds on CIFAR-10 by increasing the number of classes from 10 to 100, while
749 keeping the same image size of 32×32 pixels. It contains the same total number of samples, i.e.,
750 60,000 samples, but with only 600 samples per class. For each class, 500 samples are used for
751 training and 100 samples are used to testing.
- 752 Tiny-ImageNet dataset is a scaled-down version of the larger ImageNet dataset. This dataset is de-
753 signed to provide a middle ground between small datasets like CIFAR and the massive ImageNet
754 dataset. This dataset contains 200 classes, each with 500 training samples and 50 test samples.
755 The total size is 120,000. The image size is 64×64 pixels.

756 **Algorithm 1** FedBlade

```

757 1: Input: number of communication rounds  $T$ , initial model  $\mathbf{w}$ , local epochs  $E$ , learning rate  $\eta$ ,
758   feature decorrelation strength  $\beta$ , and bilateral alignment weight  $\gamma$ .
759 2: for  $t = 0, 1, \dots, T - 1$  do
760 3:   // Server executes:
761 4:   Send global model  $\mathbf{w}^{(t)}$  to each client
762 5:   Send global prototypes  $\{\bar{\mathbf{p}}_c^{(t)}\}_{c \in [C]}$  to each client
763 6:   // Client executes:
764 7:   for each client  $k \in \mathcal{I}^{(t)}$  in parallel do
765 8:     Set  $\mathbf{w}_k^{(t)} = \mathbf{w}^{(t)}$ 
766 9:     for epoch  $e = 1, 2, \dots, E$  do
767 10:    for each mini-batch  $\mathcal{B}$  do
768 11:      Compute supervised loss  $\mathcal{L}_{sup}$  by Eq. (12)
769 12:      Compute feature decorrelation loss  $\mathcal{L}_{LDDecorr}$  by Eq. (11)
770 13:      Compute projector alignment loss  $\mathcal{L}_{PA}$  by Eq. (15)
771 14:      Compute feature alignment loss  $\mathcal{L}_{FA}$  by Eq. (16)
772 15:       $\mathcal{L} = \mathcal{L}_{sup} + \beta \cdot \mathcal{L}_{LDDecorr} + \gamma \cdot (\mathcal{L}_{PA} + \mathcal{L}_{FA})$ 
773 16:       $\mathbf{w}_k^{(t)} \leftarrow \mathbf{w}_k^{(t)} - \eta \nabla \mathcal{L}(\mathbf{w}_k^{(t)}; \mathcal{B})$ 
774 17:    end for
775 18:  end for
776 19:  for  $c \in [C]$  do
777 20:    Generate local prototype  $\mathbf{p}_{k,c}^{(t)}$  by Eq. (13)
778 21:  end for
779 22:  Send  $\mathbf{w}_k^{(t)}$  and  $\{\mathbf{p}_{k,c}^{(t)}\}_{c \in [C]}$  to server
780 23: end for
781 24: // Server executes:
782 25: Update global model  $\mathbf{w}^{(t+1)}$  by Eq. (2)
783 26: for each class  $c \in [C]$  do
784 27:   Update global prototype  $\bar{\mathbf{p}}_c^{(t+1)}$  by Eq. (14)
785 28: end for
786 29: end for

```

787 Then, we introduce the data augmentation used in our experiments. For all three datasets, we fol-
788 low the standard data augmentation and normalization process. Specifically, we first use Random-
789 Crop(32, padding=4) and RandomHorizontalFlip(). Then, for CIFAR-10 and CIFAR-100, each
790 channels (r, g, b) are normalized by mean $\mu = (0.4914, 0.4822, 0.4465)$ and standard deviation $\sigma =$
791 $(0.2023, 0.1994, 0.2010)$, respectively. For Tiny-ImageNet, each channels are normalized by mean
792 $\mu = (0.47889522, 0.47227842, 0.43047404)$ and standard deviation $\sigma = (0.24205776, 0.23828046,$
793 $0.25874835)$. For test dataset, we only perform the normalization process.

794 **D DETAILS OF EXPERIMENTAL SETUPS**

795 All experiments were conducted on a server equipped with two NVIDIA RTX 4090 GPUs, an AMD
796 Ryzen 9 9950X CPU, and 128 GB of RAM. All results were produced using PyTorch 2.6.0, under
797 Ubuntu 22.04.

801 For all three datasets under partial participation and full participation, we use MobileNetV2 (Sandler
802 et al., 2018) and adopt SGD as the optimizer. For all methods, the learning rate is set to 0.01, the
803 momentum is set to 0.9, the weight decay is set to 0.00001, the local epoch is set to 5, and the batch
804 size is set to 64. For partial participation setting, the communication round is set to 200; for full
805 participation setting, the communication round is set to 100.

806 For FedBlade, we turn the feature decorrelation strength $\beta \in \{0.001, 0.005, 0.01, 0.05\}$, and set
807 it to 0.005 according to the sensitivity analysis in Fig. 6. We turn the **bilateral** alignment weight
808 $\gamma \in \{0.1, 1.0, 2.0, 5.0\}$, and set it to 1.0 according to the sensitivity analysis in Fig. 7. **We turn the**
809 **temperature $\tau \in \{0.01, 0.05, 0.1, 0.5\}$, and set it to 0.1 according to the sensitivity analysis in Fig. 8.**

810 Here, we list the hyperparameters for all baselines.
 811

- 812 FedProx (Li et al., 2020): regularization weight μ is set to 0.01.
- 813 FedLC (Zhang et al., 2022): constant τ in the logits calibration is set to 10.
- 814 FedDecorr (Shi et al., 2023): feature decorrelation weight β is set to 0.1.
- 815 FedRCL (Seo et al., 2024): regularization weight β is set to 0.7, and temperature τ is set to 0.1.
- 816 FedProto (Tan et al., 2022): alignment weight λ is set to 1.
- 817 FedFM (Ye et al., 2023a): alignment weight λ is set to 1, and temperature τ is set to 0.1.

822 Figure 6: Sensitivity analysis of
 823 feature decorrelation strength β .
 824

825 Figure 7: Sensitivity analysis of
 826 bilateral alignment weight γ .
 827

828 Figure 8: Sensitivity analysis of
 829 temperature parameter τ .
 830

834 E ADDITIONAL EXPERIMENTAL RESULTS

836 E.1 TEST ACCURACY UNDER FULL PARTICIPATION

838 We evaluate on three datasets under the full participation setting. Tab. 7 reports the averaged test
 839 accuracy over the last 10 rounds. Under full client participation, each client has access to more
 840 local data and participates in every round, which reduces data heterogeneity and stabilizes prototype
 841 generation. In this setting, the challenges that FedBlade is designed to address, i.e., dimensional
 842 collapse and feature inconsistency under label skew, are less pronounced. However, we note that
 843 FedBlade remains competitive and does not degrade performance in this setting.

844 Table 7: **Accuracy (%) comparisons under the full partition.** The model is MobileNetV2. All
 845 20 clients are selected per round. All results are averaged over 3 runs (mean \pm std). The best and
 846 second results are highlighted with bold and underline, respectively.
 847

Method	CIFAR-10			CIFAR-100			Tiny-ImageNet		
	<i>Dir(0.05)</i>	<i>Dir(0.1)</i>	<i>Dir(0.5)</i>	<i>Dir(0.05)</i>	<i>Dir(0.1)</i>	<i>Dir(0.5)</i>	<i>Dir(0.05)</i>	<i>Dir(0.1)</i>	<i>Dir(0.5)</i>
FedAvg	67.44 \pm 1.02	81.88 \pm 0.45	89.86 \pm 0.06	57.94\pm0.26	61.80 \pm 0.19	66.82 \pm 0.11	43.02 \pm 0.44	46.35 \pm 0.31	51.24 \pm 0.31
FedProx	70.21 \pm 1.01	82.99 \pm 0.16	89.62 \pm 0.06	57.48\pm0.20	61.87 \pm 0.17	66.35 \pm 0.20	42.13 \pm 0.34	45.35 \pm 0.30	50.01 \pm 0.28
FedLC	75.09 \pm 0.13	84.81\pm0.13	89.78 \pm 0.10	56.63 \pm 0.11	61.17 \pm 0.16	66.42 \pm 0.10	44.73\pm0.24	47.66 \pm 0.33	51.08 \pm 0.18
FedDecorr	73.55 \pm 0.48	84.07 \pm 0.11	89.35 \pm 0.11	56.56 \pm 0.11	60.59 \pm 0.10	65.09 \pm 0.11	44.34 \pm 0.26	46.63 \pm 0.24	50.96 \pm 0.25
FedRCL	61.25 \pm 0.35	76.67 \pm 0.28	89.85 \pm 0.12	53.07 \pm 0.20	60.37 \pm 0.16	67.10 \pm 0.17	38.17 \pm 0.44	42.86 \pm 0.40	48.88 \pm 0.34
FedProto	70.67 \pm 0.31	83.59 \pm 0.10	89.76 \pm 0.08	57.17 \pm 0.21	61.89 \pm 0.13	66.48 \pm 0.16	41.05 \pm 0.36	45.16 \pm 0.32	51.18 \pm 0.37
FedFM	66.15 \pm 0.54	82.85 \pm 1.11	90.20\pm0.08	52.36 \pm 4.17	62.47\pm0.19	67.63\pm0.16	37.72 \pm 0.50	42.85 \pm 0.51	48.65 \pm 0.37
FedETF	75.22 \pm 0.23	84.66 \pm 0.15	89.66 \pm 0.12	57.49\pm0.30	61.77 \pm 0.26	66.65 \pm 0.14	45.50\pm0.40	48.59\pm0.35	51.71 \pm 0.35
FedBlade	76.25\pm0.20	84.20 \pm 0.12	90.44\pm0.06	58.33\pm0.24	62.57\pm0.19	68.13\pm0.08	43.99 \pm 0.28	47.69 \pm 0.32	51.99\pm0.30

861 E.2 TEST ACCURACY ON RESNET-18

862 To evaluate our method on different model architectures, we conduct experiments on ResNet-18.
 863 The feature dimension of ResNet-18 is 512, which is smaller than that of MobileNetV2 with 1280

864
 865
 866
 867
 868 Table 8: **Accuracy (%) comparisons under the partial partition.** The model is ResNet-18. 20
 869 clients are selected from 100 clients per round. All results are averaged over 3 runs (mean \pm std).
 870 The best and second results are highlighted with bold and underline, respectively.
 871
 872
 873
 874
 875
 876

Method	CIFAR-10			CIFAR-100			Tiny-ImageNet		
	$Dir(0.05)$	$Dir(0.1)$	$Dir(0.5)$	$Dir(0.05)$	$Dir(0.1)$	$Dir(0.5)$	$Dir(0.05)$	$Dir(0.1)$	$Dir(0.5)$
FedAvg	62.09 \pm 3.67	73.78 \pm 4.11	88.69 \pm 0.57	57.08 \pm 0.47	60.81 \pm 0.44	63.44 \pm 0.25	39.70 \pm 0.48	43.29 \pm 0.25	46.29 \pm 0.20
FedProx	62.76 \pm 3.97	74.68 \pm 3.51	88.65 \pm 0.55	56.97 \pm 0.33	60.79 \pm 0.38	63.19 \pm 0.25	39.84 \pm 0.40	43.45 \pm 0.68	46.38 \pm 0.32
FedLC	79.83 \pm 0.62	84.68 \pm 0.31	89.20 \pm 0.17	56.62 \pm 0.64	58.77 \pm 0.27	61.93 \pm 0.20	42.65 \pm 0.17	45.66 \pm 0.17	47.37 \pm 0.21
FedDecor	67.05 \pm 3.33	76.53 \pm 3.91	88.74 \pm 0.41	54.72 \pm 0.38	57.40 \pm 0.35	58.14 \pm 0.32	40.17 \pm 0.46	42.92 \pm 0.27	44.83 \pm 0.19
FedRCL	63.83 \pm 3.02	71.07 \pm 1.81	86.84 \pm 0.34	52.42 \pm 0.31	58.70 \pm 0.38	63.49 \pm 0.26	37.00 \pm 0.33	41.61 \pm 0.40	45.53 \pm 0.33
FedProto	61.58 \pm 3.03	74.41 \pm 4.08	89.16 \pm 0.47	56.18 \pm 0.71	59.69 \pm 0.43	64.27 \pm 0.25	39.43 \pm 0.72	43.53 \pm 0.33	47.82 \pm 0.24
FedFM	63.79 \pm 2.83	75.48 \pm 4.73	88.88 \pm 0.85	55.43 \pm 0.56	61.42 \pm 0.68	67.40\pm0.24	34.12 \pm 1.25	41.54 \pm 0.71	48.08\pm0.29
FedETF	80.41 \pm 0.61	85.08 \pm 0.38	89.36 \pm 0.13	57.61 \pm 0.70	60.09 \pm 1.21	60.92 \pm 1.23	42.79 \pm 0.56	45.41 \pm 0.18	47.08 \pm 0.52
FedBlade	81.41\pm0.50	85.66\pm0.13	90.25\pm0.13	60.56\pm0.20	63.94\pm0.27	65.55 \pm 0.13	43.43\pm0.28	45.84\pm0.26	47.94 \pm 0.25

877
 878 dimensions. Tab. 8 reports the averaged test accuracy over the last 10 rounds under partial participation setting. We find that FedBLADE can still achieve strong performance on ResNet-18.
 879
 880

E.3 CONVERGENCE CURVES

911
 912 Figure 9: **Test accuracy under various label skew settings on CIFAR-100 and Tiny-ImageNet.**
 913 FedBLADE achieves faster convergence speed compared with other baselines, especially under se-
 914 vere label skew (e.g., $Dir(0.05)$).
 915

916 As discussed in Sec. 4.1, feature decorrelation helps mitigate dimensional collapse during local
 917 training, thereby accelerating the convergence of the global model. Besides, as stated in Sec. 4.2
 918 the synergy among the feature extractor, projector and ETF classifier can further improve the per-

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
formance of the global model. To compare the performance of different FL methods, we plot the accuracy curve over communication rounds under partial participation setting. Fig. 9 shows the experimental results on CIFAR-100 and Tiny-ImageNet under various label skew settings, including $Dir(0.05)$, $Dir(0.1)$ and $Dir(0.5)$. The results illustrate that FedBlade achieves substantially faster convergence under the above settings, indicating the effectiveness of our LDDecor and PBA.

E.4 ADDITIONAL EFFECTIVE RANK RESULTS

We visualize the effective rank for all methods in Fig. 10. In particular, the effective rank of all methods in Fig. 10 is computed in the output space of feature extractor, which is shared across architectures. As discussed in 5.3, FedBlade increases effective rank relative to some baselines, but these results indicate that effective rank and accuracy are not strictly monotonic. By pulling representations toward their corresponding ETF directions, PBA provides a structured geometric anchor that counteracts the potential side effects of strong feature decorrelation, while preserving the intended rank-expansion benefits of LDDecor. Therefore, FedBlade achieves higher performance.

Figure 10: Effective rank under various label skew settings. The effective rank is computed in the output space of feature space.

E.5 ABLATION STUDY ON THE NUMBER OF LOCAL EPOCHS

We conduct an ablation study on the number of local epochs E . We turn the local epochs $E \in \{1, 5, 10\}$ on CIFAR-10 with α being $\{0.05, 0.1, 0.5\}$. Tab. 9 shows that FedBlade benefits from multiple local updates (performance increases substantially from $E = 1$ to $E = 5$). However, the

972 gain from $E = 5$ to $E = 10$ is small relative to the additional computation cost. For this reason, we
 973 set $E = 5$ in our main experiments.
 974

975 Table 9: **Ablation study on the number of local epochs.**
 976

977 E	978 CIFAR-10			979 CIFAR-100			980 Tiny-ImageNet		
	981 Dir(0.05)	Dir(0.1)	Dir(0.5)	Dir(0.05)	Dir(0.1)	Dir(0.5)	Dir(0.05)	Dir(0.1)	Dir(0.5)
1	58.33±1.45	64.64±1.51	71.33±0.48	31.90±0.68	31.73±0.53	33.04±0.27	19.03±0.32	18.73±0.56	18.25±0.41
5	75.83±0.70	81.67±0.30	87.90±0.14	54.31±0.19	57.92±0.15	62.07±0.17	39.43±0.17	41.88±0.15	43.63±0.25
10	77.90±0.82	82.63±0.41	88.65±0.22	54.54±0.22	58.30±0.20	61.54±0.28	40.98±0.18	43.22±0.32	44.40±0.31

982
 983
 984
 985 **E.6 COMPUTATION COST ANALYSIS**
 986

987 To quantify the efficiency for LDDecor and PBA, we report the per-iteration computation cost
 988 (ms) of each loss term. Tab. 10 shows that the computation cost of each loss component is small,
 989 indicating that FedBlade is practical in real-world scenario. Besides, different datasets measure the
 990 computation cost with different numbers of classes (i.e., $\{10, 100, 200\}$), and different architectures
 991 measure the computation cost with different representation dimensions (i.e., 512 and 1280).
 992

993 Table 10: **The computation cost (ms/iteration) for each loss component**, averaged over 1000
 994 trials. The representation dimension of MobileNetV2 is 1280, while that of ResNet-18 is 512.
 995

995 Dataset	996 Model	997 \mathcal{L}_{sup}	998 \mathcal{L}_{FA}	999 \mathcal{L}_{PA}	1000 $\mathcal{L}_{LDDecor}$
1001 CIFAR-10	MobileNetV2	0.0886	0.1824	0.1294	1.1522
	ResNet-18	0.0882	0.1551	0.1255	0.5297
1002 CIFAR-100	MobileNetV2	0.0933	0.2566	0.1373	1.1600
	ResNet-18	0.0912	0.1606	0.1299	0.5592
1003 TinyImageNet	MobileNetV2	0.0884	0.5700	0.1322	1.1460
	ResNet-18	0.0899	0.1947	0.1282	0.5245

1004
 1005
 1006 **E.7 COMMUNICATION COST OF PROTOTYPES.**
 1007

1008 We compared the additional communication cost of prototypes across different datasets and archi-
 1009 tectures. For MobileNetV2, each class prototype is a 1280-dimensional float32 vector, which is only
 1010 5 KB per class; for ResNet-18, the prototype is a 512-dimensional float32 vector, requiring 2 KB per
 1011 class. We report the total communication cost of all prototypes in Tab. 11. While PBA introduces
 1012 an additional step for exchanging prototypes, the associated communication overhead is negligible
 1013 compared to transmitting model parameters.
 1014

1015 Table 11: **The communication cost of prototypes across different datasets and architectures.**
 1016

1016 Model	1017 CIFAR-10	1018 CIFAR-100	1019 Tiny-ImageNet
MobileNetV2	50KB	500KB	1000KB
ResNet-18	20KB	200KB	400KB

1020
 1021 **E.8 CONVERGENCE SPEED**
 1022

1023 To quantify the convergence speed, we report the communication round at which each method first
 1024 reaches the specified accuracy. For CIFAR-100, the specific accuracy values are 40% and 50%; for
 1025 Tiny-ImageNet, the specific accuracy values are 20% and 30%. 200+ means the specific accuracy
 1026 was not reached after 200 rounds. Benifitting from our LDDecor and module synergy, FedBlade

1026 achieves substantially faster convergence under various settings. In particular, we find that feature
 1027 alignment methods (e.g., FedFM) converge slowly under severe label skew. This is because that,
 1028 under severe label skew, dimensional collapse occurs and the prototypes used for feature alignment
 1029 can be biased, which misleads the feature alignment during local training.

1031 Table 12: Convergence speed under CIFAR-100 ($\alpha = 0.05$).

	40% accuracy		50% accuracy	
	Number of rounds	Speedup	Number of rounds	Speedup
FedAvg	85	(1.0 \times)	184	(1.0 \times)
FedBlade	48	(1.7 \times)	105	(1.9 \times)
FedProx	88	(1.0 \times)	180	(1.0 \times)
FedLC	68	(1.3 \times)	174	(1.1 \times)
FedDecorr	68	(1.3 \times)	176	(1.0 \times)
FedRCL	77	(1.1 \times)	180	(1.0 \times)
FedProto	85	(1.0 \times)	175	(1.1 \times)
FedFM	122	(1.0 \times)	200+	(<0.9 \times)
FedETF	74	(1.1 \times)	151	(1.2 \times)

1048 Table 13: Convergence speed under CIFAR-100 ($\alpha = 0.1$).

	40% accuracy		50% accuracy	
	Number of rounds	Speedup	Number of rounds	Speedup
FedAvg	60	(1.0 \times)	117	(1.0 \times)
FedBlade	40	(1.5 \times)	78	(1.5 \times)
FedProx	60	(1.0 \times)	117	(1.0 \times)
FedLC	56	(1.1 \times)	110	(1.1 \times)
FedDecorr	53	(1.1 \times)	111	(1.1 \times)
FedRCL	53	(1.1 \times)	101	(1.2 \times)
FedProto	60	(1.0 \times)	111	(1.1 \times)
FedFM	71	(0.8 \times)	131	(0.9 \times)
FedETF	57	(1.1 \times)	111	(1.1 \times)

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Table 14: Convergence speed under CIFAR-100 ($\alpha = 0.5$).

	40% accuracy		50% accuracy	
	Number of rounds	Speedup	Number of rounds	Speedup
FedAvg	43	(1.0 \times)	76	(1.0 \times)
FedBlade	34	(1.3 \times)	58	(1.3 \times)
FedProx	43	(1.0 \times)	77	(1.0 \times)
FedLC	41	(1.0 \times)	75	(1.0 \times)
FedDecorr	40	(1.1 \times)	79	(1.0 \times)
FedRCL	40	(1.1 \times)	70	(1.1 \times)
FedProto	41	(1.0 \times)	71	(1.1 \times)
FedFM	41	(1.0 \times)	70	(1.1 \times)
FedETF	53	(0.8 \times)	83	(0.9 \times)

Table 15: Convergence speed under Tiny-ImageNet ($\alpha = 0.05$).

	20% accuracy		30% accuracy	
	Number of rounds	Speedup	Number of rounds	Speedup
FedAvg	70	(1.0 \times)	141	(1.0 \times)
FedBlade	41	(1.7 \times)	81	(1.7 \times)
FedProx	70	(1.0 \times)	150	(0.9 \times)
FedLC	49	(1.4 \times)	102	(1.4 \times)
FedDecorr	45	(1.6 \times)	101	(1.4 \times)
FedRCL	88	(0.8 \times)	166	(0.8 \times)
FedProto	82	(0.9 \times)	170	(0.9 \times)
FedFM	130	(0.5 \times)	200+	(<0.7 \times)
FedETF	60	(1.2 \times)	116	(1.2 \times)

Table 16: Convergence speed under Tiny-ImageNet ($\alpha = 0.1$).

	20% accuracy		30% accuracy	
	Number of rounds	Speedup	Number of rounds	Speedup
FedAvg	46	(1.0 \times)	104	(1.0 \times)
FedBlade	37	(1.2 \times)	67	(1.5 \times)
FedProx	51	(0.9 \times)	104	(1.0 \times)
FedLC	40	(1.1 \times)	81	(1.3 \times)
FedDecorr	37	(1.2 \times)	79	(1.3 \times)
FedRCL	63	(0.7 \times)	121	(0.9 \times)
FedProto	57	(0.8 \times)	114	(0.9 \times)
FedFM	74	(0.6 \times)	157	(0.7 \times)
FedETF	50	(0.9 \times)	92	(0.9 \times)

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153

Table 17: Convergence speed under Tiny-ImageNet ($\alpha = 0.5$).

	20% accuracy		30% accuracy	
	Number of rounds	Speedup	Number of rounds	Speedup
FedAvg	37	(1.0 \times)	75	(1.0 \times)
FedBlade	39	(0.9 \times)	66	(1.1 \times)
FedProx	37	(1.0 \times)	77	(1.0 \times)
FedLC	35	(1.1 \times)	71	(1.1 \times)
FedDecorr	30	(1.2 \times)	60	(1.25 \times)
FedRCL	46	(0.8 \times)	82	(0.9 \times)
FedProto	39	(0.9 \times)	76	(1.0 \times)
FedFM	43	(0.9 \times)	89	(0.8 \times)
FedETF	46	(0.8 \times)	79	(0.9 \times)

1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188 F THE USE OF LARGE LANGUAGE MODELS (LLMs)
1189

1190 We used LLMs **only for language polishing**. All contents were line-by-line verified, including
1191 contents generated by LLMs.
1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241